diff options
author | eugene.chereshnev <echeresh@mandrake.jf.intel.com> | 2016-12-14 06:47:32 -0800 |
---|---|---|
committer | eugene.chereshnev <eugenechereshnev@gmail.com> | 2016-12-14 11:21:28 -0800 |
commit | 89703d197f181b2632afd2a93726338fa8bbb26f (patch) | |
tree | ef2e90b03ffe94dae5235b5c7a9eb12118ae3eda /SRC | |
parent | 151dfc99aa8d19a52487995d228c32db80a94591 (diff) | |
download | lapack-89703d197f181b2632afd2a93726338fa8bbb26f.tar.gz lapack-89703d197f181b2632afd2a93726338fa8bbb26f.tar.bz2 lapack-89703d197f181b2632afd2a93726338fa8bbb26f.zip |
Fix ?GELQ and ?GEMLQ
Diffstat (limited to 'SRC')
-rw-r--r-- | SRC/cgelq.f | 117 | ||||
-rw-r--r-- | SRC/cgemlq.f | 110 | ||||
-rw-r--r-- | SRC/dgelq.f | 97 | ||||
-rw-r--r-- | SRC/dgemlq.f | 107 | ||||
-rw-r--r-- | SRC/sgelq.f | 114 | ||||
-rw-r--r-- | SRC/sgemlq.f | 110 | ||||
-rw-r--r-- | SRC/zgelq.f | 105 | ||||
-rw-r--r-- | SRC/zgemlq.f | 103 |
8 files changed, 457 insertions, 406 deletions
diff --git a/SRC/cgelq.f b/SRC/cgelq.f index 0abd2d72..497851f5 100644 --- a/SRC/cgelq.f +++ b/SRC/cgelq.f @@ -3,13 +3,13 @@ * =========== * * SUBROUTINE CGELQ( M, N, A, LDA, T, TSIZE, WORK, LWORK, -* INFO) +* INFO ) * * .. Scalar Arguments .. * INTEGER INFO, LDA, M, N, TSIZE, LWORK * .. * .. Array Arguments .. -* COMPLEX A( LDA, * ), T( * ), WORK( * ) +* COMPLEX A( LDA, * ), T( * ), WORK( * ) * .. * * @@ -120,7 +120,7 @@ *> *> The goal of the interface is to give maximum freedom to the developers for *> creating any LQ factorization algorithm they wish. The triangular -*> (trapezoidal) R has to be stored in the upper part of A. The upper part of A +*> (trapezoidal) L has to be stored in the lower part of A. The lower part of A *> and the array T can be used to store any relevant information for applying or *> constructing the Q factor. The WORK array can safely be discarded after exit. *> @@ -146,74 +146,73 @@ *> *> T(2): row block size (MB) *> T(3): column block size (NB) -*> T(4:TSIZE): data structure needed for Q, computed by -*> DLASWLQ or DGELQT +*> T(6:TSIZE): data structure needed for Q, computed by +*> CLASWLQ or CGELQT *> *> Depending on the matrix dimensions M and N, and row and column -*> block sizes MB and NB returned by ILAENV, GELQ will use either -*> LASWLQ (if the matrix is short-and-wide) or GELQT to compute +*> block sizes MB and NB returned by ILAENV, CGELQ will use either +*> CLASWLQ (if the matrix is short-and-wide) or CGELQT to compute *> the LQ factorization. *> \endverbatim *> * ===================================================================== SUBROUTINE CGELQ( M, N, A, LDA, T, TSIZE, WORK, LWORK, - $ INFO) + $ INFO ) * -* -- LAPACK computational routine (version 3.5.0) -- +* -- LAPACK computational routine (version 3.7.0) -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd. -- -* November 2013 +* November 2016 * * .. Scalar Arguments .. - INTEGER INFO, LDA, M, N, TSIZE, LWORK + INTEGER INFO, LDA, M, N, TSIZE, LWORK * .. * .. Array Arguments .. - COMPLEX A( LDA, * ), T( * ), WORK( * ) + COMPLEX A( LDA, * ), T( * ), WORK( * ) * .. * * ===================================================================== * * .. * .. Local Scalars .. - LOGICAL LQUERY, LMINWS, MINT, MINW - INTEGER MB, NB, I, II, KK, MINTSZ, NBLCKS + LOGICAL LQUERY, LMINWS, MINT, MINW + INTEGER MB, NB, MINTSZ, NBLCKS * .. -* .. EXTERNAL FUNCTIONS .. +* .. External Functions .. LOGICAL LSAME EXTERNAL LSAME -* .. EXTERNAL SUBROUTINES .. +* .. +* .. External Subroutines .. EXTERNAL CGELQT, CLASWLQ, XERBLA -* .. INTRINSIC FUNCTIONS .. +* .. +* .. Intrinsic Functions .. INTRINSIC MAX, MIN, MOD * .. -* .. EXTERNAL FUNCTIONS .. +* .. External Functions .. INTEGER ILAENV EXTERNAL ILAENV * .. -* .. EXECUTABLE STATEMENTS .. +* .. Executable Statements .. * -* TEST THE INPUT ARGUMENTS +* Test the input arguments * INFO = 0 * - LQUERY = ( TSIZE.EQ.-1 .OR. TSIZE.EQ.-2 .OR. + LQUERY = ( TSIZE.EQ.-1 .OR. TSIZE.EQ.-2 .OR. $ LWORK.EQ.-1 .OR. LWORK.EQ.-2 ) * MINT = .FALSE. - IF ( TSIZE.NE.-1 .AND. ( TSIZE.EQ.-2 .OR. LWORK.EQ.-2 ) ) THEN - MINT = .TRUE. - ENDIF -* MINW = .FALSE. - IF ( LWORK.NE.-1 .AND. ( TSIZE.EQ.-2 .OR. LWORK.EQ.-2 ) ) THEN - MINW = .TRUE. - ENDIF + IF( TSIZE.EQ.-2 .OR. LWORK.EQ.-2 ) THEN + IF( TSIZE.NE.-1 ) MINT = .TRUE. + IF( LWORK.NE.-1 ) MINW = .TRUE. + END IF * * Determine the block size * - IF ( MIN(M,N).GT.0 ) THEN - MB = ILAENV( 1, 'CGELQ ', ' ', M, N, 1, -1) - NB = ILAENV( 1, 'CGELQ ', ' ', M, N, 2, -1) + IF( MIN( M, N ).GT.0 ) THEN + MB = ILAENV( 1, 'CGELQ ', ' ', M, N, 1, -1 ) + NB = ILAENV( 1, 'CGELQ ', ' ', M, N, 2, -1 ) ELSE MB = 1 NB = N @@ -221,7 +220,7 @@ IF( MB.GT.MIN( M, N ) .OR. MB.LT.1 ) MB = 1 IF( NB.GT.N .OR. NB.LE.M ) NB = N MINTSZ = M + 5 - IF ( NB.GT.M .AND. N.GT.M ) THEN + IF( NB.GT.M .AND. N.GT.M ) THEN IF( MOD( N - M, NB - M ).EQ.0 ) THEN NBLCKS = ( N - M ) / ( NB - M ) ELSE @@ -235,16 +234,16 @@ * LMINWS = .FALSE. IF( ( TSIZE.LT.MAX( 1, MB*M*NBLCKS + 5 ) .OR. LWORK.LT.MB*M ) - $ .AND. ( LWORK.GE.M ) .AND. ( TSIZE.GE.M + 5 ) - $ .AND. ( .NOT.LQUERY) ) THEN - IF ( TSIZE.LT.MAX( 1, MB*M*NBLCKS + 5 ) ) THEN - LMINWS = .TRUE. - MB = 1 - NB = N + $ .AND. ( LWORK.GE.M ) .AND. ( TSIZE.GE.MINTSZ ) + $ .AND. ( .NOT.LQUERY ) ) THEN + IF( TSIZE.LT.MAX( 1, MB*M*NBLCKS + 5 ) ) THEN + LMINWS = .TRUE. + MB = 1 + NB = N END IF - IF ( LWORK.LT.MB*M ) THEN - LMINWS = .TRUE. - MB = 1 + IF( LWORK.LT.MB*M ) THEN + LMINWS = .TRUE. + MB = 1 END IF END IF * @@ -262,42 +261,44 @@ INFO = -8 END IF * - IF( INFO.EQ.0 ) THEN - IF ( MINT ) THEN - T(1) = MINTSZ + IF( INFO.EQ.0 ) THEN + IF( MINT ) THEN + T( 1 ) = MINTSZ ELSE - T(1) = MB*M*NBLCKS + 5 - ENDIF - T(2) = MB - T(3) = NB - IF ( MINW ) THEN - WORK(1) = MAX( 1, N ) + T( 1 ) = MB*M*NBLCKS + 5 + END IF + T( 2 ) = MB + T( 3 ) = NB + IF( MINW ) THEN + WORK( 1 ) = MAX( 1, N ) ELSE - WORK(1) = MAX( 1, MB*M ) - ENDIF + WORK( 1 ) = MAX( 1, MB*M ) + END IF END IF IF( INFO.NE.0 ) THEN CALL XERBLA( 'CGELQ', -INFO ) RETURN - ELSE IF (LQUERY) THEN + ELSE IF( LQUERY ) THEN RETURN END IF * * Quick return if possible * - IF( MIN(M,N).EQ.0 ) THEN + IF( MIN( M, N ).EQ.0 ) THEN RETURN END IF * * The LQ Decomposition * IF( ( N.LE.M ) .OR. ( NB.LE.M ) .OR. ( NB.GE.N ) ) THEN - CALL CGELQT( M, N, MB, A, LDA, T(4), MB, WORK, INFO) + CALL CGELQT( M, N, MB, A, LDA, T( 6 ), MB, WORK, INFO ) ELSE - CALL CLASWLQ( M, N, MB, NB, A, LDA, T(4), MB, WORK, - $ LWORK, INFO) + CALL CLASWLQ( M, N, MB, NB, A, LDA, T( 6 ), MB, WORK, + $ LWORK, INFO ) END IF - WORK(1) = MAX( 1, MB*M ) +* + WORK( 1 ) = MAX( 1, MB*M ) +* RETURN * * End of CGELQ diff --git a/SRC/cgemlq.f b/SRC/cgemlq.f index 03dae76d..59df3ddf 100644 --- a/SRC/cgemlq.f +++ b/SRC/cgemlq.f @@ -3,15 +3,17 @@ * =========== * * SUBROUTINE CGEMLQ( SIDE, TRANS, M, N, K, A, LDA, T, -* $ TSIZE, C, LDC, WORK, LWORK, INFO ) +* $ TSIZE, C, LDC, WORK, LWORK, INFO ) * * * .. Scalar Arguments .. -* CHARACTER SIDE, TRANS -* INTEGER INFO, LDA, M, N, K, LDT, TSIZE, LWORK, LDC +* CHARACTER SIDE, TRANS +* INTEGER INFO, LDA, M, N, K, LDT, TSIZE, LWORK, LDC * .. * .. Array Arguments .. -* COMPLEX A( LDA, * ), T( * ), C(LDC, * ), WORK( * ) +* COMPLEX A( LDA, * ), T( * ), C(LDC, * ), WORK( * ) +* .. +* *> \par Purpose: * ============= *> @@ -19,27 +21,32 @@ *> *> CGEMLQ overwrites the general real M-by-N matrix C with *> -*> *> SIDE = 'L' SIDE = 'R' *> TRANS = 'N': Q * C C * Q *> TRANS = 'C': Q**H * C C * Q**H *> where Q is a complex unitary matrix defined as the product *> of blocked elementary reflectors computed by short wide *> LQ factorization (CGELQ) +*> *> \endverbatim * * Arguments: * ========== * *> \param[in] SIDE +*> \verbatim *> SIDE is CHARACTER*1 *> = 'L': apply Q or Q**T from the Left; *> = 'R': apply Q or Q**T from the Right. +*> \endverbatim *> *> \param[in] TRANS +*> \verbatim *> TRANS is CHARACTER*1 *> = 'N': No transpose, apply Q; *> = 'T': Transpose, apply Q**T. +*> \endverbatim +*> *> \param[in] M *> \verbatim *> M is INTEGER @@ -49,7 +56,7 @@ *> \param[in] N *> \verbatim *> N is INTEGER -*> The number of columns of the matrix C. N >= M. +*> The number of columns of the matrix C. N >= 0. *> \endverbatim *> *> \param[in] K @@ -57,28 +64,28 @@ *> K is INTEGER *> The number of elementary reflectors whose product defines *> the matrix Q. -*> M >= K >= 0; -*> +*> If SIDE = 'L', M >= K >= 0; +*> if SIDE = 'R', N >= K >= 0. *> \endverbatim *> *> \param[in] A *> \verbatim -*> A is COMPLEX array, dimension (LDA,K) -*> Part of the data structure to represent Q as returned by ZGELQ. +*> A is COMPLEX array, dimension +*> (LDA,M) if SIDE = 'L', +*> (LDA,N) if SIDE = 'R' +*> Part of the data structure to represent Q as returned by CGELQ. *> \endverbatim *> *> \param[in] LDA *> \verbatim *> LDA is INTEGER -*> The leading dimension of the array A. -*> If SIDE = 'L', LDA >= max(1,M); -*> if SIDE = 'R', LDA >= max(1,N). +*> The leading dimension of the array A. LDA >= max(1,K). *> \endverbatim *> *> \param[in] T *> \verbatim *> T is COMPLEX array, dimension (MAX(5,TSIZE)). -*> Part of the data structure to represent Q as returned by ZGELQ. +*> Part of the data structure to represent Q as returned by CGELQ. *> \endverbatim *> *> \param[in] TSIZE @@ -88,19 +95,23 @@ *> \endverbatim *> *> \param[in,out] C +*> \verbatim *> C is COMPLEX array, dimension (LDC,N) *> On entry, the M-by-N matrix C. *> On exit, C is overwritten by Q*C or Q**T*C or C*Q**T or C*Q. +*> \endverbatim *> *> \param[in] LDC +*> \verbatim *> LDC is INTEGER *> The leading dimension of the array C. LDC >= max(1,M). +*> \endverbatim *> *> \param[out] WORK *> \verbatim *> (workspace) COMPLEX array, dimension (MAX(1,LWORK)) -*> *> \endverbatim +*> *> \param[in] LWORK *> \verbatim *> LWORK is INTEGER @@ -140,47 +151,49 @@ *> *> T(2): row block size (MB) *> T(3): column block size (NB) -*> T(4:TSIZE): data structure needed for Q, computed by -*> LASWQR or GELQT +*> T(6:TSIZE): data structure needed for Q, computed by +*> CLASWQR or CGELQT *> *> Depending on the matrix dimensions M and N, and row and column -*> block sizes MB and NB returned by ILAENV, GELQ will use either -*> LASWLQ (if the matrix is wide-and-short) or GELQT to compute +*> block sizes MB and NB returned by ILAENV, CGELQ will use either +*> CLASWLQ (if the matrix is wide-and-short) or CGELQT to compute *> the LQ factorization. -*> This version of GEMLQ will use either LAMSWLQ or GEMLQT to +*> This version of CGEMLQ will use either CLAMSWLQ or CGEMLQT to *> multiply matrix Q by another matrix. -*> Further Details in LAMSWLQ or GEMLQT. +*> Further Details in CLAMSWLQ or CGEMLQT. *> \endverbatim *> * ===================================================================== SUBROUTINE CGEMLQ( SIDE, TRANS, M, N, K, A, LDA, T, TSIZE, - $ C, LDC, WORK, LWORK, INFO ) + $ C, LDC, WORK, LWORK, INFO ) * -* -- LAPACK computational routine (version 3.5.0) -- +* -- LAPACK computational routine (version 3.7.0) -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- -* November 2013 +* November 2016 * * .. Scalar Arguments .. - CHARACTER SIDE, TRANS - INTEGER INFO, LDA, M, N, K, TSIZE, LWORK, LDC + CHARACTER SIDE, TRANS + INTEGER INFO, LDA, M, N, K, TSIZE, LWORK, LDC * .. * .. Array Arguments .. - COMPLEX A( LDA, * ), T( * ), C(LDC, * ), WORK( * ) + COMPLEX A( LDA, * ), T( * ), C( LDC, * ), WORK( * ) * .. * * ===================================================================== * * .. * .. Local Scalars .. - LOGICAL LEFT, RIGHT, TRAN, NOTRAN, LQUERY - INTEGER I, II, KK, MB, NB, LW, NBLCKS, MN + LOGICAL LEFT, RIGHT, TRAN, NOTRAN, LQUERY + INTEGER MB, NB, LW, NBLCKS, MN * .. * .. External Functions .. LOGICAL LSAME EXTERNAL LSAME +* .. * .. External Subroutines .. - EXTERNAL ZLAMSWLQ, ZGEMLQT, XERBLA + EXTERNAL CLAMSWLQ, CGEMLQT, XERBLA +* .. * .. Intrinsic Functions .. INTRINSIC INT, MAX, MIN, MOD * .. @@ -188,15 +201,15 @@ * * Test the input arguments * - LQUERY = LWORK.LT.0 + LQUERY = LWORK.EQ.-1 NOTRAN = LSAME( TRANS, 'N' ) TRAN = LSAME( TRANS, 'C' ) LEFT = LSAME( SIDE, 'L' ) RIGHT = LSAME( SIDE, 'R' ) * - MB = INT(T(2)) - NB = INT(T(3)) - IF ( LEFT ) THEN + MB = INT( T( 2 ) ) + NB = INT( T( 3 ) ) + IF( LEFT ) THEN LW = N * MB MN = M ELSE @@ -204,7 +217,7 @@ MN = N END IF * - IF ( ( NB.GT.K ) .AND. ( MN.GT.K ) ) THEN + IF( ( NB.GT.K ) .AND. ( MN.GT.K ) ) THEN IF( MOD( MN - K, NB - K ) .EQ. 0 ) THEN NBLCKS = ( MN - K ) / ( NB - K ) ELSE @@ -216,34 +229,33 @@ * INFO = 0 IF( .NOT.LEFT .AND. .NOT.RIGHT ) THEN - INFO = -1 + INFO = -1 ELSE IF( .NOT.TRAN .AND. .NOT.NOTRAN ) THEN - INFO = -2 + INFO = -2 ELSE IF( M.LT.0 ) THEN INFO = -3 - ELSE IF( N.LT.0) THEN + ELSE IF( N.LT.0 ) THEN INFO = -4 - ELSE IF( K.LT.0 ) THEN + ELSE IF( K.LT.0 .OR. K.GT.MN ) THEN INFO = -5 ELSE IF( LDA.LT.MAX( 1, K ) ) THEN INFO = -7 - ELSE IF( TSIZE.LT.MAX( 1, MB*K*NBLCKS + 5 ) - $ .AND. ( .NOT.LQUERY ) ) THEN + ELSE IF( TSIZE.LT.5 ) THEN INFO = -9 ELSE IF( LDC.LT.MAX( 1, M ) ) THEN INFO = -11 - ELSE IF(( LWORK.LT.MAX( 1, LW ) ) .AND. ( .NOT.LQUERY ) ) THEN + ELSE IF( ( LWORK.LT.MAX( 1, LW ) ) .AND. ( .NOT.LQUERY ) ) THEN INFO = -13 END IF * - IF( INFO.EQ.0 ) THEN - WORK(1) = REAL( LW ) + IF( INFO.EQ.0 ) THEN + WORK( 1 ) = REAL( LW ) END IF * IF( INFO.NE.0 ) THEN CALL XERBLA( 'CGEMLQ', -INFO ) RETURN - ELSE IF ( LQUERY ) THEN + ELSE IF( LQUERY ) THEN RETURN END IF * @@ -256,13 +268,13 @@ IF( ( LEFT .AND. M.LE.K ) .OR. ( RIGHT .AND. N.LE.K ) $ .OR. ( NB.LE.K ) .OR. ( NB.GE.MAX( M, N, K ) ) ) THEN CALL CGEMLQT( SIDE, TRANS, M, N, K, MB, A, LDA, - $ T(4), MB, C, LDC, WORK, INFO) + $ T( 6 ), MB, C, LDC, WORK, INFO ) ELSE - CALL CLAMSWLQ( SIDE, TRANS, M, N, K, MB, NB, A, LDA, T(4), - $ MB, C, LDC, WORK, LWORK, INFO ) + CALL CLAMSWLQ( SIDE, TRANS, M, N, K, MB, NB, A, LDA, T( 6 ), + $ MB, C, LDC, WORK, LWORK, INFO ) END IF * - WORK(1) = REAL ( LW ) + WORK( 1 ) = REAL( LW ) * RETURN * diff --git a/SRC/dgelq.f b/SRC/dgelq.f index 59d9fa91..a9af9006 100644 --- a/SRC/dgelq.f +++ b/SRC/dgelq.f @@ -3,7 +3,7 @@ * =========== * * SUBROUTINE DGELQ( M, N, A, LDA, T, TSIZE, WORK, LWORK, -* INFO) +* INFO ) * * .. Scalar Arguments .. * INTEGER INFO, LDA, M, N, TSIZE, LWORK @@ -120,7 +120,7 @@ *> *> The goal of the interface is to give maximum freedom to the developers for *> creating any LQ factorization algorithm they wish. The triangular -*> (trapezoidal) R has to be stored in the upper part of A. The upper part of A +*> (trapezoidal) L has to be stored in the lower part of A. The lower part of A *> and the array T can be used to store any relevant information for applying or *> constructing the Q factor. The WORK array can safely be discarded after exit. *> @@ -146,72 +146,71 @@ *> *> T(2): row block size (MB) *> T(3): column block size (NB) -*> T(4:TSIZE): data structure needed for Q, computed by +*> T(6:TSIZE): data structure needed for Q, computed by *> DLASWLQ or DGELQT *> *> Depending on the matrix dimensions M and N, and row and column -*> block sizes MB and NB returned by ILAENV, GELQ will use either -*> LASWLQ (if the matrix is short-and-wide) or GELQT to compute +*> block sizes MB and NB returned by ILAENV, DGELQ will use either +*> DLASWLQ (if the matrix is short-and-wide) or DGELQT to compute *> the LQ factorization. *> \endverbatim *> * ===================================================================== SUBROUTINE DGELQ( M, N, A, LDA, T, TSIZE, WORK, LWORK, - $ INFO) + $ INFO ) * -* -- LAPACK computational routine (version 3.5.0) -- +* -- LAPACK computational routine (version 3.7.0) -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd. -- -* November 2013 +* November 2016 * * .. Scalar Arguments .. - INTEGER INFO, LDA, M, N, TSIZE, LWORK + INTEGER INFO, LDA, M, N, TSIZE, LWORK * .. * .. Array Arguments .. - DOUBLE PRECISION A( LDA, * ), T( * ), WORK( * ) + DOUBLE PRECISION A( LDA, * ), T( * ), WORK( * ) * .. * * ===================================================================== * * .. * .. Local Scalars .. - LOGICAL LQUERY, LMINWS, MINT, MINW - INTEGER MB, NB, I, II, KK, MINTSZ, NBLCKS + LOGICAL LQUERY, LMINWS, MINT, MINW + INTEGER MB, NB, MINTSZ, NBLCKS * .. -* .. EXTERNAL FUNCTIONS .. +* .. External Functions .. LOGICAL LSAME EXTERNAL LSAME -* .. EXTERNAL SUBROUTINES .. +* .. +* .. External Subroutines .. EXTERNAL DGELQT, DLASWLQ, XERBLA -* .. INTRINSIC FUNCTIONS .. +* .. +* .. Intrinsic Functions .. INTRINSIC MAX, MIN, MOD * .. -* .. EXTERNAL FUNCTIONS .. +* .. External Functions .. INTEGER ILAENV EXTERNAL ILAENV * .. -* .. EXECUTABLE STATEMENTS .. +* .. Executable Statements .. * -* TEST THE INPUT ARGUMENTS +* Test the input arguments * INFO = 0 * - LQUERY = ( TSIZE.EQ.-1 .OR. TSIZE.EQ.-2 .OR. + LQUERY = ( TSIZE.EQ.-1 .OR. TSIZE.EQ.-2 .OR. $ LWORK.EQ.-1 .OR. LWORK.EQ.-2 ) * MINT = .FALSE. - IF ( TSIZE.NE.-1 .AND. ( TSIZE.EQ.-2 .OR. LWORK.EQ.-2 ) ) THEN - MINT = .TRUE. - ENDIF -* MINW = .FALSE. - IF ( LWORK.NE.-1 .AND. ( TSIZE.EQ.-2 .OR. LWORK.EQ.-2 ) ) THEN - MINW = .TRUE. - ENDIF + IF( TSIZE.EQ.-2 .OR. LWORK.EQ.-2 ) THEN + IF( TSIZE.NE.-1 ) MINT = .TRUE. + IF( LWORK.NE.-1 ) MINW = .TRUE. + END IF * * Determine the block size * - IF ( MIN(M,N).GT.0 ) THEN + IF( MIN( M, N ).GT.0 ) THEN MB = ILAENV( 1, 'DGELQ ', ' ', M, N, 1, -1 ) NB = ILAENV( 1, 'DGELQ ', ' ', M, N, 2, -1 ) ELSE @@ -235,14 +234,14 @@ * LMINWS = .FALSE. IF( ( TSIZE.LT.MAX( 1, MB*M*NBLCKS + 5 ) .OR. LWORK.LT.MB*M ) - $ .AND. ( LWORK.GE.M ) .AND. ( TSIZE.GE.M + 5 ) - $ .AND. ( .NOT.LQUERY) ) THEN - IF ( TSIZE.LT.MAX( 1, MB*M*NBLCKS + 5 ) ) THEN + $ .AND. ( LWORK.GE.M ) .AND. ( TSIZE.GE.MINTSZ ) + $ .AND. ( .NOT.LQUERY ) ) THEN + IF( TSIZE.LT.MAX( 1, MB*M*NBLCKS + 5 ) ) THEN LMINWS = .TRUE. MB = 1 NB = N END IF - IF ( LWORK.LT.MB*M ) THEN + IF( LWORK.LT.MB*M ) THEN LMINWS = .TRUE. MB = 1 END IF @@ -262,42 +261,44 @@ INFO = -8 END IF * - IF( INFO.EQ.0 ) THEN - IF ( MINT ) THEN - T(1) = MINTSZ + IF( INFO.EQ.0 ) THEN + IF( MINT ) THEN + T( 1 ) = MINTSZ ELSE - T(1) = MB*M*NBLCKS + 5 - ENDIF - T(2) = MB - T(3) = NB - IF ( MINW ) THEN - WORK(1) = MAX( 1, N ) + T( 1 ) = MB*M*NBLCKS + 5 + END IF + T( 2 ) = MB + T( 3 ) = NB + IF( MINW ) THEN + WORK( 1 ) = MAX( 1, N ) ELSE - WORK(1) = MAX( 1, MB*M ) - ENDIF + WORK( 1 ) = MAX( 1, MB*M ) + END IF END IF IF( INFO.NE.0 ) THEN CALL XERBLA( 'DGELQ', -INFO ) RETURN - ELSE IF (LQUERY) THEN + ELSE IF( LQUERY ) THEN RETURN END IF * * Quick return if possible * - IF( MIN(M,N).EQ.0 ) THEN + IF( MIN( M, N ).EQ.0 ) THEN RETURN END IF * * The LQ Decomposition * IF( ( N.LE.M ) .OR. ( NB.LE.M ) .OR. ( NB.GE.N ) ) THEN - CALL DGELQT( M, N, MB, A, LDA, T(4), MB, WORK, INFO) + CALL DGELQT( M, N, MB, A, LDA, T( 6 ), MB, WORK, INFO ) ELSE - CALL DLASWLQ( M, N, MB, NB, A, LDA, T(4), MB, WORK, - $ LWORK, INFO) + CALL DLASWLQ( M, N, MB, NB, A, LDA, T( 6 ), MB, WORK, + $ LWORK, INFO ) END IF - WORK(1) = MAX( 1, MB*M ) +* + WORK( 1 ) = MAX( 1, MB*M ) +* RETURN * * End of DGELQ diff --git a/SRC/dgemlq.f b/SRC/dgemlq.f index 17c4de5c..203ca7ec 100644 --- a/SRC/dgemlq.f +++ b/SRC/dgemlq.f @@ -3,15 +3,17 @@ * =========== * * SUBROUTINE DGEMLQ( SIDE, TRANS, M, N, K, A, LDA, T, -* $ TSIZE, C, LDC, WORK, LWORK, INFO ) +* $ TSIZE, C, LDC, WORK, LWORK, INFO ) * * * .. Scalar Arguments .. -* CHARACTER SIDE, TRANS -* INTEGER INFO, LDA, M, N, K, LDT, TSIZE, LWORK, LDC +* CHARACTER SIDE, TRANS +* INTEGER INFO, LDA, M, N, K, LDT, TSIZE, LWORK, LDC * .. * .. Array Arguments .. -* DOUBLE PRECISION A( LDA, * ), T( * ), C(LDC, * ), WORK( * ) +* DOUBLE PRECISION A( LDA, * ), T( * ), C(LDC, * ), WORK( * ) +* .. +* *> \par Purpose: * ============= *> @@ -19,27 +21,32 @@ *> *> DGEMLQ overwrites the general real M-by-N matrix C with *> -*> *> SIDE = 'L' SIDE = 'R' *> TRANS = 'N': Q * C C * Q *> TRANS = 'T': Q**T * C C * Q**T *> where Q is a real orthogonal matrix defined as the product *> of blocked elementary reflectors computed by short wide LQ *> factorization (DGELQ) +*> *> \endverbatim * * Arguments: * ========== * *> \param[in] SIDE +*> \verbatim *> SIDE is CHARACTER*1 *> = 'L': apply Q or Q**T from the Left; *> = 'R': apply Q or Q**T from the Right. +*> \endverbatim *> *> \param[in] TRANS +*> \verbatim *> TRANS is CHARACTER*1 *> = 'N': No transpose, apply Q; *> = 'T': Transpose, apply Q**T. +*> \endverbatim +*> *> \param[in] M *> \verbatim *> M is INTEGER @@ -49,7 +56,7 @@ *> \param[in] N *> \verbatim *> N is INTEGER -*> The number of columns of the matrix C. N >= M. +*> The number of columns of the matrix C. N >= 0. *> \endverbatim *> *> \param[in] K @@ -57,28 +64,29 @@ *> K is INTEGER *> The number of elementary reflectors whose product defines *> the matrix Q. -*> M >= K >= 0; +*> If SIDE = 'L', M >= K >= 0; +*> if SIDE = 'R', N >= K >= 0. *> *> \endverbatim *> *> \param[in] A *> \verbatim -*> A is DOUBLE PRECISION array, dimension (LDA,K) -*> Part of the data structure to represent Q as returned by ZGELQ. +*> A is DOUBLE PRECISION array, dimension +*> (LDA,M) if SIDE = 'L', +*> (LDA,N) if SIDE = 'R' +*> Part of the data structure to represent Q as returned by DGELQ. *> \endverbatim *> *> \param[in] LDA *> \verbatim *> LDA is INTEGER -*> The leading dimension of the array A. -*> If SIDE = 'L', LDA >= max(1,M); -*> if SIDE = 'R', LDA >= max(1,N). +*> The leading dimension of the array A. LDA >= max(1,K). *> \endverbatim *> *> \param[in] T *> \verbatim *> T is DOUBLE PRECISION array, dimension (MAX(5,TSIZE)). -*> Part of the data structure to represent Q as returned by ZGELQ. +*> Part of the data structure to represent Q as returned by DGELQ. *> \endverbatim *> *> \param[in] TSIZE @@ -88,19 +96,23 @@ *> \endverbatim *> *> \param[in,out] C +*> \verbatim *> C is DOUBLE PRECISION array, dimension (LDC,N) *> On entry, the M-by-N matrix C. *> On exit, C is overwritten by Q*C or Q**T*C or C*Q**T or C*Q. +*> \endverbatim *> *> \param[in] LDC +*> \verbatim *> LDC is INTEGER *> The leading dimension of the array C. LDC >= max(1,M). +*> \endverbatim *> *> \param[out] WORK *> \verbatim *> (workspace) DOUBLE PRECISION array, dimension (MAX(1,LWORK)) -*> *> \endverbatim +*> *> \param[in] LWORK *> \verbatim *> LWORK is INTEGER @@ -140,47 +152,49 @@ *> *> T(2): row block size (MB) *> T(3): column block size (NB) -*> T(4:TSIZE): data structure needed for Q, computed by -*> LASWQR or GELQT +*> T(6:TSIZE): data structure needed for Q, computed by +*> DLASWLQ or DGELQT *> *> Depending on the matrix dimensions M and N, and row and column -*> block sizes MB and NB returned by ILAENV, GELQ will use either -*> LASWLQ (if the matrix is wide-and-short) or GELQT to compute +*> block sizes MB and NB returned by ILAENV, DGELQ will use either +*> DLASWLQ (if the matrix is wide-and-short) or DGELQT to compute *> the LQ factorization. -*> This version of GEMLQ will use either LAMSWLQ or GEMLQT to +*> This version of DGEMLQ will use either DLAMSWLQ or DGEMLQT to *> multiply matrix Q by another matrix. -*> Further Details in LAMSWLQ or GEMLQT. +*> Further Details in DLAMSWLQ or DGEMLQT. *> \endverbatim *> * ===================================================================== SUBROUTINE DGEMLQ( SIDE, TRANS, M, N, K, A, LDA, T, TSIZE, - $ C, LDC, WORK, LWORK, INFO ) + $ C, LDC, WORK, LWORK, INFO ) * -* -- LAPACK computational routine (version 3.5.0) -- +* -- LAPACK computational routine (version 3.7.0) -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- -* November 2013 +* November 2016 * * .. Scalar Arguments .. - CHARACTER SIDE, TRANS - INTEGER INFO, LDA, M, N, K, TSIZE, LWORK, LDC + CHARACTER SIDE, TRANS + INTEGER INFO, LDA, M, N, K, TSIZE, LWORK, LDC * .. * .. Array Arguments .. - DOUBLE PRECISION A( LDA, * ), T( * ), C(LDC, * ), WORK( * ) + DOUBLE PRECISION A( LDA, * ), T( * ), C( LDC, * ), WORK( * ) * .. * * ===================================================================== * * .. * .. Local Scalars .. - LOGICAL LEFT, RIGHT, TRAN, NOTRAN, LQUERY - INTEGER I, II, KK, MB, NB, LW, NBLCKS, MN + LOGICAL LEFT, RIGHT, TRAN, NOTRAN, LQUERY + INTEGER MB, NB, LW, NBLCKS, MN * .. * .. External Functions .. LOGICAL LSAME EXTERNAL LSAME +* .. * .. External Subroutines .. EXTERNAL DLAMSWLQ, DGEMLQT, XERBLA +* .. * .. Intrinsic Functions .. INTRINSIC INT, MAX, MIN, MOD * .. @@ -188,15 +202,15 @@ * * Test the input arguments * - LQUERY = LWORK.LT.0 + LQUERY = LWORK.EQ.-1 NOTRAN = LSAME( TRANS, 'N' ) TRAN = LSAME( TRANS, 'T' ) LEFT = LSAME( SIDE, 'L' ) RIGHT = LSAME( SIDE, 'R' ) * - MB = INT(T(2)) - NB = INT(T(3)) - IF ( LEFT ) THEN + MB = INT( T( 2 ) ) + NB = INT( T( 3 ) ) + IF( LEFT ) THEN LW = N * MB MN = M ELSE @@ -204,7 +218,7 @@ MN = N END IF * - IF ( ( NB.GT.K ) .AND. ( MN.GT.K ) ) THEN + IF( ( NB.GT.K ) .AND. ( MN.GT.K ) ) THEN IF( MOD( MN - K, NB - K ) .EQ. 0 ) THEN NBLCKS = ( MN - K ) / ( NB - K ) ELSE @@ -216,34 +230,33 @@ * INFO = 0 IF( .NOT.LEFT .AND. .NOT.RIGHT ) THEN - INFO = -1 + INFO = -1 ELSE IF( .NOT.TRAN .AND. .NOT.NOTRAN ) THEN - INFO = -2 + INFO = -2 ELSE IF( M.LT.0 ) THEN INFO = -3 - ELSE IF( N.LT.0) THEN + ELSE IF( N.LT.0 ) THEN INFO = -4 - ELSE IF( K.LT.0 ) THEN + ELSE IF( K.LT.0 .OR. K.GT.MN ) THEN INFO = -5 ELSE IF( LDA.LT.MAX( 1, K ) ) THEN INFO = -7 - ELSE IF( TSIZE.LT.MAX( 1, MB*K*NBLCKS + 5 ) - $ .AND. ( .NOT.LQUERY ) ) THEN + ELSE IF( TSIZE.LT.5 ) THEN INFO = -9 ELSE IF( LDC.LT.MAX( 1, M ) ) THEN INFO = -11 - ELSE IF(( LWORK.LT.MAX( 1, LW ) ) .AND. ( .NOT.LQUERY ) ) THEN + ELSE IF( ( LWORK.LT.MAX( 1, LW ) ) .AND. ( .NOT.LQUERY ) ) THEN INFO = -13 END IF * - IF( INFO.EQ.0 ) THEN - WORK(1) = LW + IF( INFO.EQ.0 ) THEN + WORK( 1 ) = LW END IF * IF( INFO.NE.0 ) THEN CALL XERBLA( 'DGEMLQ', -INFO ) RETURN - ELSE IF ( LQUERY ) THEN + ELSE IF( LQUERY ) THEN RETURN END IF * @@ -256,13 +269,13 @@ IF( ( LEFT .AND. M.LE.K ) .OR. ( RIGHT .AND. N.LE.K ) $ .OR. ( NB.LE.K ) .OR. ( NB.GE.MAX( M, N, K ) ) ) THEN CALL DGEMLQT( SIDE, TRANS, M, N, K, MB, A, LDA, - $ T(4), MB, C, LDC, WORK, INFO) + $ T( 6 ), MB, C, LDC, WORK, INFO ) ELSE - CALL DLAMSWLQ( SIDE, TRANS, M, N, K, MB, NB, A, LDA, T(4), - $ MB, C, LDC, WORK, LWORK, INFO ) + CALL DLAMSWLQ( SIDE, TRANS, M, N, K, MB, NB, A, LDA, T( 6 ), + $ MB, C, LDC, WORK, LWORK, INFO ) END IF * - WORK(1) = LW + WORK( 1 ) = LW * RETURN * diff --git a/SRC/sgelq.f b/SRC/sgelq.f index adc606d9..1ae47d15 100644 --- a/SRC/sgelq.f +++ b/SRC/sgelq.f @@ -3,13 +3,13 @@ * =========== * * SUBROUTINE SGELQ( M, N, A, LDA, T, TSIZE, WORK, LWORK, -* INFO) +* INFO ) * * .. Scalar Arguments .. * INTEGER INFO, LDA, M, N, TSIZE, LWORK * .. * .. Array Arguments .. -* REAL A( LDA, * ), T( * ), WORK( * ) +* REAL A( LDA, * ), T( * ), WORK( * ) * .. * * @@ -120,7 +120,7 @@ *> *> The goal of the interface is to give maximum freedom to the developers for *> creating any LQ factorization algorithm they wish. The triangular -*> (trapezoidal) R has to be stored in the upper part of A. The upper part of A +*> (trapezoidal) L has to be stored in the lower part of A. The lower part of A *> and the array T can be used to store any relevant information for applying or *> constructing the Q factor. The WORK array can safely be discarded after exit. *> @@ -146,74 +146,73 @@ *> *> T(2): row block size (MB) *> T(3): column block size (NB) -*> T(4:TSIZE): data structure needed for Q, computed by -*> DLASWLQ or DGELQT +*> T(6:TSIZE): data structure needed for Q, computed by +*> SLASWLQ or SGELQT *> *> Depending on the matrix dimensions M and N, and row and column -*> block sizes MB and NB returned by ILAENV, GELQ will use either -*> LASWLQ (if the matrix is short-and-wide) or GELQT to compute +*> block sizes MB and NB returned by ILAENV, SGELQ will use either +*> SLASWLQ (if the matrix is short-and-wide) or SGELQT to compute *> the LQ factorization. *> \endverbatim *> * ===================================================================== SUBROUTINE SGELQ( M, N, A, LDA, T, TSIZE, WORK, LWORK, - $ INFO) + $ INFO ) * -* -- LAPACK computational routine (version 3.5.0) -- +* -- LAPACK computational routine (version 3.7.0) -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd. -- -* November 2013 +* November 2016 * * .. Scalar Arguments .. - INTEGER INFO, LDA, M, N, TSIZE, LWORK + INTEGER INFO, LDA, M, N, TSIZE, LWORK * .. * .. Array Arguments .. - REAL A( LDA, * ), T( * ), WORK( * ) + REAL A( LDA, * ), T( * ), WORK( * ) * .. * * ===================================================================== * * .. * .. Local Scalars .. - LOGICAL LQUERY, LMINWS, MINT, MINW - INTEGER MB, NB, I, II, KK, MINTSZ, NBLCKS + LOGICAL LQUERY, LMINWS, MINT, MINW + INTEGER MB, NB, MINTSZ, NBLCKS * .. -* .. EXTERNAL FUNCTIONS .. +* .. External Functions .. LOGICAL LSAME EXTERNAL LSAME -* .. EXTERNAL SUBROUTINES .. +* .. +* .. External Subroutines .. EXTERNAL SGELQT, SLASWLQ, XERBLA -* .. INTRINSIC FUNCTIONS .. +* .. +* .. Intrinsic Functions .. INTRINSIC MAX, MIN, MOD * .. -* .. EXTERNAL FUNCTIONS .. +* .. External Functions .. INTEGER ILAENV EXTERNAL ILAENV * .. -* .. EXECUTABLE STATEMENTS .. +* .. Executable statements .. * -* TEST THE INPUT ARGUMENTS +* Test the input arguments * INFO = 0 * - LQUERY = ( TSIZE.EQ.-1 .OR. TSIZE.EQ.-2 .OR. + LQUERY = ( TSIZE.EQ.-1 .OR. TSIZE.EQ.-2 .OR. $ LWORK.EQ.-1 .OR. LWORK.EQ.-2 ) * MINT = .FALSE. - IF ( TSIZE.NE.-1 .AND. ( TSIZE.EQ.-2 .OR. LWORK.EQ.-2 ) ) THEN - MINT = .TRUE. - ENDIF -* MINW = .FALSE. - IF ( LWORK.NE.-1 .AND. ( TSIZE.EQ.-2 .OR. LWORK.EQ.-2 ) ) THEN - MINW = .TRUE. - ENDIF + IF( TSIZE.EQ.-2 .OR. LWORK.EQ.-2 ) THEN + IF( TSIZE.NE.-1 ) MINT = .TRUE. + IF( LWORK.NE.-1 ) MINW = .TRUE. + END IF * * Determine the block size * - IF ( MIN(M,N).GT.0 ) THEN - MB = ILAENV( 1, 'SGELQ ', ' ', M, N, 1, -1) - NB = ILAENV( 1, 'SGELQ ', ' ', M, N, 2, -1) + IF( MIN( M, N ).GT.0 ) THEN + MB = ILAENV( 1, 'SGELQ ', ' ', M, N, 1, -1 ) + NB = ILAENV( 1, 'SGELQ ', ' ', M, N, 2, -1 ) ELSE MB = 1 NB = N @@ -235,16 +234,16 @@ * LMINWS = .FALSE. IF( ( TSIZE.LT.MAX( 1, MB*M*NBLCKS + 5 ) .OR. LWORK.LT.MB*M ) - $ .AND. ( LWORK.GE.M ) .AND. ( TSIZE.GE.M + 5 ) - $ .AND. ( .NOT.LQUERY) ) THEN - IF ( TSIZE.LT.MAX( 1, MB*M*NBLCKS + 5 ) ) THEN - LMINWS = .TRUE. - MB = 1 - NB = N + $ .AND. ( LWORK.GE.M ) .AND. ( TSIZE.GE.MINTSZ ) + $ .AND. ( .NOT.LQUERY ) ) THEN + IF( TSIZE.LT.MAX( 1, MB*M*NBLCKS + 5 ) ) THEN + LMINWS = .TRUE. + MB = 1 + NB = N END IF - IF ( LWORK.LT.MB*M ) THEN - LMINWS = .TRUE. - MB = 1 + IF( LWORK.LT.MB*M ) THEN + LMINWS = .TRUE. + MB = 1 END IF END IF * @@ -262,42 +261,43 @@ INFO = -8 END IF * - IF( INFO.EQ.0 ) THEN - IF ( MINT ) THEN - T(1) = MINTSZ + IF( INFO.EQ.0 ) THEN + IF( MINT ) THEN + T( 1 ) = MINTSZ ELSE - T(1) = MB*M*NBLCKS + 5 - ENDIF - T(2) = MB - T(3) = NB - IF ( MINW ) THEN - WORK(1) = MAX( 1, N ) + T( 1 ) = MB*M*NBLCKS + 5 + END IF + T( 2 ) = MB + T( 3 ) = NB + IF( MINW ) THEN + WORK( 1 ) = MAX( 1, N ) ELSE - WORK(1) = MAX( 1, MB*M ) - ENDIF + WORK( 1 ) = MAX( 1, MB*M ) + END IF END IF IF( INFO.NE.0 ) THEN CALL XERBLA( 'SGELQ', -INFO ) RETURN - ELSE IF (LQUERY) THEN + ELSE IF( LQUERY ) THEN RETURN END IF * * Quick return if possible * - IF( MIN(M,N).EQ.0 ) THEN + IF( MIN( M, N ).EQ.0 ) THEN RETURN END IF * * The LQ Decomposition * IF( ( N.LE.M ) .OR. ( NB.LE.M ) .OR. ( NB.GE.N ) ) THEN - CALL SGELQT( M, N, MB, A, LDA, T(4), MB, WORK, INFO) + CALL SGELQT( M, N, MB, A, LDA, T( 6 ), MB, WORK, INFO ) ELSE - CALL SLASWLQ( M, N, MB, NB, A, LDA, T(4), MB, WORK, - $ LWORK, INFO) + CALL SLASWLQ( M, N, MB, NB, A, LDA, T( 6 ), MB, WORK, + $ LWORK, INFO ) END IF - WORK(1) = MAX( 1, MB*M ) +* + WORK( 1 ) = MAX( 1, MB*M ) RETURN * * End of SGELQ diff --git a/SRC/sgemlq.f b/SRC/sgemlq.f index a9cd54bd..42306ae4 100644 --- a/SRC/sgemlq.f +++ b/SRC/sgemlq.f @@ -3,22 +3,23 @@ * =========== * * SUBROUTINE SGEMLQ( SIDE, TRANS, M, N, K, A, LDA, T, -* $ TSIZE, C, LDC, WORK, LWORK, INFO ) +* $ TSIZE, C, LDC, WORK, LWORK, INFO ) * * * .. Scalar Arguments .. -* CHARACTER SIDE, TRANS -* INTEGER INFO, LDA, M, N, K, LDT, TSIZE, LWORK, LDC +* CHARACTER SIDE, TRANS +* INTEGER INFO, LDA, M, N, K, LDT, TSIZE, LWORK, LDC * .. * .. Array Arguments .. -* REAL A( LDA, * ), T( * ), C(LDC, * ), WORK( * ) +* REAL A( LDA, * ), T( * ), C(LDC, * ), WORK( * ) +* .. +* *> \par Purpose: * ============= *> *> \verbatim *> -*> SGEMLQ overwrites the general real M-by-N matrix C with -*> +*> SGEMLQ overwrites the general real M-by-N matrix C with *> *> SIDE = 'L' SIDE = 'R' *> TRANS = 'N': Q * C C * Q @@ -26,20 +27,26 @@ *> where Q is a real orthogonal matrix defined as the product *> of blocked elementary reflectors computed by short wide LQ *> factorization (SGELQ) +*> *> \endverbatim * * Arguments: * ========== * *> \param[in] SIDE +*> \verbatim *> SIDE is CHARACTER*1 *> = 'L': apply Q or Q**T from the Left; *> = 'R': apply Q or Q**T from the Right. +*> \endverbatim *> *> \param[in] TRANS +*> \verbatim *> TRANS is CHARACTER*1 *> = 'N': No transpose, apply Q; *> = 'T': Transpose, apply Q**T. +*> \endverbatim +*> *> \param[in] M *> \verbatim *> M is INTEGER @@ -49,7 +56,7 @@ *> \param[in] N *> \verbatim *> N is INTEGER -*> The number of columns of the matrix C. N >= M. +*> The number of columns of the matrix C. N >= 0. *> \endverbatim *> *> \param[in] K @@ -57,28 +64,28 @@ *> K is INTEGER *> The number of elementary reflectors whose product defines *> the matrix Q. -*> M >= K >= 0; -*> +*> If SIDE = 'L', M >= K >= 0; +*> if SIDE = 'R', N >= K >= 0. *> \endverbatim *> *> \param[in] A *> \verbatim -*> A is REAL array, dimension (LDA,K) -*> Part of the data structure to represent Q as returned by ZGELQ. +*> A is REAL array, dimension +*> (LDA,M) if SIDE = 'L', +*> (LDA,N) if SIDE = 'R' +*> Part of the data structure to represent Q as returned by DGELQ. *> \endverbatim *> *> \param[in] LDA *> \verbatim *> LDA is INTEGER -*> The leading dimension of the array A. -*> If SIDE = 'L', LDA >= max(1,M); -*> if SIDE = 'R', LDA >= max(1,N). +*> The leading dimension of the array A. LDA >= max(1,K). *> \endverbatim *> *> \param[in] T *> \verbatim *> T is REAL array, dimension (MAX(5,TSIZE)). -*> Part of the data structure to represent Q as returned by ZGELQ. +*> Part of the data structure to represent Q as returned by SGELQ. *> \endverbatim *> *> \param[in] TSIZE @@ -88,19 +95,23 @@ *> \endverbatim *> *> \param[in,out] C +*> \verbatim *> C is REAL array, dimension (LDC,N) *> On entry, the M-by-N matrix C. *> On exit, C is overwritten by Q*C or Q**T*C or C*Q**T or C*Q. +*> \endverbatim *> *> \param[in] LDC +*> \verbatim *> LDC is INTEGER *> The leading dimension of the array C. LDC >= max(1,M). +*> \endverbatim *> *> \param[out] WORK *> \verbatim *> (workspace) REAL array, dimension (MAX(1,LWORK)) -*> *> \endverbatim +*> *> \param[in] LWORK *> \verbatim *> LWORK is INTEGER @@ -140,47 +151,49 @@ *> *> T(2): row block size (MB) *> T(3): column block size (NB) -*> T(4:TSIZE): data structure needed for Q, computed by -*> LASWLQ or GELQT +*> T(6:TSIZE): data structure needed for Q, computed by +*> SLASWLQ or SGELQT *> *> Depending on the matrix dimensions M and N, and row and column -*> block sizes MB and NB returned by ILAENV, GELQ will use either -*> LASWLQ (if the matrix is wide-and-short) or GELQT to compute +*> block sizes MB and NB returned by ILAENV, SGELQ will use either +*> SLASWLQ (if the matrix is wide-and-short) or SGELQT to compute *> the LQ factorization. -*> This version of GEMLQ will use either LAMSWLQ or GEMLQT to +*> This version of SGEMLQ will use either SLAMSWLQ or SGEMLQT to *> multiply matrix Q by another matrix. -*> Further Details in LAMSWLQ or GEMLQT. +*> Further Details in SLAMSWLQ or SGEMLQT. *> \endverbatim *> * ===================================================================== SUBROUTINE SGEMLQ( SIDE, TRANS, M, N, K, A, LDA, T, TSIZE, - $ C, LDC, WORK, LWORK, INFO ) + $ C, LDC, WORK, LWORK, INFO ) * -* -- LAPACK computational routine (version 3.5.0) -- +* -- LAPACK computational routine (version 3.7.0) -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- -* November 2013 +* November 2016 * * .. Scalar Arguments .. - CHARACTER SIDE, TRANS - INTEGER INFO, LDA, M, N, K, TSIZE, LWORK, LDC + CHARACTER SIDE, TRANS + INTEGER INFO, LDA, M, N, K, TSIZE, LWORK, LDC * .. * .. Array Arguments .. - REAL A( LDA, * ), T( * ), C(LDC, * ), WORK( * ) + REAL A( LDA, * ), T( * ), C( LDC, * ), WORK( * ) * .. * * ===================================================================== * * .. * .. Local Scalars .. - LOGICAL LEFT, RIGHT, TRAN, NOTRAN, LQUERY - INTEGER I, II, KK, MB, NB, LW, NBLCKS, MN + LOGICAL LEFT, RIGHT, TRAN, NOTRAN, LQUERY + INTEGER MB, NB, LW, NBLCKS, MN * .. * .. External Functions .. LOGICAL LSAME EXTERNAL LSAME +* .. * .. External Subroutines .. EXTERNAL SLAMSWLQ, SGEMLQT, XERBLA +* .. * .. Intrinsic Functions .. INTRINSIC INT, MAX, MIN, MOD * .. @@ -188,15 +201,15 @@ * * Test the input arguments * - LQUERY = LWORK.LT.0 + LQUERY = LWORK.EQ.-1 NOTRAN = LSAME( TRANS, 'N' ) TRAN = LSAME( TRANS, 'T' ) LEFT = LSAME( SIDE, 'L' ) RIGHT = LSAME( SIDE, 'R' ) * - MB = INT(T(2)) - NB = INT(T(3)) - IF ( LEFT ) THEN + MB = INT( T( 2 ) ) + NB = INT( T( 3 ) ) + IF( LEFT ) THEN LW = N * MB MN = M ELSE @@ -204,7 +217,7 @@ MN = N END IF * - IF ( ( NB.GT.K ) .AND. ( MN.GT.K ) ) THEN + IF( ( NB.GT.K ) .AND. ( MN.GT.K ) ) THEN IF( MOD( MN - K, NB - K ) .EQ. 0 ) THEN NBLCKS = ( MN - K ) / ( NB - K ) ELSE @@ -216,34 +229,33 @@ * INFO = 0 IF( .NOT.LEFT .AND. .NOT.RIGHT ) THEN - INFO = -1 + INFO = -1 ELSE IF( .NOT.TRAN .AND. .NOT.NOTRAN ) THEN - INFO = -2 + INFO = -2 ELSE IF( M.LT.0 ) THEN INFO = -3 - ELSE IF( N.LT.0) THEN + ELSE IF( N.LT.0 ) THEN INFO = -4 - ELSE IF( K.LT.0 ) THEN + ELSE IF( K.LT.0 .OR. K.GT.MN ) THEN INFO = -5 ELSE IF( LDA.LT.MAX( 1, K ) ) THEN INFO = -7 - ELSE IF( TSIZE.LT.MAX( 1, MB*K*NBLCKS + 5 ) - $ .AND. ( .NOT.LQUERY ) ) THEN + ELSE IF( TSIZE.LT.5 ) THEN INFO = -9 ELSE IF( LDC.LT.MAX( 1, M ) ) THEN INFO = -11 - ELSE IF(( LWORK.LT.MAX( 1, LW ) ) .AND. ( .NOT.LQUERY ) ) THEN + ELSE IF( ( LWORK.LT.MAX( 1, LW ) ) .AND. ( .NOT.LQUERY ) ) THEN INFO = -13 END IF * - IF( INFO.EQ.0 ) THEN - WORK(1) = REAL(LW) + IF( INFO.EQ.0 ) THEN + WORK( 1 ) = REAL( LW ) END IF * IF( INFO.NE.0 ) THEN CALL XERBLA( 'SGEMLQ', -INFO ) RETURN - ELSE IF ( LQUERY ) THEN + ELSE IF( LQUERY ) THEN RETURN END IF * @@ -256,13 +268,13 @@ IF( ( LEFT .AND. M.LE.K ) .OR. ( RIGHT .AND. N.LE.K ) $ .OR. ( NB.LE.K ) .OR. ( NB.GE.MAX( M, N, K ) ) ) THEN CALL SGEMLQT( SIDE, TRANS, M, N, K, MB, A, LDA, - $ T(4), MB, C, LDC, WORK, INFO) + $ T( 6 ), MB, C, LDC, WORK, INFO ) ELSE - CALL SLAMSWLQ( SIDE, TRANS, M, N, K, MB, NB, A, LDA, T(4), - $ MB, C, LDC, WORK, LWORK, INFO ) + CALL SLAMSWLQ( SIDE, TRANS, M, N, K, MB, NB, A, LDA, T( 6 ), + $ MB, C, LDC, WORK, LWORK, INFO ) END IF * - WORK(1) = REAL(LW) + WORK( 1 ) = REAL( LW ) * RETURN * diff --git a/SRC/zgelq.f b/SRC/zgelq.f index 5c51cf52..73d54771 100644 --- a/SRC/zgelq.f +++ b/SRC/zgelq.f @@ -3,13 +3,13 @@ * =========== * * SUBROUTINE ZGELQ( M, N, A, LDA, T, TSIZE, WORK, LWORK, -* INFO) +* INFO ) * * .. Scalar Arguments .. * INTEGER INFO, LDA, M, N, TSIZE, LWORK * .. * .. Array Arguments .. -* COMPLEX*16 A( LDA, * ), T( * ), WORK( * ) +* COMPLEX*16 A( LDA, * ), T( * ), WORK( * ) * .. * * @@ -120,7 +120,7 @@ *> *> The goal of the interface is to give maximum freedom to the developers for *> creating any LQ factorization algorithm they wish. The triangular -*> (trapezoidal) R has to be stored in the upper part of A. The upper part of A +*> (trapezoidal) L has to be stored in the lower part of A. The lower part of A *> and the array T can be used to store any relevant information for applying or *> constructing the Q factor. The WORK array can safely be discarded after exit. *> @@ -146,74 +146,73 @@ *> *> T(2): row block size (MB) *> T(3): column block size (NB) -*> T(4:TSIZE): data structure needed for Q, computed by -*> DLASWLQ or DGELQT +*> T(6:TSIZE): data structure needed for Q, computed by +*> ZLASWLQ or ZGELQT *> *> Depending on the matrix dimensions M and N, and row and column -*> block sizes MB and NB returned by ILAENV, GELQ will use either -*> LASWLQ (if the matrix is short-and-wide) or GELQT to compute +*> block sizes MB and NB returned by ILAENV, ZGELQ will use either +*> ZLASWLQ (if the matrix is short-and-wide) or ZGELQT to compute *> the LQ factorization. *> \endverbatim *> * ===================================================================== SUBROUTINE ZGELQ( M, N, A, LDA, T, TSIZE, WORK, LWORK, - $ INFO) + $ INFO ) * -* -- LAPACK computational routine (version 3.5.0) -- +* -- LAPACK computational routine (version 3.7.0) -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd. -- -* November 2013 +* November 2016 * * .. Scalar Arguments .. - INTEGER INFO, LDA, M, N, TSIZE, LWORK + INTEGER INFO, LDA, M, N, TSIZE, LWORK * .. * .. Array Arguments .. - COMPLEX*16 A( LDA, * ), T( * ), WORK( * ) + COMPLEX*16 A( LDA, * ), T( * ), WORK( * ) * .. * * ===================================================================== * * .. * .. Local Scalars .. - LOGICAL LQUERY, LMINWS, MINT, MINW - INTEGER MB, NB, I, II, KK, MINTSZ, NBLCKS + LOGICAL LQUERY, LMINWS, MINT, MINW + INTEGER MB, NB, MINTSZ, NBLCKS * .. -* .. EXTERNAL FUNCTIONS .. +* .. External Functions .. LOGICAL LSAME EXTERNAL LSAME -* .. EXTERNAL SUBROUTINES .. +* .. +* .. External Subroutines .. EXTERNAL ZGELQT, ZLASWLQ, XERBLA -* .. INTRINSIC FUNCTIONS .. +* .. +* .. Intrinsic Functions .. INTRINSIC MAX, MIN, MOD * .. -* .. EXTERNAL FUNCTIONS .. +* .. External Functions .. INTEGER ILAENV EXTERNAL ILAENV * .. -* .. EXECUTABLE STATEMENTS .. +* .. Executable Statements .. * -* TEST THE INPUT ARGUMENTS +* Test the input arguments * INFO = 0 * - LQUERY = ( TSIZE.EQ.-1 .OR. TSIZE.EQ.-2 .OR. + LQUERY = ( TSIZE.EQ.-1 .OR. TSIZE.EQ.-2 .OR. $ LWORK.EQ.-1 .OR. LWORK.EQ.-2 ) * MINT = .FALSE. - IF ( TSIZE.NE.-1 .AND. ( TSIZE.EQ.-2 .OR. LWORK.EQ.-2 ) ) THEN - MINT = .TRUE. - ENDIF -* MINW = .FALSE. - IF ( LWORK.NE.-1 .AND. ( TSIZE.EQ.-2 .OR. LWORK.EQ.-2 ) ) THEN - MINW = .TRUE. - ENDIF + IF( TSIZE.EQ.-2 .OR. LWORK.EQ.-2 ) THEN + IF( TSIZE.NE.-1 ) MINT = .TRUE. + IF( LWORK.NE.-1 ) MINW = .TRUE. + END IF * * Determine the block size * - IF ( MIN(M,N).GT.0 ) THEN - MB = ILAENV( 1, 'ZGELQ ', ' ', M, N, 1, -1) - NB = ILAENV( 1, 'ZGELQ ', ' ', M, N, 2, -1) + IF( MIN( M, N ).GT.0 ) THEN + MB = ILAENV( 1, 'ZGELQ ', ' ', M, N, 1, -1 ) + NB = ILAENV( 1, 'ZGELQ ', ' ', M, N, 2, -1 ) ELSE MB = 1 NB = N @@ -235,14 +234,14 @@ * LMINWS = .FALSE. IF( ( TSIZE.LT.MAX( 1, MB*M*NBLCKS + 5 ) .OR. LWORK.LT.MB*M ) - $ .AND. ( LWORK.GE.M ) .AND. ( TSIZE.GE.M + 5 ) - $ .AND. ( .NOT.LQUERY) ) THEN - IF ( TSIZE.LT.MAX( 1, MB*M*NBLCKS + 5 ) ) THEN + $ .AND. ( LWORK.GE.M ) .AND. ( TSIZE.GE.MINTSZ ) + $ .AND. ( .NOT.LQUERY ) ) THEN + IF( TSIZE.LT.MAX( 1, MB*M*NBLCKS + 5 ) ) THEN LMINWS = .TRUE. MB = 1 NB = N END IF - IF ( LWORK.LT.MB*M ) THEN + IF( LWORK.LT.MB*M ) THEN LMINWS = .TRUE. MB = 1 END IF @@ -262,42 +261,44 @@ INFO = -8 END IF * - IF( INFO.EQ.0 ) THEN - IF ( MINT ) THEN - T(1) = MINTSZ + IF( INFO.EQ.0 ) THEN + IF( MINT ) THEN + T( 1 ) = MINTSZ ELSE - T(1) = MB*M*NBLCKS + 5 - ENDIF - T(2) = MB - T(3) = NB - IF ( MINW ) THEN - WORK(1) = MAX( 1, N ) + T( 1 ) = MB*M*NBLCKS + 5 + END IF + T( 2 ) = MB + T( 3 ) = NB + IF( MINW ) THEN + WORK( 1 ) = MAX( 1, N ) ELSE - WORK(1) = MAX( 1, MB*M ) - ENDIF + WORK( 1 ) = MAX( 1, MB*M ) + END IF END IF IF( INFO.NE.0 ) THEN CALL XERBLA( 'ZGELQ', -INFO ) RETURN - ELSE IF (LQUERY) THEN + ELSE IF( LQUERY ) THEN RETURN END IF * * Quick return if possible * - IF( MIN(M,N).EQ.0 ) THEN + IF( MIN( M, N ).EQ.0 ) THEN RETURN END IF * * The LQ Decomposition * IF( ( N.LE.M ) .OR. ( NB.LE.M ) .OR. ( NB.GE.N ) ) THEN - CALL ZGELQT( M, N, MB, A, LDA, T(4), MB, WORK, INFO) + CALL ZGELQT( M, N, MB, A, LDA, T( 6 ), MB, WORK, INFO ) ELSE - CALL ZLASWLQ( M, N, MB, NB, A, LDA, T(4), MB, WORK, - $ LWORK, INFO) + CALL ZLASWLQ( M, N, MB, NB, A, LDA, T( 6 ), MB, WORK, + $ LWORK, INFO ) END IF - WORK(1) = MAX( 1, MB*M ) +* + WORK( 1 ) = MAX( 1, MB*M ) +* RETURN * * End of ZGELQ diff --git a/SRC/zgemlq.f b/SRC/zgemlq.f index f02d7b1a..5602d872 100644 --- a/SRC/zgemlq.f +++ b/SRC/zgemlq.f @@ -3,22 +3,21 @@ * =========== * * SUBROUTINE ZGEMLQ( SIDE, TRANS, M, N, K, A, LDA, T, -* $ TSIZE, C, LDC, WORK, LWORK, INFO ) +* $ TSIZE, C, LDC, WORK, LWORK, INFO ) * * * .. Scalar Arguments .. -* CHARACTER SIDE, TRANS -* INTEGER INFO, LDA, M, N, K, LDT, TSIZE, LWORK, LDC +* CHARACTER SIDE, TRANS +* INTEGER INFO, LDA, M, N, K, LDT, TSIZE, LWORK, LDC * .. * .. Array Arguments .. -* COMPLEX*16 A( LDA, * ), T( * ), C(LDC, * ), WORK( * ) +* COMPLEX*16 A( LDA, * ), T( * ), C(LDC, * ), WORK( * ) *> \par Purpose: * ============= *> *> \verbatim *> -*> ZGEMLQ overwrites the general real M-by-N matrix C with -*> +*> ZGEMLQ overwrites the general real M-by-N matrix C with *> *> SIDE = 'L' SIDE = 'R' *> TRANS = 'N': Q * C C * Q @@ -26,20 +25,26 @@ *> where Q is a complex unitary matrix defined as the product *> of blocked elementary reflectors computed by short wide *> LQ factorization (ZGELQ) +*> *> \endverbatim * * Arguments: * ========== * *> \param[in] SIDE +*> \verbatim *> SIDE is CHARACTER*1 *> = 'L': apply Q or Q**T from the Left; *> = 'R': apply Q or Q**T from the Right. +*> \endverbatim *> *> \param[in] TRANS +*> \verbatim *> TRANS is CHARACTER*1 *> = 'N': No transpose, apply Q; *> = 'T': Transpose, apply Q**T. +*> \endverbatim +*> *> \param[in] M *> \verbatim *> M is INTEGER @@ -49,7 +54,7 @@ *> \param[in] N *> \verbatim *> N is INTEGER -*> The number of columns of the matrix C. N >= M. +*> The number of columns of the matrix C. N >= 0. *> \endverbatim *> *> \param[in] K @@ -57,22 +62,23 @@ *> K is INTEGER *> The number of elementary reflectors whose product defines *> the matrix Q. -*> M >= K >= 0; +*> If SIDE = 'L', M >= K >= 0; +*> if SIDE = 'R', N >= K >= 0. *> *> \endverbatim *> *> \param[in] A *> \verbatim -*> A is COMPLEX*16 array, dimension (LDA,K) +*> A is COMPLEX*16 array, dimension +*> (LDA,M) if SIDE = 'L', +*> (LDA,N) if SIDE = 'R' *> Part of the data structure to represent Q as returned by ZGELQ. *> \endverbatim *> *> \param[in] LDA *> \verbatim *> LDA is INTEGER -*> The leading dimension of the array A. -*> If SIDE = 'L', LDA >= max(1,M); -*> if SIDE = 'R', LDA >= max(1,N). +*> The leading dimension of the array A. LDA >= max(1,K). *> \endverbatim *> *> \param[in] T @@ -88,19 +94,23 @@ *> \endverbatim *> *> \param[in,out] C +*> \verbatim *> C is COMPLEX*16 array, dimension (LDC,N) *> On entry, the M-by-N matrix C. *> On exit, C is overwritten by Q*C or Q**T*C or C*Q**T or C*Q. +*> \endverbatim *> *> \param[in] LDC +*> \verbatim *> LDC is INTEGER *> The leading dimension of the array C. LDC >= max(1,M). +*> \endverbatim *> *> \param[out] WORK *> \verbatim *> (workspace) COMPLEX*16 array, dimension (MAX(1,LWORK)) -*> *> \endverbatim +*> *> \param[in] LWORK *> \verbatim *> LWORK is INTEGER @@ -140,47 +150,49 @@ *> *> T(2): row block size (MB) *> T(3): column block size (NB) -*> T(4:TSIZE): data structure needed for Q, computed by -*> LASWLQ or GELQT +*> T(6:TSIZE): data structure needed for Q, computed by +*> ZLASWLQ or ZGELQT *> *> Depending on the matrix dimensions M and N, and row and column -*> block sizes MB and NB returned by ILAENV, GELQ will use either -*> LASWLQ (if the matrix is wide-and-short) or GELQT to compute +*> block sizes MB and NB returned by ILAENV, ZGELQ will use either +*> ZLASWLQ (if the matrix is wide-and-short) or ZGELQT to compute *> the LQ factorization. -*> This version of GEMLQ will use either LAMSWLQ or GEMLQT to +*> This version of ZGEMLQ will use either ZLAMSWLQ or ZGEMLQT to *> multiply matrix Q by another matrix. -*> Further Details in LAMSWLQ or GEMLQT. +*> Further Details in ZLAMSWLQ or ZGEMLQT. *> \endverbatim *> * ===================================================================== SUBROUTINE ZGEMLQ( SIDE, TRANS, M, N, K, A, LDA, T, TSIZE, - $ C, LDC, WORK, LWORK, INFO ) + $ C, LDC, WORK, LWORK, INFO ) * -* -- LAPACK computational routine (version 3.5.0) -- +* -- LAPACK computational routine (version 3.7.0) -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- -* November 2013 +* November 2016 * * .. Scalar Arguments .. - CHARACTER SIDE, TRANS - INTEGER INFO, LDA, M, N, K, TSIZE, LWORK, LDC + CHARACTER SIDE, TRANS + INTEGER INFO, LDA, M, N, K, TSIZE, LWORK, LDC * .. * .. Array Arguments .. - COMPLEX*16 A( LDA, * ), T( * ), C(LDC, * ), WORK( * ) + COMPLEX*16 A( LDA, * ), T( * ), C( LDC, * ), WORK( * ) * .. * * ===================================================================== * * .. * .. Local Scalars .. - LOGICAL LEFT, RIGHT, TRAN, NOTRAN, LQUERY - INTEGER I, II, KK, MB, NB, LW, NBLCKS, MN + LOGICAL LEFT, RIGHT, TRAN, NOTRAN, LQUERY + INTEGER MB, NB, LW, NBLCKS, MN * .. * .. External Functions .. LOGICAL LSAME EXTERNAL LSAME +* .. * .. External Subroutines .. EXTERNAL ZLAMSWLQ, ZGEMLQT, XERBLA +* .. * .. Intrinsic Functions .. INTRINSIC INT, MAX, MIN, MOD * .. @@ -188,15 +200,15 @@ * * Test the input arguments * - LQUERY = LWORK.LT.0 + LQUERY = LWORK.EQ.-1 NOTRAN = LSAME( TRANS, 'N' ) TRAN = LSAME( TRANS, 'C' ) LEFT = LSAME( SIDE, 'L' ) RIGHT = LSAME( SIDE, 'R' ) * - MB = INT(T(2)) - NB = INT(T(3)) - IF ( LEFT ) THEN + MB = INT( T( 2 ) ) + NB = INT( T( 3 ) ) + IF( LEFT ) THEN LW = N * MB MN = M ELSE @@ -204,7 +216,7 @@ MN = N END IF * - IF ( ( NB.GT.K ) .AND. ( MN.GT.K ) ) THEN + IF( ( NB.GT.K ) .AND. ( MN.GT.K ) ) THEN IF( MOD( MN - K, NB - K ) .EQ. 0 ) THEN NBLCKS = ( MN - K ) / ( NB - K ) ELSE @@ -216,34 +228,33 @@ * INFO = 0 IF( .NOT.LEFT .AND. .NOT.RIGHT ) THEN - INFO = -1 + INFO = -1 ELSE IF( .NOT.TRAN .AND. .NOT.NOTRAN ) THEN - INFO = -2 + INFO = -2 ELSE IF( M.LT.0 ) THEN INFO = -3 - ELSE IF( N.LT.0) THEN + ELSE IF( N.LT.0 ) THEN INFO = -4 - ELSE IF( K.LT.0 ) THEN + ELSE IF( K.LT.0 .OR. K.GT.MN ) THEN INFO = -5 ELSE IF( LDA.LT.MAX( 1, K ) ) THEN INFO = -7 - ELSE IF( TSIZE.LT.MAX( 1, MB*K*NBLCKS + 5 ) - $ .AND. ( .NOT.LQUERY ) ) THEN + ELSE IF( TSIZE.LT.5 ) THEN INFO = -9 ELSE IF( LDC.LT.MAX( 1, M ) ) THEN INFO = -11 - ELSE IF(( LWORK.LT.MAX( 1, LW ) ) .AND. ( .NOT.LQUERY ) ) THEN + ELSE IF( ( LWORK.LT.MAX( 1, LW ) ) .AND. ( .NOT.LQUERY ) ) THEN INFO = -13 END IF * - IF( INFO.EQ.0 ) THEN - WORK(1) = LW + IF( INFO.EQ.0 ) THEN + WORK( 1 ) = LW END IF * IF( INFO.NE.0 ) THEN CALL XERBLA( 'ZGEMLQ', -INFO ) RETURN - ELSE IF ( LQUERY ) THEN + ELSE IF( LQUERY ) THEN RETURN END IF * @@ -256,13 +267,13 @@ IF( ( LEFT .AND. M.LE.K ) .OR. ( RIGHT .AND. N.LE.K ) $ .OR. ( NB.LE.K ) .OR. ( NB.GE.MAX( M, N, K ) ) ) THEN CALL ZGEMLQT( SIDE, TRANS, M, N, K, MB, A, LDA, - $ T(4), MB, C, LDC, WORK, INFO) + $ T( 6 ), MB, C, LDC, WORK, INFO ) ELSE - CALL ZLAMSWLQ( SIDE, TRANS, M, N, K, MB, NB, A, LDA, T(4), - $ MB, C, LDC, WORK, LWORK, INFO ) + CALL ZLAMSWLQ( SIDE, TRANS, M, N, K, MB, NB, A, LDA, T( 6 ), + $ MB, C, LDC, WORK, LWORK, INFO ) END IF * - WORK(1) = LW + WORK( 1 ) = LW * RETURN * |