1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
|
*
* Definition:
* ===========
*
* SUBROUTINE SGEMLQ( SIDE, TRANS, M, N, K, A, LDA, T,
* $ TSIZE, C, LDC, WORK, LWORK, INFO )
*
*
* .. Scalar Arguments ..
* CHARACTER SIDE, TRANS
* INTEGER INFO, LDA, M, N, K, LDT, TSIZE, LWORK, LDC
* ..
* .. Array Arguments ..
* REAL A( LDA, * ), T( * ), C(LDC, * ), WORK( * )
* ..
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> SGEMLQ overwrites the general real M-by-N matrix C with
*>
*> SIDE = 'L' SIDE = 'R'
*> TRANS = 'N': Q * C C * Q
*> TRANS = 'T': Q**T * C C * Q**T
*> where Q is a real orthogonal matrix defined as the product
*> of blocked elementary reflectors computed by short wide LQ
*> factorization (SGELQ)
*>
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] SIDE
*> \verbatim
*> SIDE is CHARACTER*1
*> = 'L': apply Q or Q**T from the Left;
*> = 'R': apply Q or Q**T from the Right.
*> \endverbatim
*>
*> \param[in] TRANS
*> \verbatim
*> TRANS is CHARACTER*1
*> = 'N': No transpose, apply Q;
*> = 'T': Transpose, apply Q**T.
*> \endverbatim
*>
*> \param[in] M
*> \verbatim
*> M is INTEGER
*> The number of rows of the matrix A. M >=0.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> The number of columns of the matrix C. N >= 0.
*> \endverbatim
*>
*> \param[in] K
*> \verbatim
*> K is INTEGER
*> The number of elementary reflectors whose product defines
*> the matrix Q.
*> If SIDE = 'L', M >= K >= 0;
*> if SIDE = 'R', N >= K >= 0.
*> \endverbatim
*>
*> \param[in] A
*> \verbatim
*> A is REAL array, dimension
*> (LDA,M) if SIDE = 'L',
*> (LDA,N) if SIDE = 'R'
*> Part of the data structure to represent Q as returned by DGELQ.
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*> LDA is INTEGER
*> The leading dimension of the array A. LDA >= max(1,K).
*> \endverbatim
*>
*> \param[in] T
*> \verbatim
*> T is REAL array, dimension (MAX(5,TSIZE)).
*> Part of the data structure to represent Q as returned by SGELQ.
*> \endverbatim
*>
*> \param[in] TSIZE
*> \verbatim
*> TSIZE is INTEGER
*> The dimension of the array T. TSIZE >= 5.
*> \endverbatim
*>
*> \param[in,out] C
*> \verbatim
*> C is REAL array, dimension (LDC,N)
*> On entry, the M-by-N matrix C.
*> On exit, C is overwritten by Q*C or Q**T*C or C*Q**T or C*Q.
*> \endverbatim
*>
*> \param[in] LDC
*> \verbatim
*> LDC is INTEGER
*> The leading dimension of the array C. LDC >= max(1,M).
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*> (workspace) REAL array, dimension (MAX(1,LWORK))
*> \endverbatim
*>
*> \param[in] LWORK
*> \verbatim
*> LWORK is INTEGER
*> The dimension of the array WORK.
*> If LWORK = -1, then a workspace query is assumed. The routine
*> only calculates the size of the WORK array, returns this
*> value as WORK(1), and no error message related to WORK
*> is issued by XERBLA.
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*> INFO is INTEGER
*> = 0: successful exit
*> < 0: if INFO = -i, the i-th argument had an illegal value
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \par Further Details
* ====================
*>
*> \verbatim
*>
*> These details are particular for this LAPACK implementation. Users should not
*> take them for granted. These details may change in the future, and are unlikely not
*> true for another LAPACK implementation. These details are relevant if one wants
*> to try to understand the code. They are not part of the interface.
*>
*> In this version,
*>
*> T(2): row block size (MB)
*> T(3): column block size (NB)
*> T(6:TSIZE): data structure needed for Q, computed by
*> SLASWLQ or SGELQT
*>
*> Depending on the matrix dimensions M and N, and row and column
*> block sizes MB and NB returned by ILAENV, SGELQ will use either
*> SLASWLQ (if the matrix is wide-and-short) or SGELQT to compute
*> the LQ factorization.
*> This version of SGEMLQ will use either SLAMSWLQ or SGEMLQT to
*> multiply matrix Q by another matrix.
*> Further Details in SLAMSWLQ or SGEMLQT.
*> \endverbatim
*>
* =====================================================================
SUBROUTINE SGEMLQ( SIDE, TRANS, M, N, K, A, LDA, T, TSIZE,
$ C, LDC, WORK, LWORK, INFO )
*
* -- LAPACK computational routine (version 3.7.0) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* November 2016
*
* .. Scalar Arguments ..
CHARACTER SIDE, TRANS
INTEGER INFO, LDA, M, N, K, TSIZE, LWORK, LDC
* ..
* .. Array Arguments ..
REAL A( LDA, * ), T( * ), C( LDC, * ), WORK( * )
* ..
*
* =====================================================================
*
* ..
* .. Local Scalars ..
LOGICAL LEFT, RIGHT, TRAN, NOTRAN, LQUERY
INTEGER MB, NB, LW, NBLCKS, MN
* ..
* .. External Functions ..
LOGICAL LSAME
EXTERNAL LSAME
* ..
* .. External Subroutines ..
EXTERNAL SLAMSWLQ, SGEMLQT, XERBLA
* ..
* .. Intrinsic Functions ..
INTRINSIC INT, MAX, MIN, MOD
* ..
* .. Executable Statements ..
*
* Test the input arguments
*
LQUERY = LWORK.EQ.-1
NOTRAN = LSAME( TRANS, 'N' )
TRAN = LSAME( TRANS, 'T' )
LEFT = LSAME( SIDE, 'L' )
RIGHT = LSAME( SIDE, 'R' )
*
MB = INT( T( 2 ) )
NB = INT( T( 3 ) )
IF( LEFT ) THEN
LW = N * MB
MN = M
ELSE
LW = M * MB
MN = N
END IF
*
IF( ( NB.GT.K ) .AND. ( MN.GT.K ) ) THEN
IF( MOD( MN - K, NB - K ) .EQ. 0 ) THEN
NBLCKS = ( MN - K ) / ( NB - K )
ELSE
NBLCKS = ( MN - K ) / ( NB - K ) + 1
END IF
ELSE
NBLCKS = 1
END IF
*
INFO = 0
IF( .NOT.LEFT .AND. .NOT.RIGHT ) THEN
INFO = -1
ELSE IF( .NOT.TRAN .AND. .NOT.NOTRAN ) THEN
INFO = -2
ELSE IF( M.LT.0 ) THEN
INFO = -3
ELSE IF( N.LT.0 ) THEN
INFO = -4
ELSE IF( K.LT.0 .OR. K.GT.MN ) THEN
INFO = -5
ELSE IF( LDA.LT.MAX( 1, K ) ) THEN
INFO = -7
ELSE IF( TSIZE.LT.5 ) THEN
INFO = -9
ELSE IF( LDC.LT.MAX( 1, M ) ) THEN
INFO = -11
ELSE IF( ( LWORK.LT.MAX( 1, LW ) ) .AND. ( .NOT.LQUERY ) ) THEN
INFO = -13
END IF
*
IF( INFO.EQ.0 ) THEN
WORK( 1 ) = REAL( LW )
END IF
*
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'SGEMLQ', -INFO )
RETURN
ELSE IF( LQUERY ) THEN
RETURN
END IF
*
* Quick return if possible
*
IF( MIN( M, N, K ).EQ.0 ) THEN
RETURN
END IF
*
IF( ( LEFT .AND. M.LE.K ) .OR. ( RIGHT .AND. N.LE.K )
$ .OR. ( NB.LE.K ) .OR. ( NB.GE.MAX( M, N, K ) ) ) THEN
CALL SGEMLQT( SIDE, TRANS, M, N, K, MB, A, LDA,
$ T( 6 ), MB, C, LDC, WORK, INFO )
ELSE
CALL SLAMSWLQ( SIDE, TRANS, M, N, K, MB, NB, A, LDA, T( 6 ),
$ MB, C, LDC, WORK, LWORK, INFO )
END IF
*
WORK( 1 ) = REAL( LW )
*
RETURN
*
* End of SGEMLQ
*
END
|