summaryrefslogtreecommitdiff
path: root/test/published/Web/web5.cloog
diff options
context:
space:
mode:
Diffstat (limited to 'test/published/Web/web5.cloog')
-rw-r--r--test/published/Web/web5.cloog261
1 files changed, 0 insertions, 261 deletions
diff --git a/test/published/Web/web5.cloog b/test/published/Web/web5.cloog
deleted file mode 100644
index 381339b..0000000
--- a/test/published/Web/web5.cloog
+++ /dev/null
@@ -1,261 +0,0 @@
-# CLooG example file #5.
-# Please read the first and second examples which are fully documented to
-# understand the different parts of the input file.
-#
-################################################################################
-# do i=1,n The problem here is to regenerate a #
-# | do j =1,i-1 real-life Cholesau kernel according to #
-# | | if (j.EQ.1) then the original scheduling (see the user's #
-#S1| | | s1(i,j)=a(i,j)s4(j,i)**2 manual for more details). The original #
-# | | else program is given on the left. For each #
-#S2| | | s1(i,j)=s1(i,j-1)-s4(j,i)**2 statement the original schedule is: #
-# | if (i .EQ. 1) then T_S1(i,j) =(i,0,j,0,0,0) #
-#S3| | s2(i)=sqrt(a(i,i)) T_S2(i,j) =(i,0,j,1,0,0) #
-# | else T_S3(i) =(i,1,0,0,0,0) #
-#S4| | s2(i)=sqrt (s1(i,i-1)) T_S4(i) =(i,2,0,0,0,0) #
-# | do k=i+1,n T_S5(i,j,k)=(i,3,j,0,k,0) #
-# | | do l=1,i-1 T_S6(i,j,k)=(i,3,j,0,k,1) #
-# | | | if (l .EQ. 1) then T_S7(i,j) =(i,3,j,1,0,0) #
-#S5| | | | s3(i,k,l)=a(k,i)-(s4(l,k)*s4(l,i)) T_S8(i,j) =(i,3,j,2,0,0) #
-# | | | else #
-#S6| | | | s3(i,k,l)=s3(i,k,l-1)-(s4(l,k)*s4(l,i)) #
-# | | if (i .EQ.1) then #
-#S7| | | s4(i,k)=a(k,i)/s2(i) Note that in the generated code there #
-# | | else are no more conditions. #
-#S8| | | s4(i,k)=s3(i,k,i-1)/s2(i) #
-################################################################################
-#
-#------------------------------------CONTEXT------------------------------------
-
-# 1. language: FORTRAN
-f
-
-# 2. Parameters {n | n>=10}
-1 3
-# n 1
-1 1 -10 # n>=10
-
-# 3. We set manually the parameter name: n
-1
-n
-
-#-----------------------------------POLYHEDRA-----------------------------------
-
-# 4. Number of polyhedra:
-8
-
-# Polyhedron #1
-1
-# {i, j | 1<=i<=n; 1<=j<=i-1; j=1}
-5 5
-# i j n 1
-1 1 0 0 -1 # 1<=i
-1 -1 0 1 0 # i<=n
-1 0 1 0 -1 # 1<=j
-1 1 -1 0 -1 # j<=i-1
-0 0 1 0 -1 # j=1
-0 0 0 # 3 zeroes !
-
-# Polyhedron #2
-2
-# {i, j | 1<=i<=n; 1<=j<=i-1; j!=1}
-5 5
-# i j n 1
-1 1 0 0 -1 # 1<=i
-1 -1 0 1 0 # i<=n
-1 0 1 0 -1 # 1<=j
-1 1 -1 0 -1 # j<=i-1
-1 0 1 0 -2 # j>=2
-5 5
-# i j n 1
-1 1 0 0 -1 # 1<=i
-1 -1 0 1 0 # i<=n
-1 0 1 0 -1 # 1<=j
-1 1 -1 0 -1 # j<=i-1
-1 0 -1 0 0 # j<=0
-0 0 0 # 3 zeroes !
-
-# Polyhedron #3
-1
-# {i | 1<=i<=n; i=1}
-3 4
-# i n 1
-1 1 0 -1 # 1<=i
-1 -1 1 0 # i<=n
-0 1 0 -1 # i=1
-0 0 0 # 3 zeroes !
-
-# Polyhedron #4
-2
-# {i | 1<=i<=n; i!=1}
-3 4
-# i n 1
-1 1 0 -1 # 1<=i
-1 -1 1 0 # i<=n
-1 1 0 -2 # i>=2
-3 4
-# i n 1
-1 1 0 -1 # 1<=i
-1 -1 1 0 # i<=n
-1 -1 0 0 # i<=0
-0 0 0 # 3 zeroes !
-
-# Polyhedron #5
-1
-# {i, j | 1<=i<=n; i+1<=j<=n; 1<=k<=i-1; k=1}
-7 6
-# i j k n 1
-1 1 0 0 0 -1 # 1<=i
-1 -1 0 0 1 0 # i<=n
-1 -1 1 0 0 -1 # i+1<=j
-1 0 -1 0 1 0 # j<=n
-1 0 0 1 0 -1 # 1<=k
-1 1 0 -1 0 -1 # k<=i-1
-0 0 0 1 0 -1 # k=1
-0 0 0 # 3 zeroes !
-
-# Polyhedron #6
-2
-# {i, j | 1<=i<=n; i+1<=j<=n; 1<=k<=i-1; k!=1}
-7 6
-# i j k n 1
-1 1 0 0 0 -1 # 1<=i
-1 -1 0 0 1 0 # i<=n
-1 -1 1 0 0 -1 # i+1<=j
-1 0 -1 0 1 0 # j<=n
-1 0 0 1 0 -1 # 1<=k
-1 1 0 -1 0 -1 # k<=i-1
-1 0 0 1 0 -2 # k>=2
-7 6
-# i j k n 1
-1 1 0 0 0 -1 # 1<=i
-1 -1 0 0 1 0 # i<=n
-1 -1 1 0 0 -1 # i+1<=j
-1 0 -1 0 1 0 # j<=n
-1 0 0 1 0 -1 # 1<=k
-1 1 0 -1 0 -1 # k<=i-1
-1 0 0 -1 0 0 # k<=0
-0 0 0 # 3 zeroes !
-
-# Polyhedron #7
-1
-# {i, j | 1<=i<=n; i+1<=j<=n; i=1}
-5 5
-# i j n 1
-1 1 0 0 -1 # 1<=i
-1 -1 0 1 0 # i<=n
-1 -1 1 0 -1 # i+1<=j
-1 0 -1 1 0 # j<=n
-0 1 0 0 -1 # i=1
-0 0 0 # 3 zeroes !
-
-# Polyhedron #8
-2
-# {i, j | 1<=i<=n; i+1<=j<=n; i!=1}
-5 5
-# i j n 1
-1 1 0 0 -1 # 1<=i
-1 -1 0 1 0 # i<=n
-1 -1 1 0 -1 # i+1<=j
-1 0 -1 1 0 # j<=n
-1 1 0 0 -2 # i>=2
-5 5
-# i j n 1
-1 1 0 0 -1 # 1<=i
-1 -1 0 1 0 # i<=n
-1 -1 1 0 -1 # i+1<=j
-1 0 -1 1 0 # j<=n
-1 -1 0 0 0 # i<=0
-0 0 0 # 3 zeroes !
-
-# 6. We let CLooG choose the iterator names
-0
-
-#----------------------------------SCATTERING-----------------------------------
-
-# 7. Scattering functions ORIGINAL SCHEDULING
-8
-
-# Scattering function for polyhedron #1: T_S1(i,j) =(i,0,j,0,0,0)
-6 11
-# c1 c2 c3 c4 c5 c6 i j n 1
-0 1 0 0 0 0 0 -1 0 0 0 # i
-0 0 1 0 0 0 0 0 0 0 0 # 0
-0 0 0 1 0 0 0 0 -1 0 0 # j
-0 0 0 0 1 0 0 0 0 0 0 # 0
-0 0 0 0 0 1 0 0 0 0 0 # 0
-0 0 0 0 0 0 1 0 0 0 0 # 0
-
-# Scattering function for polyhedron #2: T_S2(i,j) =(i,0,j,1,0,0)
-6 11
-# c1 c2 c3 c4 c5 c6 i j n 1
-0 1 0 0 0 0 0 -1 0 0 0 # i
-0 0 1 0 0 0 0 0 0 0 0 # 0
-0 0 0 1 0 0 0 0 -1 0 0 # j
-0 0 0 0 1 0 0 0 0 0 -1 # 1
-0 0 0 0 0 1 0 0 0 0 0 # 0
-0 0 0 0 0 0 1 0 0 0 0 # 0
-
-# Scattering function for polyhedron #3: T_S3(i) =(i,1,0,0,0,0)
-6 10
-# c1 c2 c3 c4 c5 c6 i n 1
-0 1 0 0 0 0 0 -1 0 0 # i
-0 0 1 0 0 0 0 0 0 -1 # 1
-0 0 0 1 0 0 0 0 0 0 # 0
-0 0 0 0 1 0 0 0 0 0 # 0
-0 0 0 0 0 1 0 0 0 0 # 0
-0 0 0 0 0 0 1 0 0 0 # 0
-
-# Scattering function for polyhedron #4: T_S4(i) =(i,2,0,0,0,0)
-6 10
-# c1 c2 c3 c4 c5 c6 i n 1
-0 1 0 0 0 0 0 -1 0 0 # i
-0 0 1 0 0 0 0 0 0 -2 # 2
-0 0 0 1 0 0 0 0 0 0 # 0
-0 0 0 0 1 0 0 0 0 0 # 0
-0 0 0 0 0 1 0 0 0 0 # 0
-0 0 0 0 0 0 1 0 0 0 # 0
-
-# Scattering function for polyhedron #5: T_S5(i,j,k)=(i,3,j,0,k,0)
-6 12
-# c1 c2 c3 c4 c5 c6 i j k n 1
-0 1 0 0 0 0 0 -1 0 0 0 0 # i
-0 0 1 0 0 0 0 0 0 0 0 -3 # 3
-0 0 0 1 0 0 0 0 -1 0 0 0 # j
-0 0 0 0 1 0 0 0 0 0 0 0 # 0
-0 0 0 0 0 1 0 0 0 -1 0 0 # k
-0 0 0 0 0 0 1 0 0 0 0 0 # 0
-
-# Scattering function for polyhedron #6: T_S6(i,j,k)=(i,3,j,0,k,1)
-6 12
-# c1 c2 c3 c4 c5 c6 i j k n 1
-0 1 0 0 0 0 0 -1 0 0 0 0 # i
-0 0 1 0 0 0 0 0 0 0 0 -3 # 3
-0 0 0 1 0 0 0 0 -1 0 0 0 # j
-0 0 0 0 1 0 0 0 0 0 0 0 # 0
-0 0 0 0 0 1 0 0 0 -1 0 0 # k
-0 0 0 0 0 0 1 0 0 0 0 -1 # 1
-
-# Scattering function for polyhedron #7: T_S7(i,j) =(i,3,j,1,0,0)
-6 11
-# c1 c2 c3 c4 c5 c6 i j n 1
-0 1 0 0 0 0 0 -1 0 0 0 # i
-0 0 1 0 0 0 0 0 0 0 -3 # 3
-0 0 0 1 0 0 0 0 -1 0 0 # j
-0 0 0 0 1 0 0 0 0 0 -1 # 1
-0 0 0 0 0 1 0 0 0 0 0 # 0
-0 0 0 0 0 0 1 0 0 0 0 # 0
-
-# Scattering function for polyhedron #8: T_S8(i,j) =(i,3,j,2,0,0)
-6 11
-# c1 c2 c3 c4 c5 c6 i j n 1
-0 1 0 0 0 0 0 -1 0 0 0 # i
-0 0 1 0 0 0 0 0 0 0 -3 # 3
-0 0 0 1 0 0 0 0 -1 0 0 # j
-0 0 0 0 1 0 0 0 0 0 -2 # 2
-0 0 0 0 0 1 0 0 0 0 0 # 0
-0 0 0 0 0 0 1 0 0 0 0 # 0
-
-# We want to set manually the scattering dimension names.
-1
-c1 c2 c3 c4 c5 c6