From e1d39294aee16fa6db9ba079b14442358217db71 Mon Sep 17 00:00:00 2001 From: julie Date: Thu, 6 Oct 2011 06:53:11 +0000 Subject: Integrating Doxygen in comments --- SRC/zhpevd.f | 308 ++++++++++++++++++++++++++++++++++++++--------------------- 1 file changed, 198 insertions(+), 110 deletions(-) (limited to 'SRC/zhpevd.f') diff --git a/SRC/zhpevd.f b/SRC/zhpevd.f index 12a3b497..dac8ce4f 100644 --- a/SRC/zhpevd.f +++ b/SRC/zhpevd.f @@ -1,10 +1,206 @@ +*> \brief ZHPEVD computes the eigenvalues and, optionally, the left and/or right eigenvectors for OTHER matrices +* +* =========== DOCUMENTATION =========== +* +* Online html documentation available at +* http://www.netlib.org/lapack/explore-html/ +* +* Definition +* ========== +* +* SUBROUTINE ZHPEVD( JOBZ, UPLO, N, AP, W, Z, LDZ, WORK, LWORK, +* RWORK, LRWORK, IWORK, LIWORK, INFO ) +* +* .. Scalar Arguments .. +* CHARACTER JOBZ, UPLO +* INTEGER INFO, LDZ, LIWORK, LRWORK, LWORK, N +* .. +* .. Array Arguments .. +* INTEGER IWORK( * ) +* DOUBLE PRECISION RWORK( * ), W( * ) +* COMPLEX*16 AP( * ), WORK( * ), Z( LDZ, * ) +* .. +* +* Purpose +* ======= +* +*>\details \b Purpose: +*>\verbatim +*> +*> ZHPEVD computes all the eigenvalues and, optionally, eigenvectors of +*> a complex Hermitian matrix A in packed storage. If eigenvectors are +*> desired, it uses a divide and conquer algorithm. +*> +*> The divide and conquer algorithm makes very mild assumptions about +*> floating point arithmetic. It will work on machines with a guard +*> digit in add/subtract, or on those binary machines without guard +*> digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or +*> Cray-2. It could conceivably fail on hexadecimal or decimal machines +*> without guard digits, but we know of none. +*> +*>\endverbatim +* +* Arguments +* ========= +* +*> \param[in] JOBZ +*> \verbatim +*> JOBZ is CHARACTER*1 +*> = 'N': Compute eigenvalues only; +*> = 'V': Compute eigenvalues and eigenvectors. +*> \endverbatim +*> +*> \param[in] UPLO +*> \verbatim +*> UPLO is CHARACTER*1 +*> = 'U': Upper triangle of A is stored; +*> = 'L': Lower triangle of A is stored. +*> \endverbatim +*> +*> \param[in] N +*> \verbatim +*> N is INTEGER +*> The order of the matrix A. N >= 0. +*> \endverbatim +*> +*> \param[in,out] AP +*> \verbatim +*> AP is COMPLEX*16 array, dimension (N*(N+1)/2) +*> On entry, the upper or lower triangle of the Hermitian matrix +*> A, packed columnwise in a linear array. The j-th column of A +*> is stored in the array AP as follows: +*> if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j; +*> if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n. +*> \endverbatim +*> \verbatim +*> On exit, AP is overwritten by values generated during the +*> reduction to tridiagonal form. If UPLO = 'U', the diagonal +*> and first superdiagonal of the tridiagonal matrix T overwrite +*> the corresponding elements of A, and if UPLO = 'L', the +*> diagonal and first subdiagonal of T overwrite the +*> corresponding elements of A. +*> \endverbatim +*> +*> \param[out] W +*> \verbatim +*> W is DOUBLE PRECISION array, dimension (N) +*> If INFO = 0, the eigenvalues in ascending order. +*> \endverbatim +*> +*> \param[out] Z +*> \verbatim +*> Z is COMPLEX*16 array, dimension (LDZ, N) +*> If JOBZ = 'V', then if INFO = 0, Z contains the orthonormal +*> eigenvectors of the matrix A, with the i-th column of Z +*> holding the eigenvector associated with W(i). +*> If JOBZ = 'N', then Z is not referenced. +*> \endverbatim +*> +*> \param[in] LDZ +*> \verbatim +*> LDZ is INTEGER +*> The leading dimension of the array Z. LDZ >= 1, and if +*> JOBZ = 'V', LDZ >= max(1,N). +*> \endverbatim +*> +*> \param[out] WORK +*> \verbatim +*> WORK is COMPLEX*16 array, dimension (MAX(1,LWORK)) +*> On exit, if INFO = 0, WORK(1) returns the required LWORK. +*> \endverbatim +*> +*> \param[in] LWORK +*> \verbatim +*> LWORK is INTEGER +*> The dimension of array WORK. +*> If N <= 1, LWORK must be at least 1. +*> If JOBZ = 'N' and N > 1, LWORK must be at least N. +*> If JOBZ = 'V' and N > 1, LWORK must be at least 2*N. +*> \endverbatim +*> \verbatim +*> If LWORK = -1, then a workspace query is assumed; the routine +*> only calculates the required sizes of the WORK, RWORK and +*> IWORK arrays, returns these values as the first entries of +*> the WORK, RWORK and IWORK arrays, and no error message +*> related to LWORK or LRWORK or LIWORK is issued by XERBLA. +*> \endverbatim +*> +*> \param[out] RWORK +*> \verbatim +*> RWORK is DOUBLE PRECISION array, +*> dimension (LRWORK) +*> On exit, if INFO = 0, RWORK(1) returns the required LRWORK. +*> \endverbatim +*> +*> \param[in] LRWORK +*> \verbatim +*> LRWORK is INTEGER +*> The dimension of array RWORK. +*> If N <= 1, LRWORK must be at least 1. +*> If JOBZ = 'N' and N > 1, LRWORK must be at least N. +*> If JOBZ = 'V' and N > 1, LRWORK must be at least +*> 1 + 5*N + 2*N**2. +*> \endverbatim +*> \verbatim +*> If LRWORK = -1, then a workspace query is assumed; the +*> routine only calculates the required sizes of the WORK, RWORK +*> and IWORK arrays, returns these values as the first entries +*> of the WORK, RWORK and IWORK arrays, and no error message +*> related to LWORK or LRWORK or LIWORK is issued by XERBLA. +*> \endverbatim +*> +*> \param[out] IWORK +*> \verbatim +*> IWORK is INTEGER array, dimension (MAX(1,LIWORK)) +*> On exit, if INFO = 0, IWORK(1) returns the required LIWORK. +*> \endverbatim +*> +*> \param[in] LIWORK +*> \verbatim +*> LIWORK is INTEGER +*> The dimension of array IWORK. +*> If JOBZ = 'N' or N <= 1, LIWORK must be at least 1. +*> If JOBZ = 'V' and N > 1, LIWORK must be at least 3 + 5*N. +*> \endverbatim +*> \verbatim +*> If LIWORK = -1, then a workspace query is assumed; the +*> routine only calculates the required sizes of the WORK, RWORK +*> and IWORK arrays, returns these values as the first entries +*> of the WORK, RWORK and IWORK arrays, and no error message +*> related to LWORK or LRWORK or LIWORK is issued by XERBLA. +*> \endverbatim +*> +*> \param[out] INFO +*> \verbatim +*> INFO is INTEGER +*> = 0: successful exit +*> < 0: if INFO = -i, the i-th argument had an illegal value. +*> > 0: if INFO = i, the algorithm failed to converge; i +*> off-diagonal elements of an intermediate tridiagonal +*> form did not converge to zero. +*> \endverbatim +*> +* +* Authors +* ======= +* +*> \author Univ. of Tennessee +*> \author Univ. of California Berkeley +*> \author Univ. of Colorado Denver +*> \author NAG Ltd. +* +*> \date November 2011 +* +*> \ingroup complex16OTHEReigen +* +* ===================================================================== SUBROUTINE ZHPEVD( JOBZ, UPLO, N, AP, W, Z, LDZ, WORK, LWORK, $ RWORK, LRWORK, IWORK, LIWORK, INFO ) * -* -- LAPACK driver routine (version 3.2) -- +* -- LAPACK eigen routine (version 3.2) -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- -* November 2006 +* November 2011 * * .. Scalar Arguments .. CHARACTER JOBZ, UPLO @@ -16,114 +212,6 @@ COMPLEX*16 AP( * ), WORK( * ), Z( LDZ, * ) * .. * -* Purpose -* ======= -* -* ZHPEVD computes all the eigenvalues and, optionally, eigenvectors of -* a complex Hermitian matrix A in packed storage. If eigenvectors are -* desired, it uses a divide and conquer algorithm. -* -* The divide and conquer algorithm makes very mild assumptions about -* floating point arithmetic. It will work on machines with a guard -* digit in add/subtract, or on those binary machines without guard -* digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or -* Cray-2. It could conceivably fail on hexadecimal or decimal machines -* without guard digits, but we know of none. -* -* Arguments -* ========= -* -* JOBZ (input) CHARACTER*1 -* = 'N': Compute eigenvalues only; -* = 'V': Compute eigenvalues and eigenvectors. -* -* UPLO (input) CHARACTER*1 -* = 'U': Upper triangle of A is stored; -* = 'L': Lower triangle of A is stored. -* -* N (input) INTEGER -* The order of the matrix A. N >= 0. -* -* AP (input/output) COMPLEX*16 array, dimension (N*(N+1)/2) -* On entry, the upper or lower triangle of the Hermitian matrix -* A, packed columnwise in a linear array. The j-th column of A -* is stored in the array AP as follows: -* if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j; -* if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n. -* -* On exit, AP is overwritten by values generated during the -* reduction to tridiagonal form. If UPLO = 'U', the diagonal -* and first superdiagonal of the tridiagonal matrix T overwrite -* the corresponding elements of A, and if UPLO = 'L', the -* diagonal and first subdiagonal of T overwrite the -* corresponding elements of A. -* -* W (output) DOUBLE PRECISION array, dimension (N) -* If INFO = 0, the eigenvalues in ascending order. -* -* Z (output) COMPLEX*16 array, dimension (LDZ, N) -* If JOBZ = 'V', then if INFO = 0, Z contains the orthonormal -* eigenvectors of the matrix A, with the i-th column of Z -* holding the eigenvector associated with W(i). -* If JOBZ = 'N', then Z is not referenced. -* -* LDZ (input) INTEGER -* The leading dimension of the array Z. LDZ >= 1, and if -* JOBZ = 'V', LDZ >= max(1,N). -* -* WORK (workspace/output) COMPLEX*16 array, dimension (MAX(1,LWORK)) -* On exit, if INFO = 0, WORK(1) returns the required LWORK. -* -* LWORK (input) INTEGER -* The dimension of array WORK. -* If N <= 1, LWORK must be at least 1. -* If JOBZ = 'N' and N > 1, LWORK must be at least N. -* If JOBZ = 'V' and N > 1, LWORK must be at least 2*N. -* -* If LWORK = -1, then a workspace query is assumed; the routine -* only calculates the required sizes of the WORK, RWORK and -* IWORK arrays, returns these values as the first entries of -* the WORK, RWORK and IWORK arrays, and no error message -* related to LWORK or LRWORK or LIWORK is issued by XERBLA. -* -* RWORK (workspace/output) DOUBLE PRECISION array, -* dimension (LRWORK) -* On exit, if INFO = 0, RWORK(1) returns the required LRWORK. -* -* LRWORK (input) INTEGER -* The dimension of array RWORK. -* If N <= 1, LRWORK must be at least 1. -* If JOBZ = 'N' and N > 1, LRWORK must be at least N. -* If JOBZ = 'V' and N > 1, LRWORK must be at least -* 1 + 5*N + 2*N**2. -* -* If LRWORK = -1, then a workspace query is assumed; the -* routine only calculates the required sizes of the WORK, RWORK -* and IWORK arrays, returns these values as the first entries -* of the WORK, RWORK and IWORK arrays, and no error message -* related to LWORK or LRWORK or LIWORK is issued by XERBLA. -* -* IWORK (workspace/output) INTEGER array, dimension (MAX(1,LIWORK)) -* On exit, if INFO = 0, IWORK(1) returns the required LIWORK. -* -* LIWORK (input) INTEGER -* The dimension of array IWORK. -* If JOBZ = 'N' or N <= 1, LIWORK must be at least 1. -* If JOBZ = 'V' and N > 1, LIWORK must be at least 3 + 5*N. -* -* If LIWORK = -1, then a workspace query is assumed; the -* routine only calculates the required sizes of the WORK, RWORK -* and IWORK arrays, returns these values as the first entries -* of the WORK, RWORK and IWORK arrays, and no error message -* related to LWORK or LRWORK or LIWORK is issued by XERBLA. -* -* INFO (output) INTEGER -* = 0: successful exit -* < 0: if INFO = -i, the i-th argument had an illegal value. -* > 0: if INFO = i, the algorithm failed to converge; i -* off-diagonal elements of an intermediate tridiagonal -* form did not converge to zero. -* * ===================================================================== * * .. Parameters .. -- cgit v1.2.3