summaryrefslogtreecommitdiff
path: root/test/published/Web
diff options
context:
space:
mode:
Diffstat (limited to 'test/published/Web')
-rw-r--r--test/published/Web/web1.cloog81
-rw-r--r--test/published/Web/web2.cloog85
-rw-r--r--test/published/Web/web3.cloog73
-rw-r--r--test/published/Web/web4.cloog62
-rw-r--r--test/published/Web/web5.cloog261
-rw-r--r--test/published/Web/web6.cloog269
-rw-r--r--test/published/Web/web7.cloog30
7 files changed, 0 insertions, 861 deletions
diff --git a/test/published/Web/web1.cloog b/test/published/Web/web1.cloog
deleted file mode 100644
index 060a059..0000000
--- a/test/published/Web/web1.cloog
+++ /dev/null
@@ -1,81 +0,0 @@
-# CLooG example file #1.
-# Please read this example carefully to understand how the input file is made.
-# Do not worry, it is quite easy !
-#
-################################################################################
-# The problem here is to generate the scanning code for the integral points #
-# inside a 2-dimensional polyhedron (geometrically a square). #
-# | #
-# j^ | #
-# | i>=2 | #
-# | | i<=n | #
-# | | | | #
-# n-+-*****--j<=n | for (i=2;i<=n;i++) { #
-# | ***** | for (j=2;j<=n;j++) { #
-# | ***** ==> S1 ; #
-# | ***** | } #
-# 2-+-*****--j>=2 | } #
-# | | | | #
-# 0-+-+---+--->i | #
-# | | | | #
-# 0 2 n | #
-# | #
-# Context : n>=2 | #
-# System : 2<=i<=n | #
-# 2<=j<=m | #
-# | #
-################################################################################
-#
-# Comments begin with a # and finish with the line.
-# Typically, a ClooG input file has 7 points:
-
-# 1. First we need to set the output language, here: C. You can also prefer to
-# set f for FORTRAN.
-c
-
-# 2. Second, we have to give the constraints on parameters (i.e. unknown values
-# that are constant during scanning) here {n | n>=2}. The constraints are
-# described using a matrix. First we give the row and column numbers. Then
-# we give the constraints themselves. The first number is 0 if the constraint
-# is an equality =0, it is 1 if the constraint is an inequality >=0. The
-# other entries are the coefficients of the parameters and then the scalar.
-1 3 # 1 row, 3 columns
-# n 1
-1 1 -2 # this means 1*n + -2*1 >= 0, i.e. n>=2
-
-# 3. Third, let us set the parameter names. We just put 0 if we want to let
-# CLooG decide names, 1 otherwise. If we put 1, at the next line we give the
-# space-separated parameter list (here we set only n).
-1
-n
-
-# 4. Fourth we give the number of polyhedra to scan, here 1.
-1
-
-# 5. Fifth, we give the list of polyhedra. Each polyhedron is described using
-# three parts:
-# 5.1 Each co-called polyhedron may be actually an union of disjoint
-# polyhedra, so we begin with precising the number of disjoint polyhedra
-# of the union (here 1, there is only one part).
-# 5.2 The constraint matrix, in the same way as in part 2. First column is
-# the equality/inequality tag, then the variable coefficients, then the
-# parameter coefficients, then the scalar. Here we want the following
-# domain: {i, j | 2<=i<=n 2<=j<=n}.
-# 5.3 A line with three zeroes, this is historical.
-1 # 1 the union has only one element
-4 5 # 4 rows, 5 columns
-# i j n 1
-1 1 0 0 -2 # i-2>=0, i.e. i>=2
-1 -1 0 1 0 # -i+n>=0, i.e. i<=n
-1 0 1 0 -2 # j-2>=0, i.e. j>=2
-1 0 -1 1 0 # -j+n>=0, i.e. j<=n
-0 0 0 # 3 zeroes !
-
-# 6. Sixth, let us set the iterator names. We just put 0 if we want to let CLooG
-# decide names, 1 otherwise. If we put 1, at the next line we give the
-# space-separated iterator list (here we let CLooG do).
-0
-
-# 7. Seventh, let us define a scanning order. But let us study it later and just
-# put 0: CLoog can scan the polyhedra in the way it wants !
-0
diff --git a/test/published/Web/web2.cloog b/test/published/Web/web2.cloog
deleted file mode 100644
index 7293f90..0000000
--- a/test/published/Web/web2.cloog
+++ /dev/null
@@ -1,85 +0,0 @@
-# CLooG example file #2.
-# Please read the first example which is fully documented to understand the
-# six first parts of the input file. This example explains the seventh one.
-#
-################################################################################
-# The problem here is to impose a scanning order for the polyhedron of the #
-# first example : the points are ordered by i+j values (a well known skewing). #
-# | | #
-# j^ | i^ i<=c1-2 | #
-# | i>=2 | | c1>=4 / c1<=2*n | #
-# | | i<=n | | | / | i>=c1-n | #
-# | | | | | | / |/ | #
-# n-+-*****--j<=n | n-+---+---*****--i<=n | for (c1=4;c1<=2*n;c1++){ #
-# | ***** | | | *****| | for (i=max(c1-n,2); #
-# | ***** ==> | | ***** | ==> i<=min(c1-2,n);i++){ #
-# | ***** | | |***** | | j = c1-i ; #
-# 2-+-*****--j>=2 | 2-+---*****---+--i>=2 | S1 ; #
-# | | | | | /| / | | } #
-# 0-+-+---+--->i | 0-+---+-------+--->c1 | } #
-# | | | | | | | | #
-# 0 2 n | 0 4 2n | #
-# | | #
-# Context : n>=2 | Scattering function: | #
-# System : 2<=i<=n | c1=i+j | #
-# 2<=j<=m | | #
-# | | #
-################################################################################
-#
-# 1. Language: C
-c
-
-# 2. Parameters {n | n>= 2}
-1 3
-# n 1
-1 1 -2
-
-# 3. We set manually the parameter name: n
-1
-n
-
-# 4. Number of polyhedra:
-1
-
-# 5. The polyhedron description:
-1
-# {j, j | 2<=i<=n 2<=j<=n}
-4 5
-# i j n 1
-1 1 0 0 -2 # i>=2
-1 -1 0 1 0 # i<=n
-1 0 1 0 -2 # j>=2
-1 0 -1 1 0 # j<=n
-0 0 0 # 3 zeroes !
-
-# 6. We let CLooG choose the iterator names
-0
-
-# 7. Seventh, we define the scanning order. In CLooG speaking, we talk about
-# scattering functions (a shortcut for scheduling, allocation etc.). It may
-# be useful to read the CLooG documentation about this point since it is
-# not trivial if you are not comfortable with transformations in the polytope
-# model. We describe them in three parts:
-# 7.1 The number of scattering functions. It must be either 0 (in this case
-# there is no particular scanning order and CLooG will do what it wants)
-# or the number of polyhedra (set in part 4.).
-# 7.2 The list of scattering functions. Each scattering function is a
-# constraint matrix (as those that describe context or polyhedra) but
-# made exclusively of equalities. They equate each new scattering
-# dimension with an affine expression of the original polyhedron
-# dimensions, the parameters and the scalar. CLooG will only respect the
-# ordering given by the scattering dimensions. If there are several
-# scattering dimensions, CLooG will use the lexicographic ordering (the
-# first dimension leads, then the second one and so on). Every scattering
-# functions must have the same number of scattering dimensions.
-# Here we have c1=i+j, a one-dimensional scattering. It means that the
-# points of the original polyhedron with the same i+j value will be
-# scanned during the same iteration of the outer loop.
-# 7.3 We set the scattering dimension names. We just put 0 if we want to let
-# CLooG decide names, 1 otherwise. If we put 1, at the next line we give
-# the space-separated parameter list.
-1 # One scattering function (since there is only one polyhedron)
-1 6 # The scattering function is a matrix of one row and six columns
-# c1 i j n 1
-0 1 -1 -1 0 0 # c1 = i+j
-0 # We let CLooG choose the scattering dimension names
diff --git a/test/published/Web/web3.cloog b/test/published/Web/web3.cloog
deleted file mode 100644
index e719a5c..0000000
--- a/test/published/Web/web3.cloog
+++ /dev/null
@@ -1,73 +0,0 @@
-# CLooG example file #3.
-# Please read the first example which is fully documented to understand the
-# different parts of this input file.
-#
-################################################################################
-# The problem here is to generate the scanning code for the integral points #
-# inside two different 2-dimensional polyhedra (geometrically two rectangles). #
-# | #
-# j^ | #
-# | (P1)i>=2 | for (i=2;i<=p-1;i++) #
-# Context: | | (P2)i>=m | | for (j=2;j<=n;j++) #
-# m>n>p>2 | | | (P1)i<=n | | | S1 ; #
-# | | | | (P2)i<=p | #
-# P1 System: | | | | | | for (i=p;i<=n;i++) #
-# 2<=i<=n m-+-+-@@@@@--(P2)j<=p | | for (j=2;j<=p-1;j++) #
-# 2<=j<=n | | @@@@@ ==> | | S1 ; #
-# n-+-**###@@--(P1)j<=n | | for (j=p;j<=n;j++) #
-# P2 System: | **###@@ | | | S1 ; #
-# p<=i<=m p-+-**###@@--(P2)j>=m | | | S2 ; #
-# p<=j<=m | ***** | | | for (j=n+1;j<=m;j++) #
-# 2-+-*****-+--(P1)j>=2 | | | S2 ; #
-# *:P1 alone | | | | | | #
-# @:P2 alone 0-+-+-+-+-+-->i | for (i=n+1;i<=m;i++) #
-# #:P1 and P2 | | | | | | | for (j=p;j<=m;j++) #
-# 0 2 p n m | | | S2 ; #
-# | #
-################################################################################
-
-# 1. Language: C
-c
-
-# 2. Parameters {m,n,p | m>n>p>2}
-3 5 # 3 rows and 5 columns
-# m n p 1
-1 0 0 1 -3 # p>=3 (i.e. p>2)
-1 0 1 -1 -1 # n>=p+1 (i.e. n>p)
-1 1 -1 0 -1 # m>=n+1 (i.e. m>n)
-
-# 3. We set manually the parameter name: m, n and p
-1
-m n p
-
-# 4. Number of polyhedra:
-2
-
-# 5. The polyhedron description:
-# - the first one
-1
-# {i, j | 2<=i<=n 2<=j<=n}
-4 7 # 4 rows, 7 columns
-# i j m n p 1
-1 1 0 0 0 0 -2 # i>=2
-1 -1 0 0 1 0 0 # i<=n
-1 0 1 0 0 0 -2 # j>=2
-1 0 -1 0 1 0 0 # j<=n
-0 0 0 # 3 zeroes !
-
-# - the second one
-1
-# {j, j | p<=i<=m p<=j<=m}
-4 7 # 4 rows, 7 columns
-# i j m n p 1
-1 1 0 0 0 -1 0 # i>=p
-1 -1 0 1 0 0 0 # i<=m
-1 0 1 0 0 -1 0 # j>=p
-1 0 -1 1 0 0 0 # j<=m
-0 0 0 # 3 zeroes !
-
-# 6. We let CLooG choose the iterator names
-0
-
-# 7. Let CLoog scan the polyhedra in the way it wants.
-0
diff --git a/test/published/Web/web4.cloog b/test/published/Web/web4.cloog
deleted file mode 100644
index cf71f20..0000000
--- a/test/published/Web/web4.cloog
+++ /dev/null
@@ -1,62 +0,0 @@
-# CLooG example file #4.
-# Please read the first example which is fully documented to understand the
-# different parts of this input file.
-#
-################################################################################
-# The problem here is to scan a single non-rectangular polyhedron. #
-# | #
-# j^ i>=2 | #
-# | | j<=n+2-i | #
-# | |\ | i<=n | #
-# | | \ | | #
-# m-+-****---+-j<=m | for (i=2;i<=n;i++) { #
-# | ***** | | for (j=2;j<=min(m,-i+n+2);j++) { #
-# | ****** | ==> S1 ; #
-# | *******| | } #
-# 2-+-********-j>=2 | } #
-# | | |\ | #
-# 0-+-+------+--->i | #
-# | | | | #
-# 0 2 n | #
-# Context : n>=2 | #
-# m>=2 | #
-# System : 2<=i<=n | #
-# 2<=j<=m | #
-# j<=n+2-i | #
-# | #
-################################################################################
-#
-# 1. Language: C
-c
-
-# 2. Parameters {n,m | n>=2 m>=2}
-2 4 # 2 rows ans 4 columns
-# m n 1
-1 1 0 -2 # m>=2
-1 0 1 -2 # n>=2
-
-# 3. We set manually the parameter name: m, n
-1
-m n
-
-# 4. Number of polyhedra:
-1
-
-# 5. The polyhedron description:
-1
-# {i, j | 2<=i<=n 2<=j<=m n+2-i-j>=0}
-5 6 # 5 rows and 6 columns
-# i j m n 1
-1 1 0 0 0 -2 # i>=2
-1 -1 0 0 1 0 # i<=n
-1 0 1 0 0 -2 # j>=2
-1 0 -1 1 0 0 # j<=m
-1 -1 -1 0 1 2 # j<=n+2-i
-0 0 0 # 3 zeroes !
-
-# 6. We set manually the iterator names: i, j
-1
-i j
-
-# 7. Let CLoog scan the polyhedron in the way it wants.
-0
diff --git a/test/published/Web/web5.cloog b/test/published/Web/web5.cloog
deleted file mode 100644
index 381339b..0000000
--- a/test/published/Web/web5.cloog
+++ /dev/null
@@ -1,261 +0,0 @@
-# CLooG example file #5.
-# Please read the first and second examples which are fully documented to
-# understand the different parts of the input file.
-#
-################################################################################
-# do i=1,n The problem here is to regenerate a #
-# | do j =1,i-1 real-life Cholesau kernel according to #
-# | | if (j.EQ.1) then the original scheduling (see the user's #
-#S1| | | s1(i,j)=a(i,j)s4(j,i)**2 manual for more details). The original #
-# | | else program is given on the left. For each #
-#S2| | | s1(i,j)=s1(i,j-1)-s4(j,i)**2 statement the original schedule is: #
-# | if (i .EQ. 1) then T_S1(i,j) =(i,0,j,0,0,0) #
-#S3| | s2(i)=sqrt(a(i,i)) T_S2(i,j) =(i,0,j,1,0,0) #
-# | else T_S3(i) =(i,1,0,0,0,0) #
-#S4| | s2(i)=sqrt (s1(i,i-1)) T_S4(i) =(i,2,0,0,0,0) #
-# | do k=i+1,n T_S5(i,j,k)=(i,3,j,0,k,0) #
-# | | do l=1,i-1 T_S6(i,j,k)=(i,3,j,0,k,1) #
-# | | | if (l .EQ. 1) then T_S7(i,j) =(i,3,j,1,0,0) #
-#S5| | | | s3(i,k,l)=a(k,i)-(s4(l,k)*s4(l,i)) T_S8(i,j) =(i,3,j,2,0,0) #
-# | | | else #
-#S6| | | | s3(i,k,l)=s3(i,k,l-1)-(s4(l,k)*s4(l,i)) #
-# | | if (i .EQ.1) then #
-#S7| | | s4(i,k)=a(k,i)/s2(i) Note that in the generated code there #
-# | | else are no more conditions. #
-#S8| | | s4(i,k)=s3(i,k,i-1)/s2(i) #
-################################################################################
-#
-#------------------------------------CONTEXT------------------------------------
-
-# 1. language: FORTRAN
-f
-
-# 2. Parameters {n | n>=10}
-1 3
-# n 1
-1 1 -10 # n>=10
-
-# 3. We set manually the parameter name: n
-1
-n
-
-#-----------------------------------POLYHEDRA-----------------------------------
-
-# 4. Number of polyhedra:
-8
-
-# Polyhedron #1
-1
-# {i, j | 1<=i<=n; 1<=j<=i-1; j=1}
-5 5
-# i j n 1
-1 1 0 0 -1 # 1<=i
-1 -1 0 1 0 # i<=n
-1 0 1 0 -1 # 1<=j
-1 1 -1 0 -1 # j<=i-1
-0 0 1 0 -1 # j=1
-0 0 0 # 3 zeroes !
-
-# Polyhedron #2
-2
-# {i, j | 1<=i<=n; 1<=j<=i-1; j!=1}
-5 5
-# i j n 1
-1 1 0 0 -1 # 1<=i
-1 -1 0 1 0 # i<=n
-1 0 1 0 -1 # 1<=j
-1 1 -1 0 -1 # j<=i-1
-1 0 1 0 -2 # j>=2
-5 5
-# i j n 1
-1 1 0 0 -1 # 1<=i
-1 -1 0 1 0 # i<=n
-1 0 1 0 -1 # 1<=j
-1 1 -1 0 -1 # j<=i-1
-1 0 -1 0 0 # j<=0
-0 0 0 # 3 zeroes !
-
-# Polyhedron #3
-1
-# {i | 1<=i<=n; i=1}
-3 4
-# i n 1
-1 1 0 -1 # 1<=i
-1 -1 1 0 # i<=n
-0 1 0 -1 # i=1
-0 0 0 # 3 zeroes !
-
-# Polyhedron #4
-2
-# {i | 1<=i<=n; i!=1}
-3 4
-# i n 1
-1 1 0 -1 # 1<=i
-1 -1 1 0 # i<=n
-1 1 0 -2 # i>=2
-3 4
-# i n 1
-1 1 0 -1 # 1<=i
-1 -1 1 0 # i<=n
-1 -1 0 0 # i<=0
-0 0 0 # 3 zeroes !
-
-# Polyhedron #5
-1
-# {i, j | 1<=i<=n; i+1<=j<=n; 1<=k<=i-1; k=1}
-7 6
-# i j k n 1
-1 1 0 0 0 -1 # 1<=i
-1 -1 0 0 1 0 # i<=n
-1 -1 1 0 0 -1 # i+1<=j
-1 0 -1 0 1 0 # j<=n
-1 0 0 1 0 -1 # 1<=k
-1 1 0 -1 0 -1 # k<=i-1
-0 0 0 1 0 -1 # k=1
-0 0 0 # 3 zeroes !
-
-# Polyhedron #6
-2
-# {i, j | 1<=i<=n; i+1<=j<=n; 1<=k<=i-1; k!=1}
-7 6
-# i j k n 1
-1 1 0 0 0 -1 # 1<=i
-1 -1 0 0 1 0 # i<=n
-1 -1 1 0 0 -1 # i+1<=j
-1 0 -1 0 1 0 # j<=n
-1 0 0 1 0 -1 # 1<=k
-1 1 0 -1 0 -1 # k<=i-1
-1 0 0 1 0 -2 # k>=2
-7 6
-# i j k n 1
-1 1 0 0 0 -1 # 1<=i
-1 -1 0 0 1 0 # i<=n
-1 -1 1 0 0 -1 # i+1<=j
-1 0 -1 0 1 0 # j<=n
-1 0 0 1 0 -1 # 1<=k
-1 1 0 -1 0 -1 # k<=i-1
-1 0 0 -1 0 0 # k<=0
-0 0 0 # 3 zeroes !
-
-# Polyhedron #7
-1
-# {i, j | 1<=i<=n; i+1<=j<=n; i=1}
-5 5
-# i j n 1
-1 1 0 0 -1 # 1<=i
-1 -1 0 1 0 # i<=n
-1 -1 1 0 -1 # i+1<=j
-1 0 -1 1 0 # j<=n
-0 1 0 0 -1 # i=1
-0 0 0 # 3 zeroes !
-
-# Polyhedron #8
-2
-# {i, j | 1<=i<=n; i+1<=j<=n; i!=1}
-5 5
-# i j n 1
-1 1 0 0 -1 # 1<=i
-1 -1 0 1 0 # i<=n
-1 -1 1 0 -1 # i+1<=j
-1 0 -1 1 0 # j<=n
-1 1 0 0 -2 # i>=2
-5 5
-# i j n 1
-1 1 0 0 -1 # 1<=i
-1 -1 0 1 0 # i<=n
-1 -1 1 0 -1 # i+1<=j
-1 0 -1 1 0 # j<=n
-1 -1 0 0 0 # i<=0
-0 0 0 # 3 zeroes !
-
-# 6. We let CLooG choose the iterator names
-0
-
-#----------------------------------SCATTERING-----------------------------------
-
-# 7. Scattering functions ORIGINAL SCHEDULING
-8
-
-# Scattering function for polyhedron #1: T_S1(i,j) =(i,0,j,0,0,0)
-6 11
-# c1 c2 c3 c4 c5 c6 i j n 1
-0 1 0 0 0 0 0 -1 0 0 0 # i
-0 0 1 0 0 0 0 0 0 0 0 # 0
-0 0 0 1 0 0 0 0 -1 0 0 # j
-0 0 0 0 1 0 0 0 0 0 0 # 0
-0 0 0 0 0 1 0 0 0 0 0 # 0
-0 0 0 0 0 0 1 0 0 0 0 # 0
-
-# Scattering function for polyhedron #2: T_S2(i,j) =(i,0,j,1,0,0)
-6 11
-# c1 c2 c3 c4 c5 c6 i j n 1
-0 1 0 0 0 0 0 -1 0 0 0 # i
-0 0 1 0 0 0 0 0 0 0 0 # 0
-0 0 0 1 0 0 0 0 -1 0 0 # j
-0 0 0 0 1 0 0 0 0 0 -1 # 1
-0 0 0 0 0 1 0 0 0 0 0 # 0
-0 0 0 0 0 0 1 0 0 0 0 # 0
-
-# Scattering function for polyhedron #3: T_S3(i) =(i,1,0,0,0,0)
-6 10
-# c1 c2 c3 c4 c5 c6 i n 1
-0 1 0 0 0 0 0 -1 0 0 # i
-0 0 1 0 0 0 0 0 0 -1 # 1
-0 0 0 1 0 0 0 0 0 0 # 0
-0 0 0 0 1 0 0 0 0 0 # 0
-0 0 0 0 0 1 0 0 0 0 # 0
-0 0 0 0 0 0 1 0 0 0 # 0
-
-# Scattering function for polyhedron #4: T_S4(i) =(i,2,0,0,0,0)
-6 10
-# c1 c2 c3 c4 c5 c6 i n 1
-0 1 0 0 0 0 0 -1 0 0 # i
-0 0 1 0 0 0 0 0 0 -2 # 2
-0 0 0 1 0 0 0 0 0 0 # 0
-0 0 0 0 1 0 0 0 0 0 # 0
-0 0 0 0 0 1 0 0 0 0 # 0
-0 0 0 0 0 0 1 0 0 0 # 0
-
-# Scattering function for polyhedron #5: T_S5(i,j,k)=(i,3,j,0,k,0)
-6 12
-# c1 c2 c3 c4 c5 c6 i j k n 1
-0 1 0 0 0 0 0 -1 0 0 0 0 # i
-0 0 1 0 0 0 0 0 0 0 0 -3 # 3
-0 0 0 1 0 0 0 0 -1 0 0 0 # j
-0 0 0 0 1 0 0 0 0 0 0 0 # 0
-0 0 0 0 0 1 0 0 0 -1 0 0 # k
-0 0 0 0 0 0 1 0 0 0 0 0 # 0
-
-# Scattering function for polyhedron #6: T_S6(i,j,k)=(i,3,j,0,k,1)
-6 12
-# c1 c2 c3 c4 c5 c6 i j k n 1
-0 1 0 0 0 0 0 -1 0 0 0 0 # i
-0 0 1 0 0 0 0 0 0 0 0 -3 # 3
-0 0 0 1 0 0 0 0 -1 0 0 0 # j
-0 0 0 0 1 0 0 0 0 0 0 0 # 0
-0 0 0 0 0 1 0 0 0 -1 0 0 # k
-0 0 0 0 0 0 1 0 0 0 0 -1 # 1
-
-# Scattering function for polyhedron #7: T_S7(i,j) =(i,3,j,1,0,0)
-6 11
-# c1 c2 c3 c4 c5 c6 i j n 1
-0 1 0 0 0 0 0 -1 0 0 0 # i
-0 0 1 0 0 0 0 0 0 0 -3 # 3
-0 0 0 1 0 0 0 0 -1 0 0 # j
-0 0 0 0 1 0 0 0 0 0 -1 # 1
-0 0 0 0 0 1 0 0 0 0 0 # 0
-0 0 0 0 0 0 1 0 0 0 0 # 0
-
-# Scattering function for polyhedron #8: T_S8(i,j) =(i,3,j,2,0,0)
-6 11
-# c1 c2 c3 c4 c5 c6 i j n 1
-0 1 0 0 0 0 0 -1 0 0 0 # i
-0 0 1 0 0 0 0 0 0 0 -3 # 3
-0 0 0 1 0 0 0 0 -1 0 0 # j
-0 0 0 0 1 0 0 0 0 0 -2 # 2
-0 0 0 0 0 1 0 0 0 0 0 # 0
-0 0 0 0 0 0 1 0 0 0 0 # 0
-
-# We want to set manually the scattering dimension names.
-1
-c1 c2 c3 c4 c5 c6
diff --git a/test/published/Web/web6.cloog b/test/published/Web/web6.cloog
deleted file mode 100644
index bd33077..0000000
--- a/test/published/Web/web6.cloog
+++ /dev/null
@@ -1,269 +0,0 @@
-# CLooG example file #6.
-# Please read the first and second examples which are fully documented to
-# understand the different parts of the input file.
-#
-################################################################################
-# do i=1,n The problem here is to generate the #
-# | do j =1,i-1 transformation of a real-life Cholesau #
-# | | if (j.EQ.1) then kernel according to the allocation #
-#S1| | | s1(i,j)=a(i,j)s4(j,i)**2 functions given by a good automatic #
-# | | else parallelizer (e.g. PAF or LooPo). For #
-#S2| | | s1(i,j)=s1(i,j-1)-s4(j,i)**2 each statement the new schedule is: #
-# | if (i .EQ. 1) then T_S1(i,j) =(i+j-1,i,0,j,0,0,0) #
-#S3| | s2(i)=sqrt(a(i,i)) T_S2(i,j) =(i, i,0,j,1,0,0 #
-# | else T_S3(i) =(i-1, i,1,0,0,0,0 #
-#S4| | s2(i)=sqrt (s1(i,i-1)) T_S4(i) =(0, i,2,0,0,0,0) #
-# | do k=i+1,n T_S5(i,j,k)=(j+k-1,i,3,j,0,k,0) #
-# | | do l=1,i-1 T_S6(i,j,k)=(k, i,3,j,0,k,1) #
-# | | | if (l .EQ. 1) then T_S7(i,j) =(i+j, i,3,j,1,0,0) #
-#S5| | | | s3(i,k,l)=a(k,i)-(s4(l,k)*s4(l,i)) T_S8(i,j) =(j, i,3,j,2,0,0) #
-# | | | else #
-#S6| | | | s3(i,k,l)=s3(i,k,l-1)-(s4(l,k)*s4(l,i)) #
-# | | if (i .EQ.1) then In the generated code, every instances #
-#S7| | | s4(i,k)=a(k,i)/s2(i) with the same p value are executed on #
-# | | else processor number p (an allocation pb). #
-#S8| | | s4(i,k)=s3(i,k,i-1)/s2(i) For a better view, use -fsp 2 option. #
-################################################################################
-#
-#------------------------------------CONTEXT------------------------------------
-
-# 1. language: FORTRAN
-f
-
-# 2. Parameters {n | n>=10}
-1 3
-# n 1
-1 1 -10 # n>=10
-
-# 3. We set manually the parameter name: n
-1
-n
-
-#-----------------------------------POLYHEDRA-----------------------------------
-
-# 4. Number of polyhedra:
-8
-
-# Polyhedron #1
-1
-# {i, j | 1<=i<=n; 1<=j<=i-1; j=1}
-5 5
-# i j n 1
-1 1 0 0 -1 # 1<=i
-1 -1 0 1 0 # i<=n
-1 0 1 0 -1 # 1<=j
-1 1 -1 0 -1 # j<=i-1
-0 0 1 0 -1 # j=1
-0 0 0 # 3 zeroes !
-
-# Polyhedron #2
-2
-# {i, j | 1<=i<=n; 1<=j<=i-1; j!=1}
-5 5
-# i j n 1
-1 1 0 0 -1 # 1<=i
-1 -1 0 1 0 # i<=n
-1 0 1 0 -1 # 1<=j
-1 1 -1 0 -1 # j<=i-1
-1 0 1 0 -2 # j>=2
-5 5
-# i j n 1
-1 1 0 0 -1 # 1<=i
-1 -1 0 1 0 # i<=n
-1 0 1 0 -1 # 1<=j
-1 1 -1 0 -1 # j<=i-1
-1 0 -1 0 0 # j<=0
-0 0 0 # 3 zeroes !
-
-# Polyhedron #3
-1
-# {i | 1<=i<=n; i=1}
-3 4
-# i n 1
-1 1 0 -1 # 1<=i
-1 -1 1 0 # i<=n
-0 1 0 -1 # i=1
-0 0 0 # 3 zeroes !
-
-# Polyhedron #4
-2
-# {i | 1<=i<=n; i!=1}
-3 4
-# i n 1
-1 1 0 -1 # 1<=i
-1 -1 1 0 # i<=n
-1 1 0 -2 # i>=2
-3 4
-# i n 1
-1 1 0 -1 # 1<=i
-1 -1 1 0 # i<=n
-1 -1 0 0 # i<=0
-0 0 0 # 3 zeroes !
-
-# Polyhedron #5
-1
-# {i, j | 1<=i<=n; i+1<=j<=n; 1<=k<=i-1; k=1}
-7 6
-# i j k n 1
-1 1 0 0 0 -1 # 1<=i
-1 -1 0 0 1 0 # i<=n
-1 -1 1 0 0 -1 # i+1<=j
-1 0 -1 0 1 0 # j<=n
-1 0 0 1 0 -1 # 1<=k
-1 1 0 -1 0 -1 # k<=i-1
-0 0 0 1 0 -1 # k=1
-0 0 0 # 3 zeroes !
-
-# Polyhedron #6
-2
-# {i, j | 1<=i<=n; i+1<=j<=n; 1<=k<=i-1; k!=1}
-7 6
-# i j k n 1
-1 1 0 0 0 -1 # 1<=i
-1 -1 0 0 1 0 # i<=n
-1 -1 1 0 0 -1 # i+1<=j
-1 0 -1 0 1 0 # j<=n
-1 0 0 1 0 -1 # 1<=k
-1 1 0 -1 0 -1 # k<=i-1
-1 0 0 1 0 -2 # k>=2
-7 6
-# i j k n 1
-1 1 0 0 0 -1 # 1<=i
-1 -1 0 0 1 0 # i<=n
-1 -1 1 0 0 -1 # i+1<=j
-1 0 -1 0 1 0 # j<=n
-1 0 0 1 0 -1 # 1<=k
-1 1 0 -1 0 -1 # k<=i-1
-1 0 0 -1 0 0 # k<=0
-0 0 0 # 3 zeroes !
-
-# Polyhedron #7
-1
-# {i, j | 1<=i<=n; i+1<=j<=n; i=1}
-5 5
-# i j n 1
-1 1 0 0 -1 # 1<=i
-1 -1 0 1 0 # i<=n
-1 -1 1 0 -1 # i+1<=j
-1 0 -1 1 0 # j<=n
-0 1 0 0 -1 # i=1
-0 0 0 # 3 zeroes !
-
-# Polyhedron #8
-2
-# {i, j | 1<=i<=n; i+1<=j<=n; i!=1}
-5 5
-# i j n 1
-1 1 0 0 -1 # 1<=i
-1 -1 0 1 0 # i<=n
-1 -1 1 0 -1 # i+1<=j
-1 0 -1 1 0 # j<=n
-1 1 0 0 -2 # i>=2
-5 5
-# i j n 1
-1 1 0 0 -1 # 1<=i
-1 -1 0 1 0 # i<=n
-1 -1 1 0 -1 # i+1<=j
-1 0 -1 1 0 # j<=n
-1 -1 0 0 0 # i<=0
-0 0 0 # 3 zeroes !
-
-# 6. We let CLooG choose the iterator names
-0
-
-#----------------------------------SCATTERING-----------------------------------
-
-# 7. Scattering functions ALLOCATION + ORIGINAL SCHEDULING
-8
-
-# Scattering function for polyhedron #1: T_S1(i,j) =(i+j-1,i,0,j,0,0,0)
-7 12
-# p c1 c2 c3 c4 c5 c6 i j n 1
-0 1 0 0 0 0 0 0 -1 -1 0 1 # ins1: i+j-1
-0 0 1 0 0 0 0 0 -1 0 0 0 # i
-0 0 0 1 0 0 0 0 0 0 0 0 # 0
-0 0 0 0 1 0 0 0 0 -1 0 0 # j
-0 0 0 0 0 1 0 0 0 0 0 0 # 0
-0 0 0 0 0 0 1 0 0 0 0 0 # 0
-0 0 0 0 0 0 0 1 0 0 0 0 # 0
-
-# Scattering function for polyhedron #2: T_S2(i,j) =(i,i,0,j,1,0,0)
-7 12
-# p c1 c2 c3 c4 c5 c6 i j n 1
-0 1 0 0 0 0 0 0 -1 0 0 0 # ins2: i
-0 0 1 0 0 0 0 0 -1 0 0 0 # i
-0 0 0 1 0 0 0 0 0 0 0 0 # 0
-0 0 0 0 1 0 0 0 0 -1 0 0 # j
-0 0 0 0 0 1 0 0 0 0 0 -1 # 1
-0 0 0 0 0 0 1 0 0 0 0 0 # 0
-0 0 0 0 0 0 0 1 0 0 0 0 # 0
-
-# Scattering function for polyhedron #3: T_S3(i) =(i-1,i,1,0,0,0,0)
-7 11
-# p c1 c2 c3 c4 c5 c6 i n 1
-0 1 0 0 0 0 0 0 -1 0 1 # ins3: i-1
-0 0 1 0 0 0 0 0 -1 0 0 # i
-0 0 0 1 0 0 0 0 0 0 -1 # 1
-0 0 0 0 1 0 0 0 0 0 0 # 0
-0 0 0 0 0 1 0 0 0 0 0 # 0
-0 0 0 0 0 0 1 0 0 0 0 # 0
-0 0 0 0 0 0 0 1 0 0 0 # 0
-
-# Scattering function for polyhedron #4: T_S4(i) =(0,i,2,0,0,0,0)
-7 11
-# p c1 c2 c3 c4 c5 c6 i n 1
-0 1 0 0 0 0 0 0 0 0 0 # ins4: 0
-0 0 1 0 0 0 0 0 -1 0 0 # i
-0 0 0 1 0 0 0 0 0 0 -2 # 2
-0 0 0 0 1 0 0 0 0 0 0 # 0
-0 0 0 0 0 1 0 0 0 0 0 # 0
-0 0 0 0 0 0 1 0 0 0 0 # 0
-0 0 0 0 0 0 0 1 0 0 0 # 0
-
-# Scattering function for polyhedron #5: T_S5(i,j,k)=(j+k-1,i,3,j,0,k,0)
-7 13
-# p c1 c2 c3 c4 c5 c6 i j k n 1
-0 1 0 0 0 0 0 0 0 -1 -1 0 1 # ins 5: j+k-1
-0 0 1 0 0 0 0 0 -1 0 0 0 0 # i
-0 0 0 1 0 0 0 0 0 0 0 0 -3 # 3
-0 0 0 0 1 0 0 0 0 -1 0 0 0 # j
-0 0 0 0 0 1 0 0 0 0 0 0 0 # 0
-0 0 0 0 0 0 1 0 0 0 -1 0 0 # k
-0 0 0 0 0 0 0 1 0 0 0 0 0 # 0
-
-# Scattering function for polyhedron #6: T_S6(i,j,k)=(k,i,3,j,0,k,1)
-7 13
-# p c1 c2 c3 c4 c5 c6 i j k n 1
-0 1 0 0 0 0 0 0 0 0 -1 0 0 # ins 6: k
-0 0 1 0 0 0 0 0 -1 0 0 0 0 # i
-0 0 0 1 0 0 0 0 0 0 0 0 -3 # 3
-0 0 0 0 1 0 0 0 0 -1 0 0 0 # j
-0 0 0 0 0 1 0 0 0 0 0 0 0 # 0
-0 0 0 0 0 0 1 0 0 0 -1 0 0 # k
-0 0 0 0 0 0 0 1 0 0 0 0 -1 # 1
-
-# Scattering function for polyhedron #7: T_S7(i,j) =(i+j,i,3,j,1,0,0)
-7 12
-# p c1 c2 c3 c4 c5 c6 i j n 1
-0 1 0 0 0 0 0 0 -1 -1 0 0 # ins 7: i+j
-0 0 1 0 0 0 0 0 -1 0 0 0 # i
-0 0 0 1 0 0 0 0 0 0 0 -3 # 3
-0 0 0 0 1 0 0 0 0 -1 0 0 # j
-0 0 0 0 0 1 0 0 0 0 0 -1 # 1
-0 0 0 0 0 0 1 0 0 0 0 0 # 0
-0 0 0 0 0 0 0 1 0 0 0 0 # 0
-
-# Scattering function for polyhedron #8: T_S8(i,j) =(j,i,3,j,2,0,0)
-7 12
-# p c1 c2 c3 c4 c5 c6 i j n 1
-0 1 0 0 0 0 0 0 0 -1 0 0 # ins 8: j
-0 0 1 0 0 0 0 0 -1 0 0 0 # i
-0 0 0 1 0 0 0 0 0 0 0 -3 # 3
-0 0 0 0 1 0 0 0 0 -1 0 0 # j
-0 0 0 0 0 1 0 0 0 0 0 -2 # 2
-0 0 0 0 0 0 1 0 0 0 0 0 # 0
-0 0 0 0 0 0 0 1 0 0 0 0 # 0
-
-# We want to set manually the scattering dimension names.
-1
-p c1 c2 c3 c4 c5 c6
diff --git a/test/published/Web/web7.cloog b/test/published/Web/web7.cloog
deleted file mode 100644
index 29b860b..0000000
--- a/test/published/Web/web7.cloog
+++ /dev/null
@@ -1,30 +0,0 @@
-# CLooG example file #7: A useful basis to start writing its own input file.
-# 1. Language: C
-c
-
-# 2. Parameters {M | M>=0}.
-1 3
-# M 1
-1 1 0
-
-# 3. We let CLooG choose the parameter names.
-0
-
-# 4. Number of polyhedra:
-1
-
-# 5. Polyhedron #1 {i, j | 0<=i<=M 0<=j<=M}.
-1
-4 5
-# i j M 1
-1 1 0 0 0
-1 -1 0 1 0
-1 0 1 0 0
-1 0 -1 1 0
-0 0 0
-
-# 6. We let CLooG choose the iterator names.
-0
-
-# 7. Let CLoog scan the polyhedra in the way it wants.
-0