summaryrefslogtreecommitdiff
path: root/SRC/zhpevd.f
diff options
context:
space:
mode:
authorjulie <julielangou@users.noreply.github.com>2011-10-06 06:53:11 +0000
committerjulie <julielangou@users.noreply.github.com>2011-10-06 06:53:11 +0000
commite1d39294aee16fa6db9ba079b14442358217db71 (patch)
tree30e5aa04c1f6596991fda5334f63dfb9b8027849 /SRC/zhpevd.f
parent5fe0466a14e395641f4f8a300ecc9dcb8058081b (diff)
downloadlapack-e1d39294aee16fa6db9ba079b14442358217db71.tar.gz
lapack-e1d39294aee16fa6db9ba079b14442358217db71.tar.bz2
lapack-e1d39294aee16fa6db9ba079b14442358217db71.zip
Integrating Doxygen in comments
Diffstat (limited to 'SRC/zhpevd.f')
-rw-r--r--SRC/zhpevd.f308
1 files changed, 198 insertions, 110 deletions
diff --git a/SRC/zhpevd.f b/SRC/zhpevd.f
index 12a3b497..dac8ce4f 100644
--- a/SRC/zhpevd.f
+++ b/SRC/zhpevd.f
@@ -1,10 +1,206 @@
+*> \brief <b> ZHPEVD computes the eigenvalues and, optionally, the left and/or right eigenvectors for OTHER matrices</b>
+*
+* =========== DOCUMENTATION ===========
+*
+* Online html documentation available at
+* http://www.netlib.org/lapack/explore-html/
+*
+* Definition
+* ==========
+*
+* SUBROUTINE ZHPEVD( JOBZ, UPLO, N, AP, W, Z, LDZ, WORK, LWORK,
+* RWORK, LRWORK, IWORK, LIWORK, INFO )
+*
+* .. Scalar Arguments ..
+* CHARACTER JOBZ, UPLO
+* INTEGER INFO, LDZ, LIWORK, LRWORK, LWORK, N
+* ..
+* .. Array Arguments ..
+* INTEGER IWORK( * )
+* DOUBLE PRECISION RWORK( * ), W( * )
+* COMPLEX*16 AP( * ), WORK( * ), Z( LDZ, * )
+* ..
+*
+* Purpose
+* =======
+*
+*>\details \b Purpose:
+*>\verbatim
+*>
+*> ZHPEVD computes all the eigenvalues and, optionally, eigenvectors of
+*> a complex Hermitian matrix A in packed storage. If eigenvectors are
+*> desired, it uses a divide and conquer algorithm.
+*>
+*> The divide and conquer algorithm makes very mild assumptions about
+*> floating point arithmetic. It will work on machines with a guard
+*> digit in add/subtract, or on those binary machines without guard
+*> digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or
+*> Cray-2. It could conceivably fail on hexadecimal or decimal machines
+*> without guard digits, but we know of none.
+*>
+*>\endverbatim
+*
+* Arguments
+* =========
+*
+*> \param[in] JOBZ
+*> \verbatim
+*> JOBZ is CHARACTER*1
+*> = 'N': Compute eigenvalues only;
+*> = 'V': Compute eigenvalues and eigenvectors.
+*> \endverbatim
+*>
+*> \param[in] UPLO
+*> \verbatim
+*> UPLO is CHARACTER*1
+*> = 'U': Upper triangle of A is stored;
+*> = 'L': Lower triangle of A is stored.
+*> \endverbatim
+*>
+*> \param[in] N
+*> \verbatim
+*> N is INTEGER
+*> The order of the matrix A. N >= 0.
+*> \endverbatim
+*>
+*> \param[in,out] AP
+*> \verbatim
+*> AP is COMPLEX*16 array, dimension (N*(N+1)/2)
+*> On entry, the upper or lower triangle of the Hermitian matrix
+*> A, packed columnwise in a linear array. The j-th column of A
+*> is stored in the array AP as follows:
+*> if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
+*> if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.
+*> \endverbatim
+*> \verbatim
+*> On exit, AP is overwritten by values generated during the
+*> reduction to tridiagonal form. If UPLO = 'U', the diagonal
+*> and first superdiagonal of the tridiagonal matrix T overwrite
+*> the corresponding elements of A, and if UPLO = 'L', the
+*> diagonal and first subdiagonal of T overwrite the
+*> corresponding elements of A.
+*> \endverbatim
+*>
+*> \param[out] W
+*> \verbatim
+*> W is DOUBLE PRECISION array, dimension (N)
+*> If INFO = 0, the eigenvalues in ascending order.
+*> \endverbatim
+*>
+*> \param[out] Z
+*> \verbatim
+*> Z is COMPLEX*16 array, dimension (LDZ, N)
+*> If JOBZ = 'V', then if INFO = 0, Z contains the orthonormal
+*> eigenvectors of the matrix A, with the i-th column of Z
+*> holding the eigenvector associated with W(i).
+*> If JOBZ = 'N', then Z is not referenced.
+*> \endverbatim
+*>
+*> \param[in] LDZ
+*> \verbatim
+*> LDZ is INTEGER
+*> The leading dimension of the array Z. LDZ >= 1, and if
+*> JOBZ = 'V', LDZ >= max(1,N).
+*> \endverbatim
+*>
+*> \param[out] WORK
+*> \verbatim
+*> WORK is COMPLEX*16 array, dimension (MAX(1,LWORK))
+*> On exit, if INFO = 0, WORK(1) returns the required LWORK.
+*> \endverbatim
+*>
+*> \param[in] LWORK
+*> \verbatim
+*> LWORK is INTEGER
+*> The dimension of array WORK.
+*> If N <= 1, LWORK must be at least 1.
+*> If JOBZ = 'N' and N > 1, LWORK must be at least N.
+*> If JOBZ = 'V' and N > 1, LWORK must be at least 2*N.
+*> \endverbatim
+*> \verbatim
+*> If LWORK = -1, then a workspace query is assumed; the routine
+*> only calculates the required sizes of the WORK, RWORK and
+*> IWORK arrays, returns these values as the first entries of
+*> the WORK, RWORK and IWORK arrays, and no error message
+*> related to LWORK or LRWORK or LIWORK is issued by XERBLA.
+*> \endverbatim
+*>
+*> \param[out] RWORK
+*> \verbatim
+*> RWORK is DOUBLE PRECISION array,
+*> dimension (LRWORK)
+*> On exit, if INFO = 0, RWORK(1) returns the required LRWORK.
+*> \endverbatim
+*>
+*> \param[in] LRWORK
+*> \verbatim
+*> LRWORK is INTEGER
+*> The dimension of array RWORK.
+*> If N <= 1, LRWORK must be at least 1.
+*> If JOBZ = 'N' and N > 1, LRWORK must be at least N.
+*> If JOBZ = 'V' and N > 1, LRWORK must be at least
+*> 1 + 5*N + 2*N**2.
+*> \endverbatim
+*> \verbatim
+*> If LRWORK = -1, then a workspace query is assumed; the
+*> routine only calculates the required sizes of the WORK, RWORK
+*> and IWORK arrays, returns these values as the first entries
+*> of the WORK, RWORK and IWORK arrays, and no error message
+*> related to LWORK or LRWORK or LIWORK is issued by XERBLA.
+*> \endverbatim
+*>
+*> \param[out] IWORK
+*> \verbatim
+*> IWORK is INTEGER array, dimension (MAX(1,LIWORK))
+*> On exit, if INFO = 0, IWORK(1) returns the required LIWORK.
+*> \endverbatim
+*>
+*> \param[in] LIWORK
+*> \verbatim
+*> LIWORK is INTEGER
+*> The dimension of array IWORK.
+*> If JOBZ = 'N' or N <= 1, LIWORK must be at least 1.
+*> If JOBZ = 'V' and N > 1, LIWORK must be at least 3 + 5*N.
+*> \endverbatim
+*> \verbatim
+*> If LIWORK = -1, then a workspace query is assumed; the
+*> routine only calculates the required sizes of the WORK, RWORK
+*> and IWORK arrays, returns these values as the first entries
+*> of the WORK, RWORK and IWORK arrays, and no error message
+*> related to LWORK or LRWORK or LIWORK is issued by XERBLA.
+*> \endverbatim
+*>
+*> \param[out] INFO
+*> \verbatim
+*> INFO is INTEGER
+*> = 0: successful exit
+*> < 0: if INFO = -i, the i-th argument had an illegal value.
+*> > 0: if INFO = i, the algorithm failed to converge; i
+*> off-diagonal elements of an intermediate tridiagonal
+*> form did not converge to zero.
+*> \endverbatim
+*>
+*
+* Authors
+* =======
+*
+*> \author Univ. of Tennessee
+*> \author Univ. of California Berkeley
+*> \author Univ. of Colorado Denver
+*> \author NAG Ltd.
+*
+*> \date November 2011
+*
+*> \ingroup complex16OTHEReigen
+*
+* =====================================================================
SUBROUTINE ZHPEVD( JOBZ, UPLO, N, AP, W, Z, LDZ, WORK, LWORK,
$ RWORK, LRWORK, IWORK, LIWORK, INFO )
*
-* -- LAPACK driver routine (version 3.2) --
+* -- LAPACK eigen routine (version 3.2) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
-* November 2006
+* November 2011
*
* .. Scalar Arguments ..
CHARACTER JOBZ, UPLO
@@ -16,114 +212,6 @@
COMPLEX*16 AP( * ), WORK( * ), Z( LDZ, * )
* ..
*
-* Purpose
-* =======
-*
-* ZHPEVD computes all the eigenvalues and, optionally, eigenvectors of
-* a complex Hermitian matrix A in packed storage. If eigenvectors are
-* desired, it uses a divide and conquer algorithm.
-*
-* The divide and conquer algorithm makes very mild assumptions about
-* floating point arithmetic. It will work on machines with a guard
-* digit in add/subtract, or on those binary machines without guard
-* digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or
-* Cray-2. It could conceivably fail on hexadecimal or decimal machines
-* without guard digits, but we know of none.
-*
-* Arguments
-* =========
-*
-* JOBZ (input) CHARACTER*1
-* = 'N': Compute eigenvalues only;
-* = 'V': Compute eigenvalues and eigenvectors.
-*
-* UPLO (input) CHARACTER*1
-* = 'U': Upper triangle of A is stored;
-* = 'L': Lower triangle of A is stored.
-*
-* N (input) INTEGER
-* The order of the matrix A. N >= 0.
-*
-* AP (input/output) COMPLEX*16 array, dimension (N*(N+1)/2)
-* On entry, the upper or lower triangle of the Hermitian matrix
-* A, packed columnwise in a linear array. The j-th column of A
-* is stored in the array AP as follows:
-* if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
-* if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.
-*
-* On exit, AP is overwritten by values generated during the
-* reduction to tridiagonal form. If UPLO = 'U', the diagonal
-* and first superdiagonal of the tridiagonal matrix T overwrite
-* the corresponding elements of A, and if UPLO = 'L', the
-* diagonal and first subdiagonal of T overwrite the
-* corresponding elements of A.
-*
-* W (output) DOUBLE PRECISION array, dimension (N)
-* If INFO = 0, the eigenvalues in ascending order.
-*
-* Z (output) COMPLEX*16 array, dimension (LDZ, N)
-* If JOBZ = 'V', then if INFO = 0, Z contains the orthonormal
-* eigenvectors of the matrix A, with the i-th column of Z
-* holding the eigenvector associated with W(i).
-* If JOBZ = 'N', then Z is not referenced.
-*
-* LDZ (input) INTEGER
-* The leading dimension of the array Z. LDZ >= 1, and if
-* JOBZ = 'V', LDZ >= max(1,N).
-*
-* WORK (workspace/output) COMPLEX*16 array, dimension (MAX(1,LWORK))
-* On exit, if INFO = 0, WORK(1) returns the required LWORK.
-*
-* LWORK (input) INTEGER
-* The dimension of array WORK.
-* If N <= 1, LWORK must be at least 1.
-* If JOBZ = 'N' and N > 1, LWORK must be at least N.
-* If JOBZ = 'V' and N > 1, LWORK must be at least 2*N.
-*
-* If LWORK = -1, then a workspace query is assumed; the routine
-* only calculates the required sizes of the WORK, RWORK and
-* IWORK arrays, returns these values as the first entries of
-* the WORK, RWORK and IWORK arrays, and no error message
-* related to LWORK or LRWORK or LIWORK is issued by XERBLA.
-*
-* RWORK (workspace/output) DOUBLE PRECISION array,
-* dimension (LRWORK)
-* On exit, if INFO = 0, RWORK(1) returns the required LRWORK.
-*
-* LRWORK (input) INTEGER
-* The dimension of array RWORK.
-* If N <= 1, LRWORK must be at least 1.
-* If JOBZ = 'N' and N > 1, LRWORK must be at least N.
-* If JOBZ = 'V' and N > 1, LRWORK must be at least
-* 1 + 5*N + 2*N**2.
-*
-* If LRWORK = -1, then a workspace query is assumed; the
-* routine only calculates the required sizes of the WORK, RWORK
-* and IWORK arrays, returns these values as the first entries
-* of the WORK, RWORK and IWORK arrays, and no error message
-* related to LWORK or LRWORK or LIWORK is issued by XERBLA.
-*
-* IWORK (workspace/output) INTEGER array, dimension (MAX(1,LIWORK))
-* On exit, if INFO = 0, IWORK(1) returns the required LIWORK.
-*
-* LIWORK (input) INTEGER
-* The dimension of array IWORK.
-* If JOBZ = 'N' or N <= 1, LIWORK must be at least 1.
-* If JOBZ = 'V' and N > 1, LIWORK must be at least 3 + 5*N.
-*
-* If LIWORK = -1, then a workspace query is assumed; the
-* routine only calculates the required sizes of the WORK, RWORK
-* and IWORK arrays, returns these values as the first entries
-* of the WORK, RWORK and IWORK arrays, and no error message
-* related to LWORK or LRWORK or LIWORK is issued by XERBLA.
-*
-* INFO (output) INTEGER
-* = 0: successful exit
-* < 0: if INFO = -i, the i-th argument had an illegal value.
-* > 0: if INFO = i, the algorithm failed to converge; i
-* off-diagonal elements of an intermediate tridiagonal
-* form did not converge to zero.
-*
* =====================================================================
*
* .. Parameters ..