diff options
Diffstat (limited to 'test/published/Web/web5.cloog')
-rw-r--r-- | test/published/Web/web5.cloog | 261 |
1 files changed, 0 insertions, 261 deletions
diff --git a/test/published/Web/web5.cloog b/test/published/Web/web5.cloog deleted file mode 100644 index 381339b..0000000 --- a/test/published/Web/web5.cloog +++ /dev/null @@ -1,261 +0,0 @@ -# CLooG example file #5. -# Please read the first and second examples which are fully documented to -# understand the different parts of the input file. -# -################################################################################ -# do i=1,n The problem here is to regenerate a # -# | do j =1,i-1 real-life Cholesau kernel according to # -# | | if (j.EQ.1) then the original scheduling (see the user's # -#S1| | | s1(i,j)=a(i,j)s4(j,i)**2 manual for more details). The original # -# | | else program is given on the left. For each # -#S2| | | s1(i,j)=s1(i,j-1)-s4(j,i)**2 statement the original schedule is: # -# | if (i .EQ. 1) then T_S1(i,j) =(i,0,j,0,0,0) # -#S3| | s2(i)=sqrt(a(i,i)) T_S2(i,j) =(i,0,j,1,0,0) # -# | else T_S3(i) =(i,1,0,0,0,0) # -#S4| | s2(i)=sqrt (s1(i,i-1)) T_S4(i) =(i,2,0,0,0,0) # -# | do k=i+1,n T_S5(i,j,k)=(i,3,j,0,k,0) # -# | | do l=1,i-1 T_S6(i,j,k)=(i,3,j,0,k,1) # -# | | | if (l .EQ. 1) then T_S7(i,j) =(i,3,j,1,0,0) # -#S5| | | | s3(i,k,l)=a(k,i)-(s4(l,k)*s4(l,i)) T_S8(i,j) =(i,3,j,2,0,0) # -# | | | else # -#S6| | | | s3(i,k,l)=s3(i,k,l-1)-(s4(l,k)*s4(l,i)) # -# | | if (i .EQ.1) then # -#S7| | | s4(i,k)=a(k,i)/s2(i) Note that in the generated code there # -# | | else are no more conditions. # -#S8| | | s4(i,k)=s3(i,k,i-1)/s2(i) # -################################################################################ -# -#------------------------------------CONTEXT------------------------------------ - -# 1. language: FORTRAN -f - -# 2. Parameters {n | n>=10} -1 3 -# n 1 -1 1 -10 # n>=10 - -# 3. We set manually the parameter name: n -1 -n - -#-----------------------------------POLYHEDRA----------------------------------- - -# 4. Number of polyhedra: -8 - -# Polyhedron #1 -1 -# {i, j | 1<=i<=n; 1<=j<=i-1; j=1} -5 5 -# i j n 1 -1 1 0 0 -1 # 1<=i -1 -1 0 1 0 # i<=n -1 0 1 0 -1 # 1<=j -1 1 -1 0 -1 # j<=i-1 -0 0 1 0 -1 # j=1 -0 0 0 # 3 zeroes ! - -# Polyhedron #2 -2 -# {i, j | 1<=i<=n; 1<=j<=i-1; j!=1} -5 5 -# i j n 1 -1 1 0 0 -1 # 1<=i -1 -1 0 1 0 # i<=n -1 0 1 0 -1 # 1<=j -1 1 -1 0 -1 # j<=i-1 -1 0 1 0 -2 # j>=2 -5 5 -# i j n 1 -1 1 0 0 -1 # 1<=i -1 -1 0 1 0 # i<=n -1 0 1 0 -1 # 1<=j -1 1 -1 0 -1 # j<=i-1 -1 0 -1 0 0 # j<=0 -0 0 0 # 3 zeroes ! - -# Polyhedron #3 -1 -# {i | 1<=i<=n; i=1} -3 4 -# i n 1 -1 1 0 -1 # 1<=i -1 -1 1 0 # i<=n -0 1 0 -1 # i=1 -0 0 0 # 3 zeroes ! - -# Polyhedron #4 -2 -# {i | 1<=i<=n; i!=1} -3 4 -# i n 1 -1 1 0 -1 # 1<=i -1 -1 1 0 # i<=n -1 1 0 -2 # i>=2 -3 4 -# i n 1 -1 1 0 -1 # 1<=i -1 -1 1 0 # i<=n -1 -1 0 0 # i<=0 -0 0 0 # 3 zeroes ! - -# Polyhedron #5 -1 -# {i, j | 1<=i<=n; i+1<=j<=n; 1<=k<=i-1; k=1} -7 6 -# i j k n 1 -1 1 0 0 0 -1 # 1<=i -1 -1 0 0 1 0 # i<=n -1 -1 1 0 0 -1 # i+1<=j -1 0 -1 0 1 0 # j<=n -1 0 0 1 0 -1 # 1<=k -1 1 0 -1 0 -1 # k<=i-1 -0 0 0 1 0 -1 # k=1 -0 0 0 # 3 zeroes ! - -# Polyhedron #6 -2 -# {i, j | 1<=i<=n; i+1<=j<=n; 1<=k<=i-1; k!=1} -7 6 -# i j k n 1 -1 1 0 0 0 -1 # 1<=i -1 -1 0 0 1 0 # i<=n -1 -1 1 0 0 -1 # i+1<=j -1 0 -1 0 1 0 # j<=n -1 0 0 1 0 -1 # 1<=k -1 1 0 -1 0 -1 # k<=i-1 -1 0 0 1 0 -2 # k>=2 -7 6 -# i j k n 1 -1 1 0 0 0 -1 # 1<=i -1 -1 0 0 1 0 # i<=n -1 -1 1 0 0 -1 # i+1<=j -1 0 -1 0 1 0 # j<=n -1 0 0 1 0 -1 # 1<=k -1 1 0 -1 0 -1 # k<=i-1 -1 0 0 -1 0 0 # k<=0 -0 0 0 # 3 zeroes ! - -# Polyhedron #7 -1 -# {i, j | 1<=i<=n; i+1<=j<=n; i=1} -5 5 -# i j n 1 -1 1 0 0 -1 # 1<=i -1 -1 0 1 0 # i<=n -1 -1 1 0 -1 # i+1<=j -1 0 -1 1 0 # j<=n -0 1 0 0 -1 # i=1 -0 0 0 # 3 zeroes ! - -# Polyhedron #8 -2 -# {i, j | 1<=i<=n; i+1<=j<=n; i!=1} -5 5 -# i j n 1 -1 1 0 0 -1 # 1<=i -1 -1 0 1 0 # i<=n -1 -1 1 0 -1 # i+1<=j -1 0 -1 1 0 # j<=n -1 1 0 0 -2 # i>=2 -5 5 -# i j n 1 -1 1 0 0 -1 # 1<=i -1 -1 0 1 0 # i<=n -1 -1 1 0 -1 # i+1<=j -1 0 -1 1 0 # j<=n -1 -1 0 0 0 # i<=0 -0 0 0 # 3 zeroes ! - -# 6. We let CLooG choose the iterator names -0 - -#----------------------------------SCATTERING----------------------------------- - -# 7. Scattering functions ORIGINAL SCHEDULING -8 - -# Scattering function for polyhedron #1: T_S1(i,j) =(i,0,j,0,0,0) -6 11 -# c1 c2 c3 c4 c5 c6 i j n 1 -0 1 0 0 0 0 0 -1 0 0 0 # i -0 0 1 0 0 0 0 0 0 0 0 # 0 -0 0 0 1 0 0 0 0 -1 0 0 # j -0 0 0 0 1 0 0 0 0 0 0 # 0 -0 0 0 0 0 1 0 0 0 0 0 # 0 -0 0 0 0 0 0 1 0 0 0 0 # 0 - -# Scattering function for polyhedron #2: T_S2(i,j) =(i,0,j,1,0,0) -6 11 -# c1 c2 c3 c4 c5 c6 i j n 1 -0 1 0 0 0 0 0 -1 0 0 0 # i -0 0 1 0 0 0 0 0 0 0 0 # 0 -0 0 0 1 0 0 0 0 -1 0 0 # j -0 0 0 0 1 0 0 0 0 0 -1 # 1 -0 0 0 0 0 1 0 0 0 0 0 # 0 -0 0 0 0 0 0 1 0 0 0 0 # 0 - -# Scattering function for polyhedron #3: T_S3(i) =(i,1,0,0,0,0) -6 10 -# c1 c2 c3 c4 c5 c6 i n 1 -0 1 0 0 0 0 0 -1 0 0 # i -0 0 1 0 0 0 0 0 0 -1 # 1 -0 0 0 1 0 0 0 0 0 0 # 0 -0 0 0 0 1 0 0 0 0 0 # 0 -0 0 0 0 0 1 0 0 0 0 # 0 -0 0 0 0 0 0 1 0 0 0 # 0 - -# Scattering function for polyhedron #4: T_S4(i) =(i,2,0,0,0,0) -6 10 -# c1 c2 c3 c4 c5 c6 i n 1 -0 1 0 0 0 0 0 -1 0 0 # i -0 0 1 0 0 0 0 0 0 -2 # 2 -0 0 0 1 0 0 0 0 0 0 # 0 -0 0 0 0 1 0 0 0 0 0 # 0 -0 0 0 0 0 1 0 0 0 0 # 0 -0 0 0 0 0 0 1 0 0 0 # 0 - -# Scattering function for polyhedron #5: T_S5(i,j,k)=(i,3,j,0,k,0) -6 12 -# c1 c2 c3 c4 c5 c6 i j k n 1 -0 1 0 0 0 0 0 -1 0 0 0 0 # i -0 0 1 0 0 0 0 0 0 0 0 -3 # 3 -0 0 0 1 0 0 0 0 -1 0 0 0 # j -0 0 0 0 1 0 0 0 0 0 0 0 # 0 -0 0 0 0 0 1 0 0 0 -1 0 0 # k -0 0 0 0 0 0 1 0 0 0 0 0 # 0 - -# Scattering function for polyhedron #6: T_S6(i,j,k)=(i,3,j,0,k,1) -6 12 -# c1 c2 c3 c4 c5 c6 i j k n 1 -0 1 0 0 0 0 0 -1 0 0 0 0 # i -0 0 1 0 0 0 0 0 0 0 0 -3 # 3 -0 0 0 1 0 0 0 0 -1 0 0 0 # j -0 0 0 0 1 0 0 0 0 0 0 0 # 0 -0 0 0 0 0 1 0 0 0 -1 0 0 # k -0 0 0 0 0 0 1 0 0 0 0 -1 # 1 - -# Scattering function for polyhedron #7: T_S7(i,j) =(i,3,j,1,0,0) -6 11 -# c1 c2 c3 c4 c5 c6 i j n 1 -0 1 0 0 0 0 0 -1 0 0 0 # i -0 0 1 0 0 0 0 0 0 0 -3 # 3 -0 0 0 1 0 0 0 0 -1 0 0 # j -0 0 0 0 1 0 0 0 0 0 -1 # 1 -0 0 0 0 0 1 0 0 0 0 0 # 0 -0 0 0 0 0 0 1 0 0 0 0 # 0 - -# Scattering function for polyhedron #8: T_S8(i,j) =(i,3,j,2,0,0) -6 11 -# c1 c2 c3 c4 c5 c6 i j n 1 -0 1 0 0 0 0 0 -1 0 0 0 # i -0 0 1 0 0 0 0 0 0 0 -3 # 3 -0 0 0 1 0 0 0 0 -1 0 0 # j -0 0 0 0 1 0 0 0 0 0 -2 # 2 -0 0 0 0 0 1 0 0 0 0 0 # 0 -0 0 0 0 0 0 1 0 0 0 0 # 0 - -# We want to set manually the scattering dimension names. -1 -c1 c2 c3 c4 c5 c6 |