summaryrefslogtreecommitdiff
path: root/cpp-btree
diff options
context:
space:
mode:
authoryang.zhang <y0169.zhang@samsung.com>2016-05-18 11:25:47 +0800
committeryang.zhang <y0169.zhang@samsung.com>2016-05-18 11:27:16 +0800
commit41c06420b9ff028fd452cec19ac1412be665673f (patch)
treeece29e014e212b56654888fa3f95f50625164919 /cpp-btree
parenta96d62621beefe4aa20b696744be6325bc536fb6 (diff)
downloadxdelta3-devel.tar.gz
xdelta3-devel.tar.bz2
xdelta3-devel.zip
Change-Id: I8423a2e4bed8a15b862b6b1ab6f6371c92e78b3f
Diffstat (limited to 'cpp-btree')
-rw-r--r--cpp-btree/CMakeLists.txt40
-rw-r--r--cpp-btree/COPYING202
-rw-r--r--cpp-btree/README31
-rw-r--r--cpp-btree/btree.h2394
-rw-r--r--cpp-btree/btree_bench.cc593
-rw-r--r--cpp-btree/btree_container.h349
-rw-r--r--cpp-btree/btree_map.h130
-rw-r--r--cpp-btree/btree_set.h121
-rw-r--r--cpp-btree/btree_test.cc270
-rw-r--r--cpp-btree/btree_test.h940
-rw-r--r--cpp-btree/btree_test_flags.cc20
-rw-r--r--cpp-btree/safe_btree.h395
-rw-r--r--cpp-btree/safe_btree_map.h89
-rw-r--r--cpp-btree/safe_btree_set.h88
-rw-r--r--cpp-btree/safe_btree_test.cc116
15 files changed, 0 insertions, 5778 deletions
diff --git a/cpp-btree/CMakeLists.txt b/cpp-btree/CMakeLists.txt
deleted file mode 100644
index d005e15..0000000
--- a/cpp-btree/CMakeLists.txt
+++ /dev/null
@@ -1,40 +0,0 @@
-# Copyright 2013 Google Inc. All Rights Reserved.
-#
-# Licensed under the Apache License, Version 2.0 (the "License");
-# you may not use this file except in compliance with the License.
-# You may obtain a copy of the License at
-#
-# http://www.apache.org/licenses/LICENSE-2.0
-#
-# Unless required by applicable law or agreed to in writing, software
-# distributed under the License is distributed on an "AS IS" BASIS,
-# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-# See the License for the specific language governing permissions and
-# limitations under the License.
-
-cmake_minimum_required(VERSION 2.6)
-
-project(cppbtree CXX)
-
-option(build_tests "Build B-tree tests" OFF)
-add_definitions(-std=c++11)
-set(CMAKE_CXX_FLAGS "-g -O2")
-
-# CMake doesn't have a way to pure template library,
-# add_library(cppbtree btree.h btree_map.h btree_set.h
-# safe_btree.h safe_btree_map.h safe_btree_set.h)
-# set_target_properties(cppbtree PROPERTIES LINKER_LANGUAGE CXX)
-
-if(build_tests)
- enable_testing()
- include_directories($ENV{GTEST_ROOT}/include)
- link_directories($ENV{GTEST_ROOT})
- include_directories($ENV{GFLAGS_ROOT}/include)
- link_directories($ENV{GFLAGS_ROOT}/lib)
- add_executable(btree_test btree_test.cc btree_test_flags.cc)
- add_executable(safe_btree_test safe_btree_test.cc btree_test_flags.cc)
- add_executable(btree_bench btree_bench.cc btree_test_flags.cc)
- target_link_libraries(btree_test gtest_main gtest gflags)
- target_link_libraries(safe_btree_test gtest_main gtest gflags)
- target_link_libraries(btree_bench gflags gtest)
-endif()
diff --git a/cpp-btree/COPYING b/cpp-btree/COPYING
deleted file mode 100644
index d645695..0000000
--- a/cpp-btree/COPYING
+++ /dev/null
@@ -1,202 +0,0 @@
-
- Apache License
- Version 2.0, January 2004
- http://www.apache.org/licenses/
-
- TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
-
- 1. Definitions.
-
- "License" shall mean the terms and conditions for use, reproduction,
- and distribution as defined by Sections 1 through 9 of this document.
-
- "Licensor" shall mean the copyright owner or entity authorized by
- the copyright owner that is granting the License.
-
- "Legal Entity" shall mean the union of the acting entity and all
- other entities that control, are controlled by, or are under common
- control with that entity. For the purposes of this definition,
- "control" means (i) the power, direct or indirect, to cause the
- direction or management of such entity, whether by contract or
- otherwise, or (ii) ownership of fifty percent (50%) or more of the
- outstanding shares, or (iii) beneficial ownership of such entity.
-
- "You" (or "Your") shall mean an individual or Legal Entity
- exercising permissions granted by this License.
-
- "Source" form shall mean the preferred form for making modifications,
- including but not limited to software source code, documentation
- source, and configuration files.
-
- "Object" form shall mean any form resulting from mechanical
- transformation or translation of a Source form, including but
- not limited to compiled object code, generated documentation,
- and conversions to other media types.
-
- "Work" shall mean the work of authorship, whether in Source or
- Object form, made available under the License, as indicated by a
- copyright notice that is included in or attached to the work
- (an example is provided in the Appendix below).
-
- "Derivative Works" shall mean any work, whether in Source or Object
- form, that is based on (or derived from) the Work and for which the
- editorial revisions, annotations, elaborations, or other modifications
- represent, as a whole, an original work of authorship. For the purposes
- of this License, Derivative Works shall not include works that remain
- separable from, or merely link (or bind by name) to the interfaces of,
- the Work and Derivative Works thereof.
-
- "Contribution" shall mean any work of authorship, including
- the original version of the Work and any modifications or additions
- to that Work or Derivative Works thereof, that is intentionally
- submitted to Licensor for inclusion in the Work by the copyright owner
- or by an individual or Legal Entity authorized to submit on behalf of
- the copyright owner. For the purposes of this definition, "submitted"
- means any form of electronic, verbal, or written communication sent
- to the Licensor or its representatives, including but not limited to
- communication on electronic mailing lists, source code control systems,
- and issue tracking systems that are managed by, or on behalf of, the
- Licensor for the purpose of discussing and improving the Work, but
- excluding communication that is conspicuously marked or otherwise
- designated in writing by the copyright owner as "Not a Contribution."
-
- "Contributor" shall mean Licensor and any individual or Legal Entity
- on behalf of whom a Contribution has been received by Licensor and
- subsequently incorporated within the Work.
-
- 2. Grant of Copyright License. Subject to the terms and conditions of
- this License, each Contributor hereby grants to You a perpetual,
- worldwide, non-exclusive, no-charge, royalty-free, irrevocable
- copyright license to reproduce, prepare Derivative Works of,
- publicly display, publicly perform, sublicense, and distribute the
- Work and such Derivative Works in Source or Object form.
-
- 3. Grant of Patent License. Subject to the terms and conditions of
- this License, each Contributor hereby grants to You a perpetual,
- worldwide, non-exclusive, no-charge, royalty-free, irrevocable
- (except as stated in this section) patent license to make, have made,
- use, offer to sell, sell, import, and otherwise transfer the Work,
- where such license applies only to those patent claims licensable
- by such Contributor that are necessarily infringed by their
- Contribution(s) alone or by combination of their Contribution(s)
- with the Work to which such Contribution(s) was submitted. If You
- institute patent litigation against any entity (including a
- cross-claim or counterclaim in a lawsuit) alleging that the Work
- or a Contribution incorporated within the Work constitutes direct
- or contributory patent infringement, then any patent licenses
- granted to You under this License for that Work shall terminate
- as of the date such litigation is filed.
-
- 4. Redistribution. You may reproduce and distribute copies of the
- Work or Derivative Works thereof in any medium, with or without
- modifications, and in Source or Object form, provided that You
- meet the following conditions:
-
- (a) You must give any other recipients of the Work or
- Derivative Works a copy of this License; and
-
- (b) You must cause any modified files to carry prominent notices
- stating that You changed the files; and
-
- (c) You must retain, in the Source form of any Derivative Works
- that You distribute, all copyright, patent, trademark, and
- attribution notices from the Source form of the Work,
- excluding those notices that do not pertain to any part of
- the Derivative Works; and
-
- (d) If the Work includes a "NOTICE" text file as part of its
- distribution, then any Derivative Works that You distribute must
- include a readable copy of the attribution notices contained
- within such NOTICE file, excluding those notices that do not
- pertain to any part of the Derivative Works, in at least one
- of the following places: within a NOTICE text file distributed
- as part of the Derivative Works; within the Source form or
- documentation, if provided along with the Derivative Works; or,
- within a display generated by the Derivative Works, if and
- wherever such third-party notices normally appear. The contents
- of the NOTICE file are for informational purposes only and
- do not modify the License. You may add Your own attribution
- notices within Derivative Works that You distribute, alongside
- or as an addendum to the NOTICE text from the Work, provided
- that such additional attribution notices cannot be construed
- as modifying the License.
-
- You may add Your own copyright statement to Your modifications and
- may provide additional or different license terms and conditions
- for use, reproduction, or distribution of Your modifications, or
- for any such Derivative Works as a whole, provided Your use,
- reproduction, and distribution of the Work otherwise complies with
- the conditions stated in this License.
-
- 5. Submission of Contributions. Unless You explicitly state otherwise,
- any Contribution intentionally submitted for inclusion in the Work
- by You to the Licensor shall be under the terms and conditions of
- this License, without any additional terms or conditions.
- Notwithstanding the above, nothing herein shall supersede or modify
- the terms of any separate license agreement you may have executed
- with Licensor regarding such Contributions.
-
- 6. Trademarks. This License does not grant permission to use the trade
- names, trademarks, service marks, or product names of the Licensor,
- except as required for reasonable and customary use in describing the
- origin of the Work and reproducing the content of the NOTICE file.
-
- 7. Disclaimer of Warranty. Unless required by applicable law or
- agreed to in writing, Licensor provides the Work (and each
- Contributor provides its Contributions) on an "AS IS" BASIS,
- WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
- implied, including, without limitation, any warranties or conditions
- of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
- PARTICULAR PURPOSE. You are solely responsible for determining the
- appropriateness of using or redistributing the Work and assume any
- risks associated with Your exercise of permissions under this License.
-
- 8. Limitation of Liability. In no event and under no legal theory,
- whether in tort (including negligence), contract, or otherwise,
- unless required by applicable law (such as deliberate and grossly
- negligent acts) or agreed to in writing, shall any Contributor be
- liable to You for damages, including any direct, indirect, special,
- incidental, or consequential damages of any character arising as a
- result of this License or out of the use or inability to use the
- Work (including but not limited to damages for loss of goodwill,
- work stoppage, computer failure or malfunction, or any and all
- other commercial damages or losses), even if such Contributor
- has been advised of the possibility of such damages.
-
- 9. Accepting Warranty or Additional Liability. While redistributing
- the Work or Derivative Works thereof, You may choose to offer,
- and charge a fee for, acceptance of support, warranty, indemnity,
- or other liability obligations and/or rights consistent with this
- License. However, in accepting such obligations, You may act only
- on Your own behalf and on Your sole responsibility, not on behalf
- of any other Contributor, and only if You agree to indemnify,
- defend, and hold each Contributor harmless for any liability
- incurred by, or claims asserted against, such Contributor by reason
- of your accepting any such warranty or additional liability.
-
- END OF TERMS AND CONDITIONS
-
- APPENDIX: How to apply the Apache License to your work.
-
- To apply the Apache License to your work, attach the following
- boilerplate notice, with the fields enclosed by brackets "[]"
- replaced with your own identifying information. (Don't include
- the brackets!) The text should be enclosed in the appropriate
- comment syntax for the file format. We also recommend that a
- file or class name and description of purpose be included on the
- same "printed page" as the copyright notice for easier
- identification within third-party archives.
-
- Copyright [yyyy] [name of copyright owner]
-
- Licensed under the Apache License, Version 2.0 (the "License");
- you may not use this file except in compliance with the License.
- You may obtain a copy of the License at
-
- http://www.apache.org/licenses/LICENSE-2.0
-
- Unless required by applicable law or agreed to in writing, software
- distributed under the License is distributed on an "AS IS" BASIS,
- WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- See the License for the specific language governing permissions and
- limitations under the License.
diff --git a/cpp-btree/README b/cpp-btree/README
deleted file mode 100644
index 319fe9b..0000000
--- a/cpp-btree/README
+++ /dev/null
@@ -1,31 +0,0 @@
-This library is a C++ template library and, as such, there is no
-library to build and install. Copy the .h files and use them!
-
-See http://code.google.com/p/cpp-btree/wiki/UsageInstructions for
-details.
-
-----
-
-To build and run the provided tests, however, you will need to install
-CMake, the Google C++ Test framework, and the Google flags package.
-
-Download and install CMake from http://www.cmake.org
-
-Download and build the GoogleTest framework from
-http://code.google.com/p/googletest
-
-Download and install gflags from https://code.google.com/p/gflags
-
-Set GTEST_ROOT to the directory where GTEST was built.
-Set GFLAGS_ROOT to the directory prefix where GFLAGS is installed.
-
-export GTEST_ROOT=/path/for/gtest-x.y
-export GFLAGS_ROOT=/opt
-
-cmake . -Dbuild_tests=ON
-
-For example, to build on a Unix system with the clang++ compiler,
-
-export GTEST_ROOT=$(HOME)/src/googletest
-export GFLAGS_ROOT=/opt
-cmake . -G "Unix Makefiles" -Dbuild_tests=ON -DCMAKE_CXX_COMPILER=clang++
diff --git a/cpp-btree/btree.h b/cpp-btree/btree.h
deleted file mode 100644
index cdd2b52..0000000
--- a/cpp-btree/btree.h
+++ /dev/null
@@ -1,2394 +0,0 @@
-// Copyright 2013 Google Inc. All Rights Reserved.
-//
-// Licensed under the Apache License, Version 2.0 (the "License");
-// you may not use this file except in compliance with the License.
-// You may obtain a copy of the License at
-//
-// http://www.apache.org/licenses/LICENSE-2.0
-//
-// Unless required by applicable law or agreed to in writing, software
-// distributed under the License is distributed on an "AS IS" BASIS,
-// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-// See the License for the specific language governing permissions and
-// limitations under the License.
-//
-// A btree implementation of the STL set and map interfaces. A btree is both
-// smaller and faster than STL set/map. The red-black tree implementation of
-// STL set/map has an overhead of 3 pointers (left, right and parent) plus the
-// node color information for each stored value. So a set<int32> consumes 20
-// bytes for each value stored. This btree implementation stores multiple
-// values on fixed size nodes (usually 256 bytes) and doesn't store child
-// pointers for leaf nodes. The result is that a btree_set<int32> may use much
-// less memory per stored value. For the random insertion benchmark in
-// btree_test.cc, a btree_set<int32> with node-size of 256 uses 4.9 bytes per
-// stored value.
-//
-// The packing of multiple values on to each node of a btree has another effect
-// besides better space utilization: better cache locality due to fewer cache
-// lines being accessed. Better cache locality translates into faster
-// operations.
-//
-// CAVEATS
-//
-// Insertions and deletions on a btree can cause splitting, merging or
-// rebalancing of btree nodes. And even without these operations, insertions
-// and deletions on a btree will move values around within a node. In both
-// cases, the result is that insertions and deletions can invalidate iterators
-// pointing to values other than the one being inserted/deleted. This is
-// notably different from STL set/map which takes care to not invalidate
-// iterators on insert/erase except, of course, for iterators pointing to the
-// value being erased. A partial workaround when erasing is available:
-// erase() returns an iterator pointing to the item just after the one that was
-// erased (or end() if none exists). See also safe_btree.
-
-// PERFORMANCE
-//
-// btree_bench --benchmarks=. 2>&1 | ./benchmarks.awk
-//
-// Run on pmattis-warp.nyc (4 X 2200 MHz CPUs); 2010/03/04-15:23:06
-// Benchmark STL(ns) B-Tree(ns) @ <size>
-// --------------------------------------------------------
-// BM_set_int32_insert 1516 608 +59.89% <256> [40.0, 5.2]
-// BM_set_int32_lookup 1160 414 +64.31% <256> [40.0, 5.2]
-// BM_set_int32_fulllookup 960 410 +57.29% <256> [40.0, 4.4]
-// BM_set_int32_delete 1741 528 +69.67% <256> [40.0, 5.2]
-// BM_set_int32_queueaddrem 3078 1046 +66.02% <256> [40.0, 5.5]
-// BM_set_int32_mixedaddrem 3600 1384 +61.56% <256> [40.0, 5.3]
-// BM_set_int32_fifo 227 113 +50.22% <256> [40.0, 4.4]
-// BM_set_int32_fwditer 158 26 +83.54% <256> [40.0, 5.2]
-// BM_map_int32_insert 1551 636 +58.99% <256> [48.0, 10.5]
-// BM_map_int32_lookup 1200 508 +57.67% <256> [48.0, 10.5]
-// BM_map_int32_fulllookup 989 487 +50.76% <256> [48.0, 8.8]
-// BM_map_int32_delete 1794 628 +64.99% <256> [48.0, 10.5]
-// BM_map_int32_queueaddrem 3189 1266 +60.30% <256> [48.0, 11.6]
-// BM_map_int32_mixedaddrem 3822 1623 +57.54% <256> [48.0, 10.9]
-// BM_map_int32_fifo 151 134 +11.26% <256> [48.0, 8.8]
-// BM_map_int32_fwditer 161 32 +80.12% <256> [48.0, 10.5]
-// BM_set_int64_insert 1546 636 +58.86% <256> [40.0, 10.5]
-// BM_set_int64_lookup 1200 512 +57.33% <256> [40.0, 10.5]
-// BM_set_int64_fulllookup 971 487 +49.85% <256> [40.0, 8.8]
-// BM_set_int64_delete 1745 616 +64.70% <256> [40.0, 10.5]
-// BM_set_int64_queueaddrem 3163 1195 +62.22% <256> [40.0, 11.6]
-// BM_set_int64_mixedaddrem 3760 1564 +58.40% <256> [40.0, 10.9]
-// BM_set_int64_fifo 146 103 +29.45% <256> [40.0, 8.8]
-// BM_set_int64_fwditer 162 31 +80.86% <256> [40.0, 10.5]
-// BM_map_int64_insert 1551 720 +53.58% <256> [48.0, 20.7]
-// BM_map_int64_lookup 1214 612 +49.59% <256> [48.0, 20.7]
-// BM_map_int64_fulllookup 994 592 +40.44% <256> [48.0, 17.2]
-// BM_map_int64_delete 1778 764 +57.03% <256> [48.0, 20.7]
-// BM_map_int64_queueaddrem 3189 1547 +51.49% <256> [48.0, 20.9]
-// BM_map_int64_mixedaddrem 3779 1887 +50.07% <256> [48.0, 21.6]
-// BM_map_int64_fifo 147 145 +1.36% <256> [48.0, 17.2]
-// BM_map_int64_fwditer 162 41 +74.69% <256> [48.0, 20.7]
-// BM_set_string_insert 1989 1966 +1.16% <256> [64.0, 44.5]
-// BM_set_string_lookup 1709 1600 +6.38% <256> [64.0, 44.5]
-// BM_set_string_fulllookup 1573 1529 +2.80% <256> [64.0, 35.4]
-// BM_set_string_delete 2520 1920 +23.81% <256> [64.0, 44.5]
-// BM_set_string_queueaddrem 4706 4309 +8.44% <256> [64.0, 48.3]
-// BM_set_string_mixedaddrem 5080 4654 +8.39% <256> [64.0, 46.7]
-// BM_set_string_fifo 318 512 -61.01% <256> [64.0, 35.4]
-// BM_set_string_fwditer 182 93 +48.90% <256> [64.0, 44.5]
-// BM_map_string_insert 2600 2227 +14.35% <256> [72.0, 55.8]
-// BM_map_string_lookup 2068 1730 +16.34% <256> [72.0, 55.8]
-// BM_map_string_fulllookup 1859 1618 +12.96% <256> [72.0, 44.0]
-// BM_map_string_delete 3168 2080 +34.34% <256> [72.0, 55.8]
-// BM_map_string_queueaddrem 5840 4701 +19.50% <256> [72.0, 59.4]
-// BM_map_string_mixedaddrem 6400 5200 +18.75% <256> [72.0, 57.8]
-// BM_map_string_fifo 398 596 -49.75% <256> [72.0, 44.0]
-// BM_map_string_fwditer 243 113 +53.50% <256> [72.0, 55.8]
-
-#ifndef UTIL_BTREE_BTREE_H__
-#define UTIL_BTREE_BTREE_H__
-
-#include <assert.h>
-#include <stddef.h>
-#include <string.h>
-#include <sys/types.h>
-#include <algorithm>
-#include <functional>
-#include <iostream>
-#include <iterator>
-#include <limits>
-#include <type_traits>
-#include <new>
-#include <ostream>
-#include <string>
-#include <utility>
-
-#ifndef NDEBUG
-#define NDEBUG 1
-#endif
-
-namespace btree {
-
-// Inside a btree method, if we just call swap(), it will choose the
-// btree::swap method, which we don't want. And we can't say ::swap
-// because then MSVC won't pickup any std::swap() implementations. We
-// can't just use std::swap() directly because then we don't get the
-// specialization for types outside the std namespace. So the solution
-// is to have a special swap helper function whose name doesn't
-// collide with other swap functions defined by the btree classes.
-template <typename T>
-inline void btree_swap_helper(T &a, T &b) {
- using std::swap;
- swap(a, b);
-}
-
-// A template helper used to select A or B based on a condition.
-template<bool cond, typename A, typename B>
-struct if_{
- typedef A type;
-};
-
-template<typename A, typename B>
-struct if_<false, A, B> {
- typedef B type;
-};
-
-// Types small_ and big_ are promise that sizeof(small_) < sizeof(big_)
-typedef char small_;
-
-struct big_ {
- char dummy[2];
-};
-
-// A compile-time assertion.
-template <bool>
-struct CompileAssert {
-};
-
-#define COMPILE_ASSERT(expr, msg) \
- typedef CompileAssert<(bool(expr))> msg[bool(expr) ? 1 : -1]
-
-// A helper type used to indicate that a key-compare-to functor has been
-// provided. A user can specify a key-compare-to functor by doing:
-//
-// struct MyStringComparer
-// : public util::btree::btree_key_compare_to_tag {
-// int operator()(const string &a, const string &b) const {
-// return a.compare(b);
-// }
-// };
-//
-// Note that the return type is an int and not a bool. There is a
-// COMPILE_ASSERT which enforces this return type.
-struct btree_key_compare_to_tag {
-};
-
-// A helper class that indicates if the Compare parameter is derived from
-// btree_key_compare_to_tag.
-template <typename Compare>
-struct btree_is_key_compare_to
- : public std::is_convertible<Compare, btree_key_compare_to_tag> {
-};
-
-// A helper class to convert a boolean comparison into a three-way
-// "compare-to" comparison that returns a negative value to indicate
-// less-than, zero to indicate equality and a positive value to
-// indicate greater-than. This helper class is specialized for
-// less<string> and greater<string>. The btree_key_compare_to_adapter
-// class is provided so that btree users automatically get the more
-// efficient compare-to code when using common google string types
-// with common comparison functors.
-template <typename Compare>
-struct btree_key_compare_to_adapter : Compare {
- btree_key_compare_to_adapter() { }
- btree_key_compare_to_adapter(const Compare &c) : Compare(c) { }
- btree_key_compare_to_adapter(const btree_key_compare_to_adapter<Compare> &c)
- : Compare(c) {
- }
-};
-
-template <>
-struct btree_key_compare_to_adapter<std::less<std::string> >
- : public btree_key_compare_to_tag {
- btree_key_compare_to_adapter() {}
- btree_key_compare_to_adapter(const std::less<std::string>&) {}
- btree_key_compare_to_adapter(
- const btree_key_compare_to_adapter<std::less<std::string> >&) {}
- int operator()(const std::string &a, const std::string &b) const {
- return a.compare(b);
- }
-};
-
-template <>
-struct btree_key_compare_to_adapter<std::greater<std::string> >
- : public btree_key_compare_to_tag {
- btree_key_compare_to_adapter() {}
- btree_key_compare_to_adapter(const std::greater<std::string>&) {}
- btree_key_compare_to_adapter(
- const btree_key_compare_to_adapter<std::greater<std::string> >&) {}
- int operator()(const std::string &a, const std::string &b) const {
- return b.compare(a);
- }
-};
-
-// A helper class that allows a compare-to functor to behave like a plain
-// compare functor. This specialization is used when we do not have a
-// compare-to functor.
-template <typename Key, typename Compare, bool HaveCompareTo>
-struct btree_key_comparer {
- btree_key_comparer() {}
- btree_key_comparer(Compare c) : comp(c) {}
- static bool bool_compare(const Compare &comp, const Key &x, const Key &y) {
- return comp(x, y);
- }
- bool operator()(const Key &x, const Key &y) const {
- return bool_compare(comp, x, y);
- }
- Compare comp;
-};
-
-// A specialization of btree_key_comparer when a compare-to functor is
-// present. We need a plain (boolean) comparison in some parts of the btree
-// code, such as insert-with-hint.
-template <typename Key, typename Compare>
-struct btree_key_comparer<Key, Compare, true> {
- btree_key_comparer() {}
- btree_key_comparer(Compare c) : comp(c) {}
- static bool bool_compare(const Compare &comp, const Key &x, const Key &y) {
- return comp(x, y) < 0;
- }
- bool operator()(const Key &x, const Key &y) const {
- return bool_compare(comp, x, y);
- }
- Compare comp;
-};
-
-// A helper function to compare to keys using the specified compare
-// functor. This dispatches to the appropriate btree_key_comparer comparison,
-// depending on whether we have a compare-to functor or not (which depends on
-// whether Compare is derived from btree_key_compare_to_tag).
-template <typename Key, typename Compare>
-static bool btree_compare_keys(
- const Compare &comp, const Key &x, const Key &y) {
- typedef btree_key_comparer<Key, Compare,
- btree_is_key_compare_to<Compare>::value> key_comparer;
- return key_comparer::bool_compare(comp, x, y);
-}
-
-template <typename Key, typename Compare,
- typename Alloc, int TargetNodeSize, int ValueSize>
-struct btree_common_params {
- // If Compare is derived from btree_key_compare_to_tag then use it as the
- // key_compare type. Otherwise, use btree_key_compare_to_adapter<> which will
- // fall-back to Compare if we don't have an appropriate specialization.
- typedef typename if_<
- btree_is_key_compare_to<Compare>::value,
- Compare, btree_key_compare_to_adapter<Compare> >::type key_compare;
- // A type which indicates if we have a key-compare-to functor or a plain old
- // key-compare functor.
- typedef btree_is_key_compare_to<key_compare> is_key_compare_to;
-
- typedef Alloc allocator_type;
- typedef Key key_type;
- typedef ssize_t size_type;
- typedef ptrdiff_t difference_type;
-
- enum {
- kTargetNodeSize = TargetNodeSize,
-
- // Available space for values. This is largest for leaf nodes,
- // which has overhead no fewer than two pointers.
- kNodeValueSpace = TargetNodeSize - 2 * sizeof(void*),
- };
-
- // This is an integral type large enough to hold as many
- // ValueSize-values as will fit a node of TargetNodeSize bytes.
- typedef typename if_<
- (kNodeValueSpace / ValueSize) >= 256,
- uint16_t,
- uint8_t>::type node_count_type;
-};
-
-// A parameters structure for holding the type parameters for a btree_map.
-template <typename Key, typename Data, typename Compare,
- typename Alloc, int TargetNodeSize>
-struct btree_map_params
- : public btree_common_params<Key, Compare, Alloc, TargetNodeSize,
- sizeof(Key) + sizeof(Data)> {
- typedef Data data_type;
- typedef Data mapped_type;
- typedef std::pair<const Key, data_type> value_type;
- typedef std::pair<Key, data_type> mutable_value_type;
- typedef value_type* pointer;
- typedef const value_type* const_pointer;
- typedef value_type& reference;
- typedef const value_type& const_reference;
-
- enum {
- kValueSize = sizeof(Key) + sizeof(data_type),
- };
-
- static const Key& key(const value_type &x) { return x.first; }
- static const Key& key(const mutable_value_type &x) { return x.first; }
- static void swap(mutable_value_type *a, mutable_value_type *b) {
- btree_swap_helper(a->first, b->first);
- btree_swap_helper(a->second, b->second);
- }
-};
-
-// A parameters structure for holding the type parameters for a btree_set.
-template <typename Key, typename Compare, typename Alloc, int TargetNodeSize>
-struct btree_set_params
- : public btree_common_params<Key, Compare, Alloc, TargetNodeSize,
- sizeof(Key)> {
- typedef std::false_type data_type;
- typedef std::false_type mapped_type;
- typedef Key value_type;
- typedef value_type mutable_value_type;
- typedef value_type* pointer;
- typedef const value_type* const_pointer;
- typedef value_type& reference;
- typedef const value_type& const_reference;
-
- enum {
- kValueSize = sizeof(Key),
- };
-
- static const Key& key(const value_type &x) { return x; }
- static void swap(mutable_value_type *a, mutable_value_type *b) {
- btree_swap_helper<mutable_value_type>(*a, *b);
- }
-};
-
-// An adapter class that converts a lower-bound compare into an upper-bound
-// compare.
-template <typename Key, typename Compare>
-struct btree_upper_bound_adapter : public Compare {
- btree_upper_bound_adapter(Compare c) : Compare(c) {}
- bool operator()(const Key &a, const Key &b) const {
- return !static_cast<const Compare&>(*this)(b, a);
- }
-};
-
-template <typename Key, typename CompareTo>
-struct btree_upper_bound_compare_to_adapter : public CompareTo {
- btree_upper_bound_compare_to_adapter(CompareTo c) : CompareTo(c) {}
- int operator()(const Key &a, const Key &b) const {
- return static_cast<const CompareTo&>(*this)(b, a);
- }
-};
-
-// Dispatch helper class for using linear search with plain compare.
-template <typename K, typename N, typename Compare>
-struct btree_linear_search_plain_compare {
- static int lower_bound(const K &k, const N &n, Compare comp) {
- return n.linear_search_plain_compare(k, 0, n.count(), comp);
- }
- static int upper_bound(const K &k, const N &n, Compare comp) {
- typedef btree_upper_bound_adapter<K, Compare> upper_compare;
- return n.linear_search_plain_compare(k, 0, n.count(), upper_compare(comp));
- }
-};
-
-// Dispatch helper class for using linear search with compare-to
-template <typename K, typename N, typename CompareTo>
-struct btree_linear_search_compare_to {
- static int lower_bound(const K &k, const N &n, CompareTo comp) {
- return n.linear_search_compare_to(k, 0, n.count(), comp);
- }
- static int upper_bound(const K &k, const N &n, CompareTo comp) {
- typedef btree_upper_bound_adapter<K,
- btree_key_comparer<K, CompareTo, true> > upper_compare;
- return n.linear_search_plain_compare(k, 0, n.count(), upper_compare(comp));
- }
-};
-
-// Dispatch helper class for using binary search with plain compare.
-template <typename K, typename N, typename Compare>
-struct btree_binary_search_plain_compare {
- static int lower_bound(const K &k, const N &n, Compare comp) {
- return n.binary_search_plain_compare(k, 0, n.count(), comp);
- }
- static int upper_bound(const K &k, const N &n, Compare comp) {
- typedef btree_upper_bound_adapter<K, Compare> upper_compare;
- return n.binary_search_plain_compare(k, 0, n.count(), upper_compare(comp));
- }
-};
-
-// Dispatch helper class for using binary search with compare-to.
-template <typename K, typename N, typename CompareTo>
-struct btree_binary_search_compare_to {
- static int lower_bound(const K &k, const N &n, CompareTo comp) {
- return n.binary_search_compare_to(k, 0, n.count(), CompareTo());
- }
- static int upper_bound(const K &k, const N &n, CompareTo comp) {
- typedef btree_upper_bound_adapter<K,
- btree_key_comparer<K, CompareTo, true> > upper_compare;
- return n.linear_search_plain_compare(k, 0, n.count(), upper_compare(comp));
- }
-};
-
-// A node in the btree holding. The same node type is used for both internal
-// and leaf nodes in the btree, though the nodes are allocated in such a way
-// that the children array is only valid in internal nodes.
-template <typename Params>
-class btree_node {
- public:
- typedef Params params_type;
- typedef btree_node<Params> self_type;
- typedef typename Params::key_type key_type;
- typedef typename Params::data_type data_type;
- typedef typename Params::value_type value_type;
- typedef typename Params::mutable_value_type mutable_value_type;
- typedef typename Params::pointer pointer;
- typedef typename Params::const_pointer const_pointer;
- typedef typename Params::reference reference;
- typedef typename Params::const_reference const_reference;
- typedef typename Params::key_compare key_compare;
- typedef typename Params::size_type size_type;
- typedef typename Params::difference_type difference_type;
- // Typedefs for the various types of node searches.
- typedef btree_linear_search_plain_compare<
- key_type, self_type, key_compare> linear_search_plain_compare_type;
- typedef btree_linear_search_compare_to<
- key_type, self_type, key_compare> linear_search_compare_to_type;
- typedef btree_binary_search_plain_compare<
- key_type, self_type, key_compare> binary_search_plain_compare_type;
- typedef btree_binary_search_compare_to<
- key_type, self_type, key_compare> binary_search_compare_to_type;
- // If we have a valid key-compare-to type, use linear_search_compare_to,
- // otherwise use linear_search_plain_compare.
- typedef typename if_<
- Params::is_key_compare_to::value,
- linear_search_compare_to_type,
- linear_search_plain_compare_type>::type linear_search_type;
- // If we have a valid key-compare-to type, use binary_search_compare_to,
- // otherwise use binary_search_plain_compare.
- typedef typename if_<
- Params::is_key_compare_to::value,
- binary_search_compare_to_type,
- binary_search_plain_compare_type>::type binary_search_type;
- // If the key is an integral or floating point type, use linear search which
- // is faster than binary search for such types. Might be wise to also
- // configure linear search based on node-size.
- typedef typename if_<
- std::is_integral<key_type>::value ||
- std::is_floating_point<key_type>::value,
- linear_search_type, binary_search_type>::type search_type;
-
- struct base_fields {
- typedef typename Params::node_count_type field_type;
-
- // A boolean indicating whether the node is a leaf or not.
- bool leaf;
- // The position of the node in the node's parent.
- field_type position;
- // The maximum number of values the node can hold.
- field_type max_count;
- // The count of the number of values in the node.
- field_type count;
- // A pointer to the node's parent.
- btree_node *parent;
- };
-
- enum {
- kValueSize = params_type::kValueSize,
- kTargetNodeSize = params_type::kTargetNodeSize,
-
- // Compute how many values we can fit onto a leaf node.
- kNodeTargetValues = (kTargetNodeSize - sizeof(base_fields)) / kValueSize,
- // We need a minimum of 3 values per internal node in order to perform
- // splitting (1 value for the two nodes involved in the split and 1 value
- // propagated to the parent as the delimiter for the split).
- kNodeValues = kNodeTargetValues >= 3 ? kNodeTargetValues : 3,
-
- kExactMatch = 1 << 30,
- kMatchMask = kExactMatch - 1,
- };
-
- struct leaf_fields : public base_fields {
- // The array of values. Only the first count of these values have been
- // constructed and are valid.
- mutable_value_type values[kNodeValues];
- };
-
- struct internal_fields : public leaf_fields {
- // The array of child pointers. The keys in children_[i] are all less than
- // key(i). The keys in children_[i + 1] are all greater than key(i). There
- // are always count + 1 children.
- btree_node *children[kNodeValues + 1];
- };
-
- struct root_fields : public internal_fields {
- btree_node *rightmost;
- size_type size;
- };
-
- public:
- // Getter/setter for whether this is a leaf node or not. This value doesn't
- // change after the node is created.
- bool leaf() const { return fields_.leaf; }
-
- // Getter for the position of this node in its parent.
- int position() const { return fields_.position; }
- void set_position(int v) { fields_.position = v; }
-
- // Getter/setter for the number of values stored in this node.
- int count() const { return fields_.count; }
- void set_count(int v) { fields_.count = v; }
- int max_count() const { return fields_.max_count; }
-
- // Getter for the parent of this node.
- btree_node* parent() const { return fields_.parent; }
- // Getter for whether the node is the root of the tree. The parent of the
- // root of the tree is the leftmost node in the tree which is guaranteed to
- // be a leaf.
- bool is_root() const { return parent()->leaf(); }
- void make_root() {
- assert(parent()->is_root());
- fields_.parent = fields_.parent->parent();
- }
-
- // Getter for the rightmost root node field. Only valid on the root node.
- btree_node* rightmost() const { return fields_.rightmost; }
- btree_node** mutable_rightmost() { return &fields_.rightmost; }
-
- // Getter for the size root node field. Only valid on the root node.
- size_type size() const { return fields_.size; }
- size_type* mutable_size() { return &fields_.size; }
-
- // Getters for the key/value at position i in the node.
- const key_type& key(int i) const {
- return params_type::key(fields_.values[i]);
- }
- reference value(int i) {
- return reinterpret_cast<reference>(fields_.values[i]);
- }
- const_reference value(int i) const {
- return reinterpret_cast<const_reference>(fields_.values[i]);
- }
- mutable_value_type* mutable_value(int i) {
- return &fields_.values[i];
- }
-
- // Swap value i in this node with value j in node x.
- void value_swap(int i, btree_node *x, int j) {
- params_type::swap(mutable_value(i), x->mutable_value(j));
- }
-
- // Getters/setter for the child at position i in the node.
- btree_node* child(int i) const { return fields_.children[i]; }
- btree_node** mutable_child(int i) { return &fields_.children[i]; }
- void set_child(int i, btree_node *c) {
- *mutable_child(i) = c;
- c->fields_.parent = this;
- c->fields_.position = i;
- }
-
- // Returns the position of the first value whose key is not less than k.
- template <typename Compare>
- int lower_bound(const key_type &k, const Compare &comp) const {
- return search_type::lower_bound(k, *this, comp);
- }
- // Returns the position of the first value whose key is greater than k.
- template <typename Compare>
- int upper_bound(const key_type &k, const Compare &comp) const {
- return search_type::upper_bound(k, *this, comp);
- }
-
- // Returns the position of the first value whose key is not less than k using
- // linear search performed using plain compare.
- template <typename Compare>
- int linear_search_plain_compare(
- const key_type &k, int s, int e, const Compare &comp) const {
- while (s < e) {
- if (!btree_compare_keys(comp, key(s), k)) {
- break;
- }
- ++s;
- }
- return s;
- }
-
- // Returns the position of the first value whose key is not less than k using
- // linear search performed using compare-to.
- template <typename Compare>
- int linear_search_compare_to(
- const key_type &k, int s, int e, const Compare &comp) const {
- while (s < e) {
- int c = comp(key(s), k);
- if (c == 0) {
- return s | kExactMatch;
- } else if (c > 0) {
- break;
- }
- ++s;
- }
- return s;
- }
-
- // Returns the position of the first value whose key is not less than k using
- // binary search performed using plain compare.
- template <typename Compare>
- int binary_search_plain_compare(
- const key_type &k, int s, int e, const Compare &comp) const {
- while (s != e) {
- int mid = (s + e) / 2;
- if (btree_compare_keys(comp, key(mid), k)) {
- s = mid + 1;
- } else {
- e = mid;
- }
- }
- return s;
- }
-
- // Returns the position of the first value whose key is not less than k using
- // binary search performed using compare-to.
- template <typename CompareTo>
- int binary_search_compare_to(
- const key_type &k, int s, int e, const CompareTo &comp) const {
- while (s != e) {
- int mid = (s + e) / 2;
- int c = comp(key(mid), k);
- if (c < 0) {
- s = mid + 1;
- } else if (c > 0) {
- e = mid;
- } else {
- // Need to return the first value whose key is not less than k, which
- // requires continuing the binary search. Note that we are guaranteed
- // that the result is an exact match because if "key(mid-1) < k" the
- // call to binary_search_compare_to() will return "mid".
- s = binary_search_compare_to(k, s, mid, comp);
- return s | kExactMatch;
- }
- }
- return s;
- }
-
- // Inserts the value x at position i, shifting all existing values and
- // children at positions >= i to the right by 1.
- void insert_value(int i, const value_type &x);
-
- // Removes the value at position i, shifting all existing values and children
- // at positions > i to the left by 1.
- void remove_value(int i);
-
- // Rebalances a node with its right sibling.
- void rebalance_right_to_left(btree_node *sibling, int to_move);
- void rebalance_left_to_right(btree_node *sibling, int to_move);
-
- // Splits a node, moving a portion of the node's values to its right sibling.
- void split(btree_node *sibling, int insert_position);
-
- // Merges a node with its right sibling, moving all of the values and the
- // delimiting key in the parent node onto itself.
- void merge(btree_node *sibling);
-
- // Swap the contents of "this" and "src".
- void swap(btree_node *src);
-
- // Node allocation/deletion routines.
- static btree_node* init_leaf(
- leaf_fields *f, btree_node *parent, int max_count) {
- btree_node *n = reinterpret_cast<btree_node*>(f);
- f->leaf = 1;
- f->position = 0;
- f->max_count = max_count;
- f->count = 0;
- f->parent = parent;
- if (!NDEBUG) {
- memset(&f->values, 0, max_count * sizeof(value_type));
- }
- return n;
- }
- static btree_node* init_internal(internal_fields *f, btree_node *parent) {
- btree_node *n = init_leaf(f, parent, kNodeValues);
- f->leaf = 0;
- if (!NDEBUG) {
- memset(f->children, 0, sizeof(f->children));
- }
- return n;
- }
- static btree_node* init_root(root_fields *f, btree_node *parent) {
- btree_node *n = init_internal(f, parent);
- f->rightmost = parent;
- f->size = parent->count();
- return n;
- }
- void destroy() {
- for (int i = 0; i < count(); ++i) {
- value_destroy(i);
- }
- }
-
- private:
- void value_init(int i) {
- new (&fields_.values[i]) mutable_value_type;
- }
- void value_init(int i, const value_type &x) {
- new (&fields_.values[i]) mutable_value_type(x);
- }
- void value_destroy(int i) {
- fields_.values[i].~mutable_value_type();
- }
-
- private:
- root_fields fields_;
-
- private:
- btree_node(const btree_node&);
- void operator=(const btree_node&);
-};
-
-template <typename Node, typename Reference, typename Pointer>
-struct btree_iterator {
- typedef typename Node::key_type key_type;
- typedef typename Node::size_type size_type;
- typedef typename Node::difference_type difference_type;
- typedef typename Node::params_type params_type;
-
- typedef Node node_type;
- typedef typename std::remove_const<Node>::type normal_node;
- typedef const Node const_node;
- typedef typename params_type::value_type value_type;
- typedef typename params_type::pointer normal_pointer;
- typedef typename params_type::reference normal_reference;
- typedef typename params_type::const_pointer const_pointer;
- typedef typename params_type::const_reference const_reference;
-
- typedef Pointer pointer;
- typedef Reference reference;
- typedef std::bidirectional_iterator_tag iterator_category;
-
- typedef btree_iterator<
- normal_node, normal_reference, normal_pointer> iterator;
- typedef btree_iterator<
- const_node, const_reference, const_pointer> const_iterator;
- typedef btree_iterator<Node, Reference, Pointer> self_type;
-
- btree_iterator()
- : node(NULL),
- position(-1) {
- }
- btree_iterator(Node *n, int p)
- : node(n),
- position(p) {
- }
- btree_iterator(const iterator &x)
- : node(x.node),
- position(x.position) {
- }
-
- // Increment/decrement the iterator.
- void increment() {
- if (node->leaf() && ++position < node->count()) {
- return;
- }
- increment_slow();
- }
- void increment_by(int count);
- void increment_slow();
-
- void decrement() {
- if (node->leaf() && --position >= 0) {
- return;
- }
- decrement_slow();
- }
- void decrement_slow();
-
- bool operator==(const const_iterator &x) const {
- return node == x.node && position == x.position;
- }
- bool operator!=(const const_iterator &x) const {
- return node != x.node || position != x.position;
- }
-
- // Accessors for the key/value the iterator is pointing at.
- const key_type& key() const {
- return node->key(position);
- }
- reference operator*() const {
- return node->value(position);
- }
- pointer operator->() const {
- return &node->value(position);
- }
-
- self_type& operator++() {
- increment();
- return *this;
- }
- self_type& operator--() {
- decrement();
- return *this;
- }
- self_type operator++(int) {
- self_type tmp = *this;
- ++*this;
- return tmp;
- }
- self_type operator--(int) {
- self_type tmp = *this;
- --*this;
- return tmp;
- }
-
- // The node in the tree the iterator is pointing at.
- Node *node;
- // The position within the node of the tree the iterator is pointing at.
- int position;
-};
-
-// Dispatch helper class for using btree::internal_locate with plain compare.
-struct btree_internal_locate_plain_compare {
- template <typename K, typename T, typename Iter>
- static std::pair<Iter, int> dispatch(const K &k, const T &t, Iter iter) {
- return t.internal_locate_plain_compare(k, iter);
- }
-};
-
-// Dispatch helper class for using btree::internal_locate with compare-to.
-struct btree_internal_locate_compare_to {
- template <typename K, typename T, typename Iter>
- static std::pair<Iter, int> dispatch(const K &k, const T &t, Iter iter) {
- return t.internal_locate_compare_to(k, iter);
- }
-};
-
-template <typename Params>
-class btree : public Params::key_compare {
- typedef btree<Params> self_type;
- typedef btree_node<Params> node_type;
- typedef typename node_type::base_fields base_fields;
- typedef typename node_type::leaf_fields leaf_fields;
- typedef typename node_type::internal_fields internal_fields;
- typedef typename node_type::root_fields root_fields;
- typedef typename Params::is_key_compare_to is_key_compare_to;
-
- friend struct btree_internal_locate_plain_compare;
- friend struct btree_internal_locate_compare_to;
- typedef typename if_<
- is_key_compare_to::value,
- btree_internal_locate_compare_to,
- btree_internal_locate_plain_compare>::type internal_locate_type;
-
- enum {
- kNodeValues = node_type::kNodeValues,
- kMinNodeValues = kNodeValues / 2,
- kValueSize = node_type::kValueSize,
- kExactMatch = node_type::kExactMatch,
- kMatchMask = node_type::kMatchMask,
- };
-
- // A helper class to get the empty base class optimization for 0-size
- // allocators. Base is internal_allocator_type.
- // (e.g. empty_base_handle<internal_allocator_type, node_type*>). If Base is
- // 0-size, the compiler doesn't have to reserve any space for it and
- // sizeof(empty_base_handle) will simply be sizeof(Data). Google [empty base
- // class optimization] for more details.
- template <typename Base, typename Data>
- struct empty_base_handle : public Base {
- empty_base_handle(const Base &b, const Data &d)
- : Base(b),
- data(d) {
- }
- Data data;
- };
-
- struct node_stats {
- node_stats(ssize_t l, ssize_t i)
- : leaf_nodes(l),
- internal_nodes(i) {
- }
-
- node_stats& operator+=(const node_stats &x) {
- leaf_nodes += x.leaf_nodes;
- internal_nodes += x.internal_nodes;
- return *this;
- }
-
- ssize_t leaf_nodes;
- ssize_t internal_nodes;
- };
-
- public:
- typedef Params params_type;
- typedef typename Params::key_type key_type;
- typedef typename Params::data_type data_type;
- typedef typename Params::mapped_type mapped_type;
- typedef typename Params::value_type value_type;
- typedef typename Params::key_compare key_compare;
- typedef typename Params::pointer pointer;
- typedef typename Params::const_pointer const_pointer;
- typedef typename Params::reference reference;
- typedef typename Params::const_reference const_reference;
- typedef typename Params::size_type size_type;
- typedef typename Params::difference_type difference_type;
- typedef btree_iterator<node_type, reference, pointer> iterator;
- typedef typename iterator::const_iterator const_iterator;
- typedef std::reverse_iterator<const_iterator> const_reverse_iterator;
- typedef std::reverse_iterator<iterator> reverse_iterator;
-
- typedef typename Params::allocator_type allocator_type;
- typedef typename allocator_type::template rebind<char>::other
- internal_allocator_type;
-
- public:
- // Default constructor.
- btree(const key_compare &comp, const allocator_type &alloc);
-
- // Copy constructor.
- btree(const self_type &x);
-
- // Destructor.
- ~btree() {
- clear();
- }
-
- // Iterator routines.
- iterator begin() {
- return iterator(leftmost(), 0);
- }
- const_iterator begin() const {
- return const_iterator(leftmost(), 0);
- }
- iterator end() {
- return iterator(rightmost(), rightmost() ? rightmost()->count() : 0);
- }
- const_iterator end() const {
- return const_iterator(rightmost(), rightmost() ? rightmost()->count() : 0);
- }
- reverse_iterator rbegin() {
- return reverse_iterator(end());
- }
- const_reverse_iterator rbegin() const {
- return const_reverse_iterator(end());
- }
- reverse_iterator rend() {
- return reverse_iterator(begin());
- }
- const_reverse_iterator rend() const {
- return const_reverse_iterator(begin());
- }
-
- // Finds the first element whose key is not less than key.
- iterator lower_bound(const key_type &key) {
- return internal_end(
- internal_lower_bound(key, iterator(root(), 0)));
- }
- const_iterator lower_bound(const key_type &key) const {
- return internal_end(
- internal_lower_bound(key, const_iterator(root(), 0)));
- }
-
- // Finds the first element whose key is greater than key.
- iterator upper_bound(const key_type &key) {
- return internal_end(
- internal_upper_bound(key, iterator(root(), 0)));
- }
- const_iterator upper_bound(const key_type &key) const {
- return internal_end(
- internal_upper_bound(key, const_iterator(root(), 0)));
- }
-
- // Finds the range of values which compare equal to key. The first member of
- // the returned pair is equal to lower_bound(key). The second member pair of
- // the pair is equal to upper_bound(key).
- std::pair<iterator,iterator> equal_range(const key_type &key) {
- return std::make_pair(lower_bound(key), upper_bound(key));
- }
- std::pair<const_iterator,const_iterator> equal_range(const key_type &key) const {
- return std::make_pair(lower_bound(key), upper_bound(key));
- }
-
- // Inserts a value into the btree only if it does not already exist. The
- // boolean return value indicates whether insertion succeeded or failed. The
- // ValuePointer type is used to avoid instatiating the value unless the key
- // is being inserted. Value is not dereferenced if the key already exists in
- // the btree. See btree_map::operator[].
- template <typename ValuePointer>
- std::pair<iterator,bool> insert_unique(const key_type &key, ValuePointer value);
-
- // Inserts a value into the btree only if it does not already exist. The
- // boolean return value indicates whether insertion succeeded or failed.
- std::pair<iterator,bool> insert_unique(const value_type &v) {
- return insert_unique(params_type::key(v), &v);
- }
-
- // Insert with hint. Check to see if the value should be placed immediately
- // before position in the tree. If it does, then the insertion will take
- // amortized constant time. If not, the insertion will take amortized
- // logarithmic time as if a call to insert_unique(v) were made.
- iterator insert_unique(iterator position, const value_type &v);
-
- // Insert a range of values into the btree.
- template <typename InputIterator>
- void insert_unique(InputIterator b, InputIterator e);
-
- // Inserts a value into the btree. The ValuePointer type is used to avoid
- // instatiating the value unless the key is being inserted. Value is not
- // dereferenced if the key already exists in the btree. See
- // btree_map::operator[].
- template <typename ValuePointer>
- iterator insert_multi(const key_type &key, ValuePointer value);
-
- // Inserts a value into the btree.
- iterator insert_multi(const value_type &v) {
- return insert_multi(params_type::key(v), &v);
- }
-
- // Insert with hint. Check to see if the value should be placed immediately
- // before position in the tree. If it does, then the insertion will take
- // amortized constant time. If not, the insertion will take amortized
- // logarithmic time as if a call to insert_multi(v) were made.
- iterator insert_multi(iterator position, const value_type &v);
-
- // Insert a range of values into the btree.
- template <typename InputIterator>
- void insert_multi(InputIterator b, InputIterator e);
-
- void assign(const self_type &x);
-
- // Erase the specified iterator from the btree. The iterator must be valid
- // (i.e. not equal to end()). Return an iterator pointing to the node after
- // the one that was erased (or end() if none exists).
- iterator erase(iterator iter);
-
- // Erases range. Returns the number of keys erased.
- int erase(iterator begin, iterator end);
-
- // Erases the specified key from the btree. Returns 1 if an element was
- // erased and 0 otherwise.
- int erase_unique(const key_type &key);
-
- // Erases all of the entries matching the specified key from the
- // btree. Returns the number of elements erased.
- int erase_multi(const key_type &key);
-
- // Finds the iterator corresponding to a key or returns end() if the key is
- // not present.
- iterator find_unique(const key_type &key) {
- return internal_end(
- internal_find_unique(key, iterator(root(), 0)));
- }
- const_iterator find_unique(const key_type &key) const {
- return internal_end(
- internal_find_unique(key, const_iterator(root(), 0)));
- }
- iterator find_multi(const key_type &key) {
- return internal_end(
- internal_find_multi(key, iterator(root(), 0)));
- }
- const_iterator find_multi(const key_type &key) const {
- return internal_end(
- internal_find_multi(key, const_iterator(root(), 0)));
- }
-
- // Returns a count of the number of times the key appears in the btree.
- size_type count_unique(const key_type &key) const {
- const_iterator b = internal_find_unique(
- key, const_iterator(root(), 0));
- if (!b.node) {
- // The key doesn't exist in the tree.
- return 0;
- }
- return 1;
- }
- // Returns a count of the number of times the key appears in the btree.
- size_type count_multi(const key_type &key) const {
- return distance(lower_bound(key), upper_bound(key));
- }
-
- // Clear the btree, deleting all of the values it contains.
- void clear();
-
- // Swap the contents of *this and x.
- void swap(self_type &x);
-
- // Assign the contents of x to *this.
- self_type& operator=(const self_type &x) {
- if (&x == this) {
- // Don't copy onto ourselves.
- return *this;
- }
- assign(x);
- return *this;
- }
-
- key_compare* mutable_key_comp() {
- return this;
- }
- const key_compare& key_comp() const {
- return *this;
- }
- bool compare_keys(const key_type &x, const key_type &y) const {
- return btree_compare_keys(key_comp(), x, y);
- }
-
- // Dump the btree to the specified ostream. Requires that operator<< is
- // defined for Key and Value.
- void dump(std::ostream &os) const {
- if (root() != NULL) {
- internal_dump(os, root(), 0);
- }
- }
-
- // Verifies the structure of the btree.
- void verify() const;
-
- // Size routines. Note that empty() is slightly faster than doing size()==0.
- size_type size() const {
- if (empty()) return 0;
- if (root()->leaf()) return root()->count();
- return root()->size();
- }
- size_type max_size() const { return std::numeric_limits<size_type>::max(); }
- bool empty() const { return root() == NULL; }
-
- // The height of the btree. An empty tree will have height 0.
- size_type height() const {
- size_type h = 0;
- if (root()) {
- // Count the length of the chain from the leftmost node up to the
- // root. We actually count from the root back around to the level below
- // the root, but the calculation is the same because of the circularity
- // of that traversal.
- const node_type *n = root();
- do {
- ++h;
- n = n->parent();
- } while (n != root());
- }
- return h;
- }
-
- // The number of internal, leaf and total nodes used by the btree.
- size_type leaf_nodes() const {
- return internal_stats(root()).leaf_nodes;
- }
- size_type internal_nodes() const {
- return internal_stats(root()).internal_nodes;
- }
- size_type nodes() const {
- node_stats stats = internal_stats(root());
- return stats.leaf_nodes + stats.internal_nodes;
- }
-
- // The total number of bytes used by the btree.
- size_type bytes_used() const {
- node_stats stats = internal_stats(root());
- if (stats.leaf_nodes == 1 && stats.internal_nodes == 0) {
- return sizeof(*this) +
- sizeof(base_fields) + root()->max_count() * sizeof(value_type);
- } else {
- return sizeof(*this) +
- sizeof(root_fields) - sizeof(internal_fields) +
- stats.leaf_nodes * sizeof(leaf_fields) +
- stats.internal_nodes * sizeof(internal_fields);
- }
- }
-
- // The average number of bytes used per value stored in the btree.
- static double average_bytes_per_value() {
- // Returns the number of bytes per value on a leaf node that is 75%
- // full. Experimentally, this matches up nicely with the computed number of
- // bytes per value in trees that had their values inserted in random order.
- return sizeof(leaf_fields) / (kNodeValues * 0.75);
- }
-
- // The fullness of the btree. Computed as the number of elements in the btree
- // divided by the maximum number of elements a tree with the current number
- // of nodes could hold. A value of 1 indicates perfect space
- // utilization. Smaller values indicate space wastage.
- double fullness() const {
- return double(size()) / (nodes() * kNodeValues);
- }
- // The overhead of the btree structure in bytes per node. Computed as the
- // total number of bytes used by the btree minus the number of bytes used for
- // storing elements divided by the number of elements.
- double overhead() const {
- if (empty()) {
- return 0.0;
- }
- return (bytes_used() - size() * kValueSize) / double(size());
- }
-
- private:
- // Internal accessor routines.
- node_type* root() { return root_.data; }
- const node_type* root() const { return root_.data; }
- node_type** mutable_root() { return &root_.data; }
-
- // The rightmost node is stored in the root node.
- node_type* rightmost() {
- return (!root() || root()->leaf()) ? root() : root()->rightmost();
- }
- const node_type* rightmost() const {
- return (!root() || root()->leaf()) ? root() : root()->rightmost();
- }
- node_type** mutable_rightmost() { return root()->mutable_rightmost(); }
-
- // The leftmost node is stored as the parent of the root node.
- node_type* leftmost() { return root() ? root()->parent() : NULL; }
- const node_type* leftmost() const { return root() ? root()->parent() : NULL; }
-
- // The size of the tree is stored in the root node.
- size_type* mutable_size() { return root()->mutable_size(); }
-
- // Allocator routines.
- internal_allocator_type* mutable_internal_allocator() {
- return static_cast<internal_allocator_type*>(&root_);
- }
- const internal_allocator_type& internal_allocator() const {
- return *static_cast<const internal_allocator_type*>(&root_);
- }
-
- // Node creation/deletion routines.
- node_type* new_internal_node(node_type *parent) {
- internal_fields *p = reinterpret_cast<internal_fields*>(
- mutable_internal_allocator()->allocate(sizeof(internal_fields)));
- return node_type::init_internal(p, parent);
- }
- node_type* new_internal_root_node() {
- root_fields *p = reinterpret_cast<root_fields*>(
- mutable_internal_allocator()->allocate(sizeof(root_fields)));
- return node_type::init_root(p, root()->parent());
- }
- node_type* new_leaf_node(node_type *parent) {
- leaf_fields *p = reinterpret_cast<leaf_fields*>(
- mutable_internal_allocator()->allocate(sizeof(leaf_fields)));
- return node_type::init_leaf(p, parent, kNodeValues);
- }
- node_type* new_leaf_root_node(int max_count) {
- leaf_fields *p = reinterpret_cast<leaf_fields*>(
- mutable_internal_allocator()->allocate(
- sizeof(base_fields) + max_count * sizeof(value_type)));
- return node_type::init_leaf(p, reinterpret_cast<node_type*>(p), max_count);
- }
- void delete_internal_node(node_type *node) {
- node->destroy();
- assert(node != root());
- mutable_internal_allocator()->deallocate(
- reinterpret_cast<char*>(node), sizeof(internal_fields));
- }
- void delete_internal_root_node() {
- root()->destroy();
- mutable_internal_allocator()->deallocate(
- reinterpret_cast<char*>(root()), sizeof(root_fields));
- }
- void delete_leaf_node(node_type *node) {
- node->destroy();
- mutable_internal_allocator()->deallocate(
- reinterpret_cast<char*>(node),
- sizeof(base_fields) + node->max_count() * sizeof(value_type));
- }
-
- // Rebalances or splits the node iter points to.
- void rebalance_or_split(iterator *iter);
-
- // Merges the values of left, right and the delimiting key on their parent
- // onto left, removing the delimiting key and deleting right.
- void merge_nodes(node_type *left, node_type *right);
-
- // Tries to merge node with its left or right sibling, and failing that,
- // rebalance with its left or right sibling. Returns true if a merge
- // occurred, at which point it is no longer valid to access node. Returns
- // false if no merging took place.
- bool try_merge_or_rebalance(iterator *iter);
-
- // Tries to shrink the height of the tree by 1.
- void try_shrink();
-
- iterator internal_end(iterator iter) {
- return iter.node ? iter : end();
- }
- const_iterator internal_end(const_iterator iter) const {
- return iter.node ? iter : end();
- }
-
- // Inserts a value into the btree immediately before iter. Requires that
- // key(v) <= iter.key() and (--iter).key() <= key(v).
- iterator internal_insert(iterator iter, const value_type &v);
-
- // Returns an iterator pointing to the first value >= the value "iter" is
- // pointing at. Note that "iter" might be pointing to an invalid location as
- // iter.position == iter.node->count(). This routine simply moves iter up in
- // the tree to a valid location.
- template <typename IterType>
- static IterType internal_last(IterType iter);
-
- // Returns an iterator pointing to the leaf position at which key would
- // reside in the tree. We provide 2 versions of internal_locate. The first
- // version (internal_locate_plain_compare) always returns 0 for the second
- // field of the pair. The second version (internal_locate_compare_to) is for
- // the key-compare-to specialization and returns either kExactMatch (if the
- // key was found in the tree) or -kExactMatch (if it wasn't) in the second
- // field of the pair. The compare_to specialization allows the caller to
- // avoid a subsequent comparison to determine if an exact match was made,
- // speeding up string keys.
- template <typename IterType>
- std::pair<IterType, int> internal_locate(
- const key_type &key, IterType iter) const;
- template <typename IterType>
- std::pair<IterType, int> internal_locate_plain_compare(
- const key_type &key, IterType iter) const;
- template <typename IterType>
- std::pair<IterType, int> internal_locate_compare_to(
- const key_type &key, IterType iter) const;
-
- // Internal routine which implements lower_bound().
- template <typename IterType>
- IterType internal_lower_bound(
- const key_type &key, IterType iter) const;
-
- // Internal routine which implements upper_bound().
- template <typename IterType>
- IterType internal_upper_bound(
- const key_type &key, IterType iter) const;
-
- // Internal routine which implements find_unique().
- template <typename IterType>
- IterType internal_find_unique(
- const key_type &key, IterType iter) const;
-
- // Internal routine which implements find_multi().
- template <typename IterType>
- IterType internal_find_multi(
- const key_type &key, IterType iter) const;
-
- // Deletes a node and all of its children.
- void internal_clear(node_type *node);
-
- // Dumps a node and all of its children to the specified ostream.
- void internal_dump(std::ostream &os, const node_type *node, int level) const;
-
- // Verifies the tree structure of node.
- int internal_verify(const node_type *node,
- const key_type *lo, const key_type *hi) const;
-
- node_stats internal_stats(const node_type *node) const {
- if (!node) {
- return node_stats(0, 0);
- }
- if (node->leaf()) {
- return node_stats(1, 0);
- }
- node_stats res(0, 1);
- for (int i = 0; i <= node->count(); ++i) {
- res += internal_stats(node->child(i));
- }
- return res;
- }
-
- private:
- empty_base_handle<internal_allocator_type, node_type*> root_;
-
- private:
- // A never instantiated helper function that returns big_ if we have a
- // key-compare-to functor or if R is bool and small_ otherwise.
- template <typename R>
- static typename if_<
- if_<is_key_compare_to::value,
- std::is_same<R, int>,
- std::is_same<R, bool> >::type::value,
- big_, small_>::type key_compare_checker(R);
-
- // A never instantiated helper function that returns the key comparison
- // functor.
- static key_compare key_compare_helper();
-
- // Verify that key_compare returns a bool. This is similar to the way
- // is_convertible in base/type_traits.h works. Note that key_compare_checker
- // is never actually invoked. The compiler will select which
- // key_compare_checker() to instantiate and then figure out the size of the
- // return type of key_compare_checker() at compile time which we then check
- // against the sizeof of big_.
- COMPILE_ASSERT(
- sizeof(key_compare_checker(key_compare_helper()(key_type(), key_type()))) ==
- sizeof(big_),
- key_comparison_function_must_return_bool);
-
- // Note: We insist on kTargetValues, which is computed from
- // Params::kTargetNodeSize, must fit the base_fields::field_type.
- COMPILE_ASSERT(kNodeValues <
- (1 << (8 * sizeof(typename base_fields::field_type))),
- target_node_size_too_large);
-
- // Test the assumption made in setting kNodeValueSpace.
- COMPILE_ASSERT(sizeof(base_fields) >= 2 * sizeof(void*),
- node_space_assumption_incorrect);
-};
-
-////
-// btree_node methods
-template <typename P>
-inline void btree_node<P>::insert_value(int i, const value_type &x) {
- assert(i <= count());
- value_init(count(), x);
- for (int j = count(); j > i; --j) {
- value_swap(j, this, j - 1);
- }
- set_count(count() + 1);
-
- if (!leaf()) {
- ++i;
- for (int j = count(); j > i; --j) {
- *mutable_child(j) = child(j - 1);
- child(j)->set_position(j);
- }
- *mutable_child(i) = NULL;
- }
-}
-
-template <typename P>
-inline void btree_node<P>::remove_value(int i) {
- if (!leaf()) {
- assert(child(i + 1)->count() == 0);
- for (int j = i + 1; j < count(); ++j) {
- *mutable_child(j) = child(j + 1);
- child(j)->set_position(j);
- }
- *mutable_child(count()) = NULL;
- }
-
- set_count(count() - 1);
- for (; i < count(); ++i) {
- value_swap(i, this, i + 1);
- }
- value_destroy(i);
-}
-
-template <typename P>
-void btree_node<P>::rebalance_right_to_left(btree_node *src, int to_move) {
- assert(parent() == src->parent());
- assert(position() + 1 == src->position());
- assert(src->count() >= count());
- assert(to_move >= 1);
- assert(to_move <= src->count());
-
- // Make room in the left node for the new values.
- for (int i = 0; i < to_move; ++i) {
- value_init(i + count());
- }
-
- // Move the delimiting value to the left node and the new delimiting value
- // from the right node.
- value_swap(count(), parent(), position());
- parent()->value_swap(position(), src, to_move - 1);
-
- // Move the values from the right to the left node.
- for (int i = 1; i < to_move; ++i) {
- value_swap(count() + i, src, i - 1);
- }
- // Shift the values in the right node to their correct position.
- for (int i = to_move; i < src->count(); ++i) {
- src->value_swap(i - to_move, src, i);
- }
- for (int i = 1; i <= to_move; ++i) {
- src->value_destroy(src->count() - i);
- }
-
- if (!leaf()) {
- // Move the child pointers from the right to the left node.
- for (int i = 0; i < to_move; ++i) {
- set_child(1 + count() + i, src->child(i));
- }
- for (int i = 0; i <= src->count() - to_move; ++i) {
- assert(i + to_move <= src->max_count());
- src->set_child(i, src->child(i + to_move));
- *src->mutable_child(i + to_move) = NULL;
- }
- }
-
- // Fixup the counts on the src and dest nodes.
- set_count(count() + to_move);
- src->set_count(src->count() - to_move);
-}
-
-template <typename P>
-void btree_node<P>::rebalance_left_to_right(btree_node *dest, int to_move) {
- assert(parent() == dest->parent());
- assert(position() + 1 == dest->position());
- assert(count() >= dest->count());
- assert(to_move >= 1);
- assert(to_move <= count());
-
- // Make room in the right node for the new values.
- for (int i = 0; i < to_move; ++i) {
- dest->value_init(i + dest->count());
- }
- for (int i = dest->count() - 1; i >= 0; --i) {
- dest->value_swap(i, dest, i + to_move);
- }
-
- // Move the delimiting value to the right node and the new delimiting value
- // from the left node.
- dest->value_swap(to_move - 1, parent(), position());
- parent()->value_swap(position(), this, count() - to_move);
- value_destroy(count() - to_move);
-
- // Move the values from the left to the right node.
- for (int i = 1; i < to_move; ++i) {
- value_swap(count() - to_move + i, dest, i - 1);
- value_destroy(count() - to_move + i);
- }
-
- if (!leaf()) {
- // Move the child pointers from the left to the right node.
- for (int i = dest->count(); i >= 0; --i) {
- dest->set_child(i + to_move, dest->child(i));
- *dest->mutable_child(i) = NULL;
- }
- for (int i = 1; i <= to_move; ++i) {
- dest->set_child(i - 1, child(count() - to_move + i));
- *mutable_child(count() - to_move + i) = NULL;
- }
- }
-
- // Fixup the counts on the src and dest nodes.
- set_count(count() - to_move);
- dest->set_count(dest->count() + to_move);
-}
-
-template <typename P>
-void btree_node<P>::split(btree_node *dest, int insert_position) {
- assert(dest->count() == 0);
-
- // We bias the split based on the position being inserted. If we're
- // inserting at the beginning of the left node then bias the split to put
- // more values on the right node. If we're inserting at the end of the
- // right node then bias the split to put more values on the left node.
- if (insert_position == 0) {
- dest->set_count(count() - 1);
- } else if (insert_position == max_count()) {
- dest->set_count(0);
- } else {
- dest->set_count(count() / 2);
- }
- set_count(count() - dest->count());
- assert(count() >= 1);
-
- // Move values from the left sibling to the right sibling.
- for (int i = 0; i < dest->count(); ++i) {
- dest->value_init(i);
- value_swap(count() + i, dest, i);
- value_destroy(count() + i);
- }
-
- // The split key is the largest value in the left sibling.
- set_count(count() - 1);
- parent()->insert_value(position(), value_type());
- value_swap(count(), parent(), position());
- value_destroy(count());
- parent()->set_child(position() + 1, dest);
-
- if (!leaf()) {
- for (int i = 0; i <= dest->count(); ++i) {
- assert(child(count() + i + 1) != NULL);
- dest->set_child(i, child(count() + i + 1));
- *mutable_child(count() + i + 1) = NULL;
- }
- }
-}
-
-template <typename P>
-void btree_node<P>::merge(btree_node *src) {
- assert(parent() == src->parent());
- assert(position() + 1 == src->position());
-
- // Move the delimiting value to the left node.
- value_init(count());
- value_swap(count(), parent(), position());
-
- // Move the values from the right to the left node.
- for (int i = 0; i < src->count(); ++i) {
- value_init(1 + count() + i);
- value_swap(1 + count() + i, src, i);
- src->value_destroy(i);
- }
-
- if (!leaf()) {
- // Move the child pointers from the right to the left node.
- for (int i = 0; i <= src->count(); ++i) {
- set_child(1 + count() + i, src->child(i));
- *src->mutable_child(i) = NULL;
- }
- }
-
- // Fixup the counts on the src and dest nodes.
- set_count(1 + count() + src->count());
- src->set_count(0);
-
- // Remove the value on the parent node.
- parent()->remove_value(position());
-}
-
-template <typename P>
-void btree_node<P>::swap(btree_node *x) {
- assert(leaf() == x->leaf());
-
- // Swap the values.
- for (int i = count(); i < x->count(); ++i) {
- value_init(i);
- }
- for (int i = x->count(); i < count(); ++i) {
- x->value_init(i);
- }
- int n = std::max(count(), x->count());
- for (int i = 0; i < n; ++i) {
- value_swap(i, x, i);
- }
- for (int i = count(); i < x->count(); ++i) {
- x->value_destroy(i);
- }
- for (int i = x->count(); i < count(); ++i) {
- value_destroy(i);
- }
-
- if (!leaf()) {
- // Swap the child pointers.
- for (int i = 0; i <= n; ++i) {
- btree_swap_helper(*mutable_child(i), *x->mutable_child(i));
- }
- for (int i = 0; i <= count(); ++i) {
- x->child(i)->fields_.parent = x;
- }
- for (int i = 0; i <= x->count(); ++i) {
- child(i)->fields_.parent = this;
- }
- }
-
- // Swap the counts.
- btree_swap_helper(fields_.count, x->fields_.count);
-}
-
-////
-// btree_iterator methods
-template <typename N, typename R, typename P>
-void btree_iterator<N, R, P>::increment_slow() {
- if (node->leaf()) {
- assert(position >= node->count());
- self_type save(*this);
- while (position == node->count() && !node->is_root()) {
- assert(node->parent()->child(node->position()) == node);
- position = node->position();
- node = node->parent();
- }
- if (position == node->count()) {
- *this = save;
- }
- } else {
- assert(position < node->count());
- node = node->child(position + 1);
- while (!node->leaf()) {
- node = node->child(0);
- }
- position = 0;
- }
-}
-
-template <typename N, typename R, typename P>
-void btree_iterator<N, R, P>::increment_by(int count) {
- while (count > 0) {
- if (node->leaf()) {
- int rest = node->count() - position;
- position += std::min(rest, count);
- count = count - rest;
- if (position < node->count()) {
- return;
- }
- } else {
- --count;
- }
- increment_slow();
- }
-}
-
-template <typename N, typename R, typename P>
-void btree_iterator<N, R, P>::decrement_slow() {
- if (node->leaf()) {
- assert(position <= -1);
- self_type save(*this);
- while (position < 0 && !node->is_root()) {
- assert(node->parent()->child(node->position()) == node);
- position = node->position() - 1;
- node = node->parent();
- }
- if (position < 0) {
- *this = save;
- }
- } else {
- assert(position >= 0);
- node = node->child(position);
- while (!node->leaf()) {
- node = node->child(node->count());
- }
- position = node->count() - 1;
- }
-}
-
-////
-// btree methods
-template <typename P>
-btree<P>::btree(const key_compare &comp, const allocator_type &alloc)
- : key_compare(comp),
- root_(alloc, NULL) {
-}
-
-template <typename P>
-btree<P>::btree(const self_type &x)
- : key_compare(x.key_comp()),
- root_(x.internal_allocator(), NULL) {
- assign(x);
-}
-
-template <typename P> template <typename ValuePointer>
-std::pair<typename btree<P>::iterator, bool>
-btree<P>::insert_unique(const key_type &key, ValuePointer value) {
- if (empty()) {
- *mutable_root() = new_leaf_root_node(1);
- }
-
- std::pair<iterator, int> res = internal_locate(key, iterator(root(), 0));
- iterator &iter = res.first;
- if (res.second == kExactMatch) {
- // The key already exists in the tree, do nothing.
- return std::make_pair(internal_last(iter), false);
- } else if (!res.second) {
- iterator last = internal_last(iter);
- if (last.node && !compare_keys(key, last.key())) {
- // The key already exists in the tree, do nothing.
- return std::make_pair(last, false);
- }
- }
-
- return std::make_pair(internal_insert(iter, *value), true);
-}
-
-template <typename P>
-inline typename btree<P>::iterator
-btree<P>::insert_unique(iterator position, const value_type &v) {
- if (!empty()) {
- const key_type &key = params_type::key(v);
- if (position == end() || compare_keys(key, position.key())) {
- iterator prev = position;
- if (position == begin() || compare_keys((--prev).key(), key)) {
- // prev.key() < key < position.key()
- return internal_insert(position, v);
- }
- } else if (compare_keys(position.key(), key)) {
- iterator next = position;
- ++next;
- if (next == end() || compare_keys(key, next.key())) {
- // position.key() < key < next.key()
- return internal_insert(next, v);
- }
- } else {
- // position.key() == key
- return position;
- }
- }
- return insert_unique(v).first;
-}
-
-template <typename P> template <typename InputIterator>
-void btree<P>::insert_unique(InputIterator b, InputIterator e) {
- for (; b != e; ++b) {
- insert_unique(end(), *b);
- }
-}
-
-template <typename P> template <typename ValuePointer>
-typename btree<P>::iterator
-btree<P>::insert_multi(const key_type &key, ValuePointer value) {
- if (empty()) {
- *mutable_root() = new_leaf_root_node(1);
- }
-
- iterator iter = internal_upper_bound(key, iterator(root(), 0));
- if (!iter.node) {
- iter = end();
- }
- return internal_insert(iter, *value);
-}
-
-template <typename P>
-typename btree<P>::iterator
-btree<P>::insert_multi(iterator position, const value_type &v) {
- if (!empty()) {
- const key_type &key = params_type::key(v);
- if (position == end() || !compare_keys(position.key(), key)) {
- iterator prev = position;
- if (position == begin() || !compare_keys(key, (--prev).key())) {
- // prev.key() <= key <= position.key()
- return internal_insert(position, v);
- }
- } else {
- iterator next = position;
- ++next;
- if (next == end() || !compare_keys(next.key(), key)) {
- // position.key() < key <= next.key()
- return internal_insert(next, v);
- }
- }
- }
- return insert_multi(v);
-}
-
-template <typename P> template <typename InputIterator>
-void btree<P>::insert_multi(InputIterator b, InputIterator e) {
- for (; b != e; ++b) {
- insert_multi(end(), *b);
- }
-}
-
-template <typename P>
-void btree<P>::assign(const self_type &x) {
- clear();
-
- *mutable_key_comp() = x.key_comp();
- *mutable_internal_allocator() = x.internal_allocator();
-
- // Assignment can avoid key comparisons because we know the order of the
- // values is the same order we'll store them in.
- for (const_iterator iter = x.begin(); iter != x.end(); ++iter) {
- if (empty()) {
- insert_multi(*iter);
- } else {
- // If the btree is not empty, we can just insert the new value at the end
- // of the tree!
- internal_insert(end(), *iter);
- }
- }
-}
-
-template <typename P>
-typename btree<P>::iterator btree<P>::erase(iterator iter) {
- bool internal_delete = false;
- if (!iter.node->leaf()) {
- // Deletion of a value on an internal node. Swap the key with the largest
- // value of our left child. This is easy, we just decrement iter.
- iterator tmp_iter(iter--);
- assert(iter.node->leaf());
- assert(!compare_keys(tmp_iter.key(), iter.key()));
- iter.node->value_swap(iter.position, tmp_iter.node, tmp_iter.position);
- internal_delete = true;
- --*mutable_size();
- } else if (!root()->leaf()) {
- --*mutable_size();
- }
-
- // Delete the key from the leaf.
- iter.node->remove_value(iter.position);
-
- // We want to return the next value after the one we just erased. If we
- // erased from an internal node (internal_delete == true), then the next
- // value is ++(++iter). If we erased from a leaf node (internal_delete ==
- // false) then the next value is ++iter. Note that ++iter may point to an
- // internal node and the value in the internal node may move to a leaf node
- // (iter.node) when rebalancing is performed at the leaf level.
-
- // Merge/rebalance as we walk back up the tree.
- iterator res(iter);
- for (;;) {
- if (iter.node == root()) {
- try_shrink();
- if (empty()) {
- return end();
- }
- break;
- }
- if (iter.node->count() >= kMinNodeValues) {
- break;
- }
- bool merged = try_merge_or_rebalance(&iter);
- if (iter.node->leaf()) {
- res = iter;
- }
- if (!merged) {
- break;
- }
- iter.node = iter.node->parent();
- }
-
- // Adjust our return value. If we're pointing at the end of a node, advance
- // the iterator.
- if (res.position == res.node->count()) {
- res.position = res.node->count() - 1;
- ++res;
- }
- // If we erased from an internal node, advance the iterator.
- if (internal_delete) {
- ++res;
- }
- return res;
-}
-
-template <typename P>
-int btree<P>::erase(iterator b, iterator e) {
- int count = distance(b, e);
- for (int i = 0; i < count; i++) {
- b = erase(b);
- }
- return count;
-}
-
-template <typename P>
-int btree<P>::erase_unique(const key_type &key) {
- iterator iter = internal_find_unique(key, iterator(root(), 0));
- if (!iter.node) {
- // The key doesn't exist in the tree, return nothing done.
- return 0;
- }
- erase(iter);
- return 1;
-}
-
-template <typename P>
-int btree<P>::erase_multi(const key_type &key) {
- iterator b = internal_lower_bound(key, iterator(root(), 0));
- if (!b.node) {
- // The key doesn't exist in the tree, return nothing done.
- return 0;
- }
- // Delete all of the keys between begin and upper_bound(key).
- iterator e = internal_end(
- internal_upper_bound(key, iterator(root(), 0)));
- return erase(b, e);
-}
-
-template <typename P>
-void btree<P>::clear() {
- if (root() != NULL) {
- internal_clear(root());
- }
- *mutable_root() = NULL;
-}
-
-template <typename P>
-void btree<P>::swap(self_type &x) {
- std::swap(static_cast<key_compare&>(*this), static_cast<key_compare&>(x));
- std::swap(root_, x.root_);
-}
-
-template <typename P>
-void btree<P>::verify() const {
- if (root() != NULL) {
- assert(size() == internal_verify(root(), NULL, NULL));
- assert(leftmost() == (++const_iterator(root(), -1)).node);
- assert(rightmost() == (--const_iterator(root(), root()->count())).node);
- assert(leftmost()->leaf());
- assert(rightmost()->leaf());
- } else {
- assert(size() == 0);
- assert(leftmost() == NULL);
- assert(rightmost() == NULL);
- }
-}
-
-template <typename P>
-void btree<P>::rebalance_or_split(iterator *iter) {
- node_type *&node = iter->node;
- int &insert_position = iter->position;
- assert(node->count() == node->max_count());
-
- // First try to make room on the node by rebalancing.
- node_type *parent = node->parent();
- if (node != root()) {
- if (node->position() > 0) {
- // Try rebalancing with our left sibling.
- node_type *left = parent->child(node->position() - 1);
- if (left->count() < left->max_count()) {
- // We bias rebalancing based on the position being inserted. If we're
- // inserting at the end of the right node then we bias rebalancing to
- // fill up the left node.
- int to_move = (left->max_count() - left->count()) /
- (1 + (insert_position < left->max_count()));
- to_move = std::max(1, to_move);
-
- if (((insert_position - to_move) >= 0) ||
- ((left->count() + to_move) < left->max_count())) {
- left->rebalance_right_to_left(node, to_move);
-
- assert(node->max_count() - node->count() == to_move);
- insert_position = insert_position - to_move;
- if (insert_position < 0) {
- insert_position = insert_position + left->count() + 1;
- node = left;
- }
-
- assert(node->count() < node->max_count());
- return;
- }
- }
- }
-
- if (node->position() < parent->count()) {
- // Try rebalancing with our right sibling.
- node_type *right = parent->child(node->position() + 1);
- if (right->count() < right->max_count()) {
- // We bias rebalancing based on the position being inserted. If we're
- // inserting at the beginning of the left node then we bias rebalancing
- // to fill up the right node.
- int to_move = (right->max_count() - right->count()) /
- (1 + (insert_position > 0));
- to_move = std::max(1, to_move);
-
- if ((insert_position <= (node->count() - to_move)) ||
- ((right->count() + to_move) < right->max_count())) {
- node->rebalance_left_to_right(right, to_move);
-
- if (insert_position > node->count()) {
- insert_position = insert_position - node->count() - 1;
- node = right;
- }
-
- assert(node->count() < node->max_count());
- return;
- }
- }
- }
-
- // Rebalancing failed, make sure there is room on the parent node for a new
- // value.
- if (parent->count() == parent->max_count()) {
- iterator parent_iter(node->parent(), node->position());
- rebalance_or_split(&parent_iter);
- }
- } else {
- // Rebalancing not possible because this is the root node.
- if (root()->leaf()) {
- // The root node is currently a leaf node: create a new root node and set
- // the current root node as the child of the new root.
- parent = new_internal_root_node();
- parent->set_child(0, root());
- *mutable_root() = parent;
- assert(*mutable_rightmost() == parent->child(0));
- } else {
- // The root node is an internal node. We do not want to create a new root
- // node because the root node is special and holds the size of the tree
- // and a pointer to the rightmost node. So we create a new internal node
- // and move all of the items on the current root into the new node.
- parent = new_internal_node(parent);
- parent->set_child(0, parent);
- parent->swap(root());
- node = parent;
- }
- }
-
- // Split the node.
- node_type *split_node;
- if (node->leaf()) {
- split_node = new_leaf_node(parent);
- node->split(split_node, insert_position);
- if (rightmost() == node) {
- *mutable_rightmost() = split_node;
- }
- } else {
- split_node = new_internal_node(parent);
- node->split(split_node, insert_position);
- }
-
- if (insert_position > node->count()) {
- insert_position = insert_position - node->count() - 1;
- node = split_node;
- }
-}
-
-template <typename P>
-void btree<P>::merge_nodes(node_type *left, node_type *right) {
- left->merge(right);
- if (right->leaf()) {
- if (rightmost() == right) {
- *mutable_rightmost() = left;
- }
- delete_leaf_node(right);
- } else {
- delete_internal_node(right);
- }
-}
-
-template <typename P>
-bool btree<P>::try_merge_or_rebalance(iterator *iter) {
- node_type *parent = iter->node->parent();
- if (iter->node->position() > 0) {
- // Try merging with our left sibling.
- node_type *left = parent->child(iter->node->position() - 1);
- if ((1 + left->count() + iter->node->count()) <= left->max_count()) {
- iter->position += 1 + left->count();
- merge_nodes(left, iter->node);
- iter->node = left;
- return true;
- }
- }
- if (iter->node->position() < parent->count()) {
- // Try merging with our right sibling.
- node_type *right = parent->child(iter->node->position() + 1);
- if ((1 + iter->node->count() + right->count()) <= right->max_count()) {
- merge_nodes(iter->node, right);
- return true;
- }
- // Try rebalancing with our right sibling. We don't perform rebalancing if
- // we deleted the first element from iter->node and the node is not
- // empty. This is a small optimization for the common pattern of deleting
- // from the front of the tree.
- if ((right->count() > kMinNodeValues) &&
- ((iter->node->count() == 0) ||
- (iter->position > 0))) {
- int to_move = (right->count() - iter->node->count()) / 2;
- to_move = std::min(to_move, right->count() - 1);
- iter->node->rebalance_right_to_left(right, to_move);
- return false;
- }
- }
- if (iter->node->position() > 0) {
- // Try rebalancing with our left sibling. We don't perform rebalancing if
- // we deleted the last element from iter->node and the node is not
- // empty. This is a small optimization for the common pattern of deleting
- // from the back of the tree.
- node_type *left = parent->child(iter->node->position() - 1);
- if ((left->count() > kMinNodeValues) &&
- ((iter->node->count() == 0) ||
- (iter->position < iter->node->count()))) {
- int to_move = (left->count() - iter->node->count()) / 2;
- to_move = std::min(to_move, left->count() - 1);
- left->rebalance_left_to_right(iter->node, to_move);
- iter->position += to_move;
- return false;
- }
- }
- return false;
-}
-
-template <typename P>
-void btree<P>::try_shrink() {
- if (root()->count() > 0) {
- return;
- }
- // Deleted the last item on the root node, shrink the height of the tree.
- if (root()->leaf()) {
- assert(size() == 0);
- delete_leaf_node(root());
- *mutable_root() = NULL;
- } else {
- node_type *child = root()->child(0);
- if (child->leaf()) {
- // The child is a leaf node so simply make it the root node in the tree.
- child->make_root();
- delete_internal_root_node();
- *mutable_root() = child;
- } else {
- // The child is an internal node. We want to keep the existing root node
- // so we move all of the values from the child node into the existing
- // (empty) root node.
- child->swap(root());
- delete_internal_node(child);
- }
- }
-}
-
-template <typename P> template <typename IterType>
-inline IterType btree<P>::internal_last(IterType iter) {
- while (iter.node && iter.position == iter.node->count()) {
- iter.position = iter.node->position();
- iter.node = iter.node->parent();
- if (iter.node->leaf()) {
- iter.node = NULL;
- }
- }
- return iter;
-}
-
-template <typename P>
-inline typename btree<P>::iterator
-btree<P>::internal_insert(iterator iter, const value_type &v) {
- if (!iter.node->leaf()) {
- // We can't insert on an internal node. Instead, we'll insert after the
- // previous value which is guaranteed to be on a leaf node.
- --iter;
- ++iter.position;
- }
- if (iter.node->count() == iter.node->max_count()) {
- // Make room in the leaf for the new item.
- if (iter.node->max_count() < kNodeValues) {
- // Insertion into the root where the root is smaller that the full node
- // size. Simply grow the size of the root node.
- assert(iter.node == root());
- iter.node = new_leaf_root_node(
- std::min<int>(kNodeValues, 2 * iter.node->max_count()));
- iter.node->swap(root());
- delete_leaf_node(root());
- *mutable_root() = iter.node;
- } else {
- rebalance_or_split(&iter);
- ++*mutable_size();
- }
- } else if (!root()->leaf()) {
- ++*mutable_size();
- }
- iter.node->insert_value(iter.position, v);
- return iter;
-}
-
-template <typename P> template <typename IterType>
-inline std::pair<IterType, int> btree<P>::internal_locate(
- const key_type &key, IterType iter) const {
- return internal_locate_type::dispatch(key, *this, iter);
-}
-
-template <typename P> template <typename IterType>
-inline std::pair<IterType, int> btree<P>::internal_locate_plain_compare(
- const key_type &key, IterType iter) const {
- for (;;) {
- iter.position = iter.node->lower_bound(key, key_comp());
- if (iter.node->leaf()) {
- break;
- }
- iter.node = iter.node->child(iter.position);
- }
- return std::make_pair(iter, 0);
-}
-
-template <typename P> template <typename IterType>
-inline std::pair<IterType, int> btree<P>::internal_locate_compare_to(
- const key_type &key, IterType iter) const {
- for (;;) {
- int res = iter.node->lower_bound(key, key_comp());
- iter.position = res & kMatchMask;
- if (res & kExactMatch) {
- return std::make_pair(iter, static_cast<int>(kExactMatch));
- }
- if (iter.node->leaf()) {
- break;
- }
- iter.node = iter.node->child(iter.position);
- }
- return std::make_pair(iter, -kExactMatch);
-}
-
-template <typename P> template <typename IterType>
-IterType btree<P>::internal_lower_bound(
- const key_type &key, IterType iter) const {
- if (iter.node) {
- for (;;) {
- iter.position =
- iter.node->lower_bound(key, key_comp()) & kMatchMask;
- if (iter.node->leaf()) {
- break;
- }
- iter.node = iter.node->child(iter.position);
- }
- iter = internal_last(iter);
- }
- return iter;
-}
-
-template <typename P> template <typename IterType>
-IterType btree<P>::internal_upper_bound(
- const key_type &key, IterType iter) const {
- if (iter.node) {
- for (;;) {
- iter.position = iter.node->upper_bound(key, key_comp());
- if (iter.node->leaf()) {
- break;
- }
- iter.node = iter.node->child(iter.position);
- }
- iter = internal_last(iter);
- }
- return iter;
-}
-
-template <typename P> template <typename IterType>
-IterType btree<P>::internal_find_unique(
- const key_type &key, IterType iter) const {
- if (iter.node) {
- std::pair<IterType, int> res = internal_locate(key, iter);
- if (res.second == kExactMatch) {
- return res.first;
- }
- if (!res.second) {
- iter = internal_last(res.first);
- if (iter.node && !compare_keys(key, iter.key())) {
- return iter;
- }
- }
- }
- return IterType(NULL, 0);
-}
-
-template <typename P> template <typename IterType>
-IterType btree<P>::internal_find_multi(
- const key_type &key, IterType iter) const {
- if (iter.node) {
- iter = internal_lower_bound(key, iter);
- if (iter.node) {
- iter = internal_last(iter);
- if (iter.node && !compare_keys(key, iter.key())) {
- return iter;
- }
- }
- }
- return IterType(NULL, 0);
-}
-
-template <typename P>
-void btree<P>::internal_clear(node_type *node) {
- if (!node->leaf()) {
- for (int i = 0; i <= node->count(); ++i) {
- internal_clear(node->child(i));
- }
- if (node == root()) {
- delete_internal_root_node();
- } else {
- delete_internal_node(node);
- }
- } else {
- delete_leaf_node(node);
- }
-}
-
-template <typename P>
-void btree<P>::internal_dump(
- std::ostream &os, const node_type *node, int level) const {
- for (int i = 0; i < node->count(); ++i) {
- if (!node->leaf()) {
- internal_dump(os, node->child(i), level + 1);
- }
- for (int j = 0; j < level; ++j) {
- os << " ";
- }
- os << node->key(i) << " [" << level << "]\n";
- }
- if (!node->leaf()) {
- internal_dump(os, node->child(node->count()), level + 1);
- }
-}
-
-template <typename P>
-int btree<P>::internal_verify(
- const node_type *node, const key_type *lo, const key_type *hi) const {
- assert(node->count() > 0);
- assert(node->count() <= node->max_count());
- if (lo) {
- assert(!compare_keys(node->key(0), *lo));
- }
- if (hi) {
- assert(!compare_keys(*hi, node->key(node->count() - 1)));
- }
- for (int i = 1; i < node->count(); ++i) {
- assert(!compare_keys(node->key(i), node->key(i - 1)));
- }
- int count = node->count();
- if (!node->leaf()) {
- for (int i = 0; i <= node->count(); ++i) {
- assert(node->child(i) != NULL);
- assert(node->child(i)->parent() == node);
- assert(node->child(i)->position() == i);
- count += internal_verify(
- node->child(i),
- (i == 0) ? lo : &node->key(i - 1),
- (i == node->count()) ? hi : &node->key(i));
- }
- }
- return count;
-}
-
-} // namespace btree
-
-#endif // UTIL_BTREE_BTREE_H__
diff --git a/cpp-btree/btree_bench.cc b/cpp-btree/btree_bench.cc
deleted file mode 100644
index 6eaed99..0000000
--- a/cpp-btree/btree_bench.cc
+++ /dev/null
@@ -1,593 +0,0 @@
-// Copyright 2013 Google Inc. All Rights Reserved.
-//
-// Licensed under the Apache License, Version 2.0 (the "License");
-// you may not use this file except in compliance with the License.
-// You may obtain a copy of the License at
-//
-// http://www.apache.org/licenses/LICENSE-2.0
-//
-// Unless required by applicable law or agreed to in writing, software
-// distributed under the License is distributed on an "AS IS" BASIS,
-// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-// See the License for the specific language governing permissions and
-// limitations under the License.
-
-#include <stdint.h>
-#include <stdlib.h>
-#include <algorithm>
-#include <functional>
-#include <map>
-#include <set>
-#include <string>
-#include <sys/time.h>
-#include <type_traits>
-#include <vector>
-
-#include "gflags/gflags.h"
-#include "btree_map.h"
-#include "btree_set.h"
-#include "btree_test.h"
-
-DEFINE_int32(test_random_seed, 123456789, "Seed for srand()");
-DEFINE_int32(benchmark_max_iters, 10000000, "Maximum test iterations");
-DEFINE_int32(benchmark_min_iters, 100, "Minimum test iterations");
-DEFINE_int32(benchmark_target_seconds, 1,
- "Attempt to benchmark for this many seconds");
-
-using std::allocator;
-using std::less;
-using std::map;
-using std::max;
-using std::min;
-using std::multimap;
-using std::multiset;
-using std::set;
-using std::string;
-using std::vector;
-
-namespace btree {
-namespace {
-
-struct RandGen {
- typedef ptrdiff_t result_type;
- RandGen(result_type seed) {
- srand(seed);
- }
- result_type operator()(result_type l) {
- return rand() % l;
- }
-};
-
-struct BenchmarkRun {
- BenchmarkRun(const char *name, void (*func)(int));
- void Run();
- void Stop();
- void Start();
- void Reset();
-
- BenchmarkRun *next_benchmark;
- const char *benchmark_name;
- void (*benchmark_func)(int);
- int64_t accum_micros;
- int64_t last_started;
-};
-
-BenchmarkRun *first_benchmark;
-BenchmarkRun *current_benchmark;
-
-int64_t get_micros () {
- timeval tv;
- gettimeofday(&tv, NULL);
- return tv.tv_sec * 1000000 + tv.tv_usec;
-}
-
-BenchmarkRun::BenchmarkRun(const char *name, void (*func)(int))
- : next_benchmark(first_benchmark),
- benchmark_name(name),
- benchmark_func(func),
- accum_micros(0),
- last_started(0) {
- first_benchmark = this;
-}
-
-#define BTREE_BENCHMARK(name) \
- BTREE_BENCHMARK2(#name, name, __COUNTER__)
-#define BTREE_BENCHMARK2(name, func, counter) \
- BTREE_BENCHMARK3(name, func, counter)
-#define BTREE_BENCHMARK3(name, func, counter) \
- BenchmarkRun bench ## counter (name, func)
-
-void StopBenchmarkTiming() {
- current_benchmark->Stop();
-}
-
-void StartBenchmarkTiming() {
- current_benchmark->Start();
-}
-
-void RunBenchmarks() {
- for (BenchmarkRun *bench = first_benchmark; bench;
- bench = bench->next_benchmark) {
- bench->Run();
- }
-}
-
-void BenchmarkRun::Start() {
- assert(!last_started);
- last_started = get_micros();
-}
-
-void BenchmarkRun::Stop() {
- if (last_started == 0) {
- return;
- }
- accum_micros += get_micros() - last_started;
- last_started = 0;
-}
-
-void BenchmarkRun::Reset() {
- last_started = 0;
- accum_micros = 0;
-}
-
-void BenchmarkRun::Run() {
- assert(current_benchmark == NULL);
- current_benchmark = this;
- int iters = FLAGS_benchmark_min_iters;
- for (;;) {
- Reset();
- Start();
- benchmark_func(iters);
- Stop();
- if (accum_micros > FLAGS_benchmark_target_seconds * 1000000 ||
- iters >= FLAGS_benchmark_max_iters) {
- break;
- } else if (accum_micros == 0) {
- iters *= 100;
- } else {
- int64_t target_micros = FLAGS_benchmark_target_seconds * 1000000;
- iters = target_micros * iters / accum_micros;
- }
- iters = min(iters, FLAGS_benchmark_max_iters);
- }
- std::cout << benchmark_name << "\t"
- << accum_micros * 1000 / iters << "\t"
- << iters;
- current_benchmark = NULL;
-}
-
-// Used to avoid compiler optimizations for these benchmarks.
-template <typename T>
-void sink(const T& t0) {
- volatile T t = t0;
-}
-
-// Benchmark insertion of values into a container.
-template <typename T>
-void BM_Insert(int n) {
- typedef typename std::remove_const<typename T::value_type>::type V;
- typename KeyOfValue<typename T::key_type, V>::type key_of_value;
-
- // Disable timing while we perform some initialization.
- StopBenchmarkTiming();
-
- T container;
- vector<V> values = GenerateValues<V>(FLAGS_benchmark_values);
- for (int i = 0; i < values.size(); i++) {
- container.insert(values[i]);
- }
-
- for (int i = 0; i < n; ) {
- // Remove and re-insert 10% of the keys
- int m = min(n - i, FLAGS_benchmark_values / 10);
-
- for (int j = i; j < i + m; j++) {
- int x = j % FLAGS_benchmark_values;
- container.erase(key_of_value(values[x]));
- }
-
- StartBenchmarkTiming();
-
- for (int j = i; j < i + m; j++) {
- int x = j % FLAGS_benchmark_values;
- container.insert(values[x]);
- }
-
- StopBenchmarkTiming();
-
- i += m;
- }
-}
-
-// Benchmark lookup of values in a container.
-template <typename T>
-void BM_Lookup(int n) {
- typedef typename std::remove_const<typename T::value_type>::type V;
- typename KeyOfValue<typename T::key_type, V>::type key_of_value;
-
- // Disable timing while we perform some initialization.
- StopBenchmarkTiming();
-
- T container;
- vector<V> values = GenerateValues<V>(FLAGS_benchmark_values);
-
- for (int i = 0; i < values.size(); i++) {
- container.insert(values[i]);
- }
-
- V r = V();
-
- StartBenchmarkTiming();
-
- for (int i = 0; i < n; i++) {
- int m = i % values.size();
- r = *container.find(key_of_value(values[m]));
- }
-
- StopBenchmarkTiming();
-
- sink(r); // Keep compiler from optimizing away r.
-}
-
-// Benchmark lookup of values in a full container, meaning that values
-// are inserted in-order to take advantage of biased insertion, which
-// yields a full tree.
-template <typename T>
-void BM_FullLookup(int n) {
- typedef typename std::remove_const<typename T::value_type>::type V;
- typename KeyOfValue<typename T::key_type, V>::type key_of_value;
-
- // Disable timing while we perform some initialization.
- StopBenchmarkTiming();
-
- T container;
- vector<V> values = GenerateValues<V>(FLAGS_benchmark_values);
- vector<V> sorted(values);
- sort(sorted.begin(), sorted.end());
-
- for (int i = 0; i < sorted.size(); i++) {
- container.insert(sorted[i]);
- }
-
- V r = V();
-
- StartBenchmarkTiming();
-
- for (int i = 0; i < n; i++) {
- int m = i % values.size();
- r = *container.find(key_of_value(values[m]));
- }
-
- StopBenchmarkTiming();
-
- sink(r); // Keep compiler from optimizing away r.
-}
-
-// Benchmark deletion of values from a container.
-template <typename T>
-void BM_Delete(int n) {
- typedef typename std::remove_const<typename T::value_type>::type V;
- typename KeyOfValue<typename T::key_type, V>::type key_of_value;
-
- // Disable timing while we perform some initialization.
- StopBenchmarkTiming();
-
- T container;
- vector<V> values = GenerateValues<V>(FLAGS_benchmark_values);
- for (int i = 0; i < values.size(); i++) {
- container.insert(values[i]);
- }
-
- for (int i = 0; i < n; ) {
- // Remove and re-insert 10% of the keys
- int m = min(n - i, FLAGS_benchmark_values / 10);
-
- StartBenchmarkTiming();
-
- for (int j = i; j < i + m; j++) {
- int x = j % FLAGS_benchmark_values;
- container.erase(key_of_value(values[x]));
- }
-
- StopBenchmarkTiming();
-
- for (int j = i; j < i + m; j++) {
- int x = j % FLAGS_benchmark_values;
- container.insert(values[x]);
- }
-
- i += m;
- }
-}
-
-// Benchmark steady-state insert (into first half of range) and remove
-// (from second second half of range), treating the container
-// approximately like a queue with log-time access for all elements.
-// This benchmark does not test the case where insertion and removal
-// happen in the same region of the tree. This benchmark counts two
-// value constructors.
-template <typename T>
-void BM_QueueAddRem(int n) {
- typedef typename std::remove_const<typename T::value_type>::type V;
- typename KeyOfValue<typename T::key_type, V>::type key_of_value;
-
- // Disable timing while we perform some initialization.
- StopBenchmarkTiming();
- assert(FLAGS_benchmark_values % 2 == 0);
-
- T container;
-
- const int half = FLAGS_benchmark_values / 2;
- vector<int> remove_keys(half);
- vector<int> add_keys(half);
-
- for (int i = 0; i < half; i++) {
- remove_keys[i] = i;
- add_keys[i] = i;
- }
-
- RandGen rand(FLAGS_test_random_seed);
-
- random_shuffle(remove_keys.begin(), remove_keys.end(), rand);
- random_shuffle(add_keys.begin(), add_keys.end(), rand);
-
- Generator<V> g(FLAGS_benchmark_values + FLAGS_benchmark_max_iters);
-
- for (int i = 0; i < half; i++) {
- container.insert(g(add_keys[i]));
- container.insert(g(half + remove_keys[i]));
- }
-
- // There are three parts each of size "half":
- // 1 is being deleted from [offset - half, offset)
- // 2 is standing [offset, offset + half)
- // 3 is being inserted into [offset + half, offset + 2 * half)
- int offset = 0;
-
- StartBenchmarkTiming();
-
- for (int i = 0; i < n; i++) {
- int idx = i % half;
-
- if (idx == 0) {
- StopBenchmarkTiming();
- random_shuffle(remove_keys.begin(), remove_keys.end(), rand);
- random_shuffle(add_keys.begin(), add_keys.end(), rand);
- offset += half;
- StartBenchmarkTiming();
- }
-
- int e = container.erase(key_of_value(g(offset - half + remove_keys[idx])));
- assert(e == 1);
- container.insert(g(offset + half + add_keys[idx]));
- }
-
- StopBenchmarkTiming();
-}
-
-// Mixed insertion and deletion in the same range using pre-constructed values.
-template <typename T>
-void BM_MixedAddRem(int n) {
- typedef typename std::remove_const<typename T::value_type>::type V;
- typename KeyOfValue<typename T::key_type, V>::type key_of_value;
-
- // Disable timing while we perform some initialization.
- StopBenchmarkTiming();
- assert(FLAGS_benchmark_values % 2 == 0);
-
- T container;
- RandGen rand(FLAGS_test_random_seed);
-
- vector<V> values = GenerateValues<V>(FLAGS_benchmark_values * 2);
-
- // Create two random shuffles
- vector<int> remove_keys(FLAGS_benchmark_values);
- vector<int> add_keys(FLAGS_benchmark_values);
-
- // Insert the first half of the values (already in random order)
- for (int i = 0; i < FLAGS_benchmark_values; i++) {
- container.insert(values[i]);
-
- // remove_keys and add_keys will be swapped before each round,
- // therefore fill add_keys here w/ the keys being inserted, so
- // they'll be the first to be removed.
- remove_keys[i] = i + FLAGS_benchmark_values;
- add_keys[i] = i;
- }
-
- StartBenchmarkTiming();
-
- for (int i = 0; i < n; i++) {
- int idx = i % FLAGS_benchmark_values;
-
- if (idx == 0) {
- StopBenchmarkTiming();
- remove_keys.swap(add_keys);
- random_shuffle(remove_keys.begin(), remove_keys.end(), rand);
- random_shuffle(add_keys.begin(), add_keys.end(), rand);
- StartBenchmarkTiming();
- }
-
- int e = container.erase(key_of_value(values[remove_keys[idx]]));
- assert(e == 1);
- container.insert(values[add_keys[idx]]);
- }
-
- StopBenchmarkTiming();
-}
-
-// Insertion at end, removal from the beginning. This benchmark
-// counts two value constructors.
-template <typename T>
-void BM_Fifo(int n) {
- typedef typename std::remove_const<typename T::value_type>::type V;
-
- // Disable timing while we perform some initialization.
- StopBenchmarkTiming();
-
- T container;
- Generator<V> g(FLAGS_benchmark_values + FLAGS_benchmark_max_iters);
-
- for (int i = 0; i < FLAGS_benchmark_values; i++) {
- container.insert(g(i));
- }
-
- StartBenchmarkTiming();
-
- for (int i = 0; i < n; i++) {
- container.erase(container.begin());
- container.insert(container.end(), g(i + FLAGS_benchmark_values));
- }
-
- StopBenchmarkTiming();
-}
-
-// Iteration (forward) through the tree
-template <typename T>
-void BM_FwdIter(int n) {
- typedef typename std::remove_const<typename T::value_type>::type V;
-
- // Disable timing while we perform some initialization.
- StopBenchmarkTiming();
-
- T container;
- vector<V> values = GenerateValues<V>(FLAGS_benchmark_values);
-
- for (int i = 0; i < FLAGS_benchmark_values; i++) {
- container.insert(values[i]);
- }
-
- typename T::iterator iter;
-
- V r = V();
-
- StartBenchmarkTiming();
-
- for (int i = 0; i < n; i++) {
- int idx = i % FLAGS_benchmark_values;
-
- if (idx == 0) {
- iter = container.begin();
- }
- r = *iter;
- ++iter;
- }
-
- StopBenchmarkTiming();
-
- sink(r); // Keep compiler from optimizing away r.
-}
-
-typedef set<int32_t> stl_set_int32;
-typedef set<int64_t> stl_set_int64;
-typedef set<string> stl_set_string;
-
-typedef map<int32_t, intptr_t> stl_map_int32;
-typedef map<int64_t, intptr_t> stl_map_int64;
-typedef map<string, intptr_t> stl_map_string;
-
-typedef multiset<int32_t> stl_multiset_int32;
-typedef multiset<int64_t> stl_multiset_int64;
-typedef multiset<string> stl_multiset_string;
-
-typedef multimap<int32_t, intptr_t> stl_multimap_int32;
-typedef multimap<int64_t, intptr_t> stl_multimap_int64;
-typedef multimap<string, intptr_t> stl_multimap_string;
-
-#define MY_BENCHMARK_TYPES2(value, name, size) \
- typedef btree ## _set<value, less<value>, allocator<value>, size> \
- btree ## _ ## size ## _set_ ## name; \
- typedef btree ## _map<value, int, less<value>, allocator<value>, size> \
- btree ## _ ## size ## _map_ ## name; \
- typedef btree ## _multiset<value, less<value>, allocator<value>, size> \
- btree ## _ ## size ## _multiset_ ## name; \
- typedef btree ## _multimap<value, int, less<value>, allocator<value>, size> \
- btree ## _ ## size ## _multimap_ ## name
-
-#define MY_BENCHMARK_TYPES(value, name) \
- MY_BENCHMARK_TYPES2(value, name, 128); \
- MY_BENCHMARK_TYPES2(value, name, 160); \
- MY_BENCHMARK_TYPES2(value, name, 192); \
- MY_BENCHMARK_TYPES2(value, name, 224); \
- MY_BENCHMARK_TYPES2(value, name, 256); \
- MY_BENCHMARK_TYPES2(value, name, 288); \
- MY_BENCHMARK_TYPES2(value, name, 320); \
- MY_BENCHMARK_TYPES2(value, name, 352); \
- MY_BENCHMARK_TYPES2(value, name, 384); \
- MY_BENCHMARK_TYPES2(value, name, 416); \
- MY_BENCHMARK_TYPES2(value, name, 448); \
- MY_BENCHMARK_TYPES2(value, name, 480); \
- MY_BENCHMARK_TYPES2(value, name, 512); \
- MY_BENCHMARK_TYPES2(value, name, 1024); \
- MY_BENCHMARK_TYPES2(value, name, 1536); \
- MY_BENCHMARK_TYPES2(value, name, 2048)
-
-MY_BENCHMARK_TYPES(int32_t, int32);
-MY_BENCHMARK_TYPES(int64_t, int64);
-MY_BENCHMARK_TYPES(string, string);
-
-#define MY_BENCHMARK4(type, name, func) \
- void BM_ ## type ## _ ## name(int n) { BM_ ## func <type>(n); } \
- BTREE_BENCHMARK(BM_ ## type ## _ ## name)
-
-// Define NODESIZE_TESTING when running btree_perf.py.
-
-#ifdef NODESIZE_TESTING
-#define MY_BENCHMARK3(tree, type, name, func) \
- MY_BENCHMARK4(tree ## _128_ ## type, name, func); \
- MY_BENCHMARK4(tree ## _160_ ## type, name, func); \
- MY_BENCHMARK4(tree ## _192_ ## type, name, func); \
- MY_BENCHMARK4(tree ## _224_ ## type, name, func); \
- MY_BENCHMARK4(tree ## _256_ ## type, name, func); \
- MY_BENCHMARK4(tree ## _288_ ## type, name, func); \
- MY_BENCHMARK4(tree ## _320_ ## type, name, func); \
- MY_BENCHMARK4(tree ## _352_ ## type, name, func); \
- MY_BENCHMARK4(tree ## _384_ ## type, name, func); \
- MY_BENCHMARK4(tree ## _416_ ## type, name, func); \
- MY_BENCHMARK4(tree ## _448_ ## type, name, func); \
- MY_BENCHMARK4(tree ## _480_ ## type, name, func); \
- MY_BENCHMARK4(tree ## _512_ ## type, name, func); \
- MY_BENCHMARK4(tree ## _1024_ ## type, name, func); \
- MY_BENCHMARK4(tree ## _1536_ ## type, name, func); \
- MY_BENCHMARK4(tree ## _2048_ ## type, name, func)
-#else
-#define MY_BENCHMARK3(tree, type, name, func) \
- MY_BENCHMARK4(tree ## _256_ ## type, name, func); \
- MY_BENCHMARK4(tree ## _2048_ ## type, name, func)
-#endif
-
-#define MY_BENCHMARK2(type, name, func) \
- MY_BENCHMARK4(stl_ ## type, name, func); \
- MY_BENCHMARK3(btree, type, name, func)
-
-#define MY_BENCHMARK(type) \
- MY_BENCHMARK2(type, insert, Insert); \
- MY_BENCHMARK2(type, lookup, Lookup); \
- MY_BENCHMARK2(type, fulllookup, FullLookup); \
- MY_BENCHMARK2(type, delete, Delete); \
- MY_BENCHMARK2(type, queueaddrem, QueueAddRem); \
- MY_BENCHMARK2(type, mixedaddrem, MixedAddRem); \
- MY_BENCHMARK2(type, fifo, Fifo); \
- MY_BENCHMARK2(type, fwditer, FwdIter)
-
-MY_BENCHMARK(set_int32);
-MY_BENCHMARK(map_int32);
-MY_BENCHMARK(set_int64);
-MY_BENCHMARK(map_int64);
-MY_BENCHMARK(set_string);
-MY_BENCHMARK(map_string);
-
-MY_BENCHMARK(multiset_int32);
-MY_BENCHMARK(multimap_int32);
-MY_BENCHMARK(multiset_int64);
-MY_BENCHMARK(multimap_int64);
-MY_BENCHMARK(multiset_string);
-MY_BENCHMARK(multimap_string);
-
-} // namespace
-} // namespace btree
-
-int main(int argc, char **argv) {
- btree::RunBenchmarks();
- return 0;
-}
diff --git a/cpp-btree/btree_container.h b/cpp-btree/btree_container.h
deleted file mode 100644
index fb617ab..0000000
--- a/cpp-btree/btree_container.h
+++ /dev/null
@@ -1,349 +0,0 @@
-// Copyright 2013 Google Inc. All Rights Reserved.
-//
-// Licensed under the Apache License, Version 2.0 (the "License");
-// you may not use this file except in compliance with the License.
-// You may obtain a copy of the License at
-//
-// http://www.apache.org/licenses/LICENSE-2.0
-//
-// Unless required by applicable law or agreed to in writing, software
-// distributed under the License is distributed on an "AS IS" BASIS,
-// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-// See the License for the specific language governing permissions and
-// limitations under the License.
-
-#ifndef UTIL_BTREE_BTREE_CONTAINER_H__
-#define UTIL_BTREE_BTREE_CONTAINER_H__
-
-#include <iosfwd>
-#include <utility>
-
-#include "btree.h"
-
-namespace btree {
-
-// A common base class for btree_set, btree_map, btree_multiset and
-// btree_multimap.
-template <typename Tree>
-class btree_container {
- typedef btree_container<Tree> self_type;
-
- public:
- typedef typename Tree::params_type params_type;
- typedef typename Tree::key_type key_type;
- typedef typename Tree::value_type value_type;
- typedef typename Tree::key_compare key_compare;
- typedef typename Tree::allocator_type allocator_type;
- typedef typename Tree::pointer pointer;
- typedef typename Tree::const_pointer const_pointer;
- typedef typename Tree::reference reference;
- typedef typename Tree::const_reference const_reference;
- typedef typename Tree::size_type size_type;
- typedef typename Tree::difference_type difference_type;
- typedef typename Tree::iterator iterator;
- typedef typename Tree::const_iterator const_iterator;
- typedef typename Tree::reverse_iterator reverse_iterator;
- typedef typename Tree::const_reverse_iterator const_reverse_iterator;
-
- public:
- // Default constructor.
- btree_container(const key_compare &comp, const allocator_type &alloc)
- : tree_(comp, alloc) {
- }
-
- // Copy constructor.
- btree_container(const self_type &x)
- : tree_(x.tree_) {
- }
-
- // Iterator routines.
- iterator begin() { return tree_.begin(); }
- const_iterator begin() const { return tree_.begin(); }
- iterator end() { return tree_.end(); }
- const_iterator end() const { return tree_.end(); }
- reverse_iterator rbegin() { return tree_.rbegin(); }
- const_reverse_iterator rbegin() const { return tree_.rbegin(); }
- reverse_iterator rend() { return tree_.rend(); }
- const_reverse_iterator rend() const { return tree_.rend(); }
-
- // Lookup routines.
- iterator lower_bound(const key_type &key) {
- return tree_.lower_bound(key);
- }
- const_iterator lower_bound(const key_type &key) const {
- return tree_.lower_bound(key);
- }
- iterator upper_bound(const key_type &key) {
- return tree_.upper_bound(key);
- }
- const_iterator upper_bound(const key_type &key) const {
- return tree_.upper_bound(key);
- }
- std::pair<iterator,iterator> equal_range(const key_type &key) {
- return tree_.equal_range(key);
- }
- std::pair<const_iterator,const_iterator> equal_range(const key_type &key) const {
- return tree_.equal_range(key);
- }
-
- // Utility routines.
- void clear() {
- tree_.clear();
- }
- void swap(self_type &x) {
- tree_.swap(x.tree_);
- }
- void dump(std::ostream &os) const {
- tree_.dump(os);
- }
- void verify() const {
- tree_.verify();
- }
-
- // Size routines.
- size_type size() const { return tree_.size(); }
- size_type max_size() const { return tree_.max_size(); }
- bool empty() const { return tree_.empty(); }
- size_type height() const { return tree_.height(); }
- size_type internal_nodes() const { return tree_.internal_nodes(); }
- size_type leaf_nodes() const { return tree_.leaf_nodes(); }
- size_type nodes() const { return tree_.nodes(); }
- size_type bytes_used() const { return tree_.bytes_used(); }
- static double average_bytes_per_value() {
- return Tree::average_bytes_per_value();
- }
- double fullness() const { return tree_.fullness(); }
- double overhead() const { return tree_.overhead(); }
-
- bool operator==(const self_type& x) const {
- if (size() != x.size()) {
- return false;
- }
- for (const_iterator i = begin(), xi = x.begin(); i != end(); ++i, ++xi) {
- if (*i != *xi) {
- return false;
- }
- }
- return true;
- }
-
- bool operator!=(const self_type& other) const {
- return !operator==(other);
- }
-
-
- protected:
- Tree tree_;
-};
-
-template <typename T>
-inline std::ostream& operator<<(std::ostream &os, const btree_container<T> &b) {
- b.dump(os);
- return os;
-}
-
-// A common base class for btree_set and safe_btree_set.
-template <typename Tree>
-class btree_unique_container : public btree_container<Tree> {
- typedef btree_unique_container<Tree> self_type;
- typedef btree_container<Tree> super_type;
-
- public:
- typedef typename Tree::key_type key_type;
- typedef typename Tree::value_type value_type;
- typedef typename Tree::size_type size_type;
- typedef typename Tree::key_compare key_compare;
- typedef typename Tree::allocator_type allocator_type;
- typedef typename Tree::iterator iterator;
- typedef typename Tree::const_iterator const_iterator;
-
- public:
- // Default constructor.
- btree_unique_container(const key_compare &comp = key_compare(),
- const allocator_type &alloc = allocator_type())
- : super_type(comp, alloc) {
- }
-
- // Copy constructor.
- btree_unique_container(const self_type &x)
- : super_type(x) {
- }
-
- // Range constructor.
- template <class InputIterator>
- btree_unique_container(InputIterator b, InputIterator e,
- const key_compare &comp = key_compare(),
- const allocator_type &alloc = allocator_type())
- : super_type(comp, alloc) {
- insert(b, e);
- }
-
- // Lookup routines.
- iterator find(const key_type &key) {
- return this->tree_.find_unique(key);
- }
- const_iterator find(const key_type &key) const {
- return this->tree_.find_unique(key);
- }
- size_type count(const key_type &key) const {
- return this->tree_.count_unique(key);
- }
-
- // Insertion routines.
- std::pair<iterator,bool> insert(const value_type &x) {
- return this->tree_.insert_unique(x);
- }
- iterator insert(iterator position, const value_type &x) {
- return this->tree_.insert_unique(position, x);
- }
- template <typename InputIterator>
- void insert(InputIterator b, InputIterator e) {
- this->tree_.insert_unique(b, e);
- }
-
- // Deletion routines.
- int erase(const key_type &key) {
- return this->tree_.erase_unique(key);
- }
- // Erase the specified iterator from the btree. The iterator must be valid
- // (i.e. not equal to end()). Return an iterator pointing to the node after
- // the one that was erased (or end() if none exists).
- iterator erase(const iterator &iter) {
- return this->tree_.erase(iter);
- }
- void erase(const iterator &first, const iterator &last) {
- this->tree_.erase(first, last);
- }
-};
-
-// A common base class for btree_map and safe_btree_map.
-template <typename Tree>
-class btree_map_container : public btree_unique_container<Tree> {
- typedef btree_map_container<Tree> self_type;
- typedef btree_unique_container<Tree> super_type;
-
- public:
- typedef typename Tree::key_type key_type;
- typedef typename Tree::data_type data_type;
- typedef typename Tree::value_type value_type;
- typedef typename Tree::mapped_type mapped_type;
- typedef typename Tree::key_compare key_compare;
- typedef typename Tree::allocator_type allocator_type;
-
- private:
- // A pointer-like object which only generates its value when
- // dereferenced. Used by operator[] to avoid constructing an empty data_type
- // if the key already exists in the map.
- struct generate_value {
- generate_value(const key_type &k)
- : key(k) {
- }
- value_type operator*() const {
- return std::make_pair(key, data_type());
- }
- const key_type &key;
- };
-
- public:
- // Default constructor.
- btree_map_container(const key_compare &comp = key_compare(),
- const allocator_type &alloc = allocator_type())
- : super_type(comp, alloc) {
- }
-
- // Copy constructor.
- btree_map_container(const self_type &x)
- : super_type(x) {
- }
-
- // Range constructor.
- template <class InputIterator>
- btree_map_container(InputIterator b, InputIterator e,
- const key_compare &comp = key_compare(),
- const allocator_type &alloc = allocator_type())
- : super_type(b, e, comp, alloc) {
- }
-
- // Insertion routines.
- data_type& operator[](const key_type &key) {
- return this->tree_.insert_unique(key, generate_value(key)).first->second;
- }
-};
-
-// A common base class for btree_multiset and btree_multimap.
-template <typename Tree>
-class btree_multi_container : public btree_container<Tree> {
- typedef btree_multi_container<Tree> self_type;
- typedef btree_container<Tree> super_type;
-
- public:
- typedef typename Tree::key_type key_type;
- typedef typename Tree::value_type value_type;
- typedef typename Tree::size_type size_type;
- typedef typename Tree::key_compare key_compare;
- typedef typename Tree::allocator_type allocator_type;
- typedef typename Tree::iterator iterator;
- typedef typename Tree::const_iterator const_iterator;
-
- public:
- // Default constructor.
- btree_multi_container(const key_compare &comp = key_compare(),
- const allocator_type &alloc = allocator_type())
- : super_type(comp, alloc) {
- }
-
- // Copy constructor.
- btree_multi_container(const self_type &x)
- : super_type(x) {
- }
-
- // Range constructor.
- template <class InputIterator>
- btree_multi_container(InputIterator b, InputIterator e,
- const key_compare &comp = key_compare(),
- const allocator_type &alloc = allocator_type())
- : super_type(comp, alloc) {
- insert(b, e);
- }
-
- // Lookup routines.
- iterator find(const key_type &key) {
- return this->tree_.find_multi(key);
- }
- const_iterator find(const key_type &key) const {
- return this->tree_.find_multi(key);
- }
- size_type count(const key_type &key) const {
- return this->tree_.count_multi(key);
- }
-
- // Insertion routines.
- iterator insert(const value_type &x) {
- return this->tree_.insert_multi(x);
- }
- iterator insert(iterator position, const value_type &x) {
- return this->tree_.insert_multi(position, x);
- }
- template <typename InputIterator>
- void insert(InputIterator b, InputIterator e) {
- this->tree_.insert_multi(b, e);
- }
-
- // Deletion routines.
- int erase(const key_type &key) {
- return this->tree_.erase_multi(key);
- }
- // Erase the specified iterator from the btree. The iterator must be valid
- // (i.e. not equal to end()). Return an iterator pointing to the node after
- // the one that was erased (or end() if none exists).
- iterator erase(const iterator &iter) {
- return this->tree_.erase(iter);
- }
- void erase(const iterator &first, const iterator &last) {
- this->tree_.erase(first, last);
- }
-};
-
-} // namespace btree
-
-#endif // UTIL_BTREE_BTREE_CONTAINER_H__
diff --git a/cpp-btree/btree_map.h b/cpp-btree/btree_map.h
deleted file mode 100644
index b83489f..0000000
--- a/cpp-btree/btree_map.h
+++ /dev/null
@@ -1,130 +0,0 @@
-// Copyright 2013 Google Inc. All Rights Reserved.
-//
-// Licensed under the Apache License, Version 2.0 (the "License");
-// you may not use this file except in compliance with the License.
-// You may obtain a copy of the License at
-//
-// http://www.apache.org/licenses/LICENSE-2.0
-//
-// Unless required by applicable law or agreed to in writing, software
-// distributed under the License is distributed on an "AS IS" BASIS,
-// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-// See the License for the specific language governing permissions and
-// limitations under the License.
-//
-// A btree_map<> implements the STL unique sorted associative container
-// interface and the pair associative container interface (a.k.a map<>) using a
-// btree. A btree_multimap<> implements the STL multiple sorted associative
-// container interface and the pair associtive container interface (a.k.a
-// multimap<>) using a btree. See btree.h for details of the btree
-// implementation and caveats.
-
-#ifndef UTIL_BTREE_BTREE_MAP_H__
-#define UTIL_BTREE_BTREE_MAP_H__
-
-#include <algorithm>
-#include <functional>
-#include <memory>
-#include <string>
-#include <utility>
-
-#include "btree.h"
-#include "btree_container.h"
-
-namespace btree {
-
-// The btree_map class is needed mainly for its constructors.
-template <typename Key, typename Value,
- typename Compare = std::less<Key>,
- typename Alloc = std::allocator<std::pair<const Key, Value> >,
- int TargetNodeSize = 256>
-class btree_map : public btree_map_container<
- btree<btree_map_params<Key, Value, Compare, Alloc, TargetNodeSize> > > {
-
- typedef btree_map<Key, Value, Compare, Alloc, TargetNodeSize> self_type;
- typedef btree_map_params<
- Key, Value, Compare, Alloc, TargetNodeSize> params_type;
- typedef btree<params_type> btree_type;
- typedef btree_map_container<btree_type> super_type;
-
- public:
- typedef typename btree_type::key_compare key_compare;
- typedef typename btree_type::allocator_type allocator_type;
-
- public:
- // Default constructor.
- btree_map(const key_compare &comp = key_compare(),
- const allocator_type &alloc = allocator_type())
- : super_type(comp, alloc) {
- }
-
- // Copy constructor.
- btree_map(const self_type &x)
- : super_type(x) {
- }
-
- // Range constructor.
- template <class InputIterator>
- btree_map(InputIterator b, InputIterator e,
- const key_compare &comp = key_compare(),
- const allocator_type &alloc = allocator_type())
- : super_type(b, e, comp, alloc) {
- }
-};
-
-template <typename K, typename V, typename C, typename A, int N>
-inline void swap(btree_map<K, V, C, A, N> &x,
- btree_map<K, V, C, A, N> &y) {
- x.swap(y);
-}
-
-// The btree_multimap class is needed mainly for its constructors.
-template <typename Key, typename Value,
- typename Compare = std::less<Key>,
- typename Alloc = std::allocator<std::pair<const Key, Value> >,
- int TargetNodeSize = 256>
-class btree_multimap : public btree_multi_container<
- btree<btree_map_params<Key, Value, Compare, Alloc, TargetNodeSize> > > {
-
- typedef btree_multimap<Key, Value, Compare, Alloc, TargetNodeSize> self_type;
- typedef btree_map_params<
- Key, Value, Compare, Alloc, TargetNodeSize> params_type;
- typedef btree<params_type> btree_type;
- typedef btree_multi_container<btree_type> super_type;
-
- public:
- typedef typename btree_type::key_compare key_compare;
- typedef typename btree_type::allocator_type allocator_type;
- typedef typename btree_type::data_type data_type;
- typedef typename btree_type::mapped_type mapped_type;
-
- public:
- // Default constructor.
- btree_multimap(const key_compare &comp = key_compare(),
- const allocator_type &alloc = allocator_type())
- : super_type(comp, alloc) {
- }
-
- // Copy constructor.
- btree_multimap(const self_type &x)
- : super_type(x) {
- }
-
- // Range constructor.
- template <class InputIterator>
- btree_multimap(InputIterator b, InputIterator e,
- const key_compare &comp = key_compare(),
- const allocator_type &alloc = allocator_type())
- : super_type(b, e, comp, alloc) {
- }
-};
-
-template <typename K, typename V, typename C, typename A, int N>
-inline void swap(btree_multimap<K, V, C, A, N> &x,
- btree_multimap<K, V, C, A, N> &y) {
- x.swap(y);
-}
-
-} // namespace btree
-
-#endif // UTIL_BTREE_BTREE_MAP_H__
diff --git a/cpp-btree/btree_set.h b/cpp-btree/btree_set.h
deleted file mode 100644
index f9b2e75..0000000
--- a/cpp-btree/btree_set.h
+++ /dev/null
@@ -1,121 +0,0 @@
-// Copyright 2013 Google Inc. All Rights Reserved.
-//
-// Licensed under the Apache License, Version 2.0 (the "License");
-// you may not use this file except in compliance with the License.
-// You may obtain a copy of the License at
-//
-// http://www.apache.org/licenses/LICENSE-2.0
-//
-// Unless required by applicable law or agreed to in writing, software
-// distributed under the License is distributed on an "AS IS" BASIS,
-// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-// See the License for the specific language governing permissions and
-// limitations under the License.
-//
-// A btree_set<> implements the STL unique sorted associative container
-// interface (a.k.a set<>) using a btree. A btree_multiset<> implements the STL
-// multiple sorted associative container interface (a.k.a multiset<>) using a
-// btree. See btree.h for details of the btree implementation and caveats.
-
-#ifndef UTIL_BTREE_BTREE_SET_H__
-#define UTIL_BTREE_BTREE_SET_H__
-
-#include <functional>
-#include <memory>
-#include <string>
-
-#include "btree.h"
-#include "btree_container.h"
-
-namespace btree {
-
-// The btree_set class is needed mainly for its constructors.
-template <typename Key,
- typename Compare = std::less<Key>,
- typename Alloc = std::allocator<Key>,
- int TargetNodeSize = 256>
-class btree_set : public btree_unique_container<
- btree<btree_set_params<Key, Compare, Alloc, TargetNodeSize> > > {
-
- typedef btree_set<Key, Compare, Alloc, TargetNodeSize> self_type;
- typedef btree_set_params<Key, Compare, Alloc, TargetNodeSize> params_type;
- typedef btree<params_type> btree_type;
- typedef btree_unique_container<btree_type> super_type;
-
- public:
- typedef typename btree_type::key_compare key_compare;
- typedef typename btree_type::allocator_type allocator_type;
-
- public:
- // Default constructor.
- btree_set(const key_compare &comp = key_compare(),
- const allocator_type &alloc = allocator_type())
- : super_type(comp, alloc) {
- }
-
- // Copy constructor.
- btree_set(const self_type &x)
- : super_type(x) {
- }
-
- // Range constructor.
- template <class InputIterator>
- btree_set(InputIterator b, InputIterator e,
- const key_compare &comp = key_compare(),
- const allocator_type &alloc = allocator_type())
- : super_type(b, e, comp, alloc) {
- }
-};
-
-template <typename K, typename C, typename A, int N>
-inline void swap(btree_set<K, C, A, N> &x, btree_set<K, C, A, N> &y) {
- x.swap(y);
-}
-
-// The btree_multiset class is needed mainly for its constructors.
-template <typename Key,
- typename Compare = std::less<Key>,
- typename Alloc = std::allocator<Key>,
- int TargetNodeSize = 256>
-class btree_multiset : public btree_multi_container<
- btree<btree_set_params<Key, Compare, Alloc, TargetNodeSize> > > {
-
- typedef btree_multiset<Key, Compare, Alloc, TargetNodeSize> self_type;
- typedef btree_set_params<Key, Compare, Alloc, TargetNodeSize> params_type;
- typedef btree<params_type> btree_type;
- typedef btree_multi_container<btree_type> super_type;
-
- public:
- typedef typename btree_type::key_compare key_compare;
- typedef typename btree_type::allocator_type allocator_type;
-
- public:
- // Default constructor.
- btree_multiset(const key_compare &comp = key_compare(),
- const allocator_type &alloc = allocator_type())
- : super_type(comp, alloc) {
- }
-
- // Copy constructor.
- btree_multiset(const self_type &x)
- : super_type(x) {
- }
-
- // Range constructor.
- template <class InputIterator>
- btree_multiset(InputIterator b, InputIterator e,
- const key_compare &comp = key_compare(),
- const allocator_type &alloc = allocator_type())
- : super_type(b, e, comp, alloc) {
- }
-};
-
-template <typename K, typename C, typename A, int N>
-inline void swap(btree_multiset<K, C, A, N> &x,
- btree_multiset<K, C, A, N> &y) {
- x.swap(y);
-}
-
-} // namespace btree
-
-#endif // UTIL_BTREE_BTREE_SET_H__
diff --git a/cpp-btree/btree_test.cc b/cpp-btree/btree_test.cc
deleted file mode 100644
index 6b1837d..0000000
--- a/cpp-btree/btree_test.cc
+++ /dev/null
@@ -1,270 +0,0 @@
-// Copyright 2013 Google Inc. All Rights Reserved.
-//
-// Licensed under the Apache License, Version 2.0 (the "License");
-// you may not use this file except in compliance with the License.
-// You may obtain a copy of the License at
-//
-// http://www.apache.org/licenses/LICENSE-2.0
-//
-// Unless required by applicable law or agreed to in writing, software
-// distributed under the License is distributed on an "AS IS" BASIS,
-// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-// See the License for the specific language governing permissions and
-// limitations under the License.
-
-#include "gtest/gtest.h"
-#include "btree_map.h"
-#include "btree_set.h"
-#include "btree_test.h"
-
-namespace btree {
-namespace {
-
-template <typename K, int N>
-void SetTest() {
- typedef TestAllocator<K> TestAlloc;
- ASSERT_EQ(sizeof(btree_set<K>), sizeof(void*));
- BtreeTest<btree_set<K, std::less<K>, std::allocator<K>, N>, std::set<K> >();
- BtreeAllocatorTest<btree_set<K, std::less<K>, TestAlloc, N> >();
-}
-
-template <typename K, int N>
-void MapTest() {
- typedef TestAllocator<K> TestAlloc;
- ASSERT_EQ(sizeof(btree_map<K, K>), sizeof(void*));
- BtreeTest<btree_map<K, K, std::less<K>, std::allocator<K>, N>, std::map<K, K> >();
- BtreeAllocatorTest<btree_map<K, K, std::less<K>, TestAlloc, N> >();
- BtreeMapTest<btree_map<K, K, std::less<K>, std::allocator<K>, N> >();
-}
-
-TEST(Btree, set_int32_32) { SetTest<int32_t, 32>(); }
-TEST(Btree, set_int32_64) { SetTest<int32_t, 64>(); }
-TEST(Btree, set_int32_128) { SetTest<int32_t, 128>(); }
-TEST(Btree, set_int32_256) { SetTest<int32_t, 256>(); }
-TEST(Btree, set_int64_256) { SetTest<int64_t, 256>(); }
-TEST(Btree, set_string_256) { SetTest<std::string, 256>(); }
-TEST(Btree, set_pair_256) { SetTest<std::pair<int, int>, 256>(); }
-TEST(Btree, map_int32_256) { MapTest<int32_t, 256>(); }
-TEST(Btree, map_int64_256) { MapTest<int64_t, 256>(); }
-TEST(Btree, map_string_256) { MapTest<std::string, 256>(); }
-TEST(Btree, map_pair_256) { MapTest<std::pair<int, int>, 256>(); }
-
-// Large-node tests
-TEST(Btree, map_int32_1024) { MapTest<int32_t, 1024>(); }
-TEST(Btree, map_int32_1032) { MapTest<int32_t, 1032>(); }
-TEST(Btree, map_int32_1040) { MapTest<int32_t, 1040>(); }
-TEST(Btree, map_int32_1048) { MapTest<int32_t, 1048>(); }
-TEST(Btree, map_int32_1056) { MapTest<int32_t, 1056>(); }
-
-TEST(Btree, map_int32_2048) { MapTest<int32_t, 2048>(); }
-TEST(Btree, map_int32_4096) { MapTest<int32_t, 4096>(); }
-TEST(Btree, set_int32_1024) { SetTest<int32_t, 1024>(); }
-TEST(Btree, set_int32_2048) { SetTest<int32_t, 2048>(); }
-TEST(Btree, set_int32_4096) { SetTest<int32_t, 4096>(); }
-TEST(Btree, map_string_1024) { MapTest<std::string, 1024>(); }
-TEST(Btree, map_string_2048) { MapTest<std::string, 2048>(); }
-TEST(Btree, map_string_4096) { MapTest<std::string, 4096>(); }
-TEST(Btree, set_string_1024) { SetTest<std::string, 1024>(); }
-TEST(Btree, set_string_2048) { SetTest<std::string, 2048>(); }
-TEST(Btree, set_string_4096) { SetTest<std::string, 4096>(); }
-
-template <typename K, int N>
-void MultiSetTest() {
- typedef TestAllocator<K> TestAlloc;
- ASSERT_EQ(sizeof(btree_multiset<K>), sizeof(void*));
- BtreeMultiTest<btree_multiset<K, std::less<K>, std::allocator<K>, N>,
- std::multiset<K> >();
- BtreeAllocatorTest<btree_multiset<K, std::less<K>, TestAlloc, N> >();
-}
-
-template <typename K, int N>
-void MultiMapTest() {
- typedef TestAllocator<K> TestAlloc;
- ASSERT_EQ(sizeof(btree_multimap<K, K>), sizeof(void*));
- BtreeMultiTest<btree_multimap<K, K, std::less<K>, std::allocator<K>, N>,
- std::multimap<K, K> >();
- BtreeMultiMapTest<btree_multimap<K, K, std::less<K>, std::allocator<K>, N> >();
- BtreeAllocatorTest<btree_multimap<K, K, std::less<K>, TestAlloc, N> >();
-}
-
-TEST(Btree, multiset_int32_256) { MultiSetTest<int32_t, 256>(); }
-TEST(Btree, multiset_int64_256) { MultiSetTest<int64_t, 256>(); }
-TEST(Btree, multiset_string_256) { MultiSetTest<std::string, 256>(); }
-TEST(Btree, multiset_pair_256) { MultiSetTest<std::pair<int, int>, 256>(); }
-TEST(Btree, multimap_int32_256) { MultiMapTest<int32_t, 256>(); }
-TEST(Btree, multimap_int64_256) { MultiMapTest<int64_t, 256>(); }
-TEST(Btree, multimap_string_256) { MultiMapTest<std::string, 256>(); }
-TEST(Btree, multimap_pair_256) { MultiMapTest<std::pair<int, int>, 256>(); }
-
-// Large-node tests
-TEST(Btree, multimap_int32_1024) { MultiMapTest<int32_t, 1024>(); }
-TEST(Btree, multimap_int32_2048) { MultiMapTest<int32_t, 2048>(); }
-TEST(Btree, multimap_int32_4096) { MultiMapTest<int32_t, 4096>(); }
-TEST(Btree, multiset_int32_1024) { MultiSetTest<int32_t, 1024>(); }
-TEST(Btree, multiset_int32_2048) { MultiSetTest<int32_t, 2048>(); }
-TEST(Btree, multiset_int32_4096) { MultiSetTest<int32_t, 4096>(); }
-TEST(Btree, multimap_string_1024) { MultiMapTest<std::string, 1024>(); }
-TEST(Btree, multimap_string_2048) { MultiMapTest<std::string, 2048>(); }
-TEST(Btree, multimap_string_4096) { MultiMapTest<std::string, 4096>(); }
-TEST(Btree, multiset_string_1024) { MultiSetTest<std::string, 1024>(); }
-TEST(Btree, multiset_string_2048) { MultiSetTest<std::string, 2048>(); }
-TEST(Btree, multiset_string_4096) { MultiSetTest<std::string, 4096>(); }
-
-// Verify that swapping btrees swaps the key comparision functors.
-struct SubstringLess {
- SubstringLess() : n(2) {}
- SubstringLess(size_t length)
- : n(length) {
- }
- bool operator()(const std::string &a, const std::string &b) const {
- std::string as(a.data(), std::min(n, a.size()));
- std::string bs(b.data(), std::min(n, b.size()));
- return as < bs;
- }
- size_t n;
-};
-
-TEST(Btree, SwapKeyCompare) {
- typedef btree_set<std::string, SubstringLess> SubstringSet;
- SubstringSet s1(SubstringLess(1), SubstringSet::allocator_type());
- SubstringSet s2(SubstringLess(2), SubstringSet::allocator_type());
-
- ASSERT_TRUE(s1.insert("a").second);
- ASSERT_FALSE(s1.insert("aa").second);
-
- ASSERT_TRUE(s2.insert("a").second);
- ASSERT_TRUE(s2.insert("aa").second);
- ASSERT_FALSE(s2.insert("aaa").second);
-
- swap(s1, s2);
-
- ASSERT_TRUE(s1.insert("b").second);
- ASSERT_TRUE(s1.insert("bb").second);
- ASSERT_FALSE(s1.insert("bbb").second);
-
- ASSERT_TRUE(s2.insert("b").second);
- ASSERT_FALSE(s2.insert("bb").second);
-}
-
-TEST(Btree, UpperBoundRegression) {
- // Regress a bug where upper_bound would default-construct a new key_compare
- // instead of copying the existing one.
- typedef btree_set<std::string, SubstringLess> SubstringSet;
- SubstringSet my_set(SubstringLess(3));
- my_set.insert("aab");
- my_set.insert("abb");
- // We call upper_bound("aaa"). If this correctly uses the length 3
- // comparator, aaa < aab < abb, so we should get aab as the result.
- // If it instead uses the default-constructed length 2 comparator,
- // aa == aa < ab, so we'll get abb as our result.
- SubstringSet::iterator it = my_set.upper_bound("aaa");
- ASSERT_TRUE(it != my_set.end());
- EXPECT_EQ("aab", *it);
-}
-
-
-TEST(Btree, IteratorIncrementBy) {
- // Test that increment_by returns the same position as increment.
- const int kSetSize = 2341;
- btree_set<int32_t> my_set;
- for (int i = 0; i < kSetSize; ++i) {
- my_set.insert(i);
- }
-
- {
- // Simple increment vs. increment by.
- btree_set<int32_t>::iterator a = my_set.begin();
- btree_set<int32_t>::iterator b = my_set.begin();
- a.increment();
- b.increment_by(1);
- EXPECT_EQ(*a, *b);
- }
-
- btree_set<int32_t>::iterator a = my_set.begin();
- for (int i = 1; i < kSetSize; ++i) {
- ++a;
- // increment_by
- btree_set<int32_t>::iterator b = my_set.begin();
- b.increment_by(i);
- EXPECT_EQ(*a, *b) << ": i=" << i;
- }
-}
-
-TEST(Btree, Comparison) {
- const int kSetSize = 1201;
- btree_set<int64_t> my_set;
- for (int i = 0; i < kSetSize; ++i) {
- my_set.insert(i);
- }
- btree_set<int64_t> my_set_copy(my_set);
- EXPECT_TRUE(my_set_copy == my_set);
- EXPECT_TRUE(my_set == my_set_copy);
- EXPECT_FALSE(my_set_copy != my_set);
- EXPECT_FALSE(my_set != my_set_copy);
-
- my_set.insert(kSetSize);
- EXPECT_FALSE(my_set_copy == my_set);
- EXPECT_FALSE(my_set == my_set_copy);
- EXPECT_TRUE(my_set_copy != my_set);
- EXPECT_TRUE(my_set != my_set_copy);
-
- my_set.erase(kSetSize - 1);
- EXPECT_FALSE(my_set_copy == my_set);
- EXPECT_FALSE(my_set == my_set_copy);
- EXPECT_TRUE(my_set_copy != my_set);
- EXPECT_TRUE(my_set != my_set_copy);
-
- btree_map<std::string, int64_t> my_map;
- for (int i = 0; i < kSetSize; ++i) {
- my_map[std::string(i, 'a')] = i;
- }
- btree_map<std::string, int64_t> my_map_copy(my_map);
- EXPECT_TRUE(my_map_copy == my_map);
- EXPECT_TRUE(my_map == my_map_copy);
- EXPECT_FALSE(my_map_copy != my_map);
- EXPECT_FALSE(my_map != my_map_copy);
-
- ++my_map_copy[std::string(7, 'a')];
- EXPECT_FALSE(my_map_copy == my_map);
- EXPECT_FALSE(my_map == my_map_copy);
- EXPECT_TRUE(my_map_copy != my_map);
- EXPECT_TRUE(my_map != my_map_copy);
-
- my_map_copy = my_map;
- my_map["hello"] = kSetSize;
- EXPECT_FALSE(my_map_copy == my_map);
- EXPECT_FALSE(my_map == my_map_copy);
- EXPECT_TRUE(my_map_copy != my_map);
- EXPECT_TRUE(my_map != my_map_copy);
-
- my_map.erase(std::string(kSetSize - 1, 'a'));
- EXPECT_FALSE(my_map_copy == my_map);
- EXPECT_FALSE(my_map == my_map_copy);
- EXPECT_TRUE(my_map_copy != my_map);
- EXPECT_TRUE(my_map != my_map_copy);
-}
-
-TEST(Btree, RangeCtorSanity) {
- typedef btree_set<int, std::less<int>, std::allocator<int>, 256> test_set;
- typedef btree_map<int, int, std::less<int>, std::allocator<int>, 256>
- test_map;
- typedef btree_multiset<int, std::less<int>, std::allocator<int>, 256>
- test_mset;
- typedef btree_multimap<int, int, std::less<int>, std::allocator<int>, 256>
- test_mmap;
- std::vector<int> ivec;
- ivec.push_back(1);
- std::map<int, int> imap;
- imap.insert(std::make_pair(1, 2));
- test_mset tmset(ivec.begin(), ivec.end());
- test_mmap tmmap(imap.begin(), imap.end());
- test_set tset(ivec.begin(), ivec.end());
- test_map tmap(imap.begin(), imap.end());
- EXPECT_EQ(1, tmset.size());
- EXPECT_EQ(1, tmmap.size());
- EXPECT_EQ(1, tset.size());
- EXPECT_EQ(1, tmap.size());
-}
-
-} // namespace
-} // namespace btree
diff --git a/cpp-btree/btree_test.h b/cpp-btree/btree_test.h
deleted file mode 100644
index 413dc3c..0000000
--- a/cpp-btree/btree_test.h
+++ /dev/null
@@ -1,940 +0,0 @@
-// Copyright 2013 Google Inc. All Rights Reserved.
-//
-// Licensed under the Apache License, Version 2.0 (the "License");
-// you may not use this file except in compliance with the License.
-// You may obtain a copy of the License at
-//
-// http://www.apache.org/licenses/LICENSE-2.0
-//
-// Unless required by applicable law or agreed to in writing, software
-// distributed under the License is distributed on an "AS IS" BASIS,
-// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-// See the License for the specific language governing permissions and
-// limitations under the License.
-
-#ifndef UTIL_BTREE_BTREE_TEST_H__
-#define UTIL_BTREE_BTREE_TEST_H__
-
-#include <stdio.h>
-#include <algorithm>
-#include <functional>
-#include <type_traits>
-#include <iosfwd>
-#include <map>
-#include <set>
-#include <sstream>
-#include <string>
-#include <utility>
-#include <vector>
-
-#include "gtest/gtest.h"
-#include "gflags/gflags.h"
-#include "btree_container.h"
-
-DECLARE_int32(test_values);
-DECLARE_int32(benchmark_values);
-
-namespace std {
-
-// Provide operator<< support for std::pair<T, U>.
-template <typename T, typename U>
-ostream& operator<<(ostream &os, const std::pair<T, U> &p) {
- os << "(" << p.first << "," << p.second << ")";
- return os;
-}
-
-// Provide pair equality testing that works as long as x.first is comparable to
-// y.first and x.second is comparable to y.second. Needed in the test for
-// comparing std::pair<T, U> to std::pair<const T, U>.
-template <typename T, typename U, typename V, typename W>
-bool operator==(const std::pair<T, U> &x, const std::pair<V, W> &y) {
- return x.first == y.first && x.second == y.second;
-}
-
-// Partial specialization of remove_const that propagates the removal through
-// std::pair.
-template <typename T, typename U>
-struct remove_const<pair<T, U> > {
- typedef pair<typename remove_const<T>::type,
- typename remove_const<U>::type> type;
-};
-
-} // namespace std
-
-namespace btree {
-
-// Select the first member of a pair.
-template <class _Pair>
-struct select1st : public std::unary_function<_Pair, typename _Pair::first_type> {
- const typename _Pair::first_type& operator()(const _Pair& __x) const {
- return __x.first;
- }
-};
-
-// Utility class to provide an accessor for a key given a value. The default
-// behavior is to treat the value as a pair and return the first element.
-template <typename K, typename V>
-struct KeyOfValue {
- typedef select1st<V> type;
-};
-
-template <typename T>
-struct identity {
- inline const T& operator()(const T& t) const { return t; }
-};
-
-// Partial specialization of KeyOfValue class for when the key and value are
-// the same type such as in set<> and btree_set<>.
-template <typename K>
-struct KeyOfValue<K, K> {
- typedef identity<K> type;
-};
-
-// Counts the number of occurances of "c" in a buffer.
-inline ptrdiff_t strcount(const char* buf_begin, const char* buf_end, char c) {
- if (buf_begin == NULL)
- return 0;
- if (buf_end <= buf_begin)
- return 0;
- ptrdiff_t num = 0;
- for (const char* bp = buf_begin; bp != buf_end; bp++) {
- if (*bp == c)
- num++;
- }
- return num;
-}
-
-// for when the string is not null-terminated.
-inline ptrdiff_t strcount(const char* buf, size_t len, char c) {
- return strcount(buf, buf + len, c);
-}
-
-inline ptrdiff_t strcount(const std::string& buf, char c) {
- return strcount(buf.c_str(), buf.size(), c);
-}
-
-// The base class for a sorted associative container checker. TreeType is the
-// container type to check and CheckerType is the container type to check
-// against. TreeType is expected to be btree_{set,map,multiset,multimap} and
-// CheckerType is expected to be {set,map,multiset,multimap}.
-template <typename TreeType, typename CheckerType>
-class base_checker {
- typedef base_checker<TreeType, CheckerType> self_type;
-
- public:
- typedef typename TreeType::key_type key_type;
- typedef typename TreeType::value_type value_type;
- typedef typename TreeType::key_compare key_compare;
- typedef typename TreeType::pointer pointer;
- typedef typename TreeType::const_pointer const_pointer;
- typedef typename TreeType::reference reference;
- typedef typename TreeType::const_reference const_reference;
- typedef typename TreeType::size_type size_type;
- typedef typename TreeType::difference_type difference_type;
- typedef typename TreeType::iterator iterator;
- typedef typename TreeType::const_iterator const_iterator;
- typedef typename TreeType::reverse_iterator reverse_iterator;
- typedef typename TreeType::const_reverse_iterator const_reverse_iterator;
-
- public:
- // Default constructor.
- base_checker()
- : const_tree_(tree_) {
- }
- // Copy constructor.
- base_checker(const self_type &x)
- : tree_(x.tree_),
- const_tree_(tree_),
- checker_(x.checker_) {
- }
- // Range constructor.
- template <typename InputIterator>
- base_checker(InputIterator b, InputIterator e)
- : tree_(b, e),
- const_tree_(tree_),
- checker_(b, e) {
- }
-
- // Iterator routines.
- iterator begin() { return tree_.begin(); }
- const_iterator begin() const { return tree_.begin(); }
- iterator end() { return tree_.end(); }
- const_iterator end() const { return tree_.end(); }
- reverse_iterator rbegin() { return tree_.rbegin(); }
- const_reverse_iterator rbegin() const { return tree_.rbegin(); }
- reverse_iterator rend() { return tree_.rend(); }
- const_reverse_iterator rend() const { return tree_.rend(); }
-
- // Helper routines.
- template <typename IterType, typename CheckerIterType>
- IterType iter_check(
- IterType tree_iter, CheckerIterType checker_iter) const {
- if (tree_iter == tree_.end()) {
- EXPECT_EQ(checker_iter, checker_.end());
- } else {
- EXPECT_EQ(*tree_iter, *checker_iter);
- }
- return tree_iter;
- }
- template <typename IterType, typename CheckerIterType>
- IterType riter_check(
- IterType tree_iter, CheckerIterType checker_iter) const {
- if (tree_iter == tree_.rend()) {
- EXPECT_EQ(checker_iter, checker_.rend());
- } else {
- EXPECT_EQ(*tree_iter, *checker_iter);
- }
- return tree_iter;
- }
- void value_check(const value_type &x) {
- typename KeyOfValue<typename TreeType::key_type,
- typename TreeType::value_type>::type key_of_value;
- const key_type &key = key_of_value(x);
- EXPECT_EQ(*find(key), x);
- lower_bound(key);
- upper_bound(key);
- equal_range(key);
- count(key);
- }
- void erase_check(const key_type &key) {
- EXPECT_TRUE(tree_.find(key) == const_tree_.end());
- EXPECT_TRUE(const_tree_.find(key) == tree_.end());
- EXPECT_TRUE(tree_.equal_range(key).first ==
- const_tree_.equal_range(key).second);
- }
-
- // Lookup routines.
- iterator lower_bound(const key_type &key) {
- return iter_check(tree_.lower_bound(key), checker_.lower_bound(key));
- }
- const_iterator lower_bound(const key_type &key) const {
- return iter_check(tree_.lower_bound(key), checker_.lower_bound(key));
- }
- iterator upper_bound(const key_type &key) {
- return iter_check(tree_.upper_bound(key), checker_.upper_bound(key));
- }
- const_iterator upper_bound(const key_type &key) const {
- return iter_check(tree_.upper_bound(key), checker_.upper_bound(key));
- }
- std::pair<iterator,iterator> equal_range(const key_type &key) {
- std::pair<typename CheckerType::iterator,
- typename CheckerType::iterator> checker_res =
- checker_.equal_range(key);
- std::pair<iterator, iterator> tree_res = tree_.equal_range(key);
- iter_check(tree_res.first, checker_res.first);
- iter_check(tree_res.second, checker_res.second);
- return tree_res;
- }
- std::pair<const_iterator,const_iterator> equal_range(const key_type &key) const {
- std::pair<typename CheckerType::const_iterator,
- typename CheckerType::const_iterator> checker_res =
- checker_.equal_range(key);
- std::pair<const_iterator, const_iterator> tree_res = tree_.equal_range(key);
- iter_check(tree_res.first, checker_res.first);
- iter_check(tree_res.second, checker_res.second);
- return tree_res;
- }
- iterator find(const key_type &key) {
- return iter_check(tree_.find(key), checker_.find(key));
- }
- const_iterator find(const key_type &key) const {
- return iter_check(tree_.find(key), checker_.find(key));
- }
- size_type count(const key_type &key) const {
- size_type res = checker_.count(key);
- EXPECT_EQ(res, tree_.count(key));
- return res;
- }
-
- // Assignment operator.
- self_type& operator=(const self_type &x) {
- tree_ = x.tree_;
- checker_ = x.checker_;
- return *this;
- }
-
- // Deletion routines.
- int erase(const key_type &key) {
- int size = tree_.size();
- int res = checker_.erase(key);
- EXPECT_EQ(res, tree_.count(key));
- EXPECT_EQ(res, tree_.erase(key));
- EXPECT_EQ(tree_.count(key), 0);
- EXPECT_EQ(tree_.size(), size - res);
- erase_check(key);
- return res;
- }
- iterator erase(iterator iter) {
- key_type key = iter.key();
- int size = tree_.size();
- int count = tree_.count(key);
- typename CheckerType::iterator checker_iter = checker_.find(key);
- for (iterator tmp(tree_.find(key)); tmp != iter; ++tmp) {
- ++checker_iter;
- }
- typename CheckerType::iterator checker_next = checker_iter;
- ++checker_next;
- checker_.erase(checker_iter);
- iter = tree_.erase(iter);
- EXPECT_EQ(tree_.size(), checker_.size());
- EXPECT_EQ(tree_.size(), size - 1);
- EXPECT_EQ(tree_.count(key), count - 1);
- if (count == 1) {
- erase_check(key);
- }
- return iter_check(iter, checker_next);
- }
-
- void erase(iterator begin, iterator end) {
- int size = tree_.size();
- int count = distance(begin, end);
- typename CheckerType::iterator checker_begin = checker_.find(begin.key());
- for (iterator tmp(tree_.find(begin.key())); tmp != begin; ++tmp) {
- ++checker_begin;
- }
- typename CheckerType::iterator checker_end =
- end == tree_.end() ? checker_.end() : checker_.find(end.key());
- if (end != tree_.end()) {
- for (iterator tmp(tree_.find(end.key())); tmp != end; ++tmp) {
- ++checker_end;
- }
- }
- checker_.erase(checker_begin, checker_end);
- tree_.erase(begin, end);
- EXPECT_EQ(tree_.size(), checker_.size());
- EXPECT_EQ(tree_.size(), size - count);
- }
-
- // Utility routines.
- void clear() {
- tree_.clear();
- checker_.clear();
- }
- void swap(self_type &x) {
- tree_.swap(x.tree_);
- checker_.swap(x.checker_);
- }
-
- void verify() const {
- tree_.verify();
- EXPECT_EQ(tree_.size(), checker_.size());
-
- // Move through the forward iterators using increment.
- typename CheckerType::const_iterator
- checker_iter(checker_.begin());
- const_iterator tree_iter(tree_.begin());
- for (; tree_iter != tree_.end();
- ++tree_iter, ++checker_iter) {
- EXPECT_EQ(*tree_iter, *checker_iter);
- }
-
- // Move through the forward iterators using decrement.
- for (int n = tree_.size() - 1; n >= 0; --n) {
- iter_check(tree_iter, checker_iter);
- --tree_iter;
- --checker_iter;
- }
- EXPECT_TRUE(tree_iter == tree_.begin());
- EXPECT_TRUE(checker_iter == checker_.begin());
-
- // Move through the reverse iterators using increment.
- typename CheckerType::const_reverse_iterator
- checker_riter(checker_.rbegin());
- const_reverse_iterator tree_riter(tree_.rbegin());
- for (; tree_riter != tree_.rend();
- ++tree_riter, ++checker_riter) {
- EXPECT_EQ(*tree_riter, *checker_riter);
- }
-
- // Move through the reverse iterators using decrement.
- for (int n = tree_.size() - 1; n >= 0; --n) {
- riter_check(tree_riter, checker_riter);
- --tree_riter;
- --checker_riter;
- }
- EXPECT_EQ(tree_riter, tree_.rbegin());
- EXPECT_EQ(checker_riter, checker_.rbegin());
- }
-
- // Access to the underlying btree.
- const TreeType& tree() const { return tree_; }
-
- // Size routines.
- size_type size() const {
- EXPECT_EQ(tree_.size(), checker_.size());
- return tree_.size();
- }
- size_type max_size() const { return tree_.max_size(); }
- bool empty() const {
- EXPECT_EQ(tree_.empty(), checker_.empty());
- return tree_.empty();
- }
- size_type height() const { return tree_.height(); }
- size_type internal_nodes() const { return tree_.internal_nodes(); }
- size_type leaf_nodes() const { return tree_.leaf_nodes(); }
- size_type nodes() const { return tree_.nodes(); }
- size_type bytes_used() const { return tree_.bytes_used(); }
- double fullness() const { return tree_.fullness(); }
- double overhead() const { return tree_.overhead(); }
-
- protected:
- TreeType tree_;
- const TreeType &const_tree_;
- CheckerType checker_;
-};
-
-// A checker for unique sorted associative containers. TreeType is expected to
-// be btree_{set,map} and CheckerType is expected to be {set,map}.
-template <typename TreeType, typename CheckerType>
-class unique_checker : public base_checker<TreeType, CheckerType> {
- typedef base_checker<TreeType, CheckerType> super_type;
- typedef unique_checker<TreeType, CheckerType> self_type;
-
- public:
- typedef typename super_type::iterator iterator;
- typedef typename super_type::value_type value_type;
-
- public:
- // Default constructor.
- unique_checker()
- : super_type() {
- }
- // Copy constructor.
- unique_checker(const self_type &x)
- : super_type(x) {
- }
- // Range constructor.
- template <class InputIterator>
- unique_checker(InputIterator b, InputIterator e)
- : super_type(b, e) {
- }
-
- // Insertion routines.
- std::pair<iterator,bool> insert(const value_type &x) {
- int size = this->tree_.size();
- std::pair<typename CheckerType::iterator,bool> checker_res =
- this->checker_.insert(x);
- std::pair<iterator,bool> tree_res = this->tree_.insert(x);
- EXPECT_EQ(*tree_res.first, *checker_res.first);
- EXPECT_EQ(tree_res.second, checker_res.second);
- EXPECT_EQ(this->tree_.size(), this->checker_.size());
- EXPECT_EQ(this->tree_.size(), size + tree_res.second);
- return tree_res;
- }
- iterator insert(iterator position, const value_type &x) {
- int size = this->tree_.size();
- std::pair<typename CheckerType::iterator,bool> checker_res =
- this->checker_.insert(x);
- iterator tree_res = this->tree_.insert(position, x);
- EXPECT_EQ(*tree_res, *checker_res.first);
- EXPECT_EQ(this->tree_.size(), this->checker_.size());
- EXPECT_EQ(this->tree_.size(), size + checker_res.second);
- return tree_res;
- }
- template <typename InputIterator>
- void insert(InputIterator b, InputIterator e) {
- for (; b != e; ++b) {
- insert(*b);
- }
- }
-};
-
-// A checker for multiple sorted associative containers. TreeType is expected
-// to be btree_{multiset,multimap} and CheckerType is expected to be
-// {multiset,multimap}.
-template <typename TreeType, typename CheckerType>
-class multi_checker : public base_checker<TreeType, CheckerType> {
- typedef base_checker<TreeType, CheckerType> super_type;
- typedef multi_checker<TreeType, CheckerType> self_type;
-
- public:
- typedef typename super_type::iterator iterator;
- typedef typename super_type::value_type value_type;
-
- public:
- // Default constructor.
- multi_checker()
- : super_type() {
- }
- // Copy constructor.
- multi_checker(const self_type &x)
- : super_type(x) {
- }
- // Range constructor.
- template <class InputIterator>
- multi_checker(InputIterator b, InputIterator e)
- : super_type(b, e) {
- }
-
- // Insertion routines.
- iterator insert(const value_type &x) {
- int size = this->tree_.size();
- typename CheckerType::iterator checker_res = this->checker_.insert(x);
- iterator tree_res = this->tree_.insert(x);
- EXPECT_EQ(*tree_res, *checker_res);
- EXPECT_EQ(this->tree_.size(), this->checker_.size());
- EXPECT_EQ(this->tree_.size(), size + 1);
- return tree_res;
- }
- iterator insert(iterator position, const value_type &x) {
- int size = this->tree_.size();
- typename CheckerType::iterator checker_res = this->checker_.insert(x);
- iterator tree_res = this->tree_.insert(position, x);
- EXPECT_EQ(*tree_res, *checker_res);
- EXPECT_EQ(this->tree_.size(), this->checker_.size());
- EXPECT_EQ(this->tree_.size(), size + 1);
- return tree_res;
- }
- template <typename InputIterator>
- void insert(InputIterator b, InputIterator e) {
- for (; b != e; ++b) {
- insert(*b);
- }
- }
-};
-
-char* GenerateDigits(char buf[16], int val, int maxval) {
- EXPECT_LE(val, maxval);
- int p = 15;
- buf[p--] = 0;
- while (maxval > 0) {
- buf[p--] = '0' + (val % 10);
- val /= 10;
- maxval /= 10;
- }
- return buf + p + 1;
-}
-
-template <typename K>
-struct Generator {
- int maxval;
- Generator(int m)
- : maxval(m) {
- }
- K operator()(int i) const {
- EXPECT_LE(i, maxval);
- return i;
- }
-};
-
-template <>
-struct Generator<std::string> {
- int maxval;
- Generator(int m)
- : maxval(m) {
- }
- std::string operator()(int i) const {
- char buf[16];
- return GenerateDigits(buf, i, maxval);
- }
-};
-
-template <typename T, typename U>
-struct Generator<std::pair<T, U> > {
- Generator<typename std::remove_const<T>::type> tgen;
- Generator<typename std::remove_const<U>::type> ugen;
-
- Generator(int m)
- : tgen(m),
- ugen(m) {
- }
- std::pair<T, U> operator()(int i) const {
- return std::make_pair(tgen(i), ugen(i));
- }
-};
-
-// Generate values for our tests and benchmarks. Value range is [0, maxval].
-const std::vector<int>& GenerateNumbers(int n, int maxval) {
- static std::vector<int> values;
- static std::set<int> unique_values;
-
- if (values.size() < n) {
-
- for (int i = values.size(); i < n; i++) {
- int value;
- do {
- value = rand() % (maxval + 1);
- } while (unique_values.find(value) != unique_values.end());
-
- values.push_back(value);
- unique_values.insert(value);
- }
- }
-
- return values;
-}
-
-// Generates values in the range
-// [0, 4 * min(FLAGS_benchmark_values, FLAGS_test_values)]
-template <typename V>
-std::vector<V> GenerateValues(int n) {
- int two_times_max = 2 * std::max(FLAGS_benchmark_values, FLAGS_test_values);
- int four_times_max = 2 * two_times_max;
- EXPECT_LE(n, two_times_max);
- const std::vector<int> &nums = GenerateNumbers(n, four_times_max);
- Generator<V> gen(four_times_max);
- std::vector<V> vec;
-
- for (int i = 0; i < n; i++) {
- vec.push_back(gen(nums[i]));
- }
-
- return vec;
-}
-
-template <typename T, typename V>
-void DoTest(const char *name, T *b, const std::vector<V> &values) {
- typename KeyOfValue<typename T::key_type, V>::type key_of_value;
-
- T &mutable_b = *b;
- const T &const_b = *b;
-
- // Test insert.
- for (int i = 0; i < values.size(); ++i) {
- mutable_b.insert(values[i]);
- mutable_b.value_check(values[i]);
- }
- assert(mutable_b.size() == values.size());
-
- const_b.verify();
- printf(" %s fullness=%0.2f overhead=%0.2f bytes-per-value=%0.2f\n",
- name, const_b.fullness(), const_b.overhead(),
- double(const_b.bytes_used()) / const_b.size());
-
- // Test copy constructor.
- T b_copy(const_b);
- EXPECT_EQ(b_copy.size(), const_b.size());
- EXPECT_LE(b_copy.height(), const_b.height());
- EXPECT_LE(b_copy.internal_nodes(), const_b.internal_nodes());
- EXPECT_LE(b_copy.leaf_nodes(), const_b.leaf_nodes());
- for (int i = 0; i < values.size(); ++i) {
- EXPECT_EQ(*b_copy.find(key_of_value(values[i])), values[i]);
- }
-
- // Test range constructor.
- T b_range(const_b.begin(), const_b.end());
- EXPECT_EQ(b_range.size(), const_b.size());
- EXPECT_LE(b_range.height(), const_b.height());
- EXPECT_LE(b_range.internal_nodes(), const_b.internal_nodes());
- EXPECT_LE(b_range.leaf_nodes(), const_b.leaf_nodes());
- for (int i = 0; i < values.size(); ++i) {
- EXPECT_EQ(*b_range.find(key_of_value(values[i])), values[i]);
- }
-
- // Test range insertion for values that already exist.
- b_range.insert(b_copy.begin(), b_copy.end());
- b_range.verify();
-
- // Test range insertion for new values.
- b_range.clear();
- b_range.insert(b_copy.begin(), b_copy.end());
- EXPECT_EQ(b_range.size(), b_copy.size());
- EXPECT_EQ(b_range.height(), b_copy.height());
- EXPECT_EQ(b_range.internal_nodes(), b_copy.internal_nodes());
- EXPECT_EQ(b_range.leaf_nodes(), b_copy.leaf_nodes());
- for (int i = 0; i < values.size(); ++i) {
- EXPECT_EQ(*b_range.find(key_of_value(values[i])), values[i]);
- }
-
- // Test assignment to self. Nothing should change.
- b_range.operator=(b_range);
- EXPECT_EQ(b_range.size(), b_copy.size());
- EXPECT_EQ(b_range.height(), b_copy.height());
- EXPECT_EQ(b_range.internal_nodes(), b_copy.internal_nodes());
- EXPECT_EQ(b_range.leaf_nodes(), b_copy.leaf_nodes());
-
- // Test assignment of new values.
- b_range.clear();
- b_range = b_copy;
- EXPECT_EQ(b_range.size(), b_copy.size());
- EXPECT_EQ(b_range.height(), b_copy.height());
- EXPECT_EQ(b_range.internal_nodes(), b_copy.internal_nodes());
- EXPECT_EQ(b_range.leaf_nodes(), b_copy.leaf_nodes());
-
- // Test swap.
- b_range.clear();
- b_range.swap(b_copy);
- EXPECT_EQ(b_copy.size(), 0);
- EXPECT_EQ(b_range.size(), const_b.size());
- for (int i = 0; i < values.size(); ++i) {
- EXPECT_EQ(*b_range.find(key_of_value(values[i])), values[i]);
- }
- b_range.swap(b_copy);
-
- // Test erase via values.
- for (int i = 0; i < values.size(); ++i) {
- mutable_b.erase(key_of_value(values[i]));
- // Erasing a non-existent key should have no effect.
- EXPECT_EQ(mutable_b.erase(key_of_value(values[i])), 0);
- }
-
- const_b.verify();
- EXPECT_EQ(const_b.internal_nodes(), 0);
- EXPECT_EQ(const_b.leaf_nodes(), 0);
- EXPECT_EQ(const_b.size(), 0);
-
- // Test erase via iterators.
- mutable_b = b_copy;
- for (int i = 0; i < values.size(); ++i) {
- mutable_b.erase(mutable_b.find(key_of_value(values[i])));
- }
-
- const_b.verify();
- EXPECT_EQ(const_b.internal_nodes(), 0);
- EXPECT_EQ(const_b.leaf_nodes(), 0);
- EXPECT_EQ(const_b.size(), 0);
-
- // Test insert with hint.
- for (int i = 0; i < values.size(); i++) {
- mutable_b.insert(mutable_b.upper_bound(key_of_value(values[i])), values[i]);
- }
-
- const_b.verify();
-
- // Test dumping of the btree to an ostream. There should be 1 line for each
- // value.
- std::stringstream strm;
- strm << mutable_b.tree();
- EXPECT_EQ(mutable_b.size(), strcount(strm.str(), '\n'));
-
- // Test range erase.
- mutable_b.erase(mutable_b.begin(), mutable_b.end());
- EXPECT_EQ(mutable_b.size(), 0);
- const_b.verify();
-
- // First half.
- mutable_b = b_copy;
- typename T::iterator mutable_iter_end = mutable_b.begin();
- for (int i = 0; i < values.size() / 2; ++i) ++mutable_iter_end;
- mutable_b.erase(mutable_b.begin(), mutable_iter_end);
- EXPECT_EQ(mutable_b.size(), values.size() - values.size() / 2);
- const_b.verify();
-
- // Second half.
- mutable_b = b_copy;
- typename T::iterator mutable_iter_begin = mutable_b.begin();
- for (int i = 0; i < values.size() / 2; ++i) ++mutable_iter_begin;
- mutable_b.erase(mutable_iter_begin, mutable_b.end());
- EXPECT_EQ(mutable_b.size(), values.size() / 2);
- const_b.verify();
-
- // Second quarter.
- mutable_b = b_copy;
- mutable_iter_begin = mutable_b.begin();
- for (int i = 0; i < values.size() / 4; ++i) ++mutable_iter_begin;
- mutable_iter_end = mutable_iter_begin;
- for (int i = 0; i < values.size() / 4; ++i) ++mutable_iter_end;
- mutable_b.erase(mutable_iter_begin, mutable_iter_end);
- EXPECT_EQ(mutable_b.size(), values.size() - values.size() / 4);
- const_b.verify();
-
- mutable_b.clear();
-}
-
-template <typename T>
-void ConstTest() {
- typedef typename T::value_type value_type;
- typename KeyOfValue<typename T::key_type, value_type>::type key_of_value;
-
- T mutable_b;
- const T &const_b = mutable_b;
-
- // Insert a single value into the container and test looking it up.
- value_type value = Generator<value_type>(2)(2);
- mutable_b.insert(value);
- EXPECT_TRUE(mutable_b.find(key_of_value(value)) != const_b.end());
- EXPECT_TRUE(const_b.find(key_of_value(value)) != mutable_b.end());
- EXPECT_EQ(*const_b.lower_bound(key_of_value(value)), value);
- EXPECT_TRUE(const_b.upper_bound(key_of_value(value)) == const_b.end());
- EXPECT_EQ(*const_b.equal_range(key_of_value(value)).first, value);
-
- // We can only create a non-const iterator from a non-const container.
- typename T::iterator mutable_iter(mutable_b.begin());
- EXPECT_TRUE(mutable_iter == const_b.begin());
- EXPECT_TRUE(mutable_iter != const_b.end());
- EXPECT_TRUE(const_b.begin() == mutable_iter);
- EXPECT_TRUE(const_b.end() != mutable_iter);
- typename T::reverse_iterator mutable_riter(mutable_b.rbegin());
- EXPECT_TRUE(mutable_riter == const_b.rbegin());
- EXPECT_TRUE(mutable_riter != const_b.rend());
- EXPECT_TRUE(const_b.rbegin() == mutable_riter);
- EXPECT_TRUE(const_b.rend() != mutable_riter);
-
- // We can create a const iterator from a non-const iterator.
- typename T::const_iterator const_iter(mutable_iter);
- EXPECT_TRUE(const_iter == mutable_b.begin());
- EXPECT_TRUE(const_iter != mutable_b.end());
- EXPECT_TRUE(mutable_b.begin() == const_iter);
- EXPECT_TRUE(mutable_b.end() != const_iter);
- typename T::const_reverse_iterator const_riter(mutable_riter);
- EXPECT_EQ(const_riter, mutable_b.rbegin());
- EXPECT_TRUE(const_riter != mutable_b.rend());
- EXPECT_EQ(mutable_b.rbegin(), const_riter);
- EXPECT_TRUE(mutable_b.rend() != const_riter);
-
- // Make sure various methods can be invoked on a const container.
- const_b.verify();
- EXPECT_FALSE(const_b.empty());
- EXPECT_EQ(const_b.size(), 1);
- EXPECT_GT(const_b.max_size(), 0);
- EXPECT_EQ(const_b.height(), 1);
- EXPECT_EQ(const_b.count(key_of_value(value)), 1);
- EXPECT_EQ(const_b.internal_nodes(), 0);
- EXPECT_EQ(const_b.leaf_nodes(), 1);
- EXPECT_EQ(const_b.nodes(), 1);
- EXPECT_GT(const_b.bytes_used(), 0);
- EXPECT_GT(const_b.fullness(), 0);
- EXPECT_GT(const_b.overhead(), 0);
-}
-
-template <typename T, typename C>
-void BtreeTest() {
- ConstTest<T>();
-
- typedef typename std::remove_const<typename T::value_type>::type V;
- std::vector<V> random_values = GenerateValues<V>(FLAGS_test_values);
-
- unique_checker<T, C> container;
-
- // Test key insertion/deletion in sorted order.
- std::vector<V> sorted_values(random_values);
- sort(sorted_values.begin(), sorted_values.end());
- DoTest("sorted: ", &container, sorted_values);
-
- // Test key insertion/deletion in reverse sorted order.
- reverse(sorted_values.begin(), sorted_values.end());
- DoTest("rsorted: ", &container, sorted_values);
-
- // Test key insertion/deletion in random order.
- DoTest("random: ", &container, random_values);
-}
-
-template <typename T, typename C>
-void BtreeMultiTest() {
- ConstTest<T>();
-
- typedef typename std::remove_const<typename T::value_type>::type V;
- const std::vector<V>& random_values = GenerateValues<V>(FLAGS_test_values);
-
- multi_checker<T, C> container;
-
- // Test keys in sorted order.
- std::vector<V> sorted_values(random_values);
- sort(sorted_values.begin(), sorted_values.end());
- DoTest("sorted: ", &container, sorted_values);
-
- // Test keys in reverse sorted order.
- reverse(sorted_values.begin(), sorted_values.end());
- DoTest("rsorted: ", &container, sorted_values);
-
- // Test keys in random order.
- DoTest("random: ", &container, random_values);
-
- // Test keys in random order w/ duplicates.
- std::vector<V> duplicate_values(random_values);
- duplicate_values.insert(
- duplicate_values.end(), random_values.begin(), random_values.end());
- DoTest("duplicates:", &container, duplicate_values);
-
- // Test all identical keys.
- std::vector<V> identical_values(100);
- fill(identical_values.begin(), identical_values.end(), Generator<V>(2)(2));
- DoTest("identical: ", &container, identical_values);
-}
-
-template <typename T, typename Alloc = std::allocator<T> >
-class TestAllocator : public Alloc {
- public:
- typedef typename Alloc::pointer pointer;
- typedef typename Alloc::size_type size_type;
-
- TestAllocator() : bytes_used_(NULL) { }
- TestAllocator(int64_t *bytes_used) : bytes_used_(bytes_used) { }
-
- // Constructor used for rebinding
- template <class U>
- TestAllocator(const TestAllocator<U>& x)
- : Alloc(x),
- bytes_used_(x.bytes_used()) {
- }
-
- pointer allocate(size_type n, std::allocator<void>::const_pointer hint = 0) {
- EXPECT_TRUE(bytes_used_ != NULL);
- *bytes_used_ += n * sizeof(T);
- return Alloc::allocate(n, hint);
- }
-
- void deallocate(pointer p, size_type n) {
- Alloc::deallocate(p, n);
- EXPECT_TRUE(bytes_used_ != NULL);
- *bytes_used_ -= n * sizeof(T);
- }
-
- // Rebind allows an allocator<T> to be used for a different type
- template <class U> struct rebind {
- typedef TestAllocator<U, typename Alloc::template rebind<U>::other> other;
- };
-
- int64_t* bytes_used() const { return bytes_used_; }
-
- private:
- int64_t *bytes_used_;
-};
-
-template <typename T>
-void BtreeAllocatorTest() {
- typedef typename T::value_type value_type;
-
- int64_t alloc1 = 0;
- int64_t alloc2 = 0;
- T b1(typename T::key_compare(), &alloc1);
- T b2(typename T::key_compare(), &alloc2);
-
- // This should swap the allocators!
- swap(b1, b2);
-
- for (int i = 0; i < 1000; i++) {
- b1.insert(Generator<value_type>(1000)(i));
- }
-
- // We should have allocated out of alloc2!
- EXPECT_LE(b1.bytes_used(), alloc2 + sizeof(b1));
- EXPECT_GT(alloc2, alloc1);
-}
-
-template <typename T>
-void BtreeMapTest() {
- typedef typename T::value_type value_type;
- typedef typename T::mapped_type mapped_type;
-
- mapped_type m = Generator<mapped_type>(0)(0);
- (void) m;
-
- T b;
-
- // Verify we can insert using operator[].
- for (int i = 0; i < 1000; i++) {
- value_type v = Generator<value_type>(1000)(i);
- b[v.first] = v.second;
- }
- EXPECT_EQ(b.size(), 1000);
-
- // Test whether we can use the "->" operator on iterators and
- // reverse_iterators. This stresses the btree_map_params::pair_pointer
- // mechanism.
- EXPECT_EQ(b.begin()->first, Generator<value_type>(1000)(0).first);
- EXPECT_EQ(b.begin()->second, Generator<value_type>(1000)(0).second);
- EXPECT_EQ(b.rbegin()->first, Generator<value_type>(1000)(999).first);
- EXPECT_EQ(b.rbegin()->second, Generator<value_type>(1000)(999).second);
-}
-
-template <typename T>
-void BtreeMultiMapTest() {
- typedef typename T::mapped_type mapped_type;
- mapped_type m = Generator<mapped_type>(0)(0);
- (void) m;
-}
-
-} // namespace btree
-
-#endif // UTIL_BTREE_BTREE_TEST_H__
diff --git a/cpp-btree/btree_test_flags.cc b/cpp-btree/btree_test_flags.cc
deleted file mode 100644
index bf608a9..0000000
--- a/cpp-btree/btree_test_flags.cc
+++ /dev/null
@@ -1,20 +0,0 @@
-// Copyright 2013 Google Inc. All Rights Reserved.
-//
-// Licensed under the Apache License, Version 2.0 (the "License");
-// you may not use this file except in compliance with the License.
-// You may obtain a copy of the License at
-//
-// http://www.apache.org/licenses/LICENSE-2.0
-//
-// Unless required by applicable law or agreed to in writing, software
-// distributed under the License is distributed on an "AS IS" BASIS,
-// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-// See the License for the specific language governing permissions and
-// limitations under the License.
-
-#include "gflags/gflags.h"
-
-DEFINE_int32(test_values, 10000,
- "The number of values to use for tests.");
-DEFINE_int32(benchmark_values, 1000000,
- "The number of values to use for benchmarks.");
diff --git a/cpp-btree/safe_btree.h b/cpp-btree/safe_btree.h
deleted file mode 100644
index 2d85c70..0000000
--- a/cpp-btree/safe_btree.h
+++ /dev/null
@@ -1,395 +0,0 @@
-// Copyright 2013 Google Inc. All Rights Reserved.
-//
-// Licensed under the Apache License, Version 2.0 (the "License");
-// you may not use this file except in compliance with the License.
-// You may obtain a copy of the License at
-//
-// http://www.apache.org/licenses/LICENSE-2.0
-//
-// Unless required by applicable law or agreed to in writing, software
-// distributed under the License is distributed on an "AS IS" BASIS,
-// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-// See the License for the specific language governing permissions and
-// limitations under the License.
-//
-// A safe_btree<> wraps around a btree<> and removes the caveat that insertion
-// and deletion invalidate iterators. A safe_btree<> maintains a generation
-// number that is incremented on every mutation. A safe_btree<>::iterator keeps
-// a pointer to the safe_btree<> it came from, the generation of the tree when
-// it was last validated and the key the underlying btree<>::iterator points
-// to. If an iterator is accessed and its generation differs from the tree
-// generation it is revalidated.
-//
-// References and pointers returned by safe_btree iterators are not safe.
-//
-// See the incorrect usage examples mentioned in safe_btree_set.h and
-// safe_btree_map.h.
-
-#ifndef UTIL_BTREE_SAFE_BTREE_H__
-#define UTIL_BTREE_SAFE_BTREE_H__
-
-#include <stddef.h>
-#include <iosfwd>
-#include <utility>
-
-#include "btree.h"
-
-namespace btree {
-
-template <typename Tree, typename Iterator>
-class safe_btree_iterator {
- public:
- typedef typename Iterator::key_type key_type;
- typedef typename Iterator::value_type value_type;
- typedef typename Iterator::size_type size_type;
- typedef typename Iterator::difference_type difference_type;
- typedef typename Iterator::pointer pointer;
- typedef typename Iterator::reference reference;
- typedef typename Iterator::const_pointer const_pointer;
- typedef typename Iterator::const_reference const_reference;
- typedef typename Iterator::iterator_category iterator_category;
- typedef typename Tree::iterator iterator;
- typedef typename Tree::const_iterator const_iterator;
- typedef safe_btree_iterator<Tree, Iterator> self_type;
-
- void update() const {
- if (iter_ != tree_->internal_btree()->end()) {
- // A positive generation indicates a valid key.
- generation_ = tree_->generation();
- key_ = iter_.key();
- } else {
- // Use a negative generation to indicate iter_ points to end().
- generation_ = -tree_->generation();
- }
- }
-
- public:
- safe_btree_iterator()
- : generation_(0),
- key_(),
- iter_(),
- tree_(NULL) {
- }
- safe_btree_iterator(const iterator &x)
- : generation_(x.generation()),
- key_(x.key()),
- iter_(x.iter()),
- tree_(x.tree()) {
- }
- safe_btree_iterator(Tree *tree, const Iterator &iter)
- : generation_(),
- key_(),
- iter_(iter),
- tree_(tree) {
- update();
- }
-
- Tree* tree() const { return tree_; }
- int64_t generation() const { return generation_; }
-
- Iterator* mutable_iter() const {
- if (generation_ != tree_->generation()) {
- if (generation_ > 0) {
- // This does the wrong thing for a multi{set,map}. If my iter was
- // pointing to the 2nd of 2 values with the same key, then this will
- // reset it to point to the first. This is why we don't provide a
- // safe_btree_multi{set,map}.
- iter_ = tree_->internal_btree()->lower_bound(key_);
- update();
- } else if (-generation_ != tree_->generation()) {
- iter_ = tree_->internal_btree()->end();
- generation_ = -tree_->generation();
- }
- }
- return &iter_;
- }
- const Iterator& iter() const {
- return *mutable_iter();
- }
-
- // Equality/inequality operators.
- bool operator==(const const_iterator &x) const {
- return iter() == x.iter();
- }
- bool operator!=(const const_iterator &x) const {
- return iter() != x.iter();
- }
-
- // Accessors for the key/value the iterator is pointing at.
- const key_type& key() const {
- return key_;
- }
- // This reference value is potentially invalidated by any non-const
- // method on the tree; it is NOT safe.
- reference operator*() const {
- assert(generation_ > 0);
- return iter().operator*();
- }
- // This pointer value is potentially invalidated by any non-const
- // method on the tree; it is NOT safe.
- pointer operator->() const {
- assert(generation_ > 0);
- return iter().operator->();
- }
-
- // Increment/decrement operators.
- self_type& operator++() {
- ++(*mutable_iter());
- update();
- return *this;
- }
- self_type& operator--() {
- --(*mutable_iter());
- update();
- return *this;
- }
- self_type operator++(int) {
- self_type tmp = *this;
- ++*this;
- return tmp;
- }
- self_type operator--(int) {
- self_type tmp = *this;
- --*this;
- return tmp;
- }
-
- private:
- // The generation of the tree when "iter" was updated.
- mutable int64_t generation_;
- // The key the iterator points to.
- mutable key_type key_;
- // The underlying iterator.
- mutable Iterator iter_;
- // The tree the iterator is associated with.
- Tree *tree_;
-};
-
-template <typename Params>
-class safe_btree {
- typedef safe_btree<Params> self_type;
-
- typedef btree<Params> btree_type;
- typedef typename btree_type::iterator tree_iterator;
- typedef typename btree_type::const_iterator tree_const_iterator;
-
- public:
- typedef typename btree_type::params_type params_type;
- typedef typename btree_type::key_type key_type;
- typedef typename btree_type::data_type data_type;
- typedef typename btree_type::mapped_type mapped_type;
- typedef typename btree_type::value_type value_type;
- typedef typename btree_type::key_compare key_compare;
- typedef typename btree_type::allocator_type allocator_type;
- typedef typename btree_type::pointer pointer;
- typedef typename btree_type::const_pointer const_pointer;
- typedef typename btree_type::reference reference;
- typedef typename btree_type::const_reference const_reference;
- typedef typename btree_type::size_type size_type;
- typedef typename btree_type::difference_type difference_type;
- typedef safe_btree_iterator<self_type, tree_iterator> iterator;
- typedef safe_btree_iterator<
- const self_type, tree_const_iterator> const_iterator;
- typedef std::reverse_iterator<const_iterator> const_reverse_iterator;
- typedef std::reverse_iterator<iterator> reverse_iterator;
-
- public:
- // Default constructor.
- safe_btree(const key_compare &comp, const allocator_type &alloc)
- : tree_(comp, alloc),
- generation_(1) {
- }
-
- // Copy constructor.
- safe_btree(const self_type &x)
- : tree_(x.tree_),
- generation_(1) {
- }
-
- iterator begin() {
- return iterator(this, tree_.begin());
- }
- const_iterator begin() const {
- return const_iterator(this, tree_.begin());
- }
- iterator end() {
- return iterator(this, tree_.end());
- }
- const_iterator end() const {
- return const_iterator(this, tree_.end());
- }
- reverse_iterator rbegin() {
- return reverse_iterator(end());
- }
- const_reverse_iterator rbegin() const {
- return const_reverse_iterator(end());
- }
- reverse_iterator rend() {
- return reverse_iterator(begin());
- }
- const_reverse_iterator rend() const {
- return const_reverse_iterator(begin());
- }
-
- // Lookup routines.
- iterator lower_bound(const key_type &key) {
- return iterator(this, tree_.lower_bound(key));
- }
- const_iterator lower_bound(const key_type &key) const {
- return const_iterator(this, tree_.lower_bound(key));
- }
- iterator upper_bound(const key_type &key) {
- return iterator(this, tree_.upper_bound(key));
- }
- const_iterator upper_bound(const key_type &key) const {
- return const_iterator(this, tree_.upper_bound(key));
- }
- std::pair<iterator, iterator> equal_range(const key_type &key) {
- std::pair<tree_iterator, tree_iterator> p = tree_.equal_range(key);
- return std::make_pair(iterator(this, p.first),
- iterator(this, p.second));
- }
- std::pair<const_iterator, const_iterator> equal_range(const key_type &key) const {
- std::pair<tree_const_iterator, tree_const_iterator> p = tree_.equal_range(key);
- return std::make_pair(const_iterator(this, p.first),
- const_iterator(this, p.second));
- }
- iterator find_unique(const key_type &key) {
- return iterator(this, tree_.find_unique(key));
- }
- const_iterator find_unique(const key_type &key) const {
- return const_iterator(this, tree_.find_unique(key));
- }
- iterator find_multi(const key_type &key) {
- return iterator(this, tree_.find_multi(key));
- }
- const_iterator find_multi(const key_type &key) const {
- return const_iterator(this, tree_.find_multi(key));
- }
- size_type count_unique(const key_type &key) const {
- return tree_.count_unique(key);
- }
- size_type count_multi(const key_type &key) const {
- return tree_.count_multi(key);
- }
-
- // Insertion routines.
- template <typename ValuePointer>
- std::pair<iterator, bool> insert_unique(const key_type &key, ValuePointer value) {
- std::pair<tree_iterator, bool> p = tree_.insert_unique(key, value);
- generation_ += p.second;
- return std::make_pair(iterator(this, p.first), p.second);
- }
- std::pair<iterator, bool> insert_unique(const value_type &v) {
- std::pair<tree_iterator, bool> p = tree_.insert_unique(v);
- generation_ += p.second;
- return std::make_pair(iterator(this, p.first), p.second);
- }
- iterator insert_unique(iterator position, const value_type &v) {
- tree_iterator tree_pos = position.iter();
- ++generation_;
- return iterator(this, tree_.insert_unique(tree_pos, v));
- }
- template <typename InputIterator>
- void insert_unique(InputIterator b, InputIterator e) {
- for (; b != e; ++b) {
- insert_unique(*b);
- }
- }
- iterator insert_multi(const value_type &v) {
- ++generation_;
- return iterator(this, tree_.insert_multi(v));
- }
- iterator insert_multi(iterator position, const value_type &v) {
- tree_iterator tree_pos = position.iter();
- ++generation_;
- return iterator(this, tree_.insert_multi(tree_pos, v));
- }
- template <typename InputIterator>
- void insert_multi(InputIterator b, InputIterator e) {
- for (; b != e; ++b) {
- insert_multi(*b);
- }
- }
- self_type& operator=(const self_type &x) {
- if (&x == this) {
- // Don't copy onto ourselves.
- return *this;
- }
- ++generation_;
- tree_ = x.tree_;
- return *this;
- }
-
- // Deletion routines.
- void erase(const iterator &begin, const iterator &end) {
- tree_.erase(begin.iter(), end.iter());
- ++generation_;
- }
- // Erase the specified iterator from the btree. The iterator must be valid
- // (i.e. not equal to end()). Return an iterator pointing to the node after
- // the one that was erased (or end() if none exists).
- iterator erase(iterator iter) {
- tree_iterator res = tree_.erase(iter.iter());
- ++generation_;
- return iterator(this, res);
- }
- int erase_unique(const key_type &key) {
- int res = tree_.erase_unique(key);
- generation_ += res;
- return res;
- }
- int erase_multi(const key_type &key) {
- int res = tree_.erase_multi(key);
- generation_ += res;
- return res;
- }
-
- // Access to the underlying btree.
- btree_type* internal_btree() { return &tree_; }
- const btree_type* internal_btree() const { return &tree_; }
-
- // Utility routines.
- void clear() {
- ++generation_;
- tree_.clear();
- }
- void swap(self_type &x) {
- ++generation_;
- ++x.generation_;
- tree_.swap(x.tree_);
- }
- void dump(std::ostream &os) const {
- tree_.dump(os);
- }
- void verify() const {
- tree_.verify();
- }
- int64_t generation() const {
- return generation_;
- }
- key_compare key_comp() const { return tree_.key_comp(); }
-
- // Size routines.
- size_type size() const { return tree_.size(); }
- size_type max_size() const { return tree_.max_size(); }
- bool empty() const { return tree_.empty(); }
- size_type height() const { return tree_.height(); }
- size_type internal_nodes() const { return tree_.internal_nodes(); }
- size_type leaf_nodes() const { return tree_.leaf_nodes(); }
- size_type nodes() const { return tree_.nodes(); }
- size_type bytes_used() const { return tree_.bytes_used(); }
- static double average_bytes_per_value() {
- return btree_type::average_bytes_per_value();
- }
- double fullness() const { return tree_.fullness(); }
- double overhead() const { return tree_.overhead(); }
-
- private:
- btree_type tree_;
- int64_t generation_;
-};
-
-} // namespace btree
-
-#endif // UTIL_BTREE_SAFE_BTREE_H__
diff --git a/cpp-btree/safe_btree_map.h b/cpp-btree/safe_btree_map.h
deleted file mode 100644
index a0668f1..0000000
--- a/cpp-btree/safe_btree_map.h
+++ /dev/null
@@ -1,89 +0,0 @@
-// Copyright 2013 Google Inc. All Rights Reserved.
-//
-// Licensed under the Apache License, Version 2.0 (the "License");
-// you may not use this file except in compliance with the License.
-// You may obtain a copy of the License at
-//
-// http://www.apache.org/licenses/LICENSE-2.0
-//
-// Unless required by applicable law or agreed to in writing, software
-// distributed under the License is distributed on an "AS IS" BASIS,
-// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-// See the License for the specific language governing permissions and
-// limitations under the License.
-//
-// The safe_btree_map<> is like btree_map<> except that it removes the caveat
-// about insertion and deletion invalidating existing iterators at a small cost
-// in making iterators larger and slower.
-//
-// Revalidation occurs whenever an iterator is accessed. References
-// and pointers returned by safe_btree_map<> iterators are not stable,
-// they are potentially invalidated by any non-const method on the map.
-//
-// BEGIN INCORRECT EXAMPLE
-// for (auto i = safe_map->begin(); i != safe_map->end(); ++i) {
-// const T *value = &i->second; // DO NOT DO THIS
-// [code that modifies safe_map and uses value];
-// }
-// END INCORRECT EXAMPLE
-#ifndef UTIL_BTREE_SAFE_BTREE_MAP_H__
-#define UTIL_BTREE_SAFE_BTREE_MAP_H__
-
-#include <functional>
-#include <memory>
-#include <utility>
-
-#include "btree_container.h"
-#include "btree_map.h"
-#include "safe_btree.h"
-
-namespace btree {
-
-// The safe_btree_map class is needed mainly for its constructors.
-template <typename Key, typename Value,
- typename Compare = std::less<Key>,
- typename Alloc = std::allocator<std::pair<const Key, Value> >,
- int TargetNodeSize = 256>
-class safe_btree_map : public btree_map_container<
- safe_btree<btree_map_params<Key, Value, Compare, Alloc, TargetNodeSize> > > {
-
- typedef safe_btree_map<Key, Value, Compare, Alloc, TargetNodeSize> self_type;
- typedef btree_map_params<
- Key, Value, Compare, Alloc, TargetNodeSize> params_type;
- typedef safe_btree<params_type> btree_type;
- typedef btree_map_container<btree_type> super_type;
-
- public:
- typedef typename btree_type::key_compare key_compare;
- typedef typename btree_type::allocator_type allocator_type;
-
- public:
- // Default constructor.
- safe_btree_map(const key_compare &comp = key_compare(),
- const allocator_type &alloc = allocator_type())
- : super_type(comp, alloc) {
- }
-
- // Copy constructor.
- safe_btree_map(const self_type &x)
- : super_type(x) {
- }
-
- // Range constructor.
- template <class InputIterator>
- safe_btree_map(InputIterator b, InputIterator e,
- const key_compare &comp = key_compare(),
- const allocator_type &alloc = allocator_type())
- : super_type(b, e, comp, alloc) {
- }
-};
-
-template <typename K, typename V, typename C, typename A, int N>
-inline void swap(safe_btree_map<K, V, C, A, N> &x,
- safe_btree_map<K, V, C, A, N> &y) {
- x.swap(y);
-}
-
-} // namespace btree
-
-#endif // UTIL_BTREE_SAFE_BTREE_MAP_H__
diff --git a/cpp-btree/safe_btree_set.h b/cpp-btree/safe_btree_set.h
deleted file mode 100644
index a6cd541..0000000
--- a/cpp-btree/safe_btree_set.h
+++ /dev/null
@@ -1,88 +0,0 @@
-// Copyright 2013 Google Inc. All Rights Reserved.
-//
-// Licensed under the Apache License, Version 2.0 (the "License");
-// you may not use this file except in compliance with the License.
-// You may obtain a copy of the License at
-//
-// http://www.apache.org/licenses/LICENSE-2.0
-//
-// Unless required by applicable law or agreed to in writing, software
-// distributed under the License is distributed on an "AS IS" BASIS,
-// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-// See the License for the specific language governing permissions and
-// limitations under the License.
-//
-// The safe_btree_set<> is like btree_set<> except that it removes the caveat
-// about insertion and deletion invalidating existing iterators at a small cost
-// in making iterators larger and slower.
-//
-// Revalidation occurs whenever an iterator is accessed. References
-// and pointers returned by safe_btree_map<> iterators are not stable,
-// they are potentially invalidated by any non-const method on the set.
-//
-// BEGIN INCORRECT EXAMPLE
-// for (auto i = safe_set->begin(); i != safe_set->end(); ++i) {
-// const T &value = *i; // DO NOT DO THIS
-// [code that modifies safe_set and uses value];
-// }
-// END INCORRECT EXAMPLE
-
-#ifndef UTIL_BTREE_SAFE_BTREE_SET_H__
-#define UTIL_BTREE_SAFE_BTREE_SET_H__
-
-#include <functional>
-#include <memory>
-
-#include "btree_container.h"
-#include "btree_set.h"
-#include "safe_btree.h"
-
-namespace btree {
-
-// The safe_btree_set class is needed mainly for its constructors.
-template <typename Key,
- typename Compare = std::less<Key>,
- typename Alloc = std::allocator<Key>,
- int TargetNodeSize = 256>
-class safe_btree_set : public btree_unique_container<
- safe_btree<btree_set_params<Key, Compare, Alloc, TargetNodeSize> > > {
-
- typedef safe_btree_set<Key, Compare, Alloc, TargetNodeSize> self_type;
- typedef btree_set_params<Key, Compare, Alloc, TargetNodeSize> params_type;
- typedef safe_btree<params_type> btree_type;
- typedef btree_unique_container<btree_type> super_type;
-
- public:
- typedef typename btree_type::key_compare key_compare;
- typedef typename btree_type::allocator_type allocator_type;
-
- public:
- // Default constructor.
- safe_btree_set(const key_compare &comp = key_compare(),
- const allocator_type &alloc = allocator_type())
- : super_type(comp, alloc) {
- }
-
- // Copy constructor.
- safe_btree_set(const self_type &x)
- : super_type(x) {
- }
-
- // Range constructor.
- template <class InputIterator>
- safe_btree_set(InputIterator b, InputIterator e,
- const key_compare &comp = key_compare(),
- const allocator_type &alloc = allocator_type())
- : super_type(b, e, comp, alloc) {
- }
-};
-
-template <typename K, typename C, typename A, int N>
-inline void swap(safe_btree_set<K, C, A, N> &x,
- safe_btree_set<K, C, A, N> &y) {
- x.swap(y);
-}
-
-} // namespace btree
-
-#endif // UTIL_BTREE_SAFE_BTREE_SET_H__
diff --git a/cpp-btree/safe_btree_test.cc b/cpp-btree/safe_btree_test.cc
deleted file mode 100644
index 0d77ae0..0000000
--- a/cpp-btree/safe_btree_test.cc
+++ /dev/null
@@ -1,116 +0,0 @@
-// Copyright 2013 Google Inc. All Rights Reserved.
-//
-// Licensed under the Apache License, Version 2.0 (the "License");
-// you may not use this file except in compliance with the License.
-// You may obtain a copy of the License at
-//
-// http://www.apache.org/licenses/LICENSE-2.0
-//
-// Unless required by applicable law or agreed to in writing, software
-// distributed under the License is distributed on an "AS IS" BASIS,
-// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-// See the License for the specific language governing permissions and
-// limitations under the License.
-
-// TODO(pmattis): Add some tests that iterators are not invalidated by
-// insertion and deletion.
-
-#include <functional>
-#include <map>
-#include <set>
-#include <string>
-#include <utility>
-
-#include "gtest/gtest.h"
-#include "btree_test.h"
-#include "safe_btree_map.h"
-#include "safe_btree_set.h"
-
-class UnsafeArena;
-
-namespace btree {
-namespace {
-
-template <typename K, int N>
-void SetTest() {
- typedef TestAllocator<K> TestAlloc;
- BtreeTest<safe_btree_set<K, std::less<K>, std::allocator<K>, N>, std::set<K> >();
- BtreeAllocatorTest<safe_btree_set<K, std::less<K>, TestAlloc, N> >();
-}
-
-template <typename K, int N>
-void MapTest() {
- typedef TestAllocator<K> TestAlloc;
- BtreeTest<safe_btree_map<K, K, std::less<K>, std::allocator<K>, N>, std::map<K, K> >();
- BtreeAllocatorTest<safe_btree_map<K, K, std::less<K>, TestAlloc, N> >();
- BtreeMapTest<safe_btree_map<K, K, std::less<K>, std::allocator<K>, N> >();
-}
-
-TEST(SafeBtree, set_int32_32) { SetTest<int32_t, 32>(); }
-TEST(SafeBtree, set_int32_64) { SetTest<int32_t, 64>(); }
-TEST(SafeBtree, set_int32_128) { SetTest<int32_t, 128>(); }
-TEST(SafeBtree, set_int32_256) { SetTest<int32_t, 256>(); }
-TEST(SafeBtree, set_int64_256) { SetTest<int64_t, 256>(); }
-TEST(SafeBtree, set_string_256) { SetTest<std::string, 256>(); }
-TEST(SafeBtree, set_pair_256) { SetTest<std::pair<int, int>, 256>(); }
-TEST(SafeBtree, map_int32_256) { MapTest<int32_t, 256>(); }
-TEST(SafeBtree, map_int64_256) { MapTest<int64_t, 256>(); }
-TEST(SafeBtree, map_string_256) { MapTest<std::string, 256>(); }
-TEST(SafeBtree, map_pair_256) { MapTest<std::pair<int, int>, 256>(); }
-
-TEST(SafeBtree, Comparison) {
- const int kSetSize = 1201;
- safe_btree_set<int64_t> my_set;
- for (int i = 0; i < kSetSize; ++i) {
- my_set.insert(i);
- }
- safe_btree_set<int64_t> my_set_copy(my_set);
- EXPECT_TRUE(my_set_copy == my_set);
- EXPECT_TRUE(my_set == my_set_copy);
- EXPECT_FALSE(my_set_copy != my_set);
- EXPECT_FALSE(my_set != my_set_copy);
-
- my_set.insert(kSetSize);
- EXPECT_FALSE(my_set_copy == my_set);
- EXPECT_FALSE(my_set == my_set_copy);
- EXPECT_TRUE(my_set_copy != my_set);
- EXPECT_TRUE(my_set != my_set_copy);
-
- my_set.erase(kSetSize - 1);
- EXPECT_FALSE(my_set_copy == my_set);
- EXPECT_FALSE(my_set == my_set_copy);
- EXPECT_TRUE(my_set_copy != my_set);
- EXPECT_TRUE(my_set != my_set_copy);
-
- safe_btree_map<std::string, int64_t> my_map;
- for (int i = 0; i < kSetSize; ++i) {
- my_map[std::string(i, 'a')] = i;
- }
- safe_btree_map<std::string, int64_t> my_map_copy(my_map);
- EXPECT_TRUE(my_map_copy == my_map);
- EXPECT_TRUE(my_map == my_map_copy);
- EXPECT_FALSE(my_map_copy != my_map);
- EXPECT_FALSE(my_map != my_map_copy);
-
- ++my_map_copy[std::string(7, 'a')];
- EXPECT_FALSE(my_map_copy == my_map);
- EXPECT_FALSE(my_map == my_map_copy);
- EXPECT_TRUE(my_map_copy != my_map);
- EXPECT_TRUE(my_map != my_map_copy);
-
- my_map_copy = my_map;
- my_map["hello"] = kSetSize;
- EXPECT_FALSE(my_map_copy == my_map);
- EXPECT_FALSE(my_map == my_map_copy);
- EXPECT_TRUE(my_map_copy != my_map);
- EXPECT_TRUE(my_map != my_map_copy);
-
- my_map.erase(std::string(kSetSize - 1, 'a'));
- EXPECT_FALSE(my_map_copy == my_map);
- EXPECT_FALSE(my_map == my_map_copy);
- EXPECT_TRUE(my_map_copy != my_map);
- EXPECT_TRUE(my_map != my_map_copy);
-}
-
-} // namespace
-} // namespace btree