1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
6885
6886
6887
6888
6889
6890
6891
6892
6893
6894
6895
6896
6897
6898
6899
6900
6901
6902
6903
6904
6905
6906
6907
6908
6909
6910
6911
6912
6913
6914
6915
6916
6917
6918
6919
6920
6921
6922
6923
6924
6925
6926
6927
6928
6929
6930
6931
6932
6933
6934
6935
6936
6937
6938
6939
6940
6941
6942
6943
6944
6945
6946
6947
6948
6949
6950
6951
6952
6953
6954
6955
6956
6957
6958
6959
6960
6961
6962
6963
6964
6965
6966
6967
6968
6969
6970
6971
6972
6973
6974
6975
6976
6977
6978
6979
6980
6981
6982
6983
6984
6985
6986
6987
6988
6989
6990
6991
6992
6993
6994
6995
6996
6997
6998
6999
7000
7001
7002
7003
7004
7005
7006
7007
7008
7009
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019
7020
7021
7022
7023
7024
7025
7026
7027
7028
7029
7030
7031
7032
7033
7034
7035
7036
7037
7038
7039
7040
7041
7042
7043
7044
7045
7046
7047
7048
7049
7050
7051
7052
7053
7054
7055
7056
7057
7058
7059
7060
7061
7062
7063
7064
7065
7066
7067
7068
7069
7070
7071
7072
7073
7074
7075
7076
7077
7078
7079
7080
7081
7082
7083
7084
7085
7086
7087
7088
7089
7090
7091
7092
7093
7094
7095
7096
7097
7098
7099
7100
7101
7102
7103
7104
7105
7106
7107
7108
7109
7110
7111
7112
7113
7114
7115
7116
7117
7118
7119
7120
7121
7122
7123
7124
7125
7126
7127
7128
7129
7130
7131
7132
7133
7134
7135
7136
7137
7138
7139
7140
7141
7142
7143
7144
7145
7146
7147
7148
7149
7150
7151
7152
7153
7154
7155
7156
7157
7158
7159
7160
7161
7162
7163
7164
7165
7166
7167
7168
7169
7170
7171
7172
7173
7174
7175
7176
7177
7178
7179
7180
7181
7182
7183
7184
7185
7186
7187
7188
7189
7190
7191
7192
7193
7194
7195
7196
7197
7198
7199
7200
7201
7202
7203
7204
7205
7206
7207
7208
7209
7210
7211
7212
7213
7214
7215
7216
7217
7218
7219
7220
7221
7222
7223
7224
7225
7226
7227
7228
7229
7230
7231
7232
7233
7234
7235
7236
7237
7238
7239
7240
7241
7242
7243
7244
7245
7246
7247
7248
7249
7250
7251
7252
7253
7254
7255
7256
7257
7258
7259
7260
7261
7262
7263
7264
7265
7266
7267
7268
7269
7270
7271
7272
7273
7274
7275
7276
7277
7278
7279
7280
7281
7282
7283
7284
7285
7286
7287
7288
7289
7290
7291
7292
7293
7294
7295
7296
7297
7298
7299
7300
7301
7302
7303
7304
7305
7306
7307
7308
7309
7310
7311
7312
7313
7314
7315
7316
7317
7318
7319
7320
7321
7322
7323
7324
7325
7326
7327
7328
7329
7330
7331
7332
7333
7334
7335
7336
7337
7338
7339
7340
7341
7342
7343
7344
7345
7346
7347
7348
7349
7350
7351
7352
7353
7354
7355
7356
7357
7358
7359
7360
7361
7362
7363
7364
7365
7366
7367
7368
7369
7370
7371
7372
7373
7374
7375
7376
7377
7378
7379
7380
7381
7382
7383
7384
7385
7386
7387
7388
7389
7390
7391
7392
7393
7394
7395
7396
7397
7398
7399
7400
7401
7402
7403
7404
7405
7406
7407
7408
7409
7410
7411
7412
7413
7414
7415
7416
7417
7418
7419
7420
7421
7422
7423
7424
7425
7426
7427
7428
7429
7430
7431
7432
7433
7434
7435
7436
7437
7438
7439
7440
7441
7442
7443
7444
7445
7446
7447
7448
7449
7450
7451
7452
7453
7454
7455
7456
7457
7458
7459
7460
7461
7462
7463
7464
7465
7466
7467
7468
7469
7470
7471
7472
7473
7474
7475
7476
7477
7478
7479
7480
7481
7482
7483
7484
7485
7486
7487
7488
7489
7490
7491
7492
7493
7494
7495
7496
7497
7498
7499
7500
7501
7502
7503
7504
7505
7506
7507
7508
7509
7510
7511
7512
7513
7514
7515
7516
7517
7518
7519
7520
7521
7522
7523
7524
7525
7526
7527
7528
7529
7530
7531
7532
7533
7534
7535
7536
7537
7538
7539
7540
7541
7542
7543
7544
7545
7546
7547
7548
7549
7550
7551
7552
7553
7554
7555
7556
7557
7558
7559
7560
7561
7562
7563
7564
7565
7566
7567
7568
7569
7570
7571
7572
7573
7574
7575
7576
7577
7578
7579
7580
7581
7582
7583
7584
7585
7586
7587
7588
7589
7590
7591
7592
7593
7594
7595
7596
7597
7598
7599
7600
7601
7602
7603
7604
7605
7606
7607
7608
7609
7610
7611
7612
7613
7614
7615
7616
7617
7618
7619
7620
7621
7622
7623
7624
7625
7626
7627
7628
7629
7630
7631
7632
7633
7634
7635
7636
7637
7638
7639
7640
7641
7642
7643
7644
7645
7646
7647
7648
7649
7650
7651
7652
7653
7654
7655
7656
7657
7658
7659
7660
7661
7662
7663
7664
7665
7666
7667
7668
7669
7670
7671
7672
7673
7674
7675
7676
7677
7678
7679
7680
7681
7682
7683
7684
7685
7686
7687
7688
7689
7690
7691
7692
7693
7694
7695
7696
7697
7698
7699
7700
7701
7702
7703
7704
7705
7706
7707
7708
7709
7710
7711
7712
7713
7714
7715
7716
7717
7718
7719
7720
7721
7722
7723
7724
7725
7726
7727
7728
7729
7730
7731
7732
7733
7734
7735
7736
7737
7738
7739
7740
7741
7742
7743
7744
7745
7746
7747
7748
7749
7750
7751
7752
7753
7754
7755
7756
7757
7758
7759
7760
7761
7762
7763
7764
7765
7766
7767
7768
7769
7770
7771
7772
7773
7774
7775
7776
7777
7778
7779
7780
7781
7782
7783
7784
7785
7786
7787
7788
7789
7790
7791
7792
7793
7794
7795
7796
7797
7798
7799
7800
7801
7802
7803
7804
7805
7806
7807
7808
7809
7810
7811
7812
7813
7814
7815
7816
7817
7818
7819
7820
7821
7822
7823
7824
7825
7826
7827
7828
7829
7830
7831
7832
7833
7834
7835
7836
7837
7838
7839
7840
7841
7842
7843
7844
7845
7846
7847
7848
7849
7850
7851
7852
7853
7854
7855
7856
7857
7858
7859
7860
7861
7862
7863
7864
7865
7866
7867
7868
7869
7870
7871
7872
7873
7874
7875
7876
7877
7878
7879
7880
7881
7882
7883
7884
7885
7886
7887
7888
7889
7890
7891
7892
7893
7894
7895
7896
7897
7898
7899
7900
7901
7902
7903
7904
7905
7906
7907
7908
7909
7910
7911
7912
7913
7914
7915
7916
7917
7918
7919
7920
7921
7922
7923
7924
7925
7926
7927
7928
7929
7930
7931
7932
7933
7934
7935
7936
7937
7938
7939
7940
7941
7942
7943
7944
7945
7946
7947
7948
7949
7950
7951
7952
7953
7954
7955
7956
7957
7958
7959
7960
7961
7962
7963
7964
7965
7966
7967
7968
7969
7970
7971
7972
7973
7974
7975
7976
7977
7978
7979
7980
7981
7982
7983
7984
7985
7986
7987
7988
7989
7990
7991
7992
7993
7994
7995
7996
7997
7998
7999
8000
8001
8002
8003
8004
8005
8006
8007
8008
8009
8010
8011
8012
8013
8014
8015
8016
8017
8018
8019
8020
8021
8022
8023
8024
8025
8026
8027
8028
8029
8030
8031
8032
8033
8034
8035
8036
8037
8038
8039
8040
8041
8042
8043
8044
8045
8046
8047
8048
8049
8050
8051
8052
8053
8054
8055
8056
8057
8058
8059
8060
8061
8062
8063
8064
8065
8066
8067
8068
8069
8070
8071
8072
8073
8074
8075
8076
8077
8078
8079
8080
8081
8082
8083
8084
8085
8086
8087
8088
8089
8090
8091
8092
8093
8094
8095
8096
8097
8098
8099
8100
8101
8102
8103
8104
8105
8106
8107
8108
8109
8110
8111
8112
8113
8114
8115
8116
8117
8118
8119
8120
8121
8122
8123
8124
8125
8126
8127
8128
8129
8130
8131
8132
8133
8134
8135
8136
8137
8138
8139
8140
8141
8142
8143
8144
8145
8146
8147
8148
8149
8150
8151
8152
8153
8154
8155
8156
8157
8158
8159
8160
8161
8162
8163
8164
8165
8166
8167
8168
8169
8170
8171
8172
8173
8174
8175
8176
8177
8178
8179
8180
8181
8182
8183
8184
8185
8186
8187
8188
8189
8190
8191
8192
8193
8194
8195
8196
8197
8198
8199
8200
8201
8202
8203
8204
8205
8206
8207
8208
8209
8210
8211
8212
8213
8214
8215
8216
8217
8218
8219
8220
8221
8222
8223
8224
8225
8226
8227
8228
8229
8230
8231
8232
8233
8234
8235
8236
8237
8238
8239
8240
8241
8242
8243
8244
8245
8246
8247
8248
8249
8250
8251
8252
8253
8254
8255
8256
8257
8258
8259
8260
8261
8262
8263
8264
8265
8266
8267
8268
8269
8270
8271
8272
8273
8274
8275
8276
8277
8278
8279
8280
8281
8282
8283
8284
8285
8286
8287
8288
8289
8290
8291
8292
8293
8294
8295
8296
8297
8298
8299
8300
8301
8302
8303
8304
8305
8306
8307
8308
8309
8310
8311
8312
8313
8314
8315
8316
8317
8318
8319
8320
8321
8322
8323
8324
8325
8326
8327
8328
8329
8330
8331
8332
8333
8334
8335
8336
8337
8338
8339
8340
8341
8342
8343
8344
8345
8346
8347
8348
8349
8350
8351
8352
8353
8354
8355
8356
8357
8358
8359
8360
8361
8362
8363
8364
8365
8366
8367
8368
8369
8370
8371
8372
8373
8374
8375
8376
8377
8378
8379
8380
8381
8382
8383
8384
8385
8386
8387
8388
8389
8390
8391
8392
8393
8394
8395
8396
8397
8398
8399
8400
8401
8402
8403
8404
8405
8406
8407
8408
8409
8410
8411
8412
8413
8414
8415
8416
8417
8418
8419
8420
8421
8422
8423
8424
8425
8426
8427
8428
8429
8430
8431
8432
8433
8434
8435
8436
8437
8438
8439
8440
8441
8442
8443
8444
8445
8446
8447
8448
8449
8450
8451
8452
8453
8454
8455
8456
8457
8458
8459
8460
8461
8462
8463
8464
8465
8466
8467
8468
8469
8470
8471
8472
8473
8474
8475
8476
8477
8478
8479
8480
8481
8482
8483
8484
8485
8486
8487
8488
8489
8490
8491
8492
8493
8494
8495
8496
8497
8498
8499
8500
8501
8502
8503
8504
8505
8506
8507
8508
8509
8510
8511
8512
8513
8514
8515
8516
8517
8518
8519
8520
8521
8522
8523
8524
8525
8526
8527
8528
8529
8530
8531
8532
8533
8534
8535
8536
8537
8538
8539
8540
8541
8542
8543
8544
8545
8546
8547
8548
8549
8550
8551
8552
8553
8554
8555
8556
8557
8558
8559
8560
8561
8562
8563
8564
8565
8566
8567
8568
8569
8570
8571
8572
8573
8574
8575
8576
8577
8578
8579
8580
8581
8582
8583
8584
8585
8586
8587
8588
8589
8590
8591
8592
8593
8594
8595
8596
8597
8598
8599
8600
8601
8602
8603
8604
8605
8606
8607
8608
8609
8610
8611
8612
8613
8614
8615
8616
8617
8618
8619
8620
8621
8622
8623
8624
8625
8626
8627
8628
8629
8630
8631
8632
8633
8634
8635
8636
8637
8638
8639
8640
8641
8642
8643
8644
8645
8646
8647
8648
8649
8650
8651
8652
8653
8654
8655
8656
8657
8658
8659
8660
8661
8662
8663
8664
8665
8666
8667
8668
8669
8670
8671
8672
8673
8674
8675
8676
8677
8678
8679
8680
8681
8682
8683
8684
8685
8686
8687
8688
8689
8690
8691
8692
8693
8694
8695
8696
8697
8698
8699
8700
8701
8702
8703
8704
8705
8706
8707
8708
8709
8710
8711
8712
8713
8714
8715
8716
8717
8718
8719
8720
8721
8722
8723
8724
8725
8726
8727
8728
8729
8730
8731
8732
8733
8734
8735
8736
8737
8738
8739
8740
8741
8742
8743
8744
8745
8746
8747
8748
8749
8750
8751
8752
8753
8754
8755
8756
8757
8758
8759
8760
8761
8762
8763
8764
8765
8766
8767
8768
8769
8770
8771
8772
8773
8774
8775
8776
8777
8778
8779
8780
8781
8782
8783
8784
8785
8786
8787
8788
8789
8790
8791
8792
8793
8794
8795
8796
8797
8798
8799
8800
8801
8802
8803
8804
8805
8806
8807
8808
8809
8810
8811
8812
8813
8814
8815
8816
8817
8818
8819
8820
8821
8822
8823
8824
8825
8826
8827
8828
8829
8830
8831
8832
8833
8834
8835
8836
8837
8838
8839
8840
8841
8842
8843
8844
8845
8846
8847
8848
8849
8850
8851
8852
8853
8854
8855
8856
8857
8858
8859
8860
8861
8862
8863
8864
8865
8866
8867
8868
8869
8870
8871
8872
8873
8874
8875
8876
8877
8878
8879
8880
8881
8882
8883
8884
8885
8886
8887
8888
8889
8890
8891
8892
8893
8894
8895
8896
8897
8898
8899
8900
8901
8902
8903
8904
8905
8906
8907
8908
8909
8910
8911
8912
8913
8914
8915
8916
8917
8918
8919
8920
8921
8922
8923
8924
8925
8926
8927
8928
8929
8930
8931
8932
8933
8934
8935
8936
8937
8938
8939
8940
8941
8942
8943
8944
8945
8946
8947
8948
8949
8950
8951
8952
8953
8954
8955
8956
8957
8958
8959
8960
8961
8962
8963
8964
8965
8966
8967
8968
8969
8970
8971
8972
8973
8974
8975
8976
8977
8978
8979
8980
8981
8982
8983
8984
8985
8986
8987
8988
8989
8990
8991
8992
8993
8994
8995
8996
8997
8998
8999
9000
9001
9002
9003
9004
9005
9006
9007
9008
9009
9010
9011
9012
9013
9014
9015
9016
9017
9018
9019
9020
9021
9022
9023
9024
9025
9026
9027
9028
9029
9030
9031
9032
9033
9034
9035
9036
9037
9038
9039
9040
9041
9042
9043
9044
9045
9046
9047
9048
9049
9050
9051
9052
9053
9054
9055
9056
9057
9058
9059
9060
9061
9062
9063
9064
9065
9066
9067
9068
9069
9070
9071
9072
9073
9074
9075
9076
9077
9078
9079
9080
9081
9082
9083
9084
9085
9086
9087
9088
9089
9090
9091
9092
9093
9094
9095
9096
9097
9098
9099
9100
9101
9102
9103
9104
9105
9106
9107
9108
9109
9110
9111
9112
9113
9114
9115
9116
9117
9118
9119
9120
9121
9122
9123
9124
9125
9126
9127
9128
9129
9130
9131
9132
9133
9134
9135
9136
9137
9138
9139
9140
9141
9142
9143
9144
9145
9146
9147
9148
9149
9150
9151
9152
9153
9154
9155
9156
9157
9158
9159
9160
9161
9162
9163
9164
9165
9166
9167
9168
9169
9170
9171
9172
9173
9174
9175
9176
9177
9178
9179
9180
9181
9182
9183
9184
9185
9186
9187
9188
9189
9190
9191
9192
9193
9194
9195
9196
9197
9198
9199
9200
9201
9202
9203
9204
9205
9206
9207
9208
9209
9210
9211
9212
9213
9214
9215
9216
9217
9218
9219
9220
9221
9222
9223
9224
9225
9226
9227
9228
9229
9230
9231
9232
9233
9234
9235
9236
9237
9238
9239
9240
9241
9242
9243
9244
9245
9246
9247
9248
9249
9250
9251
9252
9253
9254
9255
9256
9257
9258
9259
9260
9261
9262
9263
9264
9265
9266
9267
9268
9269
9270
9271
9272
9273
9274
9275
9276
9277
9278
9279
9280
9281
9282
9283
9284
9285
9286
9287
9288
9289
9290
9291
9292
9293
9294
9295
9296
9297
9298
9299
9300
9301
9302
9303
9304
9305
9306
9307
9308
9309
9310
9311
9312
9313
9314
9315
9316
9317
9318
9319
9320
9321
9322
9323
9324
9325
9326
9327
9328
9329
9330
9331
9332
9333
9334
9335
9336
9337
9338
9339
9340
9341
9342
9343
9344
9345
9346
9347
9348
9349
9350
9351
9352
9353
9354
9355
9356
9357
9358
9359
9360
9361
9362
9363
9364
9365
9366
9367
9368
9369
9370
9371
9372
9373
9374
9375
9376
9377
9378
9379
9380
9381
9382
9383
9384
9385
9386
9387
9388
9389
9390
9391
9392
9393
9394
9395
9396
9397
9398
9399
9400
9401
9402
9403
9404
9405
9406
9407
9408
9409
9410
9411
9412
9413
9414
9415
9416
9417
9418
9419
9420
9421
9422
9423
9424
9425
9426
9427
9428
9429
9430
9431
9432
9433
9434
9435
9436
9437
9438
9439
9440
9441
9442
9443
9444
9445
9446
9447
9448
9449
9450
9451
9452
9453
9454
9455
9456
9457
9458
9459
9460
9461
9462
9463
9464
9465
9466
9467
9468
9469
9470
9471
9472
9473
9474
9475
9476
9477
9478
9479
9480
9481
9482
9483
9484
9485
9486
9487
9488
9489
9490
9491
9492
9493
9494
9495
9496
9497
9498
9499
9500
9501
9502
9503
9504
9505
9506
9507
9508
9509
9510
9511
9512
9513
9514
9515
9516
9517
9518
9519
9520
9521
9522
9523
9524
9525
9526
9527
9528
9529
9530
9531
9532
9533
9534
9535
9536
9537
9538
9539
9540
9541
9542
9543
9544
9545
9546
9547
9548
9549
9550
9551
9552
9553
9554
9555
9556
9557
9558
9559
9560
9561
9562
9563
9564
9565
9566
9567
9568
9569
9570
9571
9572
9573
9574
9575
9576
9577
9578
9579
9580
9581
9582
9583
9584
9585
9586
9587
9588
9589
9590
9591
9592
9593
9594
9595
9596
9597
9598
9599
9600
9601
9602
9603
9604
9605
9606
9607
9608
9609
9610
9611
9612
9613
9614
9615
9616
9617
9618
9619
9620
9621
9622
9623
9624
9625
9626
9627
9628
9629
9630
9631
9632
9633
9634
9635
9636
9637
9638
9639
9640
9641
9642
9643
9644
9645
9646
9647
9648
9649
9650
9651
9652
9653
9654
9655
9656
9657
9658
9659
9660
9661
9662
9663
9664
9665
9666
9667
9668
9669
9670
9671
9672
9673
9674
9675
9676
9677
9678
9679
9680
9681
9682
9683
9684
9685
9686
9687
9688
9689
9690
9691
9692
9693
9694
9695
9696
9697
9698
9699
9700
9701
9702
9703
9704
9705
9706
9707
9708
9709
9710
9711
9712
9713
9714
9715
9716
9717
9718
9719
9720
9721
9722
9723
9724
9725
9726
9727
9728
9729
9730
9731
9732
9733
9734
9735
9736
9737
9738
9739
9740
9741
9742
9743
9744
9745
9746
9747
9748
9749
9750
9751
9752
9753
9754
9755
9756
9757
9758
9759
9760
9761
9762
9763
9764
9765
9766
9767
9768
9769
9770
9771
9772
9773
9774
9775
9776
9777
9778
9779
9780
9781
9782
9783
9784
9785
9786
9787
9788
9789
9790
9791
9792
9793
9794
9795
9796
9797
9798
9799
9800
9801
9802
9803
9804
9805
9806
9807
9808
9809
9810
9811
9812
9813
9814
9815
9816
9817
9818
9819
9820
9821
9822
9823
9824
9825
9826
9827
9828
9829
9830
9831
9832
9833
9834
9835
9836
9837
9838
9839
9840
9841
9842
9843
9844
9845
9846
9847
9848
9849
9850
9851
9852
9853
9854
9855
9856
9857
9858
9859
9860
9861
9862
9863
9864
9865
9866
9867
9868
9869
9870
9871
9872
9873
9874
9875
9876
9877
9878
9879
9880
9881
9882
9883
9884
9885
9886
9887
9888
9889
9890
9891
9892
9893
9894
9895
9896
9897
9898
9899
9900
9901
9902
9903
9904
9905
9906
9907
9908
9909
9910
9911
9912
9913
9914
9915
9916
9917
9918
9919
9920
9921
9922
9923
9924
9925
9926
9927
9928
9929
9930
9931
9932
9933
9934
9935
9936
9937
9938
9939
9940
9941
9942
9943
9944
9945
9946
9947
9948
9949
9950
9951
9952
9953
9954
9955
9956
9957
9958
9959
9960
9961
9962
9963
9964
9965
9966
9967
9968
9969
9970
9971
9972
9973
9974
9975
9976
9977
9978
9979
9980
9981
9982
9983
9984
9985
9986
9987
9988
9989
9990
9991
9992
9993
9994
9995
9996
9997
9998
9999
10000
10001
10002
10003
10004
10005
10006
10007
10008
10009
10010
10011
10012
10013
10014
10015
10016
10017
10018
10019
10020
10021
10022
10023
10024
10025
10026
10027
10028
10029
10030
10031
10032
10033
10034
10035
10036
10037
10038
10039
10040
10041
10042
10043
10044
10045
10046
10047
10048
10049
10050
10051
10052
10053
10054
10055
10056
10057
10058
10059
10060
10061
10062
10063
10064
10065
10066
10067
10068
10069
10070
10071
10072
10073
10074
10075
10076
10077
10078
10079
10080
10081
10082
10083
10084
10085
10086
10087
10088
10089
10090
10091
10092
10093
10094
10095
10096
10097
10098
10099
10100
10101
10102
10103
10104
10105
10106
10107
10108
10109
10110
10111
10112
10113
10114
10115
10116
10117
10118
10119
10120
10121
10122
10123
10124
10125
10126
10127
10128
10129
10130
10131
10132
10133
10134
10135
10136
10137
10138
10139
10140
10141
10142
10143
10144
10145
10146
10147
10148
10149
10150
10151
10152
10153
10154
10155
10156
10157
10158
10159
10160
10161
10162
10163
10164
10165
10166
10167
10168
10169
10170
10171
10172
10173
10174
10175
10176
10177
10178
10179
10180
10181
10182
10183
10184
10185
10186
10187
10188
10189
10190
10191
10192
10193
10194
10195
10196
10197
10198
10199
10200
10201
10202
10203
10204
10205
10206
10207
10208
10209
10210
10211
10212
10213
10214
10215
10216
10217
10218
10219
10220
10221
10222
10223
10224
10225
10226
10227
10228
10229
10230
10231
10232
10233
10234
10235
10236
10237
10238
10239
10240
10241
10242
10243
10244
10245
10246
10247
10248
10249
10250
10251
10252
10253
10254
10255
10256
10257
10258
10259
10260
10261
10262
10263
10264
10265
10266
10267
10268
10269
10270
10271
10272
10273
10274
10275
10276
10277
10278
10279
10280
10281
10282
10283
10284
10285
10286
10287
10288
10289
10290
10291
10292
10293
10294
10295
10296
10297
10298
10299
10300
10301
10302
10303
10304
10305
10306
10307
10308
10309
10310
10311
10312
10313
10314
10315
10316
10317
10318
10319
10320
10321
10322
10323
10324
10325
10326
10327
10328
10329
10330
10331
10332
10333
10334
10335
10336
10337
10338
10339
10340
10341
10342
10343
10344
10345
10346
10347
10348
10349
10350
10351
10352
10353
10354
10355
10356
10357
10358
10359
10360
10361
10362
10363
10364
10365
10366
10367
10368
10369
10370
10371
10372
10373
10374
10375
10376
10377
10378
10379
10380
10381
10382
10383
10384
10385
10386
10387
10388
10389
10390
10391
10392
10393
10394
10395
10396
10397
10398
10399
10400
10401
10402
10403
10404
10405
10406
10407
10408
10409
10410
10411
10412
10413
10414
10415
10416
10417
10418
10419
10420
10421
10422
10423
10424
10425
10426
10427
10428
10429
10430
10431
10432
10433
10434
10435
10436
10437
10438
10439
10440
10441
10442
10443
10444
10445
10446
10447
10448
10449
10450
10451
10452
10453
10454
10455
10456
10457
10458
10459
10460
10461
10462
10463
10464
10465
10466
10467
10468
10469
10470
10471
10472
10473
10474
10475
10476
10477
10478
10479
10480
10481
10482
10483
10484
10485
10486
10487
10488
10489
10490
10491
10492
10493
10494
10495
10496
10497
10498
10499
10500
10501
10502
10503
10504
10505
10506
10507
10508
10509
10510
10511
10512
10513
10514
10515
10516
10517
10518
10519
10520
10521
10522
10523
10524
10525
10526
10527
10528
10529
10530
10531
10532
10533
10534
10535
10536
10537
10538
10539
10540
10541
10542
10543
10544
10545
10546
10547
10548
10549
10550
10551
10552
10553
10554
10555
10556
10557
10558
10559
10560
10561
10562
10563
10564
10565
10566
10567
10568
10569
10570
10571
10572
10573
10574
10575
10576
10577
10578
10579
10580
10581
10582
10583
10584
10585
10586
10587
10588
10589
10590
10591
10592
10593
10594
10595
10596
10597
10598
10599
10600
10601
10602
10603
10604
10605
10606
10607
10608
10609
10610
10611
10612
10613
10614
10615
10616
10617
10618
10619
10620
10621
10622
10623
10624
10625
10626
10627
10628
10629
10630
10631
10632
10633
10634
10635
10636
10637
10638
10639
10640
10641
10642
10643
10644
10645
10646
10647
10648
10649
10650
10651
10652
10653
10654
10655
10656
10657
10658
10659
10660
10661
10662
10663
10664
10665
10666
10667
10668
10669
10670
10671
10672
10673
10674
10675
10676
10677
10678
10679
10680
10681
10682
10683
10684
10685
10686
10687
10688
10689
10690
10691
10692
10693
10694
10695
10696
10697
10698
10699
10700
10701
10702
10703
10704
10705
10706
10707
10708
10709
10710
10711
10712
10713
10714
10715
10716
10717
10718
10719
10720
10721
10722
10723
10724
10725
10726
10727
10728
10729
10730
10731
10732
10733
10734
10735
10736
10737
10738
10739
10740
10741
10742
10743
10744
10745
10746
10747
10748
10749
10750
10751
10752
10753
10754
10755
10756
10757
10758
10759
10760
10761
10762
10763
10764
10765
10766
10767
10768
10769
10770
10771
10772
10773
10774
10775
10776
10777
10778
10779
10780
10781
10782
10783
10784
10785
10786
10787
10788
10789
10790
10791
10792
10793
10794
10795
10796
10797
10798
10799
10800
10801
10802
10803
10804
10805
10806
10807
10808
10809
10810
10811
10812
10813
10814
10815
10816
10817
10818
10819
10820
10821
10822
10823
10824
10825
10826
10827
10828
10829
10830
10831
10832
10833
10834
10835
10836
10837
10838
10839
10840
10841
10842
10843
10844
10845
10846
10847
10848
10849
10850
10851
10852
10853
10854
10855
10856
10857
10858
10859
10860
10861
10862
10863
10864
10865
10866
10867
10868
10869
10870
10871
10872
10873
10874
10875
10876
10877
10878
10879
10880
10881
10882
10883
10884
10885
10886
10887
10888
10889
10890
10891
10892
10893
10894
10895
10896
10897
10898
10899
10900
10901
10902
10903
10904
10905
10906
10907
10908
10909
10910
10911
10912
10913
10914
10915
10916
10917
10918
10919
10920
10921
10922
10923
10924
10925
10926
10927
10928
10929
10930
10931
10932
10933
10934
10935
10936
10937
10938
10939
10940
10941
10942
10943
10944
10945
10946
10947
10948
10949
10950
10951
10952
10953
10954
10955
10956
10957
10958
10959
10960
10961
10962
10963
10964
10965
10966
10967
10968
10969
10970
10971
10972
10973
10974
10975
10976
10977
10978
10979
10980
10981
10982
10983
10984
10985
10986
10987
10988
10989
10990
10991
10992
10993
10994
10995
10996
10997
10998
10999
11000
11001
11002
11003
11004
11005
11006
11007
11008
11009
11010
11011
11012
11013
11014
11015
11016
11017
11018
11019
11020
11021
11022
11023
11024
11025
11026
11027
11028
11029
11030
11031
11032
11033
11034
11035
11036
11037
11038
11039
11040
11041
11042
11043
11044
11045
11046
11047
11048
11049
11050
11051
11052
11053
11054
11055
11056
11057
11058
11059
11060
11061
11062
11063
11064
11065
11066
11067
11068
11069
11070
11071
11072
11073
11074
11075
11076
11077
11078
11079
11080
11081
11082
11083
11084
11085
11086
11087
11088
11089
11090
11091
11092
11093
11094
11095
11096
11097
11098
11099
11100
11101
11102
11103
11104
11105
11106
11107
11108
11109
11110
11111
11112
11113
11114
11115
11116
11117
11118
11119
11120
11121
11122
11123
11124
11125
11126
11127
11128
11129
11130
11131
11132
11133
11134
11135
11136
11137
11138
11139
11140
11141
11142
11143
11144
11145
11146
11147
11148
11149
11150
11151
11152
11153
11154
11155
11156
11157
11158
11159
11160
11161
11162
11163
11164
11165
11166
11167
11168
11169
11170
11171
11172
11173
11174
11175
11176
11177
11178
11179
11180
11181
11182
11183
11184
11185
11186
11187
11188
11189
11190
11191
11192
11193
11194
11195
11196
11197
11198
11199
11200
11201
11202
11203
11204
11205
11206
11207
11208
11209
11210
11211
11212
11213
11214
11215
11216
11217
11218
11219
11220
11221
11222
11223
11224
11225
11226
11227
11228
11229
11230
11231
11232
11233
11234
11235
11236
11237
11238
11239
11240
11241
11242
11243
11244
11245
11246
11247
11248
11249
11250
11251
11252
11253
11254
11255
11256
11257
11258
11259
11260
11261
11262
11263
11264
11265
11266
11267
11268
11269
11270
11271
11272
11273
11274
11275
11276
11277
11278
11279
11280
11281
11282
11283
11284
11285
11286
11287
11288
11289
11290
11291
11292
11293
11294
11295
11296
11297
11298
11299
11300
11301
11302
11303
11304
11305
11306
11307
11308
11309
11310
11311
11312
11313
11314
11315
11316
11317
11318
11319
11320
11321
11322
11323
11324
11325
11326
11327
11328
11329
11330
11331
11332
11333
11334
11335
11336
11337
11338
11339
11340
11341
11342
11343
11344
11345
11346
11347
11348
11349
11350
11351
11352
11353
11354
11355
11356
11357
11358
11359
11360
11361
11362
11363
11364
11365
11366
11367
11368
11369
11370
11371
11372
11373
11374
11375
11376
11377
11378
11379
11380
11381
11382
11383
11384
11385
11386
11387
11388
11389
11390
11391
11392
11393
11394
11395
11396
11397
11398
11399
11400
11401
11402
11403
11404
11405
11406
11407
11408
11409
11410
11411
11412
11413
11414
11415
11416
11417
11418
11419
11420
11421
11422
11423
11424
11425
11426
11427
11428
11429
11430
11431
11432
11433
11434
11435
11436
11437
11438
11439
11440
11441
11442
11443
11444
11445
11446
11447
11448
11449
11450
11451
11452
11453
11454
11455
11456
11457
11458
11459
11460
11461
11462
11463
11464
11465
11466
11467
11468
11469
11470
11471
11472
11473
11474
11475
11476
11477
11478
11479
11480
11481
11482
11483
11484
11485
11486
11487
11488
11489
11490
11491
11492
11493
11494
11495
11496
11497
11498
11499
11500
11501
11502
11503
11504
11505
11506
11507
11508
11509
11510
11511
11512
11513
11514
11515
11516
11517
11518
11519
11520
11521
11522
11523
11524
11525
11526
11527
11528
11529
11530
11531
11532
11533
11534
11535
11536
11537
11538
11539
11540
11541
11542
11543
11544
11545
11546
11547
11548
11549
11550
11551
11552
11553
11554
11555
11556
11557
11558
11559
11560
11561
11562
11563
11564
11565
11566
11567
11568
11569
11570
11571
11572
11573
11574
11575
11576
11577
11578
11579
11580
11581
11582
11583
11584
11585
11586
11587
11588
11589
11590
11591
11592
11593
11594
11595
11596
11597
11598
11599
11600
11601
11602
11603
11604
11605
11606
11607
11608
11609
11610
11611
11612
11613
11614
11615
11616
11617
11618
11619
11620
11621
11622
11623
11624
11625
11626
11627
11628
11629
11630
11631
11632
11633
11634
11635
11636
11637
11638
11639
11640
11641
11642
11643
11644
11645
11646
11647
11648
11649
11650
11651
11652
11653
11654
11655
11656
11657
11658
11659
11660
11661
11662
11663
11664
11665
11666
11667
11668
11669
11670
11671
11672
11673
11674
11675
11676
11677
11678
11679
11680
11681
11682
11683
11684
11685
11686
11687
11688
11689
11690
11691
11692
11693
11694
11695
11696
11697
11698
11699
11700
11701
11702
11703
11704
11705
11706
11707
11708
11709
11710
11711
11712
11713
11714
11715
11716
11717
11718
11719
11720
11721
11722
11723
11724
11725
11726
11727
11728
11729
11730
11731
11732
11733
11734
11735
11736
11737
11738
11739
11740
11741
11742
11743
11744
11745
11746
11747
11748
11749
11750
11751
11752
11753
11754
11755
11756
11757
11758
11759
11760
11761
11762
11763
11764
11765
11766
11767
11768
11769
11770
11771
11772
11773
11774
11775
11776
11777
11778
11779
11780
11781
11782
11783
11784
11785
11786
11787
11788
11789
11790
11791
11792
11793
11794
11795
11796
11797
11798
11799
11800
11801
11802
11803
11804
11805
11806
11807
11808
11809
11810
11811
11812
11813
11814
11815
11816
11817
11818
11819
11820
11821
11822
11823
11824
11825
11826
11827
11828
11829
11830
11831
11832
11833
11834
11835
11836
11837
11838
11839
11840
11841
11842
11843
11844
11845
11846
11847
11848
11849
11850
11851
11852
11853
11854
11855
11856
11857
11858
11859
11860
11861
11862
11863
11864
11865
11866
11867
11868
11869
11870
11871
11872
11873
11874
11875
11876
11877
11878
11879
11880
11881
11882
11883
11884
11885
11886
11887
11888
11889
11890
11891
11892
11893
11894
11895
11896
11897
11898
11899
11900
11901
11902
11903
11904
11905
11906
11907
11908
11909
11910
11911
11912
11913
11914
11915
11916
11917
11918
11919
11920
11921
11922
11923
11924
11925
11926
11927
11928
11929
11930
11931
11932
11933
11934
11935
11936
11937
11938
11939
11940
11941
11942
11943
11944
11945
11946
11947
11948
11949
11950
11951
11952
11953
11954
11955
11956
11957
11958
11959
11960
11961
11962
11963
11964
11965
11966
11967
11968
11969
11970
11971
11972
11973
11974
11975
11976
11977
11978
11979
11980
11981
11982
11983
11984
11985
11986
11987
11988
11989
11990
11991
11992
11993
11994
11995
11996
11997
11998
11999
12000
12001
12002
12003
12004
12005
12006
12007
12008
12009
12010
12011
12012
12013
12014
12015
12016
12017
12018
12019
12020
12021
12022
12023
12024
12025
12026
12027
12028
12029
12030
12031
12032
12033
12034
12035
12036
12037
12038
12039
12040
12041
12042
12043
12044
12045
12046
12047
12048
12049
12050
12051
12052
12053
12054
12055
12056
12057
12058
12059
12060
12061
12062
12063
12064
12065
12066
12067
12068
12069
12070
12071
12072
12073
12074
12075
12076
12077
12078
12079
12080
12081
12082
12083
12084
12085
12086
12087
12088
12089
12090
12091
12092
12093
12094
12095
12096
12097
12098
12099
12100
12101
12102
12103
12104
12105
12106
12107
12108
12109
12110
12111
12112
12113
12114
12115
12116
12117
12118
12119
12120
12121
12122
12123
12124
12125
12126
12127
12128
12129
12130
12131
12132
12133
12134
12135
12136
12137
12138
12139
12140
12141
12142
12143
12144
12145
12146
12147
12148
12149
12150
12151
12152
12153
12154
12155
12156
12157
12158
12159
12160
12161
12162
12163
12164
12165
12166
12167
12168
12169
12170
12171
12172
12173
12174
12175
12176
12177
12178
12179
12180
12181
12182
12183
12184
12185
12186
12187
12188
12189
12190
12191
12192
12193
12194
12195
12196
12197
12198
12199
12200
12201
12202
12203
12204
12205
12206
12207
12208
12209
12210
12211
12212
12213
12214
12215
12216
12217
12218
12219
12220
12221
12222
12223
12224
12225
12226
12227
12228
12229
12230
12231
12232
12233
12234
12235
12236
12237
12238
12239
12240
12241
12242
12243
12244
12245
12246
12247
12248
12249
12250
12251
12252
12253
12254
12255
12256
12257
12258
12259
12260
12261
12262
12263
12264
12265
12266
12267
12268
12269
12270
12271
12272
12273
12274
12275
12276
12277
12278
12279
12280
12281
12282
12283
12284
12285
12286
12287
12288
12289
12290
12291
12292
12293
12294
12295
12296
12297
12298
12299
12300
12301
12302
12303
12304
12305
12306
12307
12308
12309
12310
12311
12312
12313
12314
12315
12316
12317
12318
12319
12320
12321
12322
12323
12324
12325
12326
12327
12328
12329
12330
12331
12332
12333
12334
12335
12336
12337
12338
12339
12340
12341
12342
12343
12344
12345
12346
12347
12348
12349
12350
12351
12352
12353
12354
12355
12356
12357
12358
12359
12360
12361
12362
12363
12364
12365
12366
12367
12368
12369
12370
12371
12372
12373
12374
12375
12376
12377
12378
12379
12380
12381
12382
12383
12384
12385
12386
12387
12388
12389
12390
12391
12392
12393
12394
|
The Netwide Assembler: NASM
===========================
Chapter 1: Introduction
-----------------------
1.1 What Is NASM?
The Netwide Assembler, NASM, is an 80x86 and x86-64 assembler
designed for portability and modularity. It supports a range of
object file formats, including Linux and `*BSD' `a.out', `ELF',
`COFF', `Mach-O', Microsoft 16-bit `OBJ', `Win32' and `Win64'. It
will also output plain binary files. Its syntax is designed to be
simple and easy to understand, similar to Intel's but less complex.
It supports all currently known x86 architectural extensions, and
has strong support for macros.
1.1.1 Why Yet Another Assembler?
The Netwide Assembler grew out of an idea on `comp.lang.asm.x86' (or
possibly `alt.lang.asm' - I forget which), which was essentially
that there didn't seem to be a good _free_ x86-series assembler
around, and that maybe someone ought to write one.
(*) `a86' is good, but not free, and in particular you don't get any
32-bit capability until you pay. It's DOS only, too.
(*) `gas' is free, and ports over to DOS and Unix, but it's not very
good, since it's designed to be a back end to `gcc', which
always feeds it correct code. So its error checking is minimal.
Also, its syntax is horrible, from the point of view of anyone
trying to actually _write_ anything in it. Plus you can't write
16-bit code in it (properly.)
(*) `as86' is specific to Minix and Linux, and (my version at least)
doesn't seem to have much (or any) documentation.
(*) `MASM' isn't very good, and it's (was) expensive, and it runs
only under DOS.
(*) `TASM' is better, but still strives for MASM compatibility,
which means millions of directives and tons of red tape. And its
syntax is essentially MASM's, with the contradictions and quirks
that entails (although it sorts out some of those by means of
Ideal mode.) It's expensive too. And it's DOS-only.
So here, for your coding pleasure, is NASM. At present it's still in
prototype stage - we don't promise that it can outperform any of
these assemblers. But please, _please_ send us bug reports, fixes,
helpful information, and anything else you can get your hands on
(and thanks to the many people who've done this already! You all
know who you are), and we'll improve it out of all recognition.
Again.
1.1.2 License Conditions
Please see the file `LICENSE', supplied as part of any NASM
distribution archive, for the license conditions under which you may
use NASM. NASM is now under the so-called 2-clause BSD license, also
known as the simplified BSD license.
Copyright 1996-2009 the NASM Authors - All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
(*) Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
(*) Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials provided
with the distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.
1.2 Contact Information
The current version of NASM (since about 0.98.08) is maintained by a
team of developers, accessible through the `nasm-devel' mailing list
(see below for the link). If you want to report a bug, please read
section 12.2 first.
NASM has a website at `http://www.nasm.us/'. If it's not there,
google for us!
New releases, release candidates, and daily development snapshots of
NASM are available from the official web site.
Announcements are posted to `comp.lang.asm.x86', and to the web site
`http://www.freshmeat.net/'.
If you want information about the current development status, please
subscribe to the `nasm-devel' email list; see link from the website.
1.3 Installation
1.3.1 Installing NASM under MS-DOS or Windows
Once you've obtained the appropriate archive for NASM,
`nasm-XXX-dos.zip' or `nasm-XXX-win32.zip' (where `XXX' denotes the
version number of NASM contained in the archive), unpack it into its
own directory (for example `c:\nasm').
The archive will contain a set of executable files: the NASM
executable file `nasm.exe', the NDISASM executable file
`ndisasm.exe', and possibly additional utilities to handle the RDOFF
file format.
The only file NASM needs to run is its own executable, so copy
`nasm.exe' to a directory on your PATH, or alternatively edit
`autoexec.bat' to add the `nasm' directory to your `PATH' (to do
that under Windows XP, go to Start > Control Panel > System >
Advanced > Environment Variables; these instructions may work under
other versions of Windows as well.)
That's it - NASM is installed. You don't need the nasm directory to
be present to run NASM (unless you've added it to your `PATH'), so
you can delete it if you need to save space; however, you may want
to keep the documentation or test programs.
If you've downloaded the DOS source archive, `nasm-XXX.zip', the
`nasm' directory will also contain the full NASM source code, and a
selection of Makefiles you can (hopefully) use to rebuild your copy
of NASM from scratch. See the file `INSTALL' in the source archive.
Note that a number of files are generated from other files by Perl
scripts. Although the NASM source distribution includes these
generated files, you will need to rebuild them (and hence, will need
a Perl interpreter) if you change insns.dat, standard.mac or the
documentation. It is possible future source distributions may not
include these files at all. Ports of Perl for a variety of
platforms, including DOS and Windows, are available from
www.cpan.org.
1.3.2 Installing NASM under Unix
Once you've obtained the Unix source archive for NASM,
`nasm-XXX.tar.gz' (where `XXX' denotes the version number of NASM
contained in the archive), unpack it into a directory such as
`/usr/local/src'. The archive, when unpacked, will create its own
subdirectory `nasm-XXX'.
NASM is an auto-configuring package: once you've unpacked it, `cd'
to the directory it's been unpacked into and type `./configure'.
This shell script will find the best C compiler to use for building
NASM and set up Makefiles accordingly.
Once NASM has auto-configured, you can type `make' to build the
`nasm' and `ndisasm' binaries, and then `make install' to install
them in `/usr/local/bin' and install the man pages `nasm.1' and
`ndisasm.1' in `/usr/local/man/man1'. Alternatively, you can give
options such as `--prefix' to the configure script (see the file
`INSTALL' for more details), or install the programs yourself.
NASM also comes with a set of utilities for handling the `RDOFF'
custom object-file format, which are in the `rdoff' subdirectory of
the NASM archive. You can build these with `make rdf' and install
them with `make rdf_install', if you want them.
Chapter 2: Running NASM
-----------------------
2.1 NASM Command-Line Syntax
To assemble a file, you issue a command of the form
nasm -f <format> <filename> [-o <output>]
For example,
nasm -f elf myfile.asm
will assemble `myfile.asm' into an `ELF' object file `myfile.o'. And
nasm -f bin myfile.asm -o myfile.com
will assemble `myfile.asm' into a raw binary file `myfile.com'.
To produce a listing file, with the hex codes output from NASM
displayed on the left of the original sources, use the `-l' option
to give a listing file name, for example:
nasm -f coff myfile.asm -l myfile.lst
To get further usage instructions from NASM, try typing
nasm -h
As `-hf', this will also list the available output file formats, and
what they are.
If you use Linux but aren't sure whether your system is `a.out' or
`ELF', type
file nasm
(in the directory in which you put the NASM binary when you
installed it). If it says something like
nasm: ELF 32-bit LSB executable i386 (386 and up) Version 1
then your system is `ELF', and you should use the option `-f elf'
when you want NASM to produce Linux object files. If it says
nasm: Linux/i386 demand-paged executable (QMAGIC)
or something similar, your system is `a.out', and you should use
`-f aout' instead (Linux `a.out' systems have long been obsolete,
and are rare these days.)
Like Unix compilers and assemblers, NASM is silent unless it goes
wrong: you won't see any output at all, unless it gives error
messages.
2.1.1 The `-o' Option: Specifying the Output File Name
NASM will normally choose the name of your output file for you;
precisely how it does this is dependent on the object file format.
For Microsoft object file formats (`obj', `win32' and `win64'), it
will remove the `.asm' extension (or whatever extension you like to
use - NASM doesn't care) from your source file name and substitute
`.obj'. For Unix object file formats (`aout', `as86', `coff',
`elf32', `elf64', `ieee', `macho32' and `macho64') it will
substitute `.o'. For `dbg', `rdf', `ith' and `srec', it will use
`.dbg', `.rdf', `.ith' and `.srec', respectively, and for the `bin'
format it will simply remove the extension, so that `myfile.asm'
produces the output file `myfile'.
If the output file already exists, NASM will overwrite it, unless it
has the same name as the input file, in which case it will give a
warning and use `nasm.out' as the output file name instead.
For situations in which this behaviour is unacceptable, NASM
provides the `-o' command-line option, which allows you to specify
your desired output file name. You invoke `-o' by following it with
the name you wish for the output file, either with or without an
intervening space. For example:
nasm -f bin program.asm -o program.com
nasm -f bin driver.asm -odriver.sys
Note that this is a small o, and is different from a capital O ,
which is used to specify the number of optimisation passes required.
See section 2.1.22.
2.1.2 The `-f' Option: Specifying the Output File Format
If you do not supply the `-f' option to NASM, it will choose an
output file format for you itself. In the distribution versions of
NASM, the default is always `bin'; if you've compiled your own copy
of NASM, you can redefine `OF_DEFAULT' at compile time and choose
what you want the default to be.
Like `-o', the intervening space between `-f' and the output file
format is optional; so `-f elf' and `-felf' are both valid.
A complete list of the available output file formats can be given by
issuing the command `nasm -hf'.
2.1.3 The `-l' Option: Generating a Listing File
If you supply the `-l' option to NASM, followed (with the usual
optional space) by a file name, NASM will generate a source-listing
file for you, in which addresses and generated code are listed on
the left, and the actual source code, with expansions of multi-line
macros (except those which specifically request no expansion in
source listings: see section 4.3.10) on the right. For example:
nasm -f elf myfile.asm -l myfile.lst
If a list file is selected, you may turn off listing for a section
of your source with `[list -]', and turn it back on with `[list +]',
(the default, obviously). There is no "user form" (without the
brackets). This can be used to list only sections of interest,
avoiding excessively long listings.
2.1.4 The `-M' Option: Generate Makefile Dependencies
This option can be used to generate makefile dependencies on stdout.
This can be redirected to a file for further processing. For
example:
nasm -M myfile.asm > myfile.dep
2.1.5 The `-MG' Option: Generate Makefile Dependencies
This option can be used to generate makefile dependencies on stdout.
This differs from the `-M' option in that if a nonexisting file is
encountered, it is assumed to be a generated file and is added to
the dependency list without a prefix.
2.1.6 The `-MF' Option: Set Makefile Dependency File
This option can be used with the `-M' or `-MG' options to send the
output to a file, rather than to stdout. For example:
nasm -M -MF myfile.dep myfile.asm
2.1.7 The `-MD' Option: Assemble and Generate Dependencies
The `-MD' option acts as the combination of the `-M' and `-MF'
options (i.e. a filename has to be specified.) However, unlike the
`-M' or `-MG' options, `-MD' does _not_ inhibit the normal operation
of the assembler. Use this to automatically generate updated
dependencies with every assembly session. For example:
nasm -f elf -o myfile.o -MD myfile.dep myfile.asm
2.1.8 The `-MT' Option: Dependency Target Name
The `-MT' option can be used to override the default name of the
dependency target. This is normally the same as the output filename,
specified by the `-o' option.
2.1.9 The `-MQ' Option: Dependency Target Name (Quoted)
The `-MQ' option acts as the `-MT' option, except it tries to quote
characters that have special meaning in Makefile syntax. This is not
foolproof, as not all characters with special meaning are quotable
in Make.
2.1.10 The `-MP' Option: Emit phony targets
When used with any of the dependency generation options, the `-MP'
option causes NASM to emit a phony target without dependencies for
each header file. This prevents Make from complaining if a header
file has been removed.
2.1.11 The `-F' Option: Selecting a Debug Information Format
This option is used to select the format of the debug information
emitted into the output file, to be used by a debugger (or _will_
be). Prior to version 2.03.01, the use of this switch did _not_
enable output of the selected debug info format. Use `-g', see
section 2.1.12, to enable output. Versions 2.03.01 and later
automatically enable `-g' if `-F' is specified.
A complete list of the available debug file formats for an output
format can be seen by issuing the command `nasm -f <format> -y'. Not
all output formats currently support debugging output. See section
2.1.26.
This should not be confused with the `-f dbg' output format option
which is not built into NASM by default. For information on how to
enable it when building from the sources, see section 7.14.
2.1.12 The `-g' Option: Enabling Debug Information.
This option can be used to generate debugging information in the
specified format. See section 2.1.11. Using `-g' without `-F'
results in emitting debug info in the default format, if any, for
the selected output format. If no debug information is currently
implemented in the selected output format, `-g' is _silently
ignored_.
2.1.13 The `-X' Option: Selecting an Error Reporting Format
This option can be used to select an error reporting format for any
error messages that might be produced by NASM.
Currently, two error reporting formats may be selected. They are the
`-Xvc' option and the `-Xgnu' option. The GNU format is the default
and looks like this:
filename.asm:65: error: specific error message
where `filename.asm' is the name of the source file in which the
error was detected, `65' is the source file line number on which the
error was detected, `error' is the severity of the error (this could
be `warning'), and `specific error message' is a more detailed text
message which should help pinpoint the exact problem.
The other format, specified by `-Xvc' is the style used by Microsoft
Visual C++ and some other programs. It looks like this:
filename.asm(65) : error: specific error message
where the only difference is that the line number is in parentheses
instead of being delimited by colons.
See also the `Visual C++' output format, section 7.5.
2.1.14 The `-Z' Option: Send Errors to a File
Under `MS-DOS' it can be difficult (though there are ways) to
redirect the standard-error output of a program to a file. Since
NASM usually produces its warning and error messages on `stderr',
this can make it hard to capture the errors if (for example) you
want to load them into an editor.
NASM therefore provides the `-Z' option, taking a filename argument
which causes errors to be sent to the specified files rather than
standard error. Therefore you can redirect the errors into a file by
typing
nasm -Z myfile.err -f obj myfile.asm
In earlier versions of NASM, this option was called `-E', but it was
changed since `-E' is an option conventionally used for
preprocessing only, with disastrous results. See section 2.1.20.
2.1.15 The `-s' Option: Send Errors to `stdout'
The `-s' option redirects error messages to `stdout' rather than
`stderr', so it can be redirected under `MS-DOS'. To assemble the
file `myfile.asm' and pipe its output to the `more' program, you can
type:
nasm -s -f obj myfile.asm | more
See also the `-Z' option, section 2.1.14.
2.1.16 The `-i' Option: Include File Search Directories
When NASM sees the `%include' or `%pathsearch' directive in a source
file (see section 4.6.1, section 4.6.2 or section 3.2.3), it will
search for the given file not only in the current directory, but
also in any directories specified on the command line by the use of
the `-i' option. Therefore you can include files from a macro
library, for example, by typing
nasm -ic:\macrolib\ -f obj myfile.asm
(As usual, a space between `-i' and the path name is allowed, and
optional).
NASM, in the interests of complete source-code portability, does not
understand the file naming conventions of the OS it is running on;
the string you provide as an argument to the `-i' option will be
prepended exactly as written to the name of the include file.
Therefore the trailing backslash in the above example is necessary.
Under Unix, a trailing forward slash is similarly necessary.
(You can use this to your advantage, if you're really perverse, by
noting that the option `-ifoo' will cause `%include "bar.i"' to
search for the file `foobar.i'...)
If you want to define a _standard_ include search path, similar to
`/usr/include' on Unix systems, you should place one or more `-i'
directives in the `NASMENV' environment variable (see section
2.1.28).
For Makefile compatibility with many C compilers, this option can
also be specified as `-I'.
2.1.17 The `-p' Option: Pre-Include a File
NASM allows you to specify files to be _pre-included_ into your
source file, by the use of the `-p' option. So running
nasm myfile.asm -p myinc.inc
is equivalent to running `nasm myfile.asm' and placing the directive
`%include "myinc.inc"' at the start of the file.
For consistency with the `-I', `-D' and `-U' options, this option
can also be specified as `-P'.
2.1.18 The `-d' Option: Pre-Define a Macro
Just as the `-p' option gives an alternative to placing `%include'
directives at the start of a source file, the `-d' option gives an
alternative to placing a `%define' directive. You could code
nasm myfile.asm -dFOO=100
as an alternative to placing the directive
%define FOO 100
at the start of the file. You can miss off the macro value, as well:
the option `-dFOO' is equivalent to coding `%define FOO'. This form
of the directive may be useful for selecting assembly-time options
which are then tested using `%ifdef', for example `-dDEBUG'.
For Makefile compatibility with many C compilers, this option can
also be specified as `-D'.
2.1.19 The `-u' Option: Undefine a Macro
The `-u' option undefines a macro that would otherwise have been
pre-defined, either automatically or by a `-p' or `-d' option
specified earlier on the command lines.
For example, the following command line:
nasm myfile.asm -dFOO=100 -uFOO
would result in `FOO' _not_ being a predefined macro in the program.
This is useful to override options specified at a different point in
a Makefile.
For Makefile compatibility with many C compilers, this option can
also be specified as `-U'.
2.1.20 The `-E' Option: Preprocess Only
NASM allows the preprocessor to be run on its own, up to a point.
Using the `-E' option (which requires no arguments) will cause NASM
to preprocess its input file, expand all the macro references,
remove all the comments and preprocessor directives, and print the
resulting file on standard output (or save it to a file, if the `-o'
option is also used).
This option cannot be applied to programs which require the
preprocessor to evaluate expressions which depend on the values of
symbols: so code such as
%assign tablesize ($-tablestart)
will cause an error in preprocess-only mode.
For compatiblity with older version of NASM, this option can also be
written `-e'. `-E' in older versions of NASM was the equivalent of
the current `-Z' option, section 2.1.14.
2.1.21 The `-a' Option: Don't Preprocess At All
If NASM is being used as the back end to a compiler, it might be
desirable to suppress preprocessing completely and assume the
compiler has already done it, to save time and increase compilation
speeds. The `-a' option, requiring no argument, instructs NASM to
replace its powerful preprocessor with a stub preprocessor which
does nothing.
2.1.22 The `-O' Option: Specifying Multipass Optimization
NASM defaults to not optimizing operands which can fit into a signed
byte. This means that if you want the shortest possible object code,
you have to enable optimization.
Using the `-O' option, you can tell NASM to carry out different
levels of optimization. The syntax is:
(*) `-O0': No optimization. All operands take their long forms, if a
short form is not specified, except conditional jumps. This is
intended to match NASM 0.98 behavior.
(*) `-O1': Minimal optimization. As above, but immediate operands
which will fit in a signed byte are optimized, unless the long
form is specified. Conditional jumps default to the long form
unless otherwise specified.
(*) `-Ox' (where `x' is the actual letter `x'): Multipass
optimization. Minimize branch offsets and signed immediate
bytes, overriding size specification unless the `strict' keyword
has been used (see section 3.7). For compatability with earlier
releases, the letter `x' may also be any number greater than
one. This number has no effect on the actual number of passes.
The `-Ox' mode is recommended for most uses.
Note that this is a capital `O', and is different from a small `o',
which is used to specify the output file name. See section 2.1.1.
2.1.23 The `-t' Option: Enable TASM Compatibility Mode
NASM includes a limited form of compatibility with Borland's `TASM'.
When NASM's `-t' option is used, the following changes are made:
(*) local labels may be prefixed with `@@' instead of `.'
(*) size override is supported within brackets. In TASM compatible
mode, a size override inside square brackets changes the size of
the operand, and not the address type of the operand as it does
in NASM syntax. E.g. `mov eax,[DWORD val]' is valid syntax in
TASM compatibility mode. Note that you lose the ability to
override the default address type for the instruction.
(*) unprefixed forms of some directives supported (`arg', `elif',
`else', `endif', `if', `ifdef', `ifdifi', `ifndef', `include',
`local')
2.1.24 The `-w' and `-W' Options: Enable or Disable Assembly Warnings
NASM can observe many conditions during the course of assembly which
are worth mentioning to the user, but not a sufficiently severe
error to justify NASM refusing to generate an output file. These
conditions are reported like errors, but come up with the word
`warning' before the message. Warnings do not prevent NASM from
generating an output file and returning a success status to the
operating system.
Some conditions are even less severe than that: they are only
sometimes worth mentioning to the user. Therefore NASM supports the
`-w' command-line option, which enables or disables certain classes
of assembly warning. Such warning classes are described by a name,
for example `orphan-labels'; you can enable warnings of this class
by the command-line option `-w+orphan-labels' and disable it by
`-w-orphan-labels'.
The suppressible warning classes are:
(*) `macro-params' covers warnings about multi-line macros being
invoked with the wrong number of parameters. This warning class
is enabled by default; see section 4.3.2 for an example of why
you might want to disable it.
(*) `macro-selfref' warns if a macro references itself. This warning
class is disabled by default.
(*) `macro-defaults' warns when a macro has more default parameters
than optional parameters. This warning class is enabled by
default; see section 4.3.5 for why you might want to disable it.
(*) `orphan-labels' covers warnings about source lines which contain
no instruction but define a label without a trailing colon. NASM
warns about this somewhat obscure condition by default; see
section 3.1 for more information.
(*) `number-overflow' covers warnings about numeric constants which
don't fit in 64 bits. This warning class is enabled by default.
(*) `gnu-elf-extensions' warns if 8-bit or 16-bit relocations are
used in `-f elf' format. The GNU extensions allow this. This
warning class is disabled by default.
(*) `float-overflow' warns about floating point overflow. Enabled by
default.
(*) `float-denorm' warns about floating point denormals. Disabled by
default.
(*) `float-underflow' warns about floating point underflow. Disabled
by default.
(*) `float-toolong' warns about too many digits in floating-point
numbers. Enabled by default.
(*) `user' controls `%warning' directives (see section 4.9). Enabled
by default.
(*) `error' causes warnings to be treated as errors. Disabled by
default.
(*) `all' is an alias for _all_ suppressible warning classes (not
including `error'). Thus, `-w+all' enables all available
warnings.
In addition, you can set warning classes across sections. Warning
classes may be enabled with `[warning +warning-name]', disabled with
`[warning -warning-name]' or reset to their original value with
`[warning *warning-name]'. No "user form" (without the brackets)
exists.
Since version 2.00, NASM has also supported the gcc-like syntax
`-Wwarning' and `-Wno-warning' instead of `-w+warning' and
`-w-warning', respectively.
2.1.25 The `-v' Option: Display Version Info
Typing `NASM -v' will display the version of NASM which you are
using, and the date on which it was compiled.
You will need the version number if you report a bug.
2.1.26 The `-y' Option: Display Available Debug Info Formats
Typing `nasm -f <option> -y' will display a list of the available
debug info formats for the given output format. The default format
is indicated by an asterisk. For example:
nasm -f elf -y
valid debug formats for 'elf32' output format are
('*' denotes default):
* stabs ELF32 (i386) stabs debug format for Linux
dwarf elf32 (i386) dwarf debug format for Linux
2.1.27 The `--prefix' and `--postfix' Options.
The `--prefix' and `--postfix' options prepend or append
(respectively) the given argument to all `global' or `extern'
variables. E.g. `--prefix _' will prepend the underscore to all
global and external variables, as C sometimes (but not always) likes
it.
2.1.28 The `NASMENV' Environment Variable
If you define an environment variable called `NASMENV', the program
will interpret it as a list of extra command-line options, which are
processed before the real command line. You can use this to define
standard search directories for include files, by putting `-i'
options in the `NASMENV' variable.
The value of the variable is split up at white space, so that the
value `-s -ic:\nasmlib\' will be treated as two separate options.
However, that means that the value `-dNAME="my name"' won't do what
you might want, because it will be split at the space and the NASM
command-line processing will get confused by the two nonsensical
words `-dNAME="my' and `name"'.
To get round this, NASM provides a feature whereby, if you begin the
`NASMENV' environment variable with some character that isn't a
minus sign, then NASM will treat this character as the separator
character for options. So setting the `NASMENV' variable to the
value `!-s!-ic:\nasmlib\' is equivalent to setting it to
`-s -ic:\nasmlib\', but `!-dNAME="my name"' will work.
This environment variable was previously called `NASM'. This was
changed with version 0.98.31.
2.2 Quick Start for MASM Users
If you're used to writing programs with MASM, or with TASM in MASM-
compatible (non-Ideal) mode, or with `a86', this section attempts to
outline the major differences between MASM's syntax and NASM's. If
you're not already used to MASM, it's probably worth skipping this
section.
2.2.1 NASM Is Case-Sensitive
One simple difference is that NASM is case-sensitive. It makes a
difference whether you call your label `foo', `Foo' or `FOO'. If
you're assembling to `DOS' or `OS/2' `.OBJ' files, you can invoke
the `UPPERCASE' directive (documented in section 7.4) to ensure that
all symbols exported to other code modules are forced to be upper
case; but even then, _within_ a single module, NASM will distinguish
between labels differing only in case.
2.2.2 NASM Requires Square Brackets For Memory References
NASM was designed with simplicity of syntax in mind. One of the
design goals of NASM is that it should be possible, as far as is
practical, for the user to look at a single line of NASM code and
tell what opcode is generated by it. You can't do this in MASM: if
you declare, for example,
foo equ 1
bar dw 2
then the two lines of code
mov ax,foo
mov ax,bar
generate completely different opcodes, despite having identical-
looking syntaxes.
NASM avoids this undesirable situation by having a much simpler
syntax for memory references. The rule is simply that any access to
the _contents_ of a memory location requires square brackets around
the address, and any access to the _address_ of a variable doesn't.
So an instruction of the form `mov ax,foo' will _always_ refer to a
compile-time constant, whether it's an `EQU' or the address of a
variable; and to access the _contents_ of the variable `bar', you
must code `mov ax,[bar]'.
This also means that NASM has no need for MASM's `OFFSET' keyword,
since the MASM code `mov ax,offset bar' means exactly the same thing
as NASM's `mov ax,bar'. If you're trying to get large amounts of
MASM code to assemble sensibly under NASM, you can always code
`%idefine offset' to make the preprocessor treat the `OFFSET'
keyword as a no-op.
This issue is even more confusing in `a86', where declaring a label
with a trailing colon defines it to be a `label' as opposed to a
`variable' and causes `a86' to adopt NASM-style semantics; so in
`a86', `mov ax,var' has different behaviour depending on whether
`var' was declared as `var: dw 0' (a label) or `var dw 0' (a word-
size variable). NASM is very simple by comparison: _everything_ is a
label.
NASM, in the interests of simplicity, also does not support the
hybrid syntaxes supported by MASM and its clones, such as
`mov ax,table[bx]', where a memory reference is denoted by one
portion outside square brackets and another portion inside. The
correct syntax for the above is `mov ax,[table+bx]'. Likewise,
`mov ax,es:[di]' is wrong and `mov ax,[es:di]' is right.
2.2.3 NASM Doesn't Store Variable Types
NASM, by design, chooses not to remember the types of variables you
declare. Whereas MASM will remember, on seeing `var dw 0', that you
declared `var' as a word-size variable, and will then be able to
fill in the ambiguity in the size of the instruction `mov var,2',
NASM will deliberately remember nothing about the symbol `var'
except where it begins, and so you must explicitly code
`mov word [var],2'.
For this reason, NASM doesn't support the `LODS', `MOVS', `STOS',
`SCAS', `CMPS', `INS', or `OUTS' instructions, but only supports the
forms such as `LODSB', `MOVSW', and `SCASD', which explicitly
specify the size of the components of the strings being manipulated.
2.2.4 NASM Doesn't `ASSUME'
As part of NASM's drive for simplicity, it also does not support the
`ASSUME' directive. NASM will not keep track of what values you
choose to put in your segment registers, and will never
_automatically_ generate a segment override prefix.
2.2.5 NASM Doesn't Support Memory Models
NASM also does not have any directives to support different 16-bit
memory models. The programmer has to keep track of which functions
are supposed to be called with a far call and which with a near
call, and is responsible for putting the correct form of `RET'
instruction (`RETN' or `RETF'; NASM accepts `RET' itself as an
alternate form for `RETN'); in addition, the programmer is
responsible for coding CALL FAR instructions where necessary when
calling _external_ functions, and must also keep track of which
external variable definitions are far and which are near.
2.2.6 Floating-Point Differences
NASM uses different names to refer to floating-point registers from
MASM: where MASM would call them `ST(0)', `ST(1)' and so on, and
`a86' would call them simply `0', `1' and so on, NASM chooses to
call them `st0', `st1' etc.
As of version 0.96, NASM now treats the instructions with `nowait'
forms in the same way as MASM-compatible assemblers. The
idiosyncratic treatment employed by 0.95 and earlier was based on a
misunderstanding by the authors.
2.2.7 Other Differences
For historical reasons, NASM uses the keyword `TWORD' where MASM and
compatible assemblers use `TBYTE'.
NASM does not declare uninitialized storage in the same way as MASM:
where a MASM programmer might use `stack db 64 dup (?)', NASM
requires `stack resb 64', intended to be read as `reserve 64 bytes'.
For a limited amount of compatibility, since NASM treats `?' as a
valid character in symbol names, you can code `? equ 0' and then
writing `dw ?' will at least do something vaguely useful. `DUP' is
still not a supported syntax, however.
In addition to all of this, macros and directives work completely
differently to MASM. See chapter 4 and chapter 6 for further
details.
Chapter 3: The NASM Language
----------------------------
3.1 Layout of a NASM Source Line
Like most assemblers, each NASM source line contains (unless it is a
macro, a preprocessor directive or an assembler directive: see
chapter 4 and chapter 6) some combination of the four fields
label: instruction operands ; comment
As usual, most of these fields are optional; the presence or absence
of any combination of a label, an instruction and a comment is
allowed. Of course, the operand field is either required or
forbidden by the presence and nature of the instruction field.
NASM uses backslash (\) as the line continuation character; if a
line ends with backslash, the next line is considered to be a part
of the backslash-ended line.
NASM places no restrictions on white space within a line: labels may
have white space before them, or instructions may have no space
before them, or anything. The colon after a label is also optional.
(Note that this means that if you intend to code `lodsb' alone on a
line, and type `lodab' by accident, then that's still a valid source
line which does nothing but define a label. Running NASM with the
command-line option `-w+orphan-labels' will cause it to warn you if
you define a label alone on a line without a trailing colon.)
Valid characters in labels are letters, numbers, `_', `$', `#', `@',
`~', `.', and `?'. The only characters which may be used as the
_first_ character of an identifier are letters, `.' (with special
meaning: see section 3.9), `_' and `?'. An identifier may also be
prefixed with a `$' to indicate that it is intended to be read as an
identifier and not a reserved word; thus, if some other module you
are linking with defines a symbol called `eax', you can refer to
`$eax' in NASM code to distinguish the symbol from the register.
Maximum length of an identifier is 4095 characters.
The instruction field may contain any machine instruction: Pentium
and P6 instructions, FPU instructions, MMX instructions and even
undocumented instructions are all supported. The instruction may be
prefixed by `LOCK', `REP', `REPE'/`REPZ' or `REPNE'/`REPNZ', in the
usual way. Explicit address-size and operand-size prefixes `A16',
`A32', `A64', `O16' and `O32', `O64' are provided - one example of
their use is given in chapter 10. You can also use the name of a
segment register as an instruction prefix: coding `es mov [bx],ax'
is equivalent to coding `mov [es:bx],ax'. We recommend the latter
syntax, since it is consistent with other syntactic features of the
language, but for instructions such as `LODSB', which has no
operands and yet can require a segment override, there is no clean
syntactic way to proceed apart from `es lodsb'.
An instruction is not required to use a prefix: prefixes such as
`CS', `A32', `LOCK' or `REPE' can appear on a line by themselves,
and NASM will just generate the prefix bytes.
In addition to actual machine instructions, NASM also supports a
number of pseudo-instructions, described in section 3.2.
Instruction operands may take a number of forms: they can be
registers, described simply by the register name (e.g. `ax', `bp',
`ebx', `cr0': NASM does not use the `gas'-style syntax in which
register names must be prefixed by a `%' sign), or they can be
effective addresses (see section 3.3), constants (section 3.4) or
expressions (section 3.5).
For x87 floating-point instructions, NASM accepts a wide range of
syntaxes: you can use two-operand forms like MASM supports, or you
can use NASM's native single-operand forms in most cases. For
example, you can code:
fadd st1 ; this sets st0 := st0 + st1
fadd st0,st1 ; so does this
fadd st1,st0 ; this sets st1 := st1 + st0
fadd to st1 ; so does this
Almost any x87 floating-point instruction that references memory
must use one of the prefixes `DWORD', `QWORD' or `TWORD' to indicate
what size of memory operand it refers to.
3.2 Pseudo-Instructions
Pseudo-instructions are things which, though not real x86 machine
instructions, are used in the instruction field anyway because
that's the most convenient place to put them. The current pseudo-
instructions are `DB', `DW', `DD', `DQ', `DT', `DO' and `DY'; their
uninitialized counterparts `RESB', `RESW', `RESD', `RESQ', `REST',
`RESO' and `RESY'; the `INCBIN' command, the `EQU' command, and the
`TIMES' prefix.
3.2.1 `DB' and Friends: Declaring Initialized Data
`DB', `DW', `DD', `DQ', `DT', `DO' and `DY' are used, much as in
MASM, to declare initialized data in the output file. They can be
invoked in a wide range of ways:
db 0x55 ; just the byte 0x55
db 0x55,0x56,0x57 ; three bytes in succession
db 'a',0x55 ; character constants are OK
db 'hello',13,10,'$' ; so are string constants
dw 0x1234 ; 0x34 0x12
dw 'a' ; 0x61 0x00 (it's just a number)
dw 'ab' ; 0x61 0x62 (character constant)
dw 'abc' ; 0x61 0x62 0x63 0x00 (string)
dd 0x12345678 ; 0x78 0x56 0x34 0x12
dd 1.234567e20 ; floating-point constant
dq 0x123456789abcdef0 ; eight byte constant
dq 1.234567e20 ; double-precision float
dt 1.234567e20 ; extended-precision float
`DT', `DO' and `DY' do not accept numeric constants as operands.
3.2.2 `RESB' and Friends: Declaring Uninitialized Data
`RESB', `RESW', `RESD', `RESQ', `REST', `RESO' and `RESY' are
designed to be used in the BSS section of a module: they declare
_uninitialized_ storage space. Each takes a single operand, which is
the number of bytes, words, doublewords or whatever to reserve. As
stated in section 2.2.7, NASM does not support the MASM/TASM syntax
of reserving uninitialized space by writing `DW ?' or similar
things: this is what it does instead. The operand to a `RESB'-type
pseudo-instruction is a _critical expression_: see section 3.8.
For example:
buffer: resb 64 ; reserve 64 bytes
wordvar: resw 1 ; reserve a word
realarray resq 10 ; array of ten reals
ymmval: resy 1 ; one YMM register
3.2.3 `INCBIN': Including External Binary Files
`INCBIN' is borrowed from the old Amiga assembler DevPac: it
includes a binary file verbatim into the output file. This can be
handy for (for example) including graphics and sound data directly
into a game executable file. It can be called in one of these three
ways:
incbin "file.dat" ; include the whole file
incbin "file.dat",1024 ; skip the first 1024 bytes
incbin "file.dat",1024,512 ; skip the first 1024, and
; actually include at most 512
`INCBIN' is both a directive and a standard macro; the standard
macro version searches for the file in the include file search path
and adds the file to the dependency lists. This macro can be
overridden if desired.
3.2.4 `EQU': Defining Constants
`EQU' defines a symbol to a given constant value: when `EQU' is
used, the source line must contain a label. The action of `EQU' is
to define the given label name to the value of its (only) operand.
This definition is absolute, and cannot change later. So, for
example,
message db 'hello, world'
msglen equ $-message
defines `msglen' to be the constant 12. `msglen' may not then be
redefined later. This is not a preprocessor definition either: the
value of `msglen' is evaluated _once_, using the value of `$' (see
section 3.5 for an explanation of `$') at the point of definition,
rather than being evaluated wherever it is referenced and using the
value of `$' at the point of reference.
3.2.5 `TIMES': Repeating Instructions or Data
The `TIMES' prefix causes the instruction to be assembled multiple
times. This is partly present as NASM's equivalent of the `DUP'
syntax supported by MASM-compatible assemblers, in that you can code
zerobuf: times 64 db 0
or similar things; but `TIMES' is more versatile than that. The
argument to `TIMES' is not just a numeric constant, but a numeric
_expression_, so you can do things like
buffer: db 'hello, world'
times 64-$+buffer db ' '
which will store exactly enough spaces to make the total length of
`buffer' up to 64. Finally, `TIMES' can be applied to ordinary
instructions, so you can code trivial unrolled loops in it:
times 100 movsb
Note that there is no effective difference between
`times 100 resb 1' and `resb 100', except that the latter will be
assembled about 100 times faster due to the internal structure of
the assembler.
The operand to `TIMES' is a critical expression (section 3.8).
Note also that `TIMES' can't be applied to macros: the reason for
this is that `TIMES' is processed after the macro phase, which
allows the argument to `TIMES' to contain expressions such as
`64-$+buffer' as above. To repeat more than one line of code, or a
complex macro, use the preprocessor `%rep' directive.
3.3 Effective Addresses
An effective address is any operand to an instruction which
references memory. Effective addresses, in NASM, have a very simple
syntax: they consist of an expression evaluating to the desired
address, enclosed in square brackets. For example:
wordvar dw 123
mov ax,[wordvar]
mov ax,[wordvar+1]
mov ax,[es:wordvar+bx]
Anything not conforming to this simple system is not a valid memory
reference in NASM, for example `es:wordvar[bx]'.
More complicated effective addresses, such as those involving more
than one register, work in exactly the same way:
mov eax,[ebx*2+ecx+offset]
mov ax,[bp+di+8]
NASM is capable of doing algebra on these effective addresses, so
that things which don't necessarily _look_ legal are perfectly all
right:
mov eax,[ebx*5] ; assembles as [ebx*4+ebx]
mov eax,[label1*2-label2] ; ie [label1+(label1-label2)]
Some forms of effective address have more than one assembled form;
in most such cases NASM will generate the smallest form it can. For
example, there are distinct assembled forms for the 32-bit effective
addresses `[eax*2+0]' and `[eax+eax]', and NASM will generally
generate the latter on the grounds that the former requires four
bytes to store a zero offset.
NASM has a hinting mechanism which will cause `[eax+ebx]' and
`[ebx+eax]' to generate different opcodes; this is occasionally
useful because `[esi+ebp]' and `[ebp+esi]' have different default
segment registers.
However, you can force NASM to generate an effective address in a
particular form by the use of the keywords `BYTE', `WORD', `DWORD'
and `NOSPLIT'. If you need `[eax+3]' to be assembled using a double-
word offset field instead of the one byte NASM will normally
generate, you can code `[dword eax+3]'. Similarly, you can force
NASM to use a byte offset for a small value which it hasn't seen on
the first pass (see section 3.8 for an example of such a code
fragment) by using `[byte eax+offset]'. As special cases,
`[byte eax]' will code `[eax+0]' with a byte offset of zero, and
`[dword eax]' will code it with a double-word offset of zero. The
normal form, `[eax]', will be coded with no offset field.
The form described in the previous paragraph is also useful if you
are trying to access data in a 32-bit segment from within 16 bit
code. For more information on this see the section on mixed-size
addressing (section 10.2). In particular, if you need to access data
with a known offset that is larger than will fit in a 16-bit value,
if you don't specify that it is a dword offset, nasm will cause the
high word of the offset to be lost.
Similarly, NASM will split `[eax*2]' into `[eax+eax]' because that
allows the offset field to be absent and space to be saved; in fact,
it will also split `[eax*2+offset]' into `[eax+eax+offset]'. You can
combat this behaviour by the use of the `NOSPLIT' keyword:
`[nosplit eax*2]' will force `[eax*2+0]' to be generated literally.
In 64-bit mode, NASM will by default generate absolute addresses.
The `REL' keyword makes it produce `RIP'-relative addresses. Since
this is frequently the normally desired behaviour, see the `DEFAULT'
directive (section 6.2). The keyword `ABS' overrides `REL'.
3.4 Constants
NASM understands four different types of constant: numeric,
character, string and floating-point.
3.4.1 Numeric Constants
A numeric constant is simply a number. NASM allows you to specify
numbers in a variety of number bases, in a variety of ways: you can
suffix `H' or `X', `Q' or `O', and `B' for hexadecimal, octal and
binary respectively, or you can prefix `0x' for hexadecimal in the
style of C, or you can prefix `$' for hexadecimal in the style of
Borland Pascal. Note, though, that the `$' prefix does double duty
as a prefix on identifiers (see section 3.1), so a hex number
prefixed with a `$' sign must have a digit after the `$' rather than
a letter. In addition, current versions of NASM accept the prefix
`0h' for hexadecimal, `0o' or `0q' for octal, and `0b' for binary.
Please note that unlike C, a `0' prefix by itself does _not_ imply
an octal constant!
Numeric constants can have underscores (`_') interspersed to break
up long strings.
Some examples (all producing exactly the same code):
mov ax,200 ; decimal
mov ax,0200 ; still decimal
mov ax,0200d ; explicitly decimal
mov ax,0d200 ; also decimal
mov ax,0c8h ; hex
mov ax,$0c8 ; hex again: the 0 is required
mov ax,0xc8 ; hex yet again
mov ax,0hc8 ; still hex
mov ax,310q ; octal
mov ax,310o ; octal again
mov ax,0o310 ; octal yet again
mov ax,0q310 ; hex yet again
mov ax,11001000b ; binary
mov ax,1100_1000b ; same binary constant
mov ax,0b1100_1000 ; same binary constant yet again
3.4.2 Character Strings
A character string consists of up to eight characters enclosed in
either single quotes (`'...''), double quotes (`"..."') or
backquotes (``...`'). Single or double quotes are equivalent to NASM
(except of course that surrounding the constant with single quotes
allows double quotes to appear within it and vice versa); the
contents of those are represented verbatim. Strings enclosed in
backquotes support C-style `\'-escapes for special characters.
The following escape sequences are recognized by backquoted strings:
\' single quote (')
\" double quote (")
\` backquote (`)
\\ backslash (\)
\? question mark (?)
\a BEL (ASCII 7)
\b BS (ASCII 8)
\t TAB (ASCII 9)
\n LF (ASCII 10)
\v VT (ASCII 11)
\f FF (ASCII 12)
\r CR (ASCII 13)
\e ESC (ASCII 27)
\377 Up to 3 octal digits - literal byte
\xFF Up to 2 hexadecimal digits - literal byte
\u1234 4 hexadecimal digits - Unicode character
\U12345678 8 hexadecimal digits - Unicode character
All other escape sequences are reserved. Note that `\0', meaning a
`NUL' character (ASCII 0), is a special case of the octal escape
sequence.
Unicode characters specified with `\u' or `\U' are converted to
UTF-8. For example, the following lines are all equivalent:
db `\u263a` ; UTF-8 smiley face
db `\xe2\x98\xba` ; UTF-8 smiley face
db 0E2h, 098h, 0BAh ; UTF-8 smiley face
3.4.3 Character Constants
A character constant consists of a string up to eight bytes long,
used in an expression context. It is treated as if it was an
integer.
A character constant with more than one byte will be arranged with
little-endian order in mind: if you code
mov eax,'abcd'
then the constant generated is not `0x61626364', but `0x64636261',
so that if you were then to store the value into memory, it would
read `abcd' rather than `dcba'. This is also the sense of character
constants understood by the Pentium's `CPUID' instruction.
3.4.4 String Constants
String constants are character strings used in the context of some
pseudo-instructions, namely the `DB' family and `INCBIN' (where it
represents a filename.) They are also used in certain preprocessor
directives.
A string constant looks like a character constant, only longer. It
is treated as a concatenation of maximum-size character constants
for the conditions. So the following are equivalent:
db 'hello' ; string constant
db 'h','e','l','l','o' ; equivalent character constants
And the following are also equivalent:
dd 'ninechars' ; doubleword string constant
dd 'nine','char','s' ; becomes three doublewords
db 'ninechars',0,0,0 ; and really looks like this
Note that when used in a string-supporting context, quoted strings
are treated as a string constants even if they are short enough to
be a character constant, because otherwise `db 'ab'' would have the
same effect as `db 'a'', which would be silly. Similarly, three-
character or four-character constants are treated as strings when
they are operands to `DW', and so forth.
3.4.5 Unicode Strings
The special operators `__utf16__' and `__utf32__' allows definition
of Unicode strings. They take a string in UTF-8 format and converts
it to (littleendian) UTF-16 or UTF-32, respectively.
For example:
%define u(x) __utf16__(x)
%define w(x) __utf32__(x)
dw u('C:\WINDOWS'), 0 ; Pathname in UTF-16
dd w(`A + B = \u206a`), 0 ; String in UTF-32
`__utf16__' and `__utf32__' can be applied either to strings passed
to the `DB' family instructions, or to character constants in an
expression context.
3.4.6 Floating-Point Constants
Floating-point constants are acceptable only as arguments to `DB',
`DW', `DD', `DQ', `DT', and `DO', or as arguments to the special
operators `__float8__', `__float16__', `__float32__', `__float64__',
`__float80m__', `__float80e__', `__float128l__', and
`__float128h__'.
Floating-point constants are expressed in the traditional form:
digits, then a period, then optionally more digits, then optionally
an `E' followed by an exponent. The period is mandatory, so that
NASM can distinguish between `dd 1', which declares an integer
constant, and `dd 1.0' which declares a floating-point constant.
NASM also support C99-style hexadecimal floating-point: `0x',
hexadecimal digits, period, optionally more hexadeximal digits, then
optionally a `P' followed by a _binary_ (not hexadecimal) exponent
in decimal notation.
Underscores to break up groups of digits are permitted in floating-
point constants as well.
Some examples:
db -0.2 ; "Quarter precision"
dw -0.5 ; IEEE 754r/SSE5 half precision
dd 1.2 ; an easy one
dd 1.222_222_222 ; underscores are permitted
dd 0x1p+2 ; 1.0x2^2 = 4.0
dq 0x1p+32 ; 1.0x2^32 = 4 294 967 296.0
dq 1.e10 ; 10 000 000 000.0
dq 1.e+10 ; synonymous with 1.e10
dq 1.e-10 ; 0.000 000 000 1
dt 3.141592653589793238462 ; pi
do 1.e+4000 ; IEEE 754r quad precision
The 8-bit "quarter-precision" floating-point format is
sign:exponent:mantissa = 1:4:3 with an exponent bias of 7. This
appears to be the most frequently used 8-bit floating-point format,
although it is not covered by any formal standard. This is sometimes
called a "minifloat."
The special operators are used to produce floating-point numbers in
other contexts. They produce the binary representation of a specific
floating-point number as an integer, and can use anywhere integer
constants are used in an expression. `__float80m__' and
`__float80e__' produce the 64-bit mantissa and 16-bit exponent of an
80-bit floating-point number, and `__float128l__' and
`__float128h__' produce the lower and upper 64-bit halves of a 128-
bit floating-point number, respectively.
For example:
mov rax,__float64__(3.141592653589793238462)
... would assign the binary representation of pi as a 64-bit
floating point number into `RAX'. This is exactly equivalent to:
mov rax,0x400921fb54442d18
NASM cannot do compile-time arithmetic on floating-point constants.
This is because NASM is designed to be portable - although it always
generates code to run on x86 processors, the assembler itself can
run on any system with an ANSI C compiler. Therefore, the assembler
cannot guarantee the presence of a floating-point unit capable of
handling the Intel number formats, and so for NASM to be able to do
floating arithmetic it would have to include its own complete set of
floating-point routines, which would significantly increase the size
of the assembler for very little benefit.
The special tokens `__Infinity__', `__QNaN__' (or `__NaN__') and
`__SNaN__' can be used to generate infinities, quiet NaNs, and
signalling NaNs, respectively. These are normally used as macros:
%define Inf __Infinity__
%define NaN __QNaN__
dq +1.5, -Inf, NaN ; Double-precision constants
3.4.7 Packed BCD Constants
x87-style packed BCD constants can be used in the same contexts as
80-bit floating-point numbers. They are suffixed with `p' or
prefixed with `0p', and can include up to 18 decimal digits.
As with other numeric constants, underscores can be used to separate
digits.
For example:
dt 12_345_678_901_245_678p
dt -12_345_678_901_245_678p
dt +0p33
dt 33p
3.5 Expressions
Expressions in NASM are similar in syntax to those in C. Expressions
are evaluated as 64-bit integers which are then adjusted to the
appropriate size.
NASM supports two special tokens in expressions, allowing
calculations to involve the current assembly position: the `$' and
`$$' tokens. `$' evaluates to the assembly position at the beginning
of the line containing the expression; so you can code an infinite
loop using `JMP $'. `$$' evaluates to the beginning of the current
section; so you can tell how far into the section you are by using
`($-$$)'.
The arithmetic operators provided by NASM are listed here, in
increasing order of precedence.
3.5.1 `|': Bitwise OR Operator
The `|' operator gives a bitwise OR, exactly as performed by the
`OR' machine instruction. Bitwise OR is the lowest-priority
arithmetic operator supported by NASM.
3.5.2 `^': Bitwise XOR Operator
`^' provides the bitwise XOR operation.
3.5.3 `&': Bitwise AND Operator
`&' provides the bitwise AND operation.
3.5.4 `<<' and `>>': Bit Shift Operators
`<<' gives a bit-shift to the left, just as it does in C. So `5<<3'
evaluates to 5 times 8, or 40. `>>' gives a bit-shift to the right;
in NASM, such a shift is _always_ unsigned, so that the bits shifted
in from the left-hand end are filled with zero rather than a sign-
extension of the previous highest bit.
3.5.5 `+' and `-': Addition and Subtraction Operators
The `+' and `-' operators do perfectly ordinary addition and
subtraction.
3.5.6 `*', `/', `//', `%' and `%%': Multiplication and Division
`*' is the multiplication operator. `/' and `//' are both division
operators: `/' is unsigned division and `//' is signed division.
Similarly, `%' and `%%' provide unsigned and signed modulo operators
respectively.
NASM, like ANSI C, provides no guarantees about the sensible
operation of the signed modulo operator.
Since the `%' character is used extensively by the macro
preprocessor, you should ensure that both the signed and unsigned
modulo operators are followed by white space wherever they appear.
3.5.7 Unary Operators: `+', `-', `~', `!' and `SEG'
The highest-priority operators in NASM's expression grammar are
those which only apply to one argument. `-' negates its operand, `+'
does nothing (it's provided for symmetry with `-'), `~' computes the
one's complement of its operand, `!' is the logical negation
operator, and `SEG' provides the segment address of its operand
(explained in more detail in section 3.6).
3.6 `SEG' and `WRT'
When writing large 16-bit programs, which must be split into
multiple segments, it is often necessary to be able to refer to the
segment part of the address of a symbol. NASM supports the `SEG'
operator to perform this function.
The `SEG' operator returns the _preferred_ segment base of a symbol,
defined as the segment base relative to which the offset of the
symbol makes sense. So the code
mov ax,seg symbol
mov es,ax
mov bx,symbol
will load `ES:BX' with a valid pointer to the symbol `symbol'.
Things can be more complex than this: since 16-bit segments and
groups may overlap, you might occasionally want to refer to some
symbol using a different segment base from the preferred one. NASM
lets you do this, by the use of the `WRT' (With Reference To)
keyword. So you can do things like
mov ax,weird_seg ; weird_seg is a segment base
mov es,ax
mov bx,symbol wrt weird_seg
to load `ES:BX' with a different, but functionally equivalent,
pointer to the symbol `symbol'.
NASM supports far (inter-segment) calls and jumps by means of the
syntax `call segment:offset', where `segment' and `offset' both
represent immediate values. So to call a far procedure, you could
code either of
call (seg procedure):procedure
call weird_seg:(procedure wrt weird_seg)
(The parentheses are included for clarity, to show the intended
parsing of the above instructions. They are not necessary in
practice.)
NASM supports the syntax `call far procedure' as a synonym for the
first of the above usages. `JMP' works identically to `CALL' in
these examples.
To declare a far pointer to a data item in a data segment, you must
code
dw symbol, seg symbol
NASM supports no convenient synonym for this, though you can always
invent one using the macro processor.
3.7 `STRICT': Inhibiting Optimization
When assembling with the optimizer set to level 2 or higher (see
section 2.1.22), NASM will use size specifiers (`BYTE', `WORD',
`DWORD', `QWORD', `TWORD', `OWORD' or `YWORD'), but will give them
the smallest possible size. The keyword `STRICT' can be used to
inhibit optimization and force a particular operand to be emitted in
the specified size. For example, with the optimizer on, and in
`BITS 16' mode,
push dword 33
is encoded in three bytes `66 6A 21', whereas
push strict dword 33
is encoded in six bytes, with a full dword immediate operand
`66 68 21 00 00 00'.
With the optimizer off, the same code (six bytes) is generated
whether the `STRICT' keyword was used or not.
3.8 Critical Expressions
Although NASM has an optional multi-pass optimizer, there are some
expressions which must be resolvable on the first pass. These are
called _Critical Expressions_.
The first pass is used to determine the size of all the assembled
code and data, so that the second pass, when generating all the
code, knows all the symbol addresses the code refers to. So one
thing NASM can't handle is code whose size depends on the value of a
symbol declared after the code in question. For example,
times (label-$) db 0
label: db 'Where am I?'
The argument to `TIMES' in this case could equally legally evaluate
to anything at all; NASM will reject this example because it cannot
tell the size of the `TIMES' line when it first sees it. It will
just as firmly reject the slightly paradoxical code
times (label-$+1) db 0
label: db 'NOW where am I?'
in which _any_ value for the `TIMES' argument is by definition
wrong!
NASM rejects these examples by means of a concept called a _critical
expression_, which is defined to be an expression whose value is
required to be computable in the first pass, and which must
therefore depend only on symbols defined before it. The argument to
the `TIMES' prefix is a critical expression.
3.9 Local Labels
NASM gives special treatment to symbols beginning with a period. A
label beginning with a single period is treated as a _local_ label,
which means that it is associated with the previous non-local label.
So, for example:
label1 ; some code
.loop
; some more code
jne .loop
ret
label2 ; some code
.loop
; some more code
jne .loop
ret
In the above code fragment, each `JNE' instruction jumps to the line
immediately before it, because the two definitions of `.loop' are
kept separate by virtue of each being associated with the previous
non-local label.
This form of local label handling is borrowed from the old Amiga
assembler DevPac; however, NASM goes one step further, in allowing
access to local labels from other parts of the code. This is
achieved by means of _defining_ a local label in terms of the
previous non-local label: the first definition of `.loop' above is
really defining a symbol called `label1.loop', and the second
defines a symbol called `label2.loop'. So, if you really needed to,
you could write
label3 ; some more code
; and some more
jmp label1.loop
Sometimes it is useful - in a macro, for instance - to be able to
define a label which can be referenced from anywhere but which
doesn't interfere with the normal local-label mechanism. Such a
label can't be non-local because it would interfere with subsequent
definitions of, and references to, local labels; and it can't be
local because the macro that defined it wouldn't know the label's
full name. NASM therefore introduces a third type of label, which is
probably only useful in macro definitions: if a label begins with
the special prefix `..@', then it does nothing to the local label
mechanism. So you could code
label1: ; a non-local label
.local: ; this is really label1.local
..@foo: ; this is a special symbol
label2: ; another non-local label
.local: ; this is really label2.local
jmp ..@foo ; this will jump three lines up
NASM has the capacity to define other special symbols beginning with
a double period: for example, `..start' is used to specify the entry
point in the `obj' output format (see section 7.4.6).
Chapter 4: The NASM Preprocessor
--------------------------------
NASM contains a powerful macro processor, which supports conditional
assembly, multi-level file inclusion, two forms of macro (single-
line and multi-line), and a `context stack' mechanism for extra
macro power. Preprocessor directives all begin with a `%' sign.
The preprocessor collapses all lines which end with a backslash (\)
character into a single line. Thus:
%define THIS_VERY_LONG_MACRO_NAME_IS_DEFINED_TO \
THIS_VALUE
will work like a single-line macro without the backslash-newline
sequence.
4.1 Single-Line Macros
4.1.1 The Normal Way: `%define'
Single-line macros are defined using the `%define' preprocessor
directive. The definitions work in a similar way to C; so you can do
things like
%define ctrl 0x1F &
%define param(a,b) ((a)+(a)*(b))
mov byte [param(2,ebx)], ctrl 'D'
which will expand to
mov byte [(2)+(2)*(ebx)], 0x1F & 'D'
When the expansion of a single-line macro contains tokens which
invoke another macro, the expansion is performed at invocation time,
not at definition time. Thus the code
%define a(x) 1+b(x)
%define b(x) 2*x
mov ax,a(8)
will evaluate in the expected way to `mov ax,1+2*8', even though the
macro `b' wasn't defined at the time of definition of `a'.
Macros defined with `%define' are case sensitive: after
`%define foo bar', only `foo' will expand to `bar': `Foo' or `FOO'
will not. By using `%idefine' instead of `%define' (the `i' stands
for `insensitive') you can define all the case variants of a macro
at once, so that `%idefine foo bar' would cause `foo', `Foo', `FOO',
`fOO' and so on all to expand to `bar'.
There is a mechanism which detects when a macro call has occurred as
a result of a previous expansion of the same macro, to guard against
circular references and infinite loops. If this happens, the
preprocessor will only expand the first occurrence of the macro.
Hence, if you code
%define a(x) 1+a(x)
mov ax,a(3)
the macro `a(3)' will expand once, becoming `1+a(3)', and will then
expand no further. This behaviour can be useful: see section 9.1 for
an example of its use.
You can overload single-line macros: if you write
%define foo(x) 1+x
%define foo(x,y) 1+x*y
the preprocessor will be able to handle both types of macro call, by
counting the parameters you pass; so `foo(3)' will become `1+3'
whereas `foo(ebx,2)' will become `1+ebx*2'. However, if you define
%define foo bar
then no other definition of `foo' will be accepted: a macro with no
parameters prohibits the definition of the same name as a macro
_with_ parameters, and vice versa.
This doesn't prevent single-line macros being _redefined_: you can
perfectly well define a macro with
%define foo bar
and then re-define it later in the same source file with
%define foo baz
Then everywhere the macro `foo' is invoked, it will be expanded
according to the most recent definition. This is particularly useful
when defining single-line macros with `%assign' (see section 4.1.7).
You can pre-define single-line macros using the `-d' option on the
NASM command line: see section 2.1.18.
4.1.2 Resolving `%define': `%xdefine'
To have a reference to an embedded single-line macro resolved at the
time that the embedding macro is _defined_, as opposed to when the
embedding macro is _expanded_, you need a different mechanism to the
one offered by `%define'. The solution is to use `%xdefine', or it's
case-insensitive counterpart `%ixdefine'.
Suppose you have the following code:
%define isTrue 1
%define isFalse isTrue
%define isTrue 0
val1: db isFalse
%define isTrue 1
val2: db isFalse
In this case, `val1' is equal to 0, and `val2' is equal to 1. This
is because, when a single-line macro is defined using `%define', it
is expanded only when it is called. As `isFalse' expands to
`isTrue', the expansion will be the current value of `isTrue'. The
first time it is called that is 0, and the second time it is 1.
If you wanted `isFalse' to expand to the value assigned to the
embedded macro `isTrue' at the time that `isFalse' was defined, you
need to change the above code to use `%xdefine'.
%xdefine isTrue 1
%xdefine isFalse isTrue
%xdefine isTrue 0
val1: db isFalse
%xdefine isTrue 1
val2: db isFalse
Now, each time that `isFalse' is called, it expands to 1, as that is
what the embedded macro `isTrue' expanded to at the time that
`isFalse' was defined.
4.1.3 Macro Indirection: `%[...]'
The `%[...]' construct can be used to expand macros in contexts
where macro expansion would otherwise not occur, including in the
names other macros. For example, if you have a set of macros named
`Foo16', `Foo32' and `Foo64', you could write:
mov ax,Foo%[__BITS__] ; The Foo value
to use the builtin macro `__BITS__' (see section 4.11.5) to
automatically select between them. Similarly, the two statements:
%xdefine Bar Quux ; Expands due to %xdefine
%define Bar %[Quux] ; Expands due to %[...]
have, in fact, exactly the same effect.
`%[...]' concatenates to adjacent tokens in the same way that multi-
line macro parameters do, see section 4.3.8 for details.
4.1.4 Concatenating Single Line Macro Tokens: `%+'
Individual tokens in single line macros can be concatenated, to
produce longer tokens for later processing. This can be useful if
there are several similar macros that perform similar functions.
Please note that a space is required after `%+', in order to
disambiguate it from the syntax `%+1' used in multiline macros.
As an example, consider the following:
%define BDASTART 400h ; Start of BIOS data area
struc tBIOSDA ; its structure
.COM1addr RESW 1
.COM2addr RESW 1
; ..and so on
endstruc
Now, if we need to access the elements of tBIOSDA in different
places, we can end up with:
mov ax,BDASTART + tBIOSDA.COM1addr
mov bx,BDASTART + tBIOSDA.COM2addr
This will become pretty ugly (and tedious) if used in many places,
and can be reduced in size significantly by using the following
macro:
; Macro to access BIOS variables by their names (from tBDA):
%define BDA(x) BDASTART + tBIOSDA. %+ x
Now the above code can be written as:
mov ax,BDA(COM1addr)
mov bx,BDA(COM2addr)
Using this feature, we can simplify references to a lot of macros
(and, in turn, reduce typing errors).
4.1.5 The Macro Name Itself: `%?' and `%??'
The special symbols `%?' and `%??' can be used to reference the
macro name itself inside a macro expansion, this is supported for
both single-and multi-line macros. `%?' refers to the macro name as
_invoked_, whereas `%??' refers to the macro name as _declared_. The
two are always the same for case-sensitive macros, but for case-
insensitive macros, they can differ.
For example:
%idefine Foo mov %?,%??
foo
FOO
will expand to:
mov foo,Foo
mov FOO,Foo
The sequence:
%idefine keyword $%?
can be used to make a keyword "disappear", for example in case a new
instruction has been used as a label in older code. For example:
%idefine pause $%? ; Hide the PAUSE instruction
4.1.6 Undefining Single-Line Macros: `%undef'
Single-line macros can be removed with the `%undef' directive. For
example, the following sequence:
%define foo bar
%undef foo
mov eax, foo
will expand to the instruction `mov eax, foo', since after `%undef'
the macro `foo' is no longer defined.
Macros that would otherwise be pre-defined can be undefined on the
command-line using the `-u' option on the NASM command line: see
section 2.1.19.
4.1.7 Preprocessor Variables: `%assign'
An alternative way to define single-line macros is by means of the
`%assign' command (and its case-insensitive counterpart `%iassign',
which differs from `%assign' in exactly the same way that `%idefine'
differs from `%define').
`%assign' is used to define single-line macros which take no
parameters and have a numeric value. This value can be specified in
the form of an expression, and it will be evaluated once, when the
`%assign' directive is processed.
Like `%define', macros defined using `%assign' can be re-defined
later, so you can do things like
%assign i i+1
to increment the numeric value of a macro.
`%assign' is useful for controlling the termination of `%rep'
preprocessor loops: see section 4.5 for an example of this. Another
use for `%assign' is given in section 8.4 and section 9.1.
The expression passed to `%assign' is a critical expression (see
section 3.8), and must also evaluate to a pure number (rather than a
relocatable reference such as a code or data address, or anything
involving a register).
4.1.8 Defining Strings: `%defstr'
`%defstr', and its case-insensitive counterpart `%idefstr', define
or redefine a single-line macro without parameters but converts the
entire right-hand side, after macro expansion, to a quoted string
before definition.
For example:
%defstr test TEST
is equivalent to
%define test 'TEST'
This can be used, for example, with the `%!' construct (see section
4.10.2):
%defstr PATH %!PATH ; The operating system PATH variable
4.1.9 Defining Tokens: `%deftok'
`%deftok', and its case-insensitive counterpart `%ideftok', define
or redefine a single-line macro without parameters but converts the
second parameter, after string conversion, to a sequence of tokens.
For example:
%deftok test 'TEST'
is equivalent to
%define test TEST
4.2 String Manipulation in Macros
It's often useful to be able to handle strings in macros. NASM
supports a few simple string handling macro operators from which
more complex operations can be constructed.
All the string operators define or redefine a value (either a string
or a numeric value) to a single-line macro. When producing a string
value, it may change the style of quoting of the input string or
strings, and possibly use `\'-escapes inside ``'-quoted strings.
4.2.1 Concatenating Strings: `%strcat'
The `%strcat' operator concatenates quoted strings and assign them
to a single-line macro.
For example:
%strcat alpha "Alpha: ", '12" screen'
... would assign the value `'Alpha: 12" screen'' to `alpha'.
Similarly:
%strcat beta '"foo"\', "'bar'"
... would assign the value ``"foo"\\'bar'`' to `beta'.
The use of commas to separate strings is permitted but optional.
4.2.2 String Length: `%strlen'
The `%strlen' operator assigns the length of a string to a macro.
For example:
%strlen charcnt 'my string'
In this example, `charcnt' would receive the value 9, just as if an
`%assign' had been used. In this example, `'my string'' was a
literal string but it could also have been a single-line macro that
expands to a string, as in the following example:
%define sometext 'my string'
%strlen charcnt sometext
As in the first case, this would result in `charcnt' being assigned
the value of 9.
4.2.3 Extracting Substrings: `%substr'
Individual letters or substrings in strings can be extracted using
the `%substr' operator. An example of its use is probably more
useful than the description:
%substr mychar 'xyzw' 1 ; equivalent to %define mychar 'x'
%substr mychar 'xyzw' 2 ; equivalent to %define mychar 'y'
%substr mychar 'xyzw' 3 ; equivalent to %define mychar 'z'
%substr mychar 'xyzw' 2,2 ; equivalent to %define mychar 'yz'
%substr mychar 'xyzw' 2,-1 ; equivalent to %define mychar 'yzw'
%substr mychar 'xyzw' 2,-2 ; equivalent to %define mychar 'yz'
As with `%strlen' (see section 4.2.2), the first parameter is the
single-line macro to be created and the second is the string. The
third parameter specifies the first character to be selected, and
the optional fourth parameter preceeded by comma) is the length.
Note that the first index is 1, not 0 and the last index is equal to
the value that `%strlen' would assign given the same string. Index
values out of range result in an empty string. A negative length
means "until N-1 characters before the end of string", i.e. `-1'
means until end of string, `-2' until one character before, etc.
4.3 Multi-Line Macros: `%macro'
Multi-line macros are much more like the type of macro seen in MASM
and TASM: a multi-line macro definition in NASM looks something like
this.
%macro prologue 1
push ebp
mov ebp,esp
sub esp,%1
%endmacro
This defines a C-like function prologue as a macro: so you would
invoke the macro with a call such as
myfunc: prologue 12
which would expand to the three lines of code
myfunc: push ebp
mov ebp,esp
sub esp,12
The number `1' after the macro name in the `%macro' line defines the
number of parameters the macro `prologue' expects to receive. The
use of `%1' inside the macro definition refers to the first
parameter to the macro call. With a macro taking more than one
parameter, subsequent parameters would be referred to as `%2', `%3'
and so on.
Multi-line macros, like single-line macros, are case-sensitive,
unless you define them using the alternative directive `%imacro'.
If you need to pass a comma as _part_ of a parameter to a multi-line
macro, you can do that by enclosing the entire parameter in braces.
So you could code things like
%macro silly 2
%2: db %1
%endmacro
silly 'a', letter_a ; letter_a: db 'a'
silly 'ab', string_ab ; string_ab: db 'ab'
silly {13,10}, crlf ; crlf: db 13,10
4.3.1 Recursive Multi-Line Macros: `%rmacro'
A multi-line macro cannot be referenced within itself, in order to
prevent accidental infinite recursion.
Recursive multi-line macros allow for self-referencing, with the
caveat that the user is aware of the existence, use and purpose of
recursive multi-line macros. There is also a generous, but sane,
upper limit to the number of recursions, in order to prevent run-
away memory consumption in case of accidental infinite recursion.
As with non-recursive multi-line macros, recursive multi-line macros
are case-sensitive, unless you define them using the alternative
directive `%irmacro'.
4.3.2 Overloading Multi-Line Macros
As with single-line macros, multi-line macros can be overloaded by
defining the same macro name several times with different numbers of
parameters. This time, no exception is made for macros with no
parameters at all. So you could define
%macro prologue 0
push ebp
mov ebp,esp
%endmacro
to define an alternative form of the function prologue which
allocates no local stack space.
Sometimes, however, you might want to `overload' a machine
instruction; for example, you might want to define
%macro push 2
push %1
push %2
%endmacro
so that you could code
push ebx ; this line is not a macro call
push eax,ecx ; but this one is
Ordinarily, NASM will give a warning for the first of the above two
lines, since `push' is now defined to be a macro, and is being
invoked with a number of parameters for which no definition has been
given. The correct code will still be generated, but the assembler
will give a warning. This warning can be disabled by the use of the
`-w-macro-params' command-line option (see section 2.1.24).
4.3.3 Macro-Local Labels
NASM allows you to define labels within a multi-line macro
definition in such a way as to make them local to the macro call: so
calling the same macro multiple times will use a different label
each time. You do this by prefixing `%%' to the label name. So you
can invent an instruction which executes a `RET' if the `Z' flag is
set by doing this:
%macro retz 0
jnz %%skip
ret
%%skip:
%endmacro
You can call this macro as many times as you want, and every time
you call it NASM will make up a different `real' name to substitute
for the label `%%skip'. The names NASM invents are of the form
`..@2345.skip', where the number 2345 changes with every macro call.
The `..@' prefix prevents macro-local labels from interfering with
the local label mechanism, as described in section 3.9. You should
avoid defining your own labels in this form (the `..@' prefix, then
a number, then another period) in case they interfere with macro-
local labels.
4.3.4 Greedy Macro Parameters
Occasionally it is useful to define a macro which lumps its entire
command line into one parameter definition, possibly after
extracting one or two smaller parameters from the front. An example
might be a macro to write a text string to a file in MS-DOS, where
you might want to be able to write
writefile [filehandle],"hello, world",13,10
NASM allows you to define the last parameter of a macro to be
_greedy_, meaning that if you invoke the macro with more parameters
than it expects, all the spare parameters get lumped into the last
defined one along with the separating commas. So if you code:
%macro writefile 2+
jmp %%endstr
%%str: db %2
%%endstr:
mov dx,%%str
mov cx,%%endstr-%%str
mov bx,%1
mov ah,0x40
int 0x21
%endmacro
then the example call to `writefile' above will work as expected:
the text before the first comma, `[filehandle]', is used as the
first macro parameter and expanded when `%1' is referred to, and all
the subsequent text is lumped into `%2' and placed after the `db'.
The greedy nature of the macro is indicated to NASM by the use of
the `+' sign after the parameter count on the `%macro' line.
If you define a greedy macro, you are effectively telling NASM how
it should expand the macro given _any_ number of parameters from the
actual number specified up to infinity; in this case, for example,
NASM now knows what to do when it sees a call to `writefile' with 2,
3, 4 or more parameters. NASM will take this into account when
overloading macros, and will not allow you to define another form of
`writefile' taking 4 parameters (for example).
Of course, the above macro could have been implemented as a non-
greedy macro, in which case the call to it would have had to look
like
writefile [filehandle], {"hello, world",13,10}
NASM provides both mechanisms for putting commas in macro
parameters, and you choose which one you prefer for each macro
definition.
See section 6.3.1 for a better way to write the above macro.
4.3.5 Default Macro Parameters
NASM also allows you to define a multi-line macro with a _range_ of
allowable parameter counts. If you do this, you can specify defaults
for omitted parameters. So, for example:
%macro die 0-1 "Painful program death has occurred."
writefile 2,%1
mov ax,0x4c01
int 0x21
%endmacro
This macro (which makes use of the `writefile' macro defined in
section 4.3.4) can be called with an explicit error message, which
it will display on the error output stream before exiting, or it can
be called with no parameters, in which case it will use the default
error message supplied in the macro definition.
In general, you supply a minimum and maximum number of parameters
for a macro of this type; the minimum number of parameters are then
required in the macro call, and then you provide defaults for the
optional ones. So if a macro definition began with the line
%macro foobar 1-3 eax,[ebx+2]
then it could be called with between one and three parameters, and
`%1' would always be taken from the macro call. `%2', if not
specified by the macro call, would default to `eax', and `%3' if not
specified would default to `[ebx+2]'.
You can provide extra information to a macro by providing too many
default parameters:
%macro quux 1 something
This will trigger a warning by default; see section 2.1.24 for more
information. When `quux' is invoked, it receives not one but two
parameters. `something' can be referred to as `%2'. The difference
between passing `something' this way and writing `something' in the
macro body is that with this way `something' is evaluated when the
macro is defined, not when it is expanded.
You may omit parameter defaults from the macro definition, in which
case the parameter default is taken to be blank. This can be useful
for macros which can take a variable number of parameters, since the
`%0' token (see section 4.3.6) allows you to determine how many
parameters were really passed to the macro call.
This defaulting mechanism can be combined with the greedy-parameter
mechanism; so the `die' macro above could be made more powerful, and
more useful, by changing the first line of the definition to
%macro die 0-1+ "Painful program death has occurred.",13,10
The maximum parameter count can be infinite, denoted by `*'. In this
case, of course, it is impossible to provide a _full_ set of default
parameters. Examples of this usage are shown in section 4.3.7.
4.3.6 `%0': Macro Parameter Counter
The parameter reference `%0' will return a numeric constant giving
the number of parameters received, that is, if `%0' is n then `%'n
is the last parameter. `%0' is mostly useful for macros that can
take a variable number of parameters. It can be used as an argument
to `%rep' (see section 4.5) in order to iterate through all the
parameters of a macro. Examples are given in section 4.3.7.
4.3.7 `%rotate': Rotating Macro Parameters
Unix shell programmers will be familiar with the `shift' shell
command, which allows the arguments passed to a shell script
(referenced as `$1', `$2' and so on) to be moved left by one place,
so that the argument previously referenced as `$2' becomes available
as `$1', and the argument previously referenced as `$1' is no longer
available at all.
NASM provides a similar mechanism, in the form of `%rotate'. As its
name suggests, it differs from the Unix `shift' in that no
parameters are lost: parameters rotated off the left end of the
argument list reappear on the right, and vice versa.
`%rotate' is invoked with a single numeric argument (which may be an
expression). The macro parameters are rotated to the left by that
many places. If the argument to `%rotate' is negative, the macro
parameters are rotated to the right.
So a pair of macros to save and restore a set of registers might
work as follows:
%macro multipush 1-*
%rep %0
push %1
%rotate 1
%endrep
%endmacro
This macro invokes the `PUSH' instruction on each of its arguments
in turn, from left to right. It begins by pushing its first
argument, `%1', then invokes `%rotate' to move all the arguments one
place to the left, so that the original second argument is now
available as `%1'. Repeating this procedure as many times as there
were arguments (achieved by supplying `%0' as the argument to
`%rep') causes each argument in turn to be pushed.
Note also the use of `*' as the maximum parameter count, indicating
that there is no upper limit on the number of parameters you may
supply to the `multipush' macro.
It would be convenient, when using this macro, to have a `POP'
equivalent, which _didn't_ require the arguments to be given in
reverse order. Ideally, you would write the `multipush' macro call,
then cut-and-paste the line to where the pop needed to be done, and
change the name of the called macro to `multipop', and the macro
would take care of popping the registers in the opposite order from
the one in which they were pushed.
This can be done by the following definition:
%macro multipop 1-*
%rep %0
%rotate -1
pop %1
%endrep
%endmacro
This macro begins by rotating its arguments one place to the
_right_, so that the original _last_ argument appears as `%1'. This
is then popped, and the arguments are rotated right again, so the
second-to-last argument becomes `%1'. Thus the arguments are
iterated through in reverse order.
4.3.8 Concatenating Macro Parameters
NASM can concatenate macro parameters and macro indirection
constructs on to other text surrounding them. This allows you to
declare a family of symbols, for example, in a macro definition. If,
for example, you wanted to generate a table of key codes along with
offsets into the table, you could code something like
%macro keytab_entry 2
keypos%1 equ $-keytab
db %2
%endmacro
keytab:
keytab_entry F1,128+1
keytab_entry F2,128+2
keytab_entry Return,13
which would expand to
keytab:
keyposF1 equ $-keytab
db 128+1
keyposF2 equ $-keytab
db 128+2
keyposReturn equ $-keytab
db 13
You can just as easily concatenate text on to the other end of a
macro parameter, by writing `%1foo'.
If you need to append a _digit_ to a macro parameter, for example
defining labels `foo1' and `foo2' when passed the parameter `foo',
you can't code `%11' because that would be taken as the eleventh
macro parameter. Instead, you must code `%{1}1', which will separate
the first `1' (giving the number of the macro parameter) from the
second (literal text to be concatenated to the parameter).
This concatenation can also be applied to other preprocessor in-line
objects, such as macro-local labels (section 4.3.3) and context-
local labels (section 4.7.2). In all cases, ambiguities in syntax
can be resolved by enclosing everything after the `%' sign and
before the literal text in braces: so `%{%foo}bar' concatenates the
text `bar' to the end of the real name of the macro-local label
`%%foo'. (This is unnecessary, since the form NASM uses for the real
names of macro-local labels means that the two usages `%{%foo}bar'
and `%%foobar' would both expand to the same thing anyway;
nevertheless, the capability is there.)
The single-line macro indirection construct, `%[...]' (section
4.1.3), behaves the same way as macro parameters for the purpose of
concatenation.
See also the `%+' operator, section 4.1.4.
4.3.9 Condition Codes as Macro Parameters
NASM can give special treatment to a macro parameter which contains
a condition code. For a start, you can refer to the macro parameter
`%1' by means of the alternative syntax `%+1', which informs NASM
that this macro parameter is supposed to contain a condition code,
and will cause the preprocessor to report an error message if the
macro is called with a parameter which is _not_ a valid condition
code.
Far more usefully, though, you can refer to the macro parameter by
means of `%-1', which NASM will expand as the _inverse_ condition
code. So the `retz' macro defined in section 4.3.3 can be replaced
by a general conditional-return macro like this:
%macro retc 1
j%-1 %%skip
ret
%%skip:
%endmacro
This macro can now be invoked using calls like `retc ne', which will
cause the conditional-jump instruction in the macro expansion to
come out as `JE', or `retc po' which will make the jump a `JPE'.
The `%+1' macro-parameter reference is quite happy to interpret the
arguments `CXZ' and `ECXZ' as valid condition codes; however, `%-1'
will report an error if passed either of these, because no inverse
condition code exists.
4.3.10 Disabling Listing Expansion
When NASM is generating a listing file from your program, it will
generally expand multi-line macros by means of writing the macro
call and then listing each line of the expansion. This allows you to
see which instructions in the macro expansion are generating what
code; however, for some macros this clutters the listing up
unnecessarily.
NASM therefore provides the `.nolist' qualifier, which you can
include in a macro definition to inhibit the expansion of the macro
in the listing file. The `.nolist' qualifier comes directly after
the number of parameters, like this:
%macro foo 1.nolist
Or like this:
%macro bar 1-5+.nolist a,b,c,d,e,f,g,h
4.3.11 Undefining Multi-Line Macros: `%unmacro'
Multi-line macros can be removed with the `%unmacro' directive.
Unlike the `%undef' directive, however, `%unmacro' takes an argument
specification, and will only remove exact matches with that argument
specification.
For example:
%macro foo 1-3
; Do something
%endmacro
%unmacro foo 1-3
removes the previously defined macro `foo', but
%macro bar 1-3
; Do something
%endmacro
%unmacro bar 1
does _not_ remove the macro `bar', since the argument specification
does not match exactly.
4.3.12 Exiting Multi-Line Macros: `%exitmacro'
Multi-line macro expansions can be arbitrarily terminated with the
`%exitmacro' directive.
For example:
%macro foo 1-3
; Do something
%if<condition>
%exitmacro
%endif
; Do something
%endmacro
4.4 Conditional Assembly
Similarly to the C preprocessor, NASM allows sections of a source
file to be assembled only if certain conditions are met. The general
syntax of this feature looks like this:
%if<condition>
; some code which only appears if <condition> is met
%elif<condition2>
; only appears if <condition> is not met but <condition2> is
%else
; this appears if neither <condition> nor <condition2> was met
%endif
The inverse forms `%ifn' and `%elifn' are also supported.
The `%else' clause is optional, as is the `%elif' clause. You can
have more than one `%elif' clause as well.
There are a number of variants of the `%if' directive. Each has its
corresponding `%elif', `%ifn', and `%elifn' directives; for example,
the equivalents to the `%ifdef' directive are `%elifdef', `%ifndef',
and `%elifndef'.
4.4.1 `%ifdef': Testing Single-Line Macro Existence
Beginning a conditional-assembly block with the line `%ifdef MACRO'
will assemble the subsequent code if, and only if, a single-line
macro called `MACRO' is defined. If not, then the `%elif' and
`%else' blocks (if any) will be processed instead.
For example, when debugging a program, you might want to write code
such as
; perform some function
%ifdef DEBUG
writefile 2,"Function performed successfully",13,10
%endif
; go and do something else
Then you could use the command-line option `-dDEBUG' to create a
version of the program which produced debugging messages, and remove
the option to generate the final release version of the program.
You can test for a macro _not_ being defined by using `%ifndef'
instead of `%ifdef'. You can also test for macro definitions in
`%elif' blocks by using `%elifdef' and `%elifndef'.
4.4.2 `%ifmacro': Testing Multi-Line Macro Existence
The `%ifmacro' directive operates in the same way as the `%ifdef'
directive, except that it checks for the existence of a multi-line
macro.
For example, you may be working with a large project and not have
control over the macros in a library. You may want to create a macro
with one name if it doesn't already exist, and another name if one
with that name does exist.
The `%ifmacro' is considered true if defining a macro with the given
name and number of arguments would cause a definitions conflict. For
example:
%ifmacro MyMacro 1-3
%error "MyMacro 1-3" causes a conflict with an existing macro.
%else
%macro MyMacro 1-3
; insert code to define the macro
%endmacro
%endif
This will create the macro "MyMacro 1-3" if no macro already exists
which would conflict with it, and emits a warning if there would be
a definition conflict.
You can test for the macro not existing by using the `%ifnmacro'
instead of `%ifmacro'. Additional tests can be performed in `%elif'
blocks by using `%elifmacro' and `%elifnmacro'.
4.4.3 `%ifctx': Testing the Context Stack
The conditional-assembly construct `%ifctx' will cause the
subsequent code to be assembled if and only if the top context on
the preprocessor's context stack has the same name as one of the
arguments. As with `%ifdef', the inverse and `%elif' forms
`%ifnctx', `%elifctx' and `%elifnctx' are also supported.
For more details of the context stack, see section 4.7. For a sample
use of `%ifctx', see section 4.7.5.
4.4.4 `%if': Testing Arbitrary Numeric Expressions
The conditional-assembly construct `%if expr' will cause the
subsequent code to be assembled if and only if the value of the
numeric expression `expr' is non-zero. An example of the use of this
feature is in deciding when to break out of a `%rep' preprocessor
loop: see section 4.5 for a detailed example.
The expression given to `%if', and its counterpart `%elif', is a
critical expression (see section 3.8).
`%if' extends the normal NASM expression syntax, by providing a set
of relational operators which are not normally available in
expressions. The operators `=', `<', `>', `<=', `>=' and `<>' test
equality, less-than, greater-than, less-or-equal, greater-or-equal
and not-equal respectively. The C-like forms `==' and `!=' are
supported as alternative forms of `=' and `<>'. In addition, low-
priority logical operators `&&', `^^' and `||' are provided,
supplying logical AND, logical XOR and logical OR. These work like
the C logical operators (although C has no logical XOR), in that
they always return either 0 or 1, and treat any non-zero input as 1
(so that `^^', for example, returns 1 if exactly one of its inputs
is zero, and 0 otherwise). The relational operators also return 1
for true and 0 for false.
Like other `%if' constructs, `%if' has a counterpart `%elif', and
negative forms `%ifn' and `%elifn'.
4.4.5 `%ifidn' and `%ifidni': Testing Exact Text Identity
The construct `%ifidn text1,text2' will cause the subsequent code to
be assembled if and only if `text1' and `text2', after expanding
single-line macros, are identical pieces of text. Differences in
white space are not counted.
`%ifidni' is similar to `%ifidn', but is case-insensitive.
For example, the following macro pushes a register or number on the
stack, and allows you to treat `IP' as a real register:
%macro pushparam 1
%ifidni %1,ip
call %%label
%%label:
%else
push %1
%endif
%endmacro
Like other `%if' constructs, `%ifidn' has a counterpart `%elifidn',
and negative forms `%ifnidn' and `%elifnidn'. Similarly, `%ifidni'
has counterparts `%elifidni', `%ifnidni' and `%elifnidni'.
4.4.6 `%ifid', `%ifnum', `%ifstr': Testing Token Types
Some macros will want to perform different tasks depending on
whether they are passed a number, a string, or an identifier. For
example, a string output macro might want to be able to cope with
being passed either a string constant or a pointer to an existing
string.
The conditional assembly construct `%ifid', taking one parameter
(which may be blank), assembles the subsequent code if and only if
the first token in the parameter exists and is an identifier.
`%ifnum' works similarly, but tests for the token being a numeric
constant; `%ifstr' tests for it being a string.
For example, the `writefile' macro defined in section 4.3.4 can be
extended to take advantage of `%ifstr' in the following fashion:
%macro writefile 2-3+
%ifstr %2
jmp %%endstr
%if %0 = 3
%%str: db %2,%3
%else
%%str: db %2
%endif
%%endstr: mov dx,%%str
mov cx,%%endstr-%%str
%else
mov dx,%2
mov cx,%3
%endif
mov bx,%1
mov ah,0x40
int 0x21
%endmacro
Then the `writefile' macro can cope with being called in either of
the following two ways:
writefile [file], strpointer, length
writefile [file], "hello", 13, 10
In the first, `strpointer' is used as the address of an already-
declared string, and `length' is used as its length; in the second,
a string is given to the macro, which therefore declares it itself
and works out the address and length for itself.
Note the use of `%if' inside the `%ifstr': this is to detect whether
the macro was passed two arguments (so the string would be a single
string constant, and `db %2' would be adequate) or more (in which
case, all but the first two would be lumped together into `%3', and
`db %2,%3' would be required).
The usual `%elif'..., `%ifn'..., and `%elifn'... versions exist for
each of `%ifid', `%ifnum' and `%ifstr'.
4.4.7 `%iftoken': Test for a Single Token
Some macros will want to do different things depending on if it is
passed a single token (e.g. paste it to something else using `%+')
versus a multi-token sequence.
The conditional assembly construct `%iftoken' assembles the
subsequent code if and only if the expanded parameters consist of
exactly one token, possibly surrounded by whitespace.
For example:
%iftoken 1
will assemble the subsequent code, but
%iftoken -1
will not, since `-1' contains two tokens: the unary minus operator
`-', and the number `1'.
The usual `%eliftoken', `%ifntoken', and `%elifntoken' variants are
also provided.
4.4.8 `%ifempty': Test for Empty Expansion
The conditional assembly construct `%ifempty' assembles the
subsequent code if and only if the expanded parameters do not
contain any tokens at all, whitespace excepted.
The usual `%elifempty', `%ifnempty', and `%elifnempty' variants are
also provided.
4.5 Preprocessor Loops: `%rep'
NASM's `TIMES' prefix, though useful, cannot be used to invoke a
multi-line macro multiple times, because it is processed by NASM
after macros have already been expanded. Therefore NASM provides
another form of loop, this time at the preprocessor level: `%rep'.
The directives `%rep' and `%endrep' (`%rep' takes a numeric
argument, which can be an expression; `%endrep' takes no arguments)
can be used to enclose a chunk of code, which is then replicated as
many times as specified by the preprocessor:
%assign i 0
%rep 64
inc word [table+2*i]
%assign i i+1
%endrep
This will generate a sequence of 64 `INC' instructions, incrementing
every word of memory from `[table]' to `[table+126]'.
For more complex termination conditions, or to break out of a repeat
loop part way along, you can use the `%exitrep' directive to
terminate the loop, like this:
fibonacci:
%assign i 0
%assign j 1
%rep 100
%if j > 65535
%exitrep
%endif
dw j
%assign k j+i
%assign i j
%assign j k
%endrep
fib_number equ ($-fibonacci)/2
This produces a list of all the Fibonacci numbers that will fit in
16 bits. Note that a maximum repeat count must still be given to
`%rep'. This is to prevent the possibility of NASM getting into an
infinite loop in the preprocessor, which (on multitasking or multi-
user systems) would typically cause all the system memory to be
gradually used up and other applications to start crashing.
4.6 Source Files and Dependencies
These commands allow you to split your sources into multiple files.
4.6.1 `%include': Including Other Files
Using, once again, a very similar syntax to the C preprocessor,
NASM's preprocessor lets you include other source files into your
code. This is done by the use of the `%include' directive:
%include "macros.mac"
will include the contents of the file `macros.mac' into the source
file containing the `%include' directive.
Include files are searched for in the current directory (the
directory you're in when you run NASM, as opposed to the location of
the NASM executable or the location of the source file), plus any
directories specified on the NASM command line using the `-i'
option.
The standard C idiom for preventing a file being included more than
once is just as applicable in NASM: if the file `macros.mac' has the
form
%ifndef MACROS_MAC
%define MACROS_MAC
; now define some macros
%endif
then including the file more than once will not cause errors,
because the second time the file is included nothing will happen
because the macro `MACROS_MAC' will already be defined.
You can force a file to be included even if there is no `%include'
directive that explicitly includes it, by using the `-p' option on
the NASM command line (see section 2.1.17).
4.6.2 `%pathsearch': Search the Include Path
The `%pathsearch' directive takes a single-line macro name and a
filename, and declare or redefines the specified single-line macro
to be the include-path-resolved version of the filename, if the file
exists (otherwise, it is passed unchanged.)
For example,
%pathsearch MyFoo "foo.bin"
... with `-Ibins/' in the include path may end up defining the macro
`MyFoo' to be `"bins/foo.bin"'.
4.6.3 `%depend': Add Dependent Files
The `%depend' directive takes a filename and adds it to the list of
files to be emitted as dependency generation when the `-M' options
and its relatives (see section 2.1.4) are used. It produces no
output.
This is generally used in conjunction with `%pathsearch'. For
example, a simplified version of the standard macro wrapper for the
`INCBIN' directive looks like:
%imacro incbin 1-2+ 0
%pathsearch dep %1
%depend dep
incbin dep,%2
%endmacro
This first resolves the location of the file into the macro `dep',
then adds it to the dependency lists, and finally issues the
assembler-level `INCBIN' directive.
4.6.4 `%use': Include Standard Macro Package
The `%use' directive is similar to `%include', but rather than
including the contents of a file, it includes a named standard macro
package. The standard macro packages are part of NASM, and are
described in chapter 5.
Unlike the `%include' directive, package names for the `%use'
directive do not require quotes, but quotes are permitted. In NASM
2.04 and 2.05 the unquoted form would be macro-expanded; this is no
longer true. Thus, the following lines are equivalent:
%use altreg
%use 'altreg'
Standard macro packages are protected from multiple inclusion. When
a standard macro package is used, a testable single-line macro of
the form `__USE_'_package_`__' is also defined, see section 4.11.8.
4.7 The Context Stack
Having labels that are local to a macro definition is sometimes not
quite powerful enough: sometimes you want to be able to share labels
between several macro calls. An example might be a `REPEAT' ...
`UNTIL' loop, in which the expansion of the `REPEAT' macro would
need to be able to refer to a label which the `UNTIL' macro had
defined. However, for such a macro you would also want to be able to
nest these loops.
NASM provides this level of power by means of a _context stack_. The
preprocessor maintains a stack of _contexts_, each of which is
characterized by a name. You add a new context to the stack using
the `%push' directive, and remove one using `%pop'. You can define
labels that are local to a particular context on the stack.
4.7.1 `%push' and `%pop': Creating and Removing Contexts
The `%push' directive is used to create a new context and place it
on the top of the context stack. `%push' takes an optional argument,
which is the name of the context. For example:
%push foobar
This pushes a new context called `foobar' on the stack. You can have
several contexts on the stack with the same name: they can still be
distinguished. If no name is given, the context is unnamed (this is
normally used when both the `%push' and the `%pop' are inside a
single macro definition.)
The directive `%pop', taking one optional argument, removes the top
context from the context stack and destroys it, along with any
labels associated with it. If an argument is given, it must match
the name of the current context, otherwise it will issue an error.
4.7.2 Context-Local Labels
Just as the usage `%%foo' defines a label which is local to the
particular macro call in which it is used, the usage `%$foo' is used
to define a label which is local to the context on the top of the
context stack. So the `REPEAT' and `UNTIL' example given above could
be implemented by means of:
%macro repeat 0
%push repeat
%$begin:
%endmacro
%macro until 1
j%-1 %$begin
%pop
%endmacro
and invoked by means of, for example,
mov cx,string
repeat
add cx,3
scasb
until e
which would scan every fourth byte of a string in search of the byte
in `AL'.
If you need to define, or access, labels local to the context
_below_ the top one on the stack, you can use `%$$foo', or `%$$$foo'
for the context below that, and so on.
4.7.3 Context-Local Single-Line Macros
NASM also allows you to define single-line macros which are local to
a particular context, in just the same way:
%define %$localmac 3
will define the single-line macro `%$localmac' to be local to the
top context on the stack. Of course, after a subsequent `%push', it
can then still be accessed by the name `%$$localmac'.
4.7.4 `%repl': Renaming a Context
If you need to change the name of the top context on the stack (in
order, for example, to have it respond differently to `%ifctx'), you
can execute a `%pop' followed by a `%push'; but this will have the
side effect of destroying all context-local labels and macros
associated with the context that was just popped.
NASM provides the directive `%repl', which _replaces_ a context with
a different name, without touching the associated macros and labels.
So you could replace the destructive code
%pop
%push newname
with the non-destructive version `%repl newname'.
4.7.5 Example Use of the Context Stack: Block IFs
This example makes use of almost all the context-stack features,
including the conditional-assembly construct `%ifctx', to implement
a block IF statement as a set of macros.
%macro if 1
%push if
j%-1 %$ifnot
%endmacro
%macro else 0
%ifctx if
%repl else
jmp %$ifend
%$ifnot:
%else
%error "expected `if' before `else'"
%endif
%endmacro
%macro endif 0
%ifctx if
%$ifnot:
%pop
%elifctx else
%$ifend:
%pop
%else
%error "expected `if' or `else' before `endif'"
%endif
%endmacro
This code is more robust than the `REPEAT' and `UNTIL' macros given
in section 4.7.2, because it uses conditional assembly to check that
the macros are issued in the right order (for example, not calling
`endif' before `if') and issues a `%error' if they're not.
In addition, the `endif' macro has to be able to cope with the two
distinct cases of either directly following an `if', or following an
`else'. It achieves this, again, by using conditional assembly to do
different things depending on whether the context on top of the
stack is `if' or `else'.
The `else' macro has to preserve the context on the stack, in order
to have the `%$ifnot' referred to by the `if' macro be the same as
the one defined by the `endif' macro, but has to change the
context's name so that `endif' will know there was an intervening
`else'. It does this by the use of `%repl'.
A sample usage of these macros might look like:
cmp ax,bx
if ae
cmp bx,cx
if ae
mov ax,cx
else
mov ax,bx
endif
else
cmp ax,cx
if ae
mov ax,cx
endif
endif
The block-`IF' macros handle nesting quite happily, by means of
pushing another context, describing the inner `if', on top of the
one describing the outer `if'; thus `else' and `endif' always refer
to the last unmatched `if' or `else'.
4.8 Stack Relative Preprocessor Directives
The following preprocessor directives provide a way to use labels to
refer to local variables allocated on the stack.
(*) `%arg' (see section 4.8.1)
(*) `%stacksize' (see section 4.8.2)
(*) `%local' (see section 4.8.3)
4.8.1 `%arg' Directive
The `%arg' directive is used to simplify the handling of parameters
passed on the stack. Stack based parameter passing is used by many
high level languages, including C, C++ and Pascal.
While NASM has macros which attempt to duplicate this functionality
(see section 8.4.5), the syntax is not particularly convenient to
use. and is not TASM compatible. Here is an example which shows the
use of `%arg' without any external macros:
some_function:
%push mycontext ; save the current context
%stacksize large ; tell NASM to use bp
%arg i:word, j_ptr:word
mov ax,[i]
mov bx,[j_ptr]
add ax,[bx]
ret
%pop ; restore original context
This is similar to the procedure defined in section 8.4.5 and adds
the value in i to the value pointed to by j_ptr and returns the sum
in the ax register. See section 4.7.1 for an explanation of `push'
and `pop' and the use of context stacks.
4.8.2 `%stacksize' Directive
The `%stacksize' directive is used in conjunction with the `%arg'
(see section 4.8.1) and the `%local' (see section 4.8.3) directives.
It tells NASM the default size to use for subsequent `%arg' and
`%local' directives. The `%stacksize' directive takes one required
argument which is one of `flat', `flat64', `large' or `small'.
%stacksize flat
This form causes NASM to use stack-based parameter addressing
relative to `ebp' and it assumes that a near form of call was used
to get to this label (i.e. that `eip' is on the stack).
%stacksize flat64
This form causes NASM to use stack-based parameter addressing
relative to `rbp' and it assumes that a near form of call was used
to get to this label (i.e. that `rip' is on the stack).
%stacksize large
This form uses `bp' to do stack-based parameter addressing and
assumes that a far form of call was used to get to this address
(i.e. that `ip' and `cs' are on the stack).
%stacksize small
This form also uses `bp' to address stack parameters, but it is
different from `large' because it also assumes that the old value of
bp is pushed onto the stack (i.e. it expects an `ENTER'
instruction). In other words, it expects that `bp', `ip' and `cs'
are on the top of the stack, underneath any local space which may
have been allocated by `ENTER'. This form is probably most useful
when used in combination with the `%local' directive (see section
4.8.3).
4.8.3 `%local' Directive
The `%local' directive is used to simplify the use of local
temporary stack variables allocated in a stack frame. Automatic
local variables in C are an example of this kind of variable. The
`%local' directive is most useful when used with the `%stacksize'
(see section 4.8.2 and is also compatible with the `%arg' directive
(see section 4.8.1). It allows simplified reference to variables on
the stack which have been allocated typically by using the `ENTER'
instruction. An example of its use is the following:
silly_swap:
%push mycontext ; save the current context
%stacksize small ; tell NASM to use bp
%assign %$localsize 0 ; see text for explanation
%local old_ax:word, old_dx:word
enter %$localsize,0 ; see text for explanation
mov [old_ax],ax ; swap ax & bx
mov [old_dx],dx ; and swap dx & cx
mov ax,bx
mov dx,cx
mov bx,[old_ax]
mov cx,[old_dx]
leave ; restore old bp
ret ;
%pop ; restore original context
The `%$localsize' variable is used internally by the `%local'
directive and _must_ be defined within the current context before
the `%local' directive may be used. Failure to do so will result in
one expression syntax error for each `%local' variable declared. It
then may be used in the construction of an appropriately sized ENTER
instruction as shown in the example.
4.9 Reporting User-Defined Errors: `%error', `%warning', `%fatal'
The preprocessor directive `%error' will cause NASM to report an
error if it occurs in assembled code. So if other users are going to
try to assemble your source files, you can ensure that they define
the right macros by means of code like this:
%ifdef F1
; do some setup
%elifdef F2
; do some different setup
%else
%error "Neither F1 nor F2 was defined."
%endif
Then any user who fails to understand the way your code is supposed
to be assembled will be quickly warned of their mistake, rather than
having to wait until the program crashes on being run and then not
knowing what went wrong.
Similarly, `%warning' issues a warning, but allows assembly to
continue:
%ifdef F1
; do some setup
%elifdef F2
; do some different setup
%else
%warning "Neither F1 nor F2 was defined, assuming F1."
%define F1
%endif
`%error' and `%warning' are issued only on the final assembly pass.
This makes them safe to use in conjunction with tests that depend on
symbol values.
`%fatal' terminates assembly immediately, regardless of pass. This
is useful when there is no point in continuing the assembly further,
and doing so is likely just going to cause a spew of confusing error
messages.
It is optional for the message string after `%error', `%warning' or
`%fatal' to be quoted. If it is _not_, then single-line macros are
expanded in it, which can be used to display more information to the
user. For example:
%if foo > 64
%assign foo_over foo-64
%error foo is foo_over bytes too large
%endif
4.10 Other Preprocessor Directives
NASM also has preprocessor directives which allow access to
information from external sources. Currently they include:
(*) `%line' enables NASM to correctly handle the output of another
preprocessor (see section 4.10.1).
(*) `%!' enables NASM to read in the value of an environment
variable, which can then be used in your program (see section
4.10.2).
4.10.1 `%line' Directive
The `%line' directive is used to notify NASM that the input line
corresponds to a specific line number in another file. Typically
this other file would be an original source file, with the current
NASM input being the output of a pre-processor. The `%line'
directive allows NASM to output messages which indicate the line
number of the original source file, instead of the file that is
being read by NASM.
This preprocessor directive is not generally of use to programmers,
by may be of interest to preprocessor authors. The usage of the
`%line' preprocessor directive is as follows:
%line nnn[+mmm] [filename]
In this directive, `nnn' identifies the line of the original source
file which this line corresponds to. `mmm' is an optional parameter
which specifies a line increment value; each line of the input file
read in is considered to correspond to `mmm' lines of the original
source file. Finally, `filename' is an optional parameter which
specifies the file name of the original source file.
After reading a `%line' preprocessor directive, NASM will report all
file name and line numbers relative to the values specified therein.
4.10.2 `%!'`<env>': Read an environment variable.
The `%!<env>' directive makes it possible to read the value of an
environment variable at assembly time. This could, for example, be
used to store the contents of an environment variable into a string,
which could be used at some other point in your code.
For example, suppose that you have an environment variable `FOO',
and you want the contents of `FOO' to be embedded in your program.
You could do that as follows:
%defstr FOO %!FOO
See section 4.1.8 for notes on the `%defstr' directive.
4.11 Standard Macros
NASM defines a set of standard macros, which are already defined
when it starts to process any source file. If you really need a
program to be assembled with no pre-defined macros, you can use the
`%clear' directive to empty the preprocessor of everything but
context-local preprocessor variables and single-line macros.
Most user-level assembler directives (see chapter 6) are implemented
as macros which invoke primitive directives; these are described in
chapter 6. The rest of the standard macro set is described here.
4.11.1 NASM Version Macros
The single-line macros `__NASM_MAJOR__', `__NASM_MINOR__',
`__NASM_SUBMINOR__' and `___NASM_PATCHLEVEL__' expand to the major,
minor, subminor and patch level parts of the version number of NASM
being used. So, under NASM 0.98.32p1 for example, `__NASM_MAJOR__'
would be defined to be 0, `__NASM_MINOR__' would be defined as 98,
`__NASM_SUBMINOR__' would be defined to 32, and
`___NASM_PATCHLEVEL__' would be defined as 1.
Additionally, the macro `__NASM_SNAPSHOT__' is defined for
automatically generated snapshot releases _only_.
4.11.2 `__NASM_VERSION_ID__': NASM Version ID
The single-line macro `__NASM_VERSION_ID__' expands to a dword
integer representing the full version number of the version of nasm
being used. The value is the equivalent to `__NASM_MAJOR__',
`__NASM_MINOR__', `__NASM_SUBMINOR__' and `___NASM_PATCHLEVEL__'
concatenated to produce a single doubleword. Hence, for 0.98.32p1,
the returned number would be equivalent to:
dd 0x00622001
or
db 1,32,98,0
Note that the above lines are generate exactly the same code, the
second line is used just to give an indication of the order that the
separate values will be present in memory.
4.11.3 `__NASM_VER__': NASM Version string
The single-line macro `__NASM_VER__' expands to a string which
defines the version number of nasm being used. So, under NASM
0.98.32 for example,
db __NASM_VER__
would expand to
db "0.98.32"
4.11.4 `__FILE__' and `__LINE__': File Name and Line Number
Like the C preprocessor, NASM allows the user to find out the file
name and line number containing the current instruction. The macro
`__FILE__' expands to a string constant giving the name of the
current input file (which may change through the course of assembly
if `%include' directives are used), and `__LINE__' expands to a
numeric constant giving the current line number in the input file.
These macros could be used, for example, to communicate debugging
information to a macro, since invoking `__LINE__' inside a macro
definition (either single-line or multi-line) will return the line
number of the macro _call_, rather than _definition_. So to
determine where in a piece of code a crash is occurring, for
example, one could write a routine `stillhere', which is passed a
line number in `EAX' and outputs something like `line 155: still
here'. You could then write a macro
%macro notdeadyet 0
push eax
mov eax,__LINE__
call stillhere
pop eax
%endmacro
and then pepper your code with calls to `notdeadyet' until you find
the crash point.
4.11.5 `__BITS__': Current BITS Mode
The `__BITS__' standard macro is updated every time that the BITS
mode is set using the `BITS XX' or `[BITS XX]' directive, where XX
is a valid mode number of 16, 32 or 64. `__BITS__' receives the
specified mode number and makes it globally available. This can be
very useful for those who utilize mode-dependent macros.
4.11.6 `__OUTPUT_FORMAT__': Current Output Format
The `__OUTPUT_FORMAT__' standard macro holds the current Output
Format, as given by the `-f' option or NASM's default. Type
`nasm -hf' for a list.
%ifidn __OUTPUT_FORMAT__, win32
%define NEWLINE 13, 10
%elifidn __OUTPUT_FORMAT__, elf32
%define NEWLINE 10
%endif
4.11.7 Assembly Date and Time Macros
NASM provides a variety of macros that represent the timestamp of
the assembly session.
(*) The `__DATE__' and `__TIME__' macros give the assembly date and
time as strings, in ISO 8601 format (`"YYYY-MM-DD"' and
`"HH:MM:SS"', respectively.)
(*) The `__DATE_NUM__' and `__TIME_NUM__' macros give the assembly
date and time in numeric form; in the format `YYYYMMDD' and
`HHMMSS' respectively.
(*) The `__UTC_DATE__' and `__UTC_TIME__' macros give the assembly
date and time in universal time (UTC) as strings, in ISO 8601
format (`"YYYY-MM-DD"' and `"HH:MM:SS"', respectively.) If the
host platform doesn't provide UTC time, these macros are
undefined.
(*) The `__UTC_DATE_NUM__' and `__UTC_TIME_NUM__' macros give the
assembly date and time universal time (UTC) in numeric form; in
the format `YYYYMMDD' and `HHMMSS' respectively. If the host
platform doesn't provide UTC time, these macros are undefined.
(*) The `__POSIX_TIME__' macro is defined as a number containing the
number of seconds since the POSIX epoch, 1 January 1970 00:00:00
UTC; excluding any leap seconds. This is computed using UTC time
if available on the host platform, otherwise it is computed
using the local time as if it was UTC.
All instances of time and date macros in the same assembly session
produce consistent output. For example, in an assembly session
started at 42 seconds after midnight on January 1, 2010 in Moscow
(timezone UTC+3) these macros would have the following values,
assuming, of course, a properly configured environment with a
correct clock:
__DATE__ "2010-01-01"
__TIME__ "00:00:42"
__DATE_NUM__ 20100101
__TIME_NUM__ 000042
__UTC_DATE__ "2009-12-31"
__UTC_TIME__ "21:00:42"
__UTC_DATE_NUM__ 20091231
__UTC_TIME_NUM__ 210042
__POSIX_TIME__ 1262293242
4.11.8 `__USE_'_package_`__': Package Include Test
When a standard macro package (see chapter 5) is included with the
`%use' directive (see section 4.6.4), a single-line macro of the
form `__USE_'_package_`__' is automatically defined. This allows
testing if a particular package is invoked or not.
For example, if the `altreg' package is included (see section 5.1),
then the macro `__USE_ALTREG__' is defined.
4.11.9 `__PASS__': Assembly Pass
The macro `__PASS__' is defined to be `1' on preparatory passes, and
`2' on the final pass. In preprocess-only mode, it is set to `3',
and when running only to generate dependencies (due to the `-M' or
`-MG' option, see section 2.1.4) it is set to `0'.
_Avoid using this macro if at all possible. It is tremendously easy
to generate very strange errors by misusing it, and the semantics
may change in future versions of NASM._
4.11.10 `STRUC' and `ENDSTRUC': Declaring Structure Data Types
The core of NASM contains no intrinsic means of defining data
structures; instead, the preprocessor is sufficiently powerful that
data structures can be implemented as a set of macros. The macros
`STRUC' and `ENDSTRUC' are used to define a structure data type.
`STRUC' takes one or two parameters. The first parameter is the name
of the data type. The second, optional parameter is the base offset
of the structure. The name of the data type is defined as a symbol
with the value of the base offset, and the name of the data type
with the suffix `_size' appended to it is defined as an `EQU' giving
the size of the structure. Once `STRUC' has been issued, you are
defining the structure, and should define fields using the `RESB'
family of pseudo-instructions, and then invoke `ENDSTRUC' to finish
the definition.
For example, to define a structure called `mytype' containing a
longword, a word, a byte and a string of bytes, you might code
struc mytype
mt_long: resd 1
mt_word: resw 1
mt_byte: resb 1
mt_str: resb 32
endstruc
The above code defines six symbols: `mt_long' as 0 (the offset from
the beginning of a `mytype' structure to the longword field),
`mt_word' as 4, `mt_byte' as 6, `mt_str' as 7, `mytype_size' as 39,
and `mytype' itself as zero.
The reason why the structure type name is defined at zero by default
is a side effect of allowing structures to work with the local label
mechanism: if your structure members tend to have the same names in
more than one structure, you can define the above structure like
this:
struc mytype
.long: resd 1
.word: resw 1
.byte: resb 1
.str: resb 32
endstruc
This defines the offsets to the structure fields as `mytype.long',
`mytype.word', `mytype.byte' and `mytype.str'.
NASM, since it has no _intrinsic_ structure support, does not
support any form of period notation to refer to the elements of a
structure once you have one (except the above local-label notation),
so code such as `mov ax,[mystruc.mt_word]' is not valid. `mt_word'
is a constant just like any other constant, so the correct syntax is
`mov ax,[mystruc+mt_word]' or `mov ax,[mystruc+mytype.word]'.
Sometimes you only have the address of the structure displaced by an
offset. For example, consider this standard stack frame setup:
push ebp
mov ebp, esp
sub esp, 40
In this case, you could access an element by subtracting the offset:
mov [ebp - 40 + mytype.word], ax
However, if you do not want to repeat this offset, you can use -40
as a base offset:
struc mytype, -40
And access an element this way:
mov [ebp + mytype.word], ax
4.11.11 `ISTRUC', `AT' and `IEND': Declaring Instances of Structures
Having defined a structure type, the next thing you typically want
to do is to declare instances of that structure in your data
segment. NASM provides an easy way to do this in the `ISTRUC'
mechanism. To declare a structure of type `mytype' in a program, you
code something like this:
mystruc:
istruc mytype
at mt_long, dd 123456
at mt_word, dw 1024
at mt_byte, db 'x'
at mt_str, db 'hello, world', 13, 10, 0
iend
The function of the `AT' macro is to make use of the `TIMES' prefix
to advance the assembly position to the correct point for the
specified structure field, and then to declare the specified data.
Therefore the structure fields must be declared in the same order as
they were specified in the structure definition.
If the data to go in a structure field requires more than one source
line to specify, the remaining source lines can easily come after
the `AT' line. For example:
at mt_str, db 123,134,145,156,167,178,189
db 190,100,0
Depending on personal taste, you can also omit the code part of the
`AT' line completely, and start the structure field on the next
line:
at mt_str
db 'hello, world'
db 13,10,0
4.11.12 `ALIGN' and `ALIGNB': Data Alignment
The `ALIGN' and `ALIGNB' macros provides a convenient way to align
code or data on a word, longword, paragraph or other boundary. (Some
assemblers call this directive `EVEN'.) The syntax of the `ALIGN'
and `ALIGNB' macros is
align 4 ; align on 4-byte boundary
align 16 ; align on 16-byte boundary
align 8,db 0 ; pad with 0s rather than NOPs
align 4,resb 1 ; align to 4 in the BSS
alignb 4 ; equivalent to previous line
Both macros require their first argument to be a power of two; they
both compute the number of additional bytes required to bring the
length of the current section up to a multiple of that power of two,
and then apply the `TIMES' prefix to their second argument to
perform the alignment.
If the second argument is not specified, the default for `ALIGN' is
`NOP', and the default for `ALIGNB' is `RESB 1'. So if the second
argument is specified, the two macros are equivalent. Normally, you
can just use `ALIGN' in code and data sections and `ALIGNB' in BSS
sections, and never need the second argument except for special
purposes.
`ALIGN' and `ALIGNB', being simple macros, perform no error
checking: they cannot warn you if their first argument fails to be a
power of two, or if their second argument generates more than one
byte of code. In each of these cases they will silently do the wrong
thing.
`ALIGNB' (or `ALIGN' with a second argument of `RESB 1') can be used
within structure definitions:
struc mytype2
mt_byte:
resb 1
alignb 2
mt_word:
resw 1
alignb 4
mt_long:
resd 1
mt_str:
resb 32
endstruc
This will ensure that the structure members are sensibly aligned
relative to the base of the structure.
A final caveat: `ALIGN' and `ALIGNB' work relative to the beginning
of the _section_, not the beginning of the address space in the
final executable. Aligning to a 16-byte boundary when the section
you're in is only guaranteed to be aligned to a 4-byte boundary, for
example, is a waste of effort. Again, NASM does not check that the
section's alignment characteristics are sensible for the use of
`ALIGN' or `ALIGNB'.
See also the `smartalign' standard macro package, section 5.2.
Chapter 5: Standard Macro Packages
----------------------------------
The `%use' directive (see section 4.6.4) includes one of the
standard macro packages included with the NASM distribution and
compiled into the NASM binary. It operates like the `%include'
directive (see section 4.6.1), but the included contents is provided
by NASM itself.
The names of standard macro packages are case insensitive, and can
be quoted or not.
5.1 `altreg': Alternate Register Names
The `altreg' standard macro package provides alternate register
names. It provides numeric register names for all registers (not
just `R8'-`R15'), the Intel-defined aliases `R8L'-`R15L' for the low
bytes of register (as opposed to the NASM/AMD standard names `R8B'-
`R15B'), and the names `R0H'-`R3H' (by analogy with `R0L'-`R3L') for
`AH', `CH', `DH', and `BH'.
Example use:
%use altreg
proc:
mov r0l,r3h ; mov al,bh
ret
See also section 11.1.
5.2 `smartalign': Smart `ALIGN' Macro
The `smartalign' standard macro package provides for an `ALIGN'
macro which is more powerful than the default (and backwards-
compatible) one (see section 4.11.12). When the `smartalign' package
is enabled, when `ALIGN' is used without a second argument, NASM
will generate a sequence of instructions more efficient than a
series of `NOP'. Furthermore, if the padding exceeds a specific
threshold, then NASM will generate a jump over the entire padding
sequence.
The specific instructions generated can be controlled with the new
`ALIGNMODE' macro. This macro takes two parameters: one mode, and an
optional jump threshold override. The modes are as follows:
(*) `generic': Works on all x86 CPUs and should have reasonable
performance. The default jump threshold is 8. This is the
default.
(*) `nop': Pad out with `NOP' instructions. The only difference
compared to the standard `ALIGN' macro is that NASM can still
jump over a large padding area. The default jump threshold is
16.
(*) `k7': Optimize for the AMD K7 (Athlon/Althon XP). These
instructions should still work on all x86 CPUs. The default jump
threshold is 16.
(*) `k8': Optimize for the AMD K8 (Opteron/Althon 64). These
instructions should still work on all x86 CPUs. The default jump
threshold is 16.
(*) `p6': Optimize for Intel CPUs. This uses the long `NOP'
instructions first introduced in Pentium Pro. This is
incompatible with all CPUs of family 5 or lower, as well as some
VIA CPUs and several virtualization solutions. The default jump
threshold is 16.
The macro `__ALIGNMODE__' is defined to contain the current
alignment mode. A number of other macros beginning with `__ALIGN_'
are used internally by this macro package.
Chapter 6: Assembler Directives
-------------------------------
NASM, though it attempts to avoid the bureaucracy of assemblers like
MASM and TASM, is nevertheless forced to support a _few_ directives.
These are described in this chapter.
NASM's directives come in two types: _user-level_ directives and
_primitive_ directives. Typically, each directive has a user-level
form and a primitive form. In almost all cases, we recommend that
users use the user-level forms of the directives, which are
implemented as macros which call the primitive forms.
Primitive directives are enclosed in square brackets; user-level
directives are not.
In addition to the universal directives described in this chapter,
each object file format can optionally supply extra directives in
order to control particular features of that file format. These
_format-specific_ directives are documented along with the formats
that implement them, in chapter 7.
6.1 `BITS': Specifying Target Processor Mode
The `BITS' directive specifies whether NASM should generate code
designed to run on a processor operating in 16-bit mode, 32-bit mode
or 64-bit mode. The syntax is `BITS XX', where XX is 16, 32 or 64.
In most cases, you should not need to use `BITS' explicitly. The
`aout', `coff', `elf', `macho', `win32' and `win64' object formats,
which are designed for use in 32-bit or 64-bit operating systems,
all cause NASM to select 32-bit or 64-bit mode, respectively, by
default. The `obj' object format allows you to specify each segment
you define as either `USE16' or `USE32', and NASM will set its
operating mode accordingly, so the use of the `BITS' directive is
once again unnecessary.
The most likely reason for using the `BITS' directive is to write
32-bit or 64-bit code in a flat binary file; this is because the
`bin' output format defaults to 16-bit mode in anticipation of it
being used most frequently to write DOS `.COM' programs, DOS `.SYS'
device drivers and boot loader software.
You do _not_ need to specify `BITS 32' merely in order to use 32-bit
instructions in a 16-bit DOS program; if you do, the assembler will
generate incorrect code because it will be writing code targeted at
a 32-bit platform, to be run on a 16-bit one.
When NASM is in `BITS 16' mode, instructions which use 32-bit data
are prefixed with an 0x66 byte, and those referring to 32-bit
addresses have an 0x67 prefix. In `BITS 32' mode, the reverse is
true: 32-bit instructions require no prefixes, whereas instructions
using 16-bit data need an 0x66 and those working on 16-bit addresses
need an 0x67.
When NASM is in `BITS 64' mode, most instructions operate the same
as they do for `BITS 32' mode. However, there are 8 more general and
SSE registers, and 16-bit addressing is no longer supported.
The default address size is 64 bits; 32-bit addressing can be
selected with the 0x67 prefix. The default operand size is still 32
bits, however, and the 0x66 prefix selects 16-bit operand size. The
`REX' prefix is used both to select 64-bit operand size, and to
access the new registers. NASM automatically inserts REX prefixes
when necessary.
When the `REX' prefix is used, the processor does not know how to
address the AH, BH, CH or DH (high 8-bit legacy) registers. Instead,
it is possible to access the the low 8-bits of the SP, BP SI and DI
registers as SPL, BPL, SIL and DIL, respectively; but only when the
REX prefix is used.
The `BITS' directive has an exactly equivalent primitive form,
`[BITS 16]', `[BITS 32]' and `[BITS 64]'. The user-level form is a
macro which has no function other than to call the primitive form.
Note that the space is neccessary, e.g. `BITS32' will _not_ work!
6.1.1 `USE16' & `USE32': Aliases for BITS
The ``USE16'' and ``USE32'' directives can be used in place of
``BITS 16'' and ``BITS 32'', for compatibility with other
assemblers.
6.2 `DEFAULT': Change the assembler defaults
The `DEFAULT' directive changes the assembler defaults. Normally,
NASM defaults to a mode where the programmer is expected to
explicitly specify most features directly. However, this is
occationally obnoxious, as the explicit form is pretty much the only
one one wishes to use.
Currently, the only `DEFAULT' that is settable is whether or not
registerless instructions in 64-bit mode are `RIP'-relative or not.
By default, they are absolute unless overridden with the `REL'
specifier (see section 3.3). However, if `DEFAULT REL' is specified,
`REL' is default, unless overridden with the `ABS' specifier,
_except when used with an FS or GS segment override_.
The special handling of `FS' and `GS' overrides are due to the fact
that these registers are generally used as thread pointers or other
special functions in 64-bit mode, and generating `RIP'-relative
addresses would be extremely confusing.
`DEFAULT REL' is disabled with `DEFAULT ABS'.
6.3 `SECTION' or `SEGMENT': Changing and Defining Sections
The `SECTION' directive (`SEGMENT' is an exactly equivalent synonym)
changes which section of the output file the code you write will be
assembled into. In some object file formats, the number and names of
sections are fixed; in others, the user may make up as many as they
wish. Hence `SECTION' may sometimes give an error message, or may
define a new section, if you try to switch to a section that does
not (yet) exist.
The Unix object formats, and the `bin' object format (but see
section 7.1.3, all support the standardized section names `.text',
`.data' and `.bss' for the code, data and uninitialized-data
sections. The `obj' format, by contrast, does not recognize these
section names as being special, and indeed will strip off the
leading period of any section name that has one.
6.3.1 The `__SECT__' Macro
The `SECTION' directive is unusual in that its user-level form
functions differently from its primitive form. The primitive form,
`[SECTION xyz]', simply switches the current target section to the
one given. The user-level form, `SECTION xyz', however, first
defines the single-line macro `__SECT__' to be the primitive
`[SECTION]' directive which it is about to issue, and then issues
it. So the user-level directive
SECTION .text
expands to the two lines
%define __SECT__ [SECTION .text]
[SECTION .text]
Users may find it useful to make use of this in their own macros.
For example, the `writefile' macro defined in section 4.3.4 can be
usefully rewritten in the following more sophisticated form:
%macro writefile 2+
[section .data]
%%str: db %2
%%endstr:
__SECT__
mov dx,%%str
mov cx,%%endstr-%%str
mov bx,%1
mov ah,0x40
int 0x21
%endmacro
This form of the macro, once passed a string to output, first
switches temporarily to the data section of the file, using the
primitive form of the `SECTION' directive so as not to modify
`__SECT__'. It then declares its string in the data section, and
then invokes `__SECT__' to switch back to _whichever_ section the
user was previously working in. It thus avoids the need, in the
previous version of the macro, to include a `JMP' instruction to
jump over the data, and also does not fail if, in a complicated
`OBJ' format module, the user could potentially be assembling the
code in any of several separate code sections.
6.4 `ABSOLUTE': Defining Absolute Labels
The `ABSOLUTE' directive can be thought of as an alternative form of
`SECTION': it causes the subsequent code to be directed at no
physical section, but at the hypothetical section starting at the
given absolute address. The only instructions you can use in this
mode are the `RESB' family.
`ABSOLUTE' is used as follows:
absolute 0x1A
kbuf_chr resw 1
kbuf_free resw 1
kbuf resw 16
This example describes a section of the PC BIOS data area, at
segment address 0x40: the above code defines `kbuf_chr' to be 0x1A,
`kbuf_free' to be 0x1C, and `kbuf' to be 0x1E.
The user-level form of `ABSOLUTE', like that of `SECTION', redefines
the `__SECT__' macro when it is invoked.
`STRUC' and `ENDSTRUC' are defined as macros which use `ABSOLUTE'
(and also `__SECT__').
`ABSOLUTE' doesn't have to take an absolute constant as an argument:
it can take an expression (actually, a critical expression: see
section 3.8) and it can be a value in a segment. For example, a TSR
can re-use its setup code as run-time BSS like this:
org 100h ; it's a .COM program
jmp setup ; setup code comes last
; the resident part of the TSR goes here
setup:
; now write the code that installs the TSR here
absolute setup
runtimevar1 resw 1
runtimevar2 resd 20
tsr_end:
This defines some variables `on top of' the setup code, so that
after the setup has finished running, the space it took up can be
re-used as data storage for the running TSR. The symbol `tsr_end'
can be used to calculate the total size of the part of the TSR that
needs to be made resident.
6.5 `EXTERN': Importing Symbols from Other Modules
`EXTERN' is similar to the MASM directive `EXTRN' and the C keyword
`extern': it is used to declare a symbol which is not defined
anywhere in the module being assembled, but is assumed to be defined
in some other module and needs to be referred to by this one. Not
every object-file format can support external variables: the `bin'
format cannot.
The `EXTERN' directive takes as many arguments as you like. Each
argument is the name of a symbol:
extern _printf
extern _sscanf,_fscanf
Some object-file formats provide extra features to the `EXTERN'
directive. In all cases, the extra features are used by suffixing a
colon to the symbol name followed by object-format specific text.
For example, the `obj' format allows you to declare that the default
segment base of an external should be the group `dgroup' by means of
the directive
extern _variable:wrt dgroup
The primitive form of `EXTERN' differs from the user-level form only
in that it can take only one argument at a time: the support for
multiple arguments is implemented at the preprocessor level.
You can declare the same variable as `EXTERN' more than once: NASM
will quietly ignore the second and later redeclarations. You can't
declare a variable as `EXTERN' as well as something else, though.
6.6 `GLOBAL': Exporting Symbols to Other Modules
`GLOBAL' is the other end of `EXTERN': if one module declares a
symbol as `EXTERN' and refers to it, then in order to prevent linker
errors, some other module must actually _define_ the symbol and
declare it as `GLOBAL'. Some assemblers use the name `PUBLIC' for
this purpose.
The `GLOBAL' directive applying to a symbol must appear _before_ the
definition of the symbol.
`GLOBAL' uses the same syntax as `EXTERN', except that it must refer
to symbols which _are_ defined in the same module as the `GLOBAL'
directive. For example:
global _main
_main:
; some code
`GLOBAL', like `EXTERN', allows object formats to define private
extensions by means of a colon. The `elf' object format, for
example, lets you specify whether global data items are functions or
data:
global hashlookup:function, hashtable:data
Like `EXTERN', the primitive form of `GLOBAL' differs from the user-
level form only in that it can take only one argument at a time.
6.7 `COMMON': Defining Common Data Areas
The `COMMON' directive is used to declare _common variables_. A
common variable is much like a global variable declared in the
uninitialized data section, so that
common intvar 4
is similar in function to
global intvar
section .bss
intvar resd 1
The difference is that if more than one module defines the same
common variable, then at link time those variables will be _merged_,
and references to `intvar' in all modules will point at the same
piece of memory.
Like `GLOBAL' and `EXTERN', `COMMON' supports object-format specific
extensions. For example, the `obj' format allows common variables to
be NEAR or FAR, and the `elf' format allows you to specify the
alignment requirements of a common variable:
common commvar 4:near ; works in OBJ
common intarray 100:4 ; works in ELF: 4 byte aligned
Once again, like `EXTERN' and `GLOBAL', the primitive form of
`COMMON' differs from the user-level form only in that it can take
only one argument at a time.
6.8 `CPU': Defining CPU Dependencies
The `CPU' directive restricts assembly to those instructions which
are available on the specified CPU.
Options are:
(*) `CPU 8086' Assemble only 8086 instruction set
(*) `CPU 186' Assemble instructions up to the 80186 instruction set
(*) `CPU 286' Assemble instructions up to the 286 instruction set
(*) `CPU 386' Assemble instructions up to the 386 instruction set
(*) `CPU 486' 486 instruction set
(*) `CPU 586' Pentium instruction set
(*) `CPU PENTIUM' Same as 586
(*) `CPU 686' P6 instruction set
(*) `CPU PPRO' Same as 686
(*) `CPU P2' Same as 686
(*) `CPU P3' Pentium III (Katmai) instruction sets
(*) `CPU KATMAI' Same as P3
(*) `CPU P4' Pentium 4 (Willamette) instruction set
(*) `CPU WILLAMETTE' Same as P4
(*) `CPU PRESCOTT' Prescott instruction set
(*) `CPU X64' x86-64 (x64/AMD64/Intel 64) instruction set
(*) `CPU IA64' IA64 CPU (in x86 mode) instruction set
All options are case insensitive. All instructions will be selected
only if they apply to the selected CPU or lower. By default, all
instructions are available.
6.9 `FLOAT': Handling of floating-point constants
By default, floating-point constants are rounded to nearest, and
IEEE denormals are supported. The following options can be set to
alter this behaviour:
(*) `FLOAT DAZ' Flush denormals to zero
(*) `FLOAT NODAZ' Do not flush denormals to zero (default)
(*) `FLOAT NEAR' Round to nearest (default)
(*) `FLOAT UP' Round up (toward +Infinity)
(*) `FLOAT DOWN' Round down (toward -Infinity)
(*) `FLOAT ZERO' Round toward zero
(*) `FLOAT DEFAULT' Restore default settings
The standard macros `__FLOAT_DAZ__', `__FLOAT_ROUND__', and
`__FLOAT__' contain the current state, as long as the programmer has
avoided the use of the brackeded primitive form, (`[FLOAT]').
`__FLOAT__' contains the full set of floating-point settings; this
value can be saved away and invoked later to restore the setting.
Chapter 7: Output Formats
-------------------------
NASM is a portable assembler, designed to be able to compile on any
ANSI C-supporting platform and produce output to run on a variety of
Intel x86 operating systems. For this reason, it has a large number
of available output formats, selected using the `-f' option on the
NASM command line. Each of these formats, along with its extensions
to the base NASM syntax, is detailed in this chapter.
As stated in section 2.1.1, NASM chooses a default name for your
output file based on the input file name and the chosen output
format. This will be generated by removing the extension (`.asm',
`.s', or whatever you like to use) from the input file name, and
substituting an extension defined by the output format. The
extensions are given with each format below.
7.1 `bin': Flat-Form Binary Output
The `bin' format does not produce object files: it generates nothing
in the output file except the code you wrote. Such `pure binary'
files are used by MS-DOS: `.COM' executables and `.SYS' device
drivers are pure binary files. Pure binary output is also useful for
operating system and boot loader development.
The `bin' format supports multiple section names. For details of how
NASM handles sections in the `bin' format, see section 7.1.3.
Using the `bin' format puts NASM by default into 16-bit mode (see
section 6.1). In order to use `bin' to write 32-bit or 64-bit code,
such as an OS kernel, you need to explicitly issue the `BITS 32' or
`BITS 64' directive.
`bin' has no default output file name extension: instead, it leaves
your file name as it is once the original extension has been
removed. Thus, the default is for NASM to assemble `binprog.asm'
into a binary file called `binprog'.
7.1.1 `ORG': Binary File Program Origin
The `bin' format provides an additional directive to the list given
in chapter 6: `ORG'. The function of the `ORG' directive is to
specify the origin address which NASM will assume the program begins
at when it is loaded into memory.
For example, the following code will generate the longword
`0x00000104':
org 0x100
dd label
label:
Unlike the `ORG' directive provided by MASM-compatible assemblers,
which allows you to jump around in the object file and overwrite
code you have already generated, NASM's `ORG' does exactly what the
directive says: _origin_. Its sole function is to specify one offset
which is added to all internal address references within the
section; it does not permit any of the trickery that MASM's version
does. See section 12.1.3 for further comments.
7.1.2 `bin' Extensions to the `SECTION' Directive
The `bin' output format extends the `SECTION' (or `SEGMENT')
directive to allow you to specify the alignment requirements of
segments. This is done by appending the `ALIGN' qualifier to the end
of the section-definition line. For example,
section .data align=16
switches to the section `.data' and also specifies that it must be
aligned on a 16-byte boundary.
The parameter to `ALIGN' specifies how many low bits of the section
start address must be forced to zero. The alignment value given may
be any power of two.
7.1.3 Multisection Support for the `bin' Format
The `bin' format allows the use of multiple sections, of arbitrary
names, besides the "known" `.text', `.data', and `.bss' names.
(*) Sections may be designated `progbits' or `nobits'. Default is
`progbits' (except `.bss', which defaults to `nobits', of
course).
(*) Sections can be aligned at a specified boundary following the
previous section with `align=', or at an arbitrary byte-granular
position with `start='.
(*) Sections can be given a virtual start address, which will be
used for the calculation of all memory references within that
section with `vstart='.
(*) Sections can be ordered using `follows='`<section>' or
`vfollows='`<section>' as an alternative to specifying an
explicit start address.
(*) Arguments to `org', `start', `vstart', and `align=' are critical
expressions. See section 3.8. E.g. `align=(1 << ALIGN_SHIFT)' -
`ALIGN_SHIFT' must be defined before it is used here.
(*) Any code which comes before an explicit `SECTION' directive is
directed by default into the `.text' section.
(*) If an `ORG' statement is not given, `ORG 0' is used by default.
(*) The `.bss' section will be placed after the last `progbits'
section, unless `start=', `vstart=', `follows=', or `vfollows='
has been specified.
(*) All sections are aligned on dword boundaries, unless a different
alignment has been specified.
(*) Sections may not overlap.
(*) NASM creates the `section.<secname>.start' for each section,
which may be used in your code.
7.1.4 Map Files
Map files can be generated in `-f bin' format by means of the
`[map]' option. Map types of `all' (default), `brief', `sections',
`segments', or `symbols' may be specified. Output may be directed to
`stdout' (default), `stderr', or a specified file. E.g.
`[map symbols myfile.map]'. No "user form" exists, the square
brackets must be used.
7.2 `ith': Intel Hex Output
The `ith' file format produces Intel hex-format files. Just as the
`bin' format, this is a flat memory image format with no support for
relocation or linking. It is usually used with ROM programmers and
similar utilities.
All extensions supported by the `bin' file format is also supported
by the `ith' file format.
`ith' provides a default output file-name extension of `.ith'.
7.3 `srec': Motorola S-Records Output
The `srec' file format produces Motorola S-records files. Just as
the `bin' format, this is a flat memory image format with no support
for relocation or linking. It is usually used with ROM programmers
and similar utilities.
All extensions supported by the `bin' file format is also supported
by the `srec' file format.
`srec' provides a default output file-name extension of `.srec'.
7.4 `obj': Microsoft OMF Object Files
The `obj' file format (NASM calls it `obj' rather than `omf' for
historical reasons) is the one produced by MASM and TASM, which is
typically fed to 16-bit DOS linkers to produce `.EXE' files. It is
also the format used by OS/2.
`obj' provides a default output file-name extension of `.obj'.
`obj' is not exclusively a 16-bit format, though: NASM has full
support for the 32-bit extensions to the format. In particular, 32-
bit `obj' format files are used by Borland's Win32 compilers,
instead of using Microsoft's newer `win32' object file format.
The `obj' format does not define any special segment names: you can
call your segments anything you like. Typical names for segments in
`obj' format files are `CODE', `DATA' and `BSS'.
If your source file contains code before specifying an explicit
`SEGMENT' directive, then NASM will invent its own segment called
`__NASMDEFSEG' for you.
When you define a segment in an `obj' file, NASM defines the segment
name as a symbol as well, so that you can access the segment address
of the segment. So, for example:
segment data
dvar: dw 1234
segment code
function:
mov ax,data ; get segment address of data
mov ds,ax ; and move it into DS
inc word [dvar] ; now this reference will work
ret
The `obj' format also enables the use of the `SEG' and `WRT'
operators, so that you can write code which does things like
extern foo
mov ax,seg foo ; get preferred segment of foo
mov ds,ax
mov ax,data ; a different segment
mov es,ax
mov ax,[ds:foo] ; this accesses `foo'
mov [es:foo wrt data],bx ; so does this
7.4.1 `obj' Extensions to the `SEGMENT' Directive
The `obj' output format extends the `SEGMENT' (or `SECTION')
directive to allow you to specify various properties of the segment
you are defining. This is done by appending extra qualifiers to the
end of the segment-definition line. For example,
segment code private align=16
defines the segment `code', but also declares it to be a private
segment, and requires that the portion of it described in this code
module must be aligned on a 16-byte boundary.
The available qualifiers are:
(*) `PRIVATE', `PUBLIC', `COMMON' and `STACK' specify the
combination characteristics of the segment. `PRIVATE' segments
do not get combined with any others by the linker; `PUBLIC' and
`STACK' segments get concatenated together at link time; and
`COMMON' segments all get overlaid on top of each other rather
than stuck end-to-end.
(*) `ALIGN' is used, as shown above, to specify how many low bits of
the segment start address must be forced to zero. The alignment
value given may be any power of two from 1 to 4096; in reality,
the only values supported are 1, 2, 4, 16, 256 and 4096, so if 8
is specified it will be rounded up to 16, and 32, 64 and 128
will all be rounded up to 256, and so on. Note that alignment to
4096-byte boundaries is a PharLap extension to the format and
may not be supported by all linkers.
(*) `CLASS' can be used to specify the segment class; this feature
indicates to the linker that segments of the same class should
be placed near each other in the output file. The class name can
be any word, e.g. `CLASS=CODE'.
(*) `OVERLAY', like `CLASS', is specified with an arbitrary word as
an argument, and provides overlay information to an overlay-
capable linker.
(*) Segments can be declared as `USE16' or `USE32', which has the
effect of recording the choice in the object file and also
ensuring that NASM's default assembly mode when assembling in
that segment is 16-bit or 32-bit respectively.
(*) When writing OS/2 object files, you should declare 32-bit
segments as `FLAT', which causes the default segment base for
anything in the segment to be the special group `FLAT', and also
defines the group if it is not already defined.
(*) The `obj' file format also allows segments to be declared as
having a pre-defined absolute segment address, although no
linkers are currently known to make sensible use of this
feature; nevertheless, NASM allows you to declare a segment such
as `SEGMENT SCREEN ABSOLUTE=0xB800' if you need to. The
`ABSOLUTE' and `ALIGN' keywords are mutually exclusive.
NASM's default segment attributes are `PUBLIC', `ALIGN=1', no class,
no overlay, and `USE16'.
7.4.2 `GROUP': Defining Groups of Segments
The `obj' format also allows segments to be grouped, so that a
single segment register can be used to refer to all the segments in
a group. NASM therefore supplies the `GROUP' directive, whereby you
can code
segment data
; some data
segment bss
; some uninitialized data
group dgroup data bss
which will define a group called `dgroup' to contain the segments
`data' and `bss'. Like `SEGMENT', `GROUP' causes the group name to
be defined as a symbol, so that you can refer to a variable `var' in
the `data' segment as `var wrt data' or as `var wrt dgroup',
depending on which segment value is currently in your segment
register.
If you just refer to `var', however, and `var' is declared in a
segment which is part of a group, then NASM will default to giving
you the offset of `var' from the beginning of the _group_, not the
_segment_. Therefore `SEG var', also, will return the group base
rather than the segment base.
NASM will allow a segment to be part of more than one group, but
will generate a warning if you do this. Variables declared in a
segment which is part of more than one group will default to being
relative to the first group that was defined to contain the segment.
A group does not have to contain any segments; you can still make
`WRT' references to a group which does not contain the variable you
are referring to. OS/2, for example, defines the special group
`FLAT' with no segments in it.
7.4.3 `UPPERCASE': Disabling Case Sensitivity in Output
Although NASM itself is case sensitive, some OMF linkers are not;
therefore it can be useful for NASM to output single-case object
files. The `UPPERCASE' format-specific directive causes all segment,
group and symbol names that are written to the object file to be
forced to upper case just before being written. Within a source
file, NASM is still case-sensitive; but the object file can be
written entirely in upper case if desired.
`UPPERCASE' is used alone on a line; it requires no parameters.
7.4.4 `IMPORT': Importing DLL Symbols
The `IMPORT' format-specific directive defines a symbol to be
imported from a DLL, for use if you are writing a DLL's import
library in NASM. You still need to declare the symbol as `EXTERN' as
well as using the `IMPORT' directive.
The `IMPORT' directive takes two required parameters, separated by
white space, which are (respectively) the name of the symbol you
wish to import and the name of the library you wish to import it
from. For example:
import WSAStartup wsock32.dll
A third optional parameter gives the name by which the symbol is
known in the library you are importing it from, in case this is not
the same as the name you wish the symbol to be known by to your code
once you have imported it. For example:
import asyncsel wsock32.dll WSAAsyncSelect
7.4.5 `EXPORT': Exporting DLL Symbols
The `EXPORT' format-specific directive defines a global symbol to be
exported as a DLL symbol, for use if you are writing a DLL in NASM.
You still need to declare the symbol as `GLOBAL' as well as using
the `EXPORT' directive.
`EXPORT' takes one required parameter, which is the name of the
symbol you wish to export, as it was defined in your source file. An
optional second parameter (separated by white space from the first)
gives the _external_ name of the symbol: the name by which you wish
the symbol to be known to programs using the DLL. If this name is
the same as the internal name, you may leave the second parameter
off.
Further parameters can be given to define attributes of the exported
symbol. These parameters, like the second, are separated by white
space. If further parameters are given, the external name must also
be specified, even if it is the same as the internal name. The
available attributes are:
(*) `resident' indicates that the exported name is to be kept
resident by the system loader. This is an optimisation for
frequently used symbols imported by name.
(*) `nodata' indicates that the exported symbol is a function which
does not make use of any initialized data.
(*) `parm=NNN', where `NNN' is an integer, sets the number of
parameter words for the case in which the symbol is a call gate
between 32-bit and 16-bit segments.
(*) An attribute which is just a number indicates that the symbol
should be exported with an identifying number (ordinal), and
gives the desired number.
For example:
export myfunc
export myfunc TheRealMoreFormalLookingFunctionName
export myfunc myfunc 1234 ; export by ordinal
export myfunc myfunc resident parm=23 nodata
7.4.6 `..start': Defining the Program Entry Point
`OMF' linkers require exactly one of the object files being linked
to define the program entry point, where execution will begin when
the program is run. If the object file that defines the entry point
is assembled using NASM, you specify the entry point by declaring
the special symbol `..start' at the point where you wish execution
to begin.
7.4.7 `obj' Extensions to the `EXTERN' Directive
If you declare an external symbol with the directive
extern foo
then references such as `mov ax,foo' will give you the offset of
`foo' from its preferred segment base (as specified in whichever
module `foo' is actually defined in). So to access the contents of
`foo' you will usually need to do something like
mov ax,seg foo ; get preferred segment base
mov es,ax ; move it into ES
mov ax,[es:foo] ; and use offset `foo' from it
This is a little unwieldy, particularly if you know that an external
is going to be accessible from a given segment or group, say
`dgroup'. So if `DS' already contained `dgroup', you could simply
code
mov ax,[foo wrt dgroup]
However, having to type this every time you want to access `foo' can
be a pain; so NASM allows you to declare `foo' in the alternative
form
extern foo:wrt dgroup
This form causes NASM to pretend that the preferred segment base of
`foo' is in fact `dgroup'; so the expression `seg foo' will now
return `dgroup', and the expression `foo' is equivalent to
`foo wrt dgroup'.
This default-`WRT' mechanism can be used to make externals appear to
be relative to any group or segment in your program. It can also be
applied to common variables: see section 7.4.8.
7.4.8 `obj' Extensions to the `COMMON' Directive
The `obj' format allows common variables to be either near or far;
NASM allows you to specify which your variables should be by the use
of the syntax
common nearvar 2:near ; `nearvar' is a near common
common farvar 10:far ; and `farvar' is far
Far common variables may be greater in size than 64Kb, and so the
OMF specification says that they are declared as a number of
_elements_ of a given size. So a 10-byte far common variable could
be declared as ten one-byte elements, five two-byte elements, two
five-byte elements or one ten-byte element.
Some `OMF' linkers require the element size, as well as the variable
size, to match when resolving common variables declared in more than
one module. Therefore NASM must allow you to specify the element
size on your far common variables. This is done by the following
syntax:
common c_5by2 10:far 5 ; two five-byte elements
common c_2by5 10:far 2 ; five two-byte elements
If no element size is specified, the default is 1. Also, the `FAR'
keyword is not required when an element size is specified, since
only far commons may have element sizes at all. So the above
declarations could equivalently be
common c_5by2 10:5 ; two five-byte elements
common c_2by5 10:2 ; five two-byte elements
In addition to these extensions, the `COMMON' directive in `obj'
also supports default-`WRT' specification like `EXTERN' does
(explained in section 7.4.7). So you can also declare things like
common foo 10:wrt dgroup
common bar 16:far 2:wrt data
common baz 24:wrt data:6
7.5 `win32': Microsoft Win32 Object Files
The `win32' output format generates Microsoft Win32 object files,
suitable for passing to Microsoft linkers such as Visual C++. Note
that Borland Win32 compilers do not use this format, but use `obj'
instead (see section 7.4).
`win32' provides a default output file-name extension of `.obj'.
Note that although Microsoft say that Win32 object files follow the
`COFF' (Common Object File Format) standard, the object files
produced by Microsoft Win32 compilers are not compatible with COFF
linkers such as DJGPP's, and vice versa. This is due to a difference
of opinion over the precise semantics of PC-relative relocations. To
produce COFF files suitable for DJGPP, use NASM's `coff' output
format; conversely, the `coff' format does not produce object files
that Win32 linkers can generate correct output from.
7.5.1 `win32' Extensions to the `SECTION' Directive
Like the `obj' format, `win32' allows you to specify additional
information on the `SECTION' directive line, to control the type and
properties of sections you declare. Section types and properties are
generated automatically by NASM for the standard section names
`.text', `.data' and `.bss', but may still be overridden by these
qualifiers.
The available qualifiers are:
(*) `code', or equivalently `text', defines the section to be a code
section. This marks the section as readable and executable, but
not writable, and also indicates to the linker that the type of
the section is code.
(*) `data' and `bss' define the section to be a data section,
analogously to `code'. Data sections are marked as readable and
writable, but not executable. `data' declares an initialized
data section, whereas `bss' declares an uninitialized data
section.
(*) `rdata' declares an initialized data section that is readable
but not writable. Microsoft compilers use this section to place
constants in it.
(*) `info' defines the section to be an informational section, which
is not included in the executable file by the linker, but may
(for example) pass information _to_ the linker. For example,
declaring an `info'-type section called `.drectve' causes the
linker to interpret the contents of the section as command-line
options.
(*) `align=', used with a trailing number as in `obj', gives the
alignment requirements of the section. The maximum you may
specify is 64: the Win32 object file format contains no means to
request a greater section alignment than this. If alignment is
not explicitly specified, the defaults are 16-byte alignment for
code sections, 8-byte alignment for rdata sections and 4-byte
alignment for data (and BSS) sections. Informational sections
get a default alignment of 1 byte (no alignment), though the
value does not matter.
The defaults assumed by NASM if you do not specify the above
qualifiers are:
section .text code align=16
section .data data align=4
section .rdata rdata align=8
section .bss bss align=4
Any other section name is treated by default like `.text'.
7.5.2 `win32': Safe Structured Exception Handling
Among other improvements in Windows XP SP2 and Windows Server 2003
Microsoft has introduced concept of "safe structured exception
handling." General idea is to collect handlers' entry points in
designated read-only table and have alleged entry point verified
against this table prior exception control is passed to the handler.
In order for an executable module to be equipped with such "safe
exception handler table," all object modules on linker command line
has to comply with certain criteria. If one single module among them
does not, then the table in question is omitted and above mentioned
run-time checks will not be performed for application in question.
Table omission is by default silent and therefore can be easily
overlooked. One can instruct linker to refuse to produce binary
without such table by passing `/safeseh' command line option.
Without regard to this run-time check merits it's natural to expect
NASM to be capable of generating modules suitable for `/safeseh'
linking. From developer's viewpoint the problem is two-fold:
(*) how to adapt modules not deploying exception handlers of their
own;
(*) how to adapt/develop modules utilizing custom exception
handling;
Former can be easily achieved with any NASM version by adding
following line to source code:
$@feat.00 equ 1
As of version 2.03 NASM adds this absolute symbol automatically. If
it's not already present to be precise. I.e. if for whatever reason
developer would choose to assign another value in source file, it
would still be perfectly possible.
Registering custom exception handler on the other hand requires
certain "magic." As of version 2.03 additional directive is
implemented, `safeseh', which instructs the assembler to produce
appropriately formatted input data for above mentioned "safe
exception handler table." Its typical use would be:
section .text
extern _MessageBoxA@16
%if __NASM_VERSION_ID__ >= 0x02030000
safeseh handler ; register handler as "safe handler"
%endif
handler:
push DWORD 1 ; MB_OKCANCEL
push DWORD caption
push DWORD text
push DWORD 0
call _MessageBoxA@16
sub eax,1 ; incidentally suits as return value
; for exception handler
ret
global _main
_main:
push DWORD handler
push DWORD [fs:0]
mov DWORD [fs:0],esp ; engage exception handler
xor eax,eax
mov eax,DWORD[eax] ; cause exception
pop DWORD [fs:0] ; disengage exception handler
add esp,4
ret
text: db 'OK to rethrow, CANCEL to generate core dump',0
caption:db 'SEGV',0
section .drectve info
db '/defaultlib:user32.lib /defaultlib:msvcrt.lib '
As you might imagine, it's perfectly possible to produce .exe binary
with "safe exception handler table" and yet engage unregistered
exception handler. Indeed, handler is engaged by simply manipulating
`[fs:0]' location at run-time, something linker has no power over,
run-time that is. It should be explicitly mentioned that such
failure to register handler's entry point with `safeseh' directive
has undesired side effect at run-time. If exception is raised and
unregistered handler is to be executed, the application is abruptly
terminated without any notification whatsoever. One can argue that
system could at least have logged some kind "non-safe exception
handler in x.exe at address n" message in event log, but no,
literally no notification is provided and user is left with no clue
on what caused application failure.
Finally, all mentions of linker in this paragraph refer to Microsoft
linker version 7.x and later. Presence of `@feat.00' symbol and
input data for "safe exception handler table" causes no backward
incompatibilities and "safeseh" modules generated by NASM 2.03 and
later can still be linked by earlier versions or non-Microsoft
linkers.
7.6 `win64': Microsoft Win64 Object Files
The `win64' output format generates Microsoft Win64 object files,
which is nearly 100% identical to the `win32' object format (section
7.5) with the exception that it is meant to target 64-bit code and
the x86-64 platform altogether. This object file is used exactly the
same as the `win32' object format (section 7.5), in NASM, with
regard to this exception.
7.6.1 `win64': Writing Position-Independent Code
While `REL' takes good care of RIP-relative addressing, there is one
aspect that is easy to overlook for a Win64 programmer: indirect
references. Consider a switch dispatch table:
jmp QWORD[dsptch+rax*8]
...
dsptch: dq case0
dq case1
...
Even novice Win64 assembler programmer will soon realize that the
code is not 64-bit savvy. Most notably linker will refuse to link it
with
"`'ADDR32' relocation to '.text' invalid without /LARGEADDRESSAWARE:NO'".
So [s]he will have to split jmp instruction as following:
lea rbx,[rel dsptch]
jmp QWORD[rbx+rax*8]
What happens behind the scene is that effective address in `lea' is
encoded relative to instruction pointer, or in perfectly position-
independent manner. But this is only part of the problem! Trouble is
that in .dll context `caseN' relocations will make their way to the
final module and might have to be adjusted at .dll load time. To be
specific when it can't be loaded at preferred address. And when this
occurs, pages with such relocations will be rendered private to
current process, which kind of undermines the idea of sharing .dll.
But no worry, it's trivial to fix:
lea rbx,[rel dsptch]
add rbx,QWORD[rbx+rax*8]
jmp rbx
...
dsptch: dq case0-dsptch
dq case1-dsptch
...
NASM version 2.03 and later provides another alternative,
`wrt ..imagebase' operator, which returns offset from base address
of the current image, be it .exe or .dll module, therefore the name.
For those acquainted with PE-COFF format base address denotes start
of `IMAGE_DOS_HEADER' structure. Here is how to implement switch
with these image-relative references:
lea rbx,[rel dsptch]
mov eax,DWORD[rbx+rax*4]
sub rbx,dsptch wrt ..imagebase
add rbx,rax
jmp rbx
...
dsptch: dd case0 wrt ..imagebase
dd case1 wrt ..imagebase
One can argue that the operator is redundant. Indeed, snippet before
last works just fine with any NASM version and is not even Windows
specific... The real reason for implementing `wrt ..imagebase' will
become apparent in next paragraph.
It should be noted that `wrt ..imagebase' is defined as 32-bit
operand only:
dd label wrt ..imagebase ; ok
dq label wrt ..imagebase ; bad
mov eax,label wrt ..imagebase ; ok
mov rax,label wrt ..imagebase ; bad
7.6.2 `win64': Structured Exception Handling
Structured exception handing in Win64 is completely different matter
from Win32. Upon exception program counter value is noted, and
linker-generated table comprising start and end addresses of all the
functions [in given executable module] is traversed and compared to
the saved program counter. Thus so called `UNWIND_INFO' structure is
identified. If it's not found, then offending subroutine is assumed
to be "leaf" and just mentioned lookup procedure is attempted for
its caller. In Win64 leaf function is such function that does not
call any other function _nor_ modifies any Win64 non-volatile
registers, including stack pointer. The latter ensures that it's
possible to identify leaf function's caller by simply pulling the
value from the top of the stack.
While majority of subroutines written in assembler are not calling
any other function, requirement for non-volatile registers'
immutability leaves developer with not more than 7 registers and no
stack frame, which is not necessarily what [s]he counted with.
Customarily one would meet the requirement by saving non-volatile
registers on stack and restoring them upon return, so what can go
wrong? If [and only if] an exception is raised at run-time and no
`UNWIND_INFO' structure is associated with such "leaf" function, the
stack unwind procedure will expect to find caller's return address
on the top of stack immediately followed by its frame. Given that
developer pushed caller's non-volatile registers on stack, would the
value on top point at some code segment or even addressable space?
Well, developer can attempt copying caller's return address to the
top of stack and this would actually work in some very specific
circumstances. But unless developer can guarantee that these
circumstances are always met, it's more appropriate to assume worst
case scenario, i.e. stack unwind procedure going berserk. Relevant
question is what happens then? Application is abruptly terminated
without any notification whatsoever. Just like in Win32 case, one
can argue that system could at least have logged "unwind procedure
went berserk in x.exe at address n" in event log, but no, no trace
of failure is left.
Now, when we understand significance of the `UNWIND_INFO' structure,
let's discuss what's in it and/or how it's processed. First of all
it is checked for presence of reference to custom language-specific
exception handler. If there is one, then it's invoked. Depending on
the return value, execution flow is resumed (exception is said to be
"handled"), _or_ rest of `UNWIND_INFO' structure is processed as
following. Beside optional reference to custom handler, it carries
information about current callee's stack frame and where non-
volatile registers are saved. Information is detailed enough to be
able to reconstruct contents of caller's non-volatile registers upon
call to current callee. And so caller's context is reconstructed,
and then unwind procedure is repeated, i.e. another `UNWIND_INFO'
structure is associated, this time, with caller's instruction
pointer, which is then checked for presence of reference to
language-specific handler, etc. The procedure is recursively
repeated till exception is handled. As last resort system "handles"
it by generating memory core dump and terminating the application.
As for the moment of this writing NASM unfortunately does not
facilitate generation of above mentioned detailed information about
stack frame layout. But as of version 2.03 it implements building
blocks for generating structures involved in stack unwinding. As
simplest example, here is how to deploy custom exception handler for
leaf function:
default rel
section .text
extern MessageBoxA
handler:
sub rsp,40
mov rcx,0
lea rdx,[text]
lea r8,[caption]
mov r9,1 ; MB_OKCANCEL
call MessageBoxA
sub eax,1 ; incidentally suits as return value
; for exception handler
add rsp,40
ret
global main
main:
xor rax,rax
mov rax,QWORD[rax] ; cause exception
ret
main_end:
text: db 'OK to rethrow, CANCEL to generate core dump',0
caption:db 'SEGV',0
section .pdata rdata align=4
dd main wrt ..imagebase
dd main_end wrt ..imagebase
dd xmain wrt ..imagebase
section .xdata rdata align=8
xmain: db 9,0,0,0
dd handler wrt ..imagebase
section .drectve info
db '/defaultlib:user32.lib /defaultlib:msvcrt.lib '
What you see in `.pdata' section is element of the "table comprising
start and end addresses of function" along with reference to
associated `UNWIND_INFO' structure. And what you see in `.xdata'
section is `UNWIND_INFO' structure describing function with no
frame, but with designated exception handler. References are
_required_ to be image-relative (which is the real reason for
implementing `wrt ..imagebase' operator). It should be noted that
`rdata align=n', as well as `wrt ..imagebase', are optional in these
two segments' contexts, i.e. can be omitted. Latter means that _all_
32-bit references, not only above listed required ones, placed into
these two segments turn out image-relative. Why is it important to
understand? Developer is allowed to append handler-specific data to
`UNWIND_INFO' structure, and if [s]he adds a 32-bit reference, then
[s]he will have to remember to adjust its value to obtain the real
pointer.
As already mentioned, in Win64 terms leaf function is one that does
not call any other function _nor_ modifies any non-volatile
register, including stack pointer. But it's not uncommon that
assembler programmer plans to utilize every single register and
sometimes even have variable stack frame. Is there anything one can
do with bare building blocks? I.e. besides manually composing fully-
fledged `UNWIND_INFO' structure, which would surely be considered
error-prone? Yes, there is. Recall that exception handler is called
first, before stack layout is analyzed. As it turned out, it's
perfectly possible to manipulate current callee's context in custom
handler in manner that permits further stack unwinding. General idea
is that handler would not actually "handle" the exception, but
instead restore callee's context, as it was at its entry point and
thus mimic leaf function. In other words, handler would simply
undertake part of unwinding procedure. Consider following example:
function:
mov rax,rsp ; copy rsp to volatile register
push r15 ; save non-volatile registers
push rbx
push rbp
mov r11,rsp ; prepare variable stack frame
sub r11,rcx
and r11,-64
mov QWORD[r11],rax ; check for exceptions
mov rsp,r11 ; allocate stack frame
mov QWORD[rsp],rax ; save original rsp value
magic_point:
...
mov r11,QWORD[rsp] ; pull original rsp value
mov rbp,QWORD[r11-24]
mov rbx,QWORD[r11-16]
mov r15,QWORD[r11-8]
mov rsp,r11 ; destroy frame
ret
The keyword is that up to `magic_point' original `rsp' value remains
in chosen volatile register and no non-volatile register, except for
`rsp', is modified. While past `magic_point' `rsp' remains constant
till the very end of the `function'. In this case custom language-
specific exception handler would look like this:
EXCEPTION_DISPOSITION handler (EXCEPTION_RECORD *rec,ULONG64 frame,
CONTEXT *context,DISPATCHER_CONTEXT *disp)
{ ULONG64 *rsp;
if (context->Rip<(ULONG64)magic_point)
rsp = (ULONG64 *)context->Rax;
else
{ rsp = ((ULONG64 **)context->Rsp)[0];
context->Rbp = rsp[-3];
context->Rbx = rsp[-2];
context->R15 = rsp[-1];
}
context->Rsp = (ULONG64)rsp;
memcpy (disp->ContextRecord,context,sizeof(CONTEXT));
RtlVirtualUnwind(UNW_FLAG_NHANDLER,disp->ImageBase,
dips->ControlPc,disp->FunctionEntry,disp->ContextRecord,
&disp->HandlerData,&disp->EstablisherFrame,NULL);
return ExceptionContinueSearch;
}
As custom handler mimics leaf function, corresponding `UNWIND_INFO'
structure does not have to contain any information about stack frame
and its layout.
7.7 `coff': Common Object File Format
The `coff' output type produces `COFF' object files suitable for
linking with the DJGPP linker.
`coff' provides a default output file-name extension of `.o'.
The `coff' format supports the same extensions to the `SECTION'
directive as `win32' does, except that the `align' qualifier and the
`info' section type are not supported.
7.8 `macho32' and `macho64': Mach Object File Format
The `macho32' and `macho64' output formts produces `Mach-O' object
files suitable for linking with the MacOS X linker. `macho' is a
synonym for `macho32'.
`macho' provides a default output file-name extension of `.o'.
7.9 `elf32' and `elf64': Executable and Linkable Format Object Files
The `elf32' and `elf64' output formats generate `ELF32 and ELF64'
(Executable and Linkable Format) object files, as used by Linux as
well as Unix System V, including Solaris x86, UnixWare and SCO Unix.
`elf' provides a default output file-name extension of `.o'. `elf'
is a synonym for `elf32'.
7.9.1 ELF specific directive `osabi'
The ELF header specifies the application binary interface for the
target operating system (OSABI). This field can be set by using the
`osabi' directive with the numeric value (0-255) of the target
system. If this directive is not used, the default value will be
"UNIX System V ABI" (0) which will work on most systems which
support ELF.
7.9.2 `elf' Extensions to the `SECTION' Directive
Like the `obj' format, `elf' allows you to specify additional
information on the `SECTION' directive line, to control the type and
properties of sections you declare. Section types and properties are
generated automatically by NASM for the standard section names, but
may still be overridden by these qualifiers.
The available qualifiers are:
(*) `alloc' defines the section to be one which is loaded into
memory when the program is run. `noalloc' defines it to be one
which is not, such as an informational or comment section.
(*) `exec' defines the section to be one which should have execute
permission when the program is run. `noexec' defines it as one
which should not.
(*) `write' defines the section to be one which should be writable
when the program is run. `nowrite' defines it as one which
should not.
(*) `progbits' defines the section to be one with explicit contents
stored in the object file: an ordinary code or data section, for
example, `nobits' defines the section to be one with no explicit
contents given, such as a BSS section.
(*) `align=', used with a trailing number as in `obj', gives the
alignment requirements of the section.
(*) `tls' defines the section to be one which contains thread local
variables.
The defaults assumed by NASM if you do not specify the above
qualifiers are:
section .text progbits alloc exec nowrite align=16
section .rodata progbits alloc noexec nowrite align=4
section .lrodata progbits alloc noexec nowrite align=4
section .data progbits alloc noexec write align=4
section .ldata progbits alloc noexec write align=4
section .bss nobits alloc noexec write align=4
section .lbss nobits alloc noexec write align=4
section .tdata progbits alloc noexec write align=4 tls
section .tbss nobits alloc noexec write align=4 tls
section .comment progbits noalloc noexec nowrite align=1
section other progbits alloc noexec nowrite align=1
(Any section name other than those in the above table is treated by
default like `other' in the above table. Please note that section
names are case sensitive.)
7.9.3 Position-Independent Code: `elf' Special Symbols and `WRT'
The `ELF' specification contains enough features to allow position-
independent code (PIC) to be written, which makes ELF shared
libraries very flexible. However, it also means NASM has to be able
to generate a variety of ELF specific relocation types in ELF object
files, if it is to be an assembler which can write PIC.
Since `ELF' does not support segment-base references, the `WRT'
operator is not used for its normal purpose; therefore NASM's `elf'
output format makes use of `WRT' for a different purpose, namely the
PIC-specific relocation types.
`elf' defines five special symbols which you can use as the right-
hand side of the `WRT' operator to obtain PIC relocation types. They
are `..gotpc', `..gotoff', `..got', `..plt' and `..sym'. Their
functions are summarized here:
(*) Referring to the symbol marking the global offset table base
using `wrt ..gotpc' will end up giving the distance from the
beginning of the current section to the global offset table.
(`_GLOBAL_OFFSET_TABLE_' is the standard symbol name used to
refer to the GOT.) So you would then need to add `$$' to the
result to get the real address of the GOT.
(*) Referring to a location in one of your own sections using
`wrt ..gotoff' will give the distance from the beginning of the
GOT to the specified location, so that adding on the address of
the GOT would give the real address of the location you wanted.
(*) Referring to an external or global symbol using `wrt ..got'
causes the linker to build an entry _in_ the GOT containing the
address of the symbol, and the reference gives the distance from
the beginning of the GOT to the entry; so you can add on the
address of the GOT, load from the resulting address, and end up
with the address of the symbol.
(*) Referring to a procedure name using `wrt ..plt' causes the
linker to build a procedure linkage table entry for the symbol,
and the reference gives the address of the PLT entry. You can
only use this in contexts which would generate a PC-relative
relocation normally (i.e. as the destination for `CALL' or
`JMP'), since ELF contains no relocation type to refer to PLT
entries absolutely.
(*) Referring to a symbol name using `wrt ..sym' causes NASM to
write an ordinary relocation, but instead of making the
relocation relative to the start of the section and then adding
on the offset to the symbol, it will write a relocation record
aimed directly at the symbol in question. The distinction is a
necessary one due to a peculiarity of the dynamic linker.
A fuller explanation of how to use these relocation types to write
shared libraries entirely in NASM is given in section 9.2.
7.9.4 Thread Local Storage: `elf' Special Symbols and `WRT'
(*) In ELF32 mode, referring to an external or global symbol using
`wrt ..tlsie' causes the linker to build an entry _in_ the GOT
containing the offset of the symbol within the TLS block, so you
can access the value of the symbol with code such as:
mov eax,[tid wrt ..tlsie]
mov [gs:eax],ebx
(*) In ELF64 mode, referring to an external or global symbol using
`wrt ..gottpoff' causes the linker to build an entry _in_ the
GOT containing the offset of the symbol within the TLS block, so
you can access the value of the symbol with code such as:
mov rax,[rel tid wrt ..gottpoff]
mov rcx,[fs:rax]
7.9.5 `elf' Extensions to the `GLOBAL' Directive
`ELF' object files can contain more information about a global
symbol than just its address: they can contain the size of the
symbol and its type as well. These are not merely debugger
conveniences, but are actually necessary when the program being
written is a shared library. NASM therefore supports some extensions
to the `GLOBAL' directive, allowing you to specify these features.
You can specify whether a global variable is a function or a data
object by suffixing the name with a colon and the word `function' or
`data'. (`object' is a synonym for `data'.) For example:
global hashlookup:function, hashtable:data
exports the global symbol `hashlookup' as a function and `hashtable'
as a data object.
Optionally, you can control the ELF visibility of the symbol. Just
add one of the visibility keywords: `default', `internal', `hidden',
or `protected'. The default is `default' of course. For example, to
make `hashlookup' hidden:
global hashlookup:function hidden
You can also specify the size of the data associated with the
symbol, as a numeric expression (which may involve labels, and even
forward references) after the type specifier. Like this:
global hashtable:data (hashtable.end - hashtable)
hashtable:
db this,that,theother ; some data here
.end:
This makes NASM automatically calculate the length of the table and
place that information into the `ELF' symbol table.
Declaring the type and size of global symbols is necessary when
writing shared library code. For more information, see section
9.2.4.
7.9.6 `elf' Extensions to the `COMMON' Directive
`ELF' also allows you to specify alignment requirements on common
variables. This is done by putting a number (which must be a power
of two) after the name and size of the common variable, separated
(as usual) by a colon. For example, an array of doublewords would
benefit from 4-byte alignment:
common dwordarray 128:4
This declares the total size of the array to be 128 bytes, and
requires that it be aligned on a 4-byte boundary.
7.9.7 16-bit code and ELF
The `ELF32' specification doesn't provide relocations for 8- and 16-
bit values, but the GNU `ld' linker adds these as an extension. NASM
can generate GNU-compatible relocations, to allow 16-bit code to be
linked as ELF using GNU `ld'. If NASM is used with the
`-w+gnu-elf-extensions' option, a warning is issued when one of
these relocations is generated.
7.9.8 Debug formats and ELF
`ELF32' and `ELF64' provide debug information in `STABS' and `DWARF'
formats. Line number information is generated for all executable
sections, but please note that only the ".text" section is
executable by default.
7.10 `aout': Linux `a.out' Object Files
The `aout' format generates `a.out' object files, in the form used
by early Linux systems (current Linux systems use ELF, see section
7.9.) These differ from other `a.out' object files in that the magic
number in the first four bytes of the file is different; also, some
implementations of `a.out', for example NetBSD's, support position-
independent code, which Linux's implementation does not.
`a.out' provides a default output file-name extension of `.o'.
`a.out' is a very simple object format. It supports no special
directives, no special symbols, no use of `SEG' or `WRT', and no
extensions to any standard directives. It supports only the three
standard section names `.text', `.data' and `.bss'.
7.11 `aoutb': NetBSD/FreeBSD/OpenBSD `a.out' Object Files
The `aoutb' format generates `a.out' object files, in the form used
by the various free `BSD Unix' clones, `NetBSD', `FreeBSD' and
`OpenBSD'. For simple object files, this object format is exactly
the same as `aout' except for the magic number in the first four
bytes of the file. However, the `aoutb' format supports
position-independent code in the same way as the `elf' format, so
you can use it to write `BSD' shared libraries.
`aoutb' provides a default output file-name extension of `.o'.
`aoutb' supports no special directives, no special symbols, and only
the three standard section names `.text', `.data' and `.bss'.
However, it also supports the same use of `WRT' as `elf' does, to
provide position-independent code relocation types. See section
7.9.3 for full documentation of this feature.
`aoutb' also supports the same extensions to the `GLOBAL' directive
as `elf' does: see section 7.9.5 for documentation of this.
7.12 `as86': Minix/Linux `as86' Object Files
The Minix/Linux 16-bit assembler `as86' has its own non-standard
object file format. Although its companion linker `ld86' produces
something close to ordinary `a.out' binaries as output, the object
file format used to communicate between `as86' and `ld86' is not
itself `a.out'.
NASM supports this format, just in case it is useful, as `as86'.
`as86' provides a default output file-name extension of `.o'.
`as86' is a very simple object format (from the NASM user's point of
view). It supports no special directives, no use of `SEG' or `WRT',
and no extensions to any standard directives. It supports only the
three standard section names `.text', `.data' and `.bss'. The only
special symbol supported is `..start'.
7.13 `rdf': Relocatable Dynamic Object File Format
The `rdf' output format produces `RDOFF' object files. `RDOFF'
(Relocatable Dynamic Object File Format) is a home-grown object-file
format, designed alongside NASM itself and reflecting in its file
format the internal structure of the assembler.
`RDOFF' is not used by any well-known operating systems. Those
writing their own systems, however, may well wish to use `RDOFF' as
their object format, on the grounds that it is designed primarily
for simplicity and contains very little file-header bureaucracy.
The Unix NASM archive, and the DOS archive which includes sources,
both contain an `rdoff' subdirectory holding a set of RDOFF
utilities: an RDF linker, an `RDF' static-library manager, an RDF
file dump utility, and a program which will load and execute an RDF
executable under Linux.
`rdf' supports only the standard section names `.text', `.data' and
`.bss'.
7.13.1 Requiring a Library: The `LIBRARY' Directive
`RDOFF' contains a mechanism for an object file to demand a given
library to be linked to the module, either at load time or run time.
This is done by the `LIBRARY' directive, which takes one argument
which is the name of the module:
library mylib.rdl
7.13.2 Specifying a Module Name: The `MODULE' Directive
Special `RDOFF' header record is used to store the name of the
module. It can be used, for example, by run-time loader to perform
dynamic linking. `MODULE' directive takes one argument which is the
name of current module:
module mymodname
Note that when you statically link modules and tell linker to strip
the symbols from output file, all module names will be stripped too.
To avoid it, you should start module names with `$', like:
module $kernel.core
7.13.3 `rdf' Extensions to the `GLOBAL' Directive
`RDOFF' global symbols can contain additional information needed by
the static linker. You can mark a global symbol as exported, thus
telling the linker do not strip it from target executable or library
file. Like in `ELF', you can also specify whether an exported symbol
is a procedure (function) or data object.
Suffixing the name with a colon and the word `export' you make the
symbol exported:
global sys_open:export
To specify that exported symbol is a procedure (function), you add
the word `proc' or `function' after declaration:
global sys_open:export proc
Similarly, to specify exported data object, add the word `data' or
`object' to the directive:
global kernel_ticks:export data
7.13.4 `rdf' Extensions to the `EXTERN' Directive
By default the `EXTERN' directive in `RDOFF' declares a "pure
external" symbol (i.e. the static linker will complain if such a
symbol is not resolved). To declare an "imported" symbol, which must
be resolved later during a dynamic linking phase, `RDOFF' offers an
additional `import' modifier. As in `GLOBAL', you can also specify
whether an imported symbol is a procedure (function) or data object.
For example:
library $libc
extern _open:import
extern _printf:import proc
extern _errno:import data
Here the directive `LIBRARY' is also included, which gives the
dynamic linker a hint as to where to find requested symbols.
7.14 `dbg': Debugging Format
The `dbg' output format is not built into NASM in the default
configuration. If you are building your own NASM executable from the
sources, you can define `OF_DBG' in `output/outform.h' or on the
compiler command line, and obtain the `dbg' output format.
The `dbg' format does not output an object file as such; instead, it
outputs a text file which contains a complete list of all the
transactions between the main body of NASM and the output-format
back end module. It is primarily intended to aid people who want to
write their own output drivers, so that they can get a clearer idea
of the various requests the main program makes of the output driver,
and in what order they happen.
For simple files, one can easily use the `dbg' format like this:
nasm -f dbg filename.asm
which will generate a diagnostic file called `filename.dbg'.
However, this will not work well on files which were designed for a
different object format, because each object format defines its own
macros (usually user-level forms of directives), and those macros
will not be defined in the `dbg' format. Therefore it can be useful
to run NASM twice, in order to do the preprocessing with the native
object format selected:
nasm -e -f rdf -o rdfprog.i rdfprog.asm
nasm -a -f dbg rdfprog.i
This preprocesses `rdfprog.asm' into `rdfprog.i', keeping the `rdf'
object format selected in order to make sure RDF special directives
are converted into primitive form correctly. Then the preprocessed
source is fed through the `dbg' format to generate the final
diagnostic output.
This workaround will still typically not work for programs intended
for `obj' format, because the `obj' `SEGMENT' and `GROUP' directives
have side effects of defining the segment and group names as
symbols; `dbg' will not do this, so the program will not assemble.
You will have to work around that by defining the symbols yourself
(using `EXTERN', for example) if you really need to get a `dbg'
trace of an `obj'-specific source file.
`dbg' accepts any section name and any directives at all, and logs
them all to its output file.
Chapter 8: Writing 16-bit Code (DOS, Windows 3/3.1)
---------------------------------------------------
This chapter attempts to cover some of the common issues encountered
when writing 16-bit code to run under `MS-DOS' or `Windows 3.x'. It
covers how to link programs to produce `.EXE' or `.COM' files, how
to write `.SYS' device drivers, and how to interface assembly
language code with 16-bit C compilers and with Borland Pascal.
8.1 Producing `.EXE' Files
Any large program written under DOS needs to be built as a `.EXE'
file: only `.EXE' files have the necessary internal structure
required to span more than one 64K segment. Windows programs, also,
have to be built as `.EXE' files, since Windows does not support the
`.COM' format.
In general, you generate `.EXE' files by using the `obj' output
format to produce one or more `.OBJ' files, and then linking them
together using a linker. However, NASM also supports the direct
generation of simple DOS `.EXE' files using the `bin' output format
(by using `DB' and `DW' to construct the `.EXE' file header), and a
macro package is supplied to do this. Thanks to Yann Guidon for
contributing the code for this.
NASM may also support `.EXE' natively as another output format in
future releases.
8.1.1 Using the `obj' Format To Generate `.EXE' Files
This section describes the usual method of generating `.EXE' files
by linking `.OBJ' files together.
Most 16-bit programming language packages come with a suitable
linker; if you have none of these, there is a free linker called
VAL, available in `LZH' archive format from `x2ftp.oulu.fi'. An LZH
archiver can be found at `ftp.simtel.net'. There is another `free'
linker (though this one doesn't come with sources) called FREELINK,
available from `www.pcorner.com'. A third, `djlink', written by DJ
Delorie, is available at `www.delorie.com'. A fourth linker,
`ALINK', written by Anthony A.J. Williams, is available at
`alink.sourceforge.net'.
When linking several `.OBJ' files into a `.EXE' file, you should
ensure that exactly one of them has a start point defined (using the
`..start' special symbol defined by the `obj' format: see section
7.4.6). If no module defines a start point, the linker will not know
what value to give the entry-point field in the output file header;
if more than one defines a start point, the linker will not know
_which_ value to use.
An example of a NASM source file which can be assembled to a `.OBJ'
file and linked on its own to a `.EXE' is given here. It
demonstrates the basic principles of defining a stack, initialising
the segment registers, and declaring a start point. This file is
also provided in the `test' subdirectory of the NASM archives, under
the name `objexe.asm'.
segment code
..start:
mov ax,data
mov ds,ax
mov ax,stack
mov ss,ax
mov sp,stacktop
This initial piece of code sets up `DS' to point to the data
segment, and initializes `SS' and `SP' to point to the top of the
provided stack. Notice that interrupts are implicitly disabled for
one instruction after a move into `SS', precisely for this
situation, so that there's no chance of an interrupt occurring
between the loads of `SS' and `SP' and not having a stack to execute
on.
Note also that the special symbol `..start' is defined at the
beginning of this code, which means that will be the entry point
into the resulting executable file.
mov dx,hello
mov ah,9
int 0x21
The above is the main program: load `DS:DX' with a pointer to the
greeting message (`hello' is implicitly relative to the segment
`data', which was loaded into `DS' in the setup code, so the full
pointer is valid), and call the DOS print-string function.
mov ax,0x4c00
int 0x21
This terminates the program using another DOS system call.
segment data
hello: db 'hello, world', 13, 10, '$'
The data segment contains the string we want to display.
segment stack stack
resb 64
stacktop:
The above code declares a stack segment containing 64 bytes of
uninitialized stack space, and points `stacktop' at the top of it.
The directive `segment stack stack' defines a segment _called_
`stack', and also of _type_ `STACK'. The latter is not necessary to
the correct running of the program, but linkers are likely to issue
warnings or errors if your program has no segment of type `STACK'.
The above file, when assembled into a `.OBJ' file, will link on its
own to a valid `.EXE' file, which when run will print `hello, world'
and then exit.
8.1.2 Using the `bin' Format To Generate `.EXE' Files
The `.EXE' file format is simple enough that it's possible to build
a `.EXE' file by writing a pure-binary program and sticking a 32-
byte header on the front. This header is simple enough that it can
be generated using `DB' and `DW' commands by NASM itself, so that
you can use the `bin' output format to directly generate `.EXE'
files.
Included in the NASM archives, in the `misc' subdirectory, is a file
`exebin.mac' of macros. It defines three macros: `EXE_begin',
`EXE_stack' and `EXE_end'.
To produce a `.EXE' file using this method, you should start by
using `%include' to load the `exebin.mac' macro package into your
source file. You should then issue the `EXE_begin' macro call (which
takes no arguments) to generate the file header data. Then write
code as normal for the `bin' format - you can use all three standard
sections `.text', `.data' and `.bss'. At the end of the file you
should call the `EXE_end' macro (again, no arguments), which defines
some symbols to mark section sizes, and these symbols are referred
to in the header code generated by `EXE_begin'.
In this model, the code you end up writing starts at `0x100', just
like a `.COM' file - in fact, if you strip off the 32-byte header
from the resulting `.EXE' file, you will have a valid `.COM'
program. All the segment bases are the same, so you are limited to a
64K program, again just like a `.COM' file. Note that an `ORG'
directive is issued by the `EXE_begin' macro, so you should not
explicitly issue one of your own.
You can't directly refer to your segment base value, unfortunately,
since this would require a relocation in the header, and things
would get a lot more complicated. So you should get your segment
base by copying it out of `CS' instead.
On entry to your `.EXE' file, `SS:SP' are already set up to point to
the top of a 2Kb stack. You can adjust the default stack size of 2Kb
by calling the `EXE_stack' macro. For example, to change the stack
size of your program to 64 bytes, you would call `EXE_stack 64'.
A sample program which generates a `.EXE' file in this way is given
in the `test' subdirectory of the NASM archive, as `binexe.asm'.
8.2 Producing `.COM' Files
While large DOS programs must be written as `.EXE' files, small ones
are often better written as `.COM' files. `.COM' files are pure
binary, and therefore most easily produced using the `bin' output
format.
8.2.1 Using the `bin' Format To Generate `.COM' Files
`.COM' files expect to be loaded at offset `100h' into their segment
(though the segment may change). Execution then begins at `100h',
i.e. right at the start of the program. So to write a `.COM'
program, you would create a source file looking like
org 100h
section .text
start:
; put your code here
section .data
; put data items here
section .bss
; put uninitialized data here
The `bin' format puts the `.text' section first in the file, so you
can declare data or BSS items before beginning to write code if you
want to and the code will still end up at the front of the file
where it belongs.
The BSS (uninitialized data) section does not take up space in the
`.COM' file itself: instead, addresses of BSS items are resolved to
point at space beyond the end of the file, on the grounds that this
will be free memory when the program is run. Therefore you should
not rely on your BSS being initialized to all zeros when you run.
To assemble the above program, you should use a command line like
nasm myprog.asm -fbin -o myprog.com
The `bin' format would produce a file called `myprog' if no explicit
output file name were specified, so you have to override it and give
the desired file name.
8.2.2 Using the `obj' Format To Generate `.COM' Files
If you are writing a `.COM' program as more than one module, you may
wish to assemble several `.OBJ' files and link them together into a
`.COM' program. You can do this, provided you have a linker capable
of outputting `.COM' files directly (TLINK does this), or
alternatively a converter program such as `EXE2BIN' to transform the
`.EXE' file output from the linker into a `.COM' file.
If you do this, you need to take care of several things:
(*) The first object file containing code should start its code
segment with a line like `RESB 100h'. This is to ensure that the
code begins at offset `100h' relative to the beginning of the
code segment, so that the linker or converter program does not
have to adjust address references within the file when
generating the `.COM' file. Other assemblers use an `ORG'
directive for this purpose, but `ORG' in NASM is a format-
specific directive to the `bin' output format, and does not mean
the same thing as it does in MASM-compatible assemblers.
(*) You don't need to define a stack segment.
(*) All your segments should be in the same group, so that every
time your code or data references a symbol offset, all offsets
are relative to the same segment base. This is because, when a
`.COM' file is loaded, all the segment registers contain the
same value.
8.3 Producing `.SYS' Files
MS-DOS device drivers - `.SYS' files - are pure binary files,
similar to `.COM' files, except that they start at origin zero
rather than `100h'. Therefore, if you are writing a device driver
using the `bin' format, you do not need the `ORG' directive, since
the default origin for `bin' is zero. Similarly, if you are using
`obj', you do not need the `RESB 100h' at the start of your code
segment.
`.SYS' files start with a header structure, containing pointers to
the various routines inside the driver which do the work. This
structure should be defined at the start of the code segment, even
though it is not actually code.
For more information on the format of `.SYS' files, and the data
which has to go in the header structure, a list of books is given in
the Frequently Asked Questions list for the newsgroup
`comp.os.msdos.programmer'.
8.4 Interfacing to 16-bit C Programs
This section covers the basics of writing assembly routines that
call, or are called from, C programs. To do this, you would
typically write an assembly module as a `.OBJ' file, and link it
with your C modules to produce a mixed-language program.
8.4.1 External Symbol Names
C compilers have the convention that the names of all global symbols
(functions or data) they define are formed by prefixing an
underscore to the name as it appears in the C program. So, for
example, the function a C programmer thinks of as `printf' appears
to an assembly language programmer as `_printf'. This means that in
your assembly programs, you can define symbols without a leading
underscore, and not have to worry about name clashes with C symbols.
If you find the underscores inconvenient, you can define macros to
replace the `GLOBAL' and `EXTERN' directives as follows:
%macro cglobal 1
global _%1
%define %1 _%1
%endmacro
%macro cextern 1
extern _%1
%define %1 _%1
%endmacro
(These forms of the macros only take one argument at a time; a
`%rep' construct could solve this.)
If you then declare an external like this:
cextern printf
then the macro will expand it as
extern _printf
%define printf _printf
Thereafter, you can reference `printf' as if it was a symbol, and
the preprocessor will put the leading underscore on where necessary.
The `cglobal' macro works similarly. You must use `cglobal' before
defining the symbol in question, but you would have had to do that
anyway if you used `GLOBAL'.
Also see section 2.1.27.
8.4.2 Memory Models
NASM contains no mechanism to support the various C memory models
directly; you have to keep track yourself of which one you are
writing for. This means you have to keep track of the following
things:
(*) In models using a single code segment (tiny, small and compact),
functions are near. This means that function pointers, when
stored in data segments or pushed on the stack as function
arguments, are 16 bits long and contain only an offset field
(the `CS' register never changes its value, and always gives the
segment part of the full function address), and that functions
are called using ordinary near `CALL' instructions and return
using `RETN' (which, in NASM, is synonymous with `RET' anyway).
This means both that you should write your own routines to
return with `RETN', and that you should call external C routines
with near `CALL' instructions.
(*) In models using more than one code segment (medium, large and
huge), functions are far. This means that function pointers are
32 bits long (consisting of a 16-bit offset followed by a 16-bit
segment), and that functions are called using `CALL FAR' (or
`CALL seg:offset') and return using `RETF'. Again, you should
therefore write your own routines to return with `RETF' and use
`CALL FAR' to call external routines.
(*) In models using a single data segment (tiny, small and medium),
data pointers are 16 bits long, containing only an offset field
(the `DS' register doesn't change its value, and always gives
the segment part of the full data item address).
(*) In models using more than one data segment (compact, large and
huge), data pointers are 32 bits long, consisting of a 16-bit
offset followed by a 16-bit segment. You should still be careful
not to modify `DS' in your routines without restoring it
afterwards, but `ES' is free for you to use to access the
contents of 32-bit data pointers you are passed.
(*) The huge memory model allows single data items to exceed 64K in
size. In all other memory models, you can access the whole of a
data item just by doing arithmetic on the offset field of the
pointer you are given, whether a segment field is present or
not; in huge model, you have to be more careful of your pointer
arithmetic.
(*) In most memory models, there is a _default_ data segment, whose
segment address is kept in `DS' throughout the program. This
data segment is typically the same segment as the stack, kept in
`SS', so that functions' local variables (which are stored on
the stack) and global data items can both be accessed easily
without changing `DS'. Particularly large data items are
typically stored in other segments. However, some memory models
(though not the standard ones, usually) allow the assumption
that `SS' and `DS' hold the same value to be removed. Be careful
about functions' local variables in this latter case.
In models with a single code segment, the segment is called `_TEXT',
so your code segment must also go by this name in order to be linked
into the same place as the main code segment. In models with a
single data segment, or with a default data segment, it is called
`_DATA'.
8.4.3 Function Definitions and Function Calls
The C calling convention in 16-bit programs is as follows. In the
following description, the words _caller_ and _callee_ are used to
denote the function doing the calling and the function which gets
called.
(*) The caller pushes the function's parameters on the stack, one
after another, in reverse order (right to left, so that the
first argument specified to the function is pushed last).
(*) The caller then executes a `CALL' instruction to pass control to
the callee. This `CALL' is either near or far depending on the
memory model.
(*) The callee receives control, and typically (although this is not
actually necessary, in functions which do not need to access
their parameters) starts by saving the value of `SP' in `BP' so
as to be able to use `BP' as a base pointer to find its
parameters on the stack. However, the caller was probably doing
this too, so part of the calling convention states that `BP'
must be preserved by any C function. Hence the callee, if it is
going to set up `BP' as a _frame pointer_, must push the
previous value first.
(*) The callee may then access its parameters relative to `BP'. The
word at `[BP]' holds the previous value of `BP' as it was
pushed; the next word, at `[BP+2]', holds the offset part of the
return address, pushed implicitly by `CALL'. In a small-model
(near) function, the parameters start after that, at `[BP+4]';
in a large-model (far) function, the segment part of the return
address lives at `[BP+4]', and the parameters begin at `[BP+6]'.
The leftmost parameter of the function, since it was pushed
last, is accessible at this offset from `BP'; the others follow,
at successively greater offsets. Thus, in a function such as
`printf' which takes a variable number of parameters, the
pushing of the parameters in reverse order means that the
function knows where to find its first parameter, which tells it
the number and type of the remaining ones.
(*) The callee may also wish to decrease `SP' further, so as to
allocate space on the stack for local variables, which will then
be accessible at negative offsets from `BP'.
(*) The callee, if it wishes to return a value to the caller, should
leave the value in `AL', `AX' or `DX:AX' depending on the size
of the value. Floating-point results are sometimes (depending on
the compiler) returned in `ST0'.
(*) Once the callee has finished processing, it restores `SP' from
`BP' if it had allocated local stack space, then pops the
previous value of `BP', and returns via `RETN' or `RETF'
depending on memory model.
(*) When the caller regains control from the callee, the function
parameters are still on the stack, so it typically adds an
immediate constant to `SP' to remove them (instead of executing
a number of slow `POP' instructions). Thus, if a function is
accidentally called with the wrong number of parameters due to a
prototype mismatch, the stack will still be returned to a
sensible state since the caller, which _knows_ how many
parameters it pushed, does the removing.
It is instructive to compare this calling convention with that for
Pascal programs (described in section 8.5.1). Pascal has a simpler
convention, since no functions have variable numbers of parameters.
Therefore the callee knows how many parameters it should have been
passed, and is able to deallocate them from the stack itself by
passing an immediate argument to the `RET' or `RETF' instruction, so
the caller does not have to do it. Also, the parameters are pushed
in left-to-right order, not right-to-left, which means that a
compiler can give better guarantees about sequence points without
performance suffering.
Thus, you would define a function in C style in the following way.
The following example is for small model:
global _myfunc
_myfunc:
push bp
mov bp,sp
sub sp,0x40 ; 64 bytes of local stack space
mov bx,[bp+4] ; first parameter to function
; some more code
mov sp,bp ; undo "sub sp,0x40" above
pop bp
ret
For a large-model function, you would replace `RET' by `RETF', and
look for the first parameter at `[BP+6]' instead of `[BP+4]'. Of
course, if one of the parameters is a pointer, then the offsets of
_subsequent_ parameters will change depending on the memory model as
well: far pointers take up four bytes on the stack when passed as a
parameter, whereas near pointers take up two.
At the other end of the process, to call a C function from your
assembly code, you would do something like this:
extern _printf
; and then, further down...
push word [myint] ; one of my integer variables
push word mystring ; pointer into my data segment
call _printf
add sp,byte 4 ; `byte' saves space
; then those data items...
segment _DATA
myint dw 1234
mystring db 'This number -> %d <- should be 1234',10,0
This piece of code is the small-model assembly equivalent of the C
code
int myint = 1234;
printf("This number -> %d <- should be 1234\n", myint);
In large model, the function-call code might look more like this. In
this example, it is assumed that `DS' already holds the segment base
of the segment `_DATA'. If not, you would have to initialize it
first.
push word [myint]
push word seg mystring ; Now push the segment, and...
push word mystring ; ... offset of "mystring"
call far _printf
add sp,byte 6
The integer value still takes up one word on the stack, since large
model does not affect the size of the `int' data type. The first
argument (pushed last) to `printf', however, is a data pointer, and
therefore has to contain a segment and offset part. The segment
should be stored second in memory, and therefore must be pushed
first. (Of course, `PUSH DS' would have been a shorter instruction
than `PUSH WORD SEG mystring', if `DS' was set up as the above
example assumed.) Then the actual call becomes a far call, since
functions expect far calls in large model; and `SP' has to be
increased by 6 rather than 4 afterwards to make up for the extra
word of parameters.
8.4.4 Accessing Data Items
To get at the contents of C variables, or to declare variables which
C can access, you need only declare the names as `GLOBAL' or
`EXTERN'. (Again, the names require leading underscores, as stated
in section 8.4.1.) Thus, a C variable declared as `int i' can be
accessed from assembler as
extern _i
mov ax,[_i]
And to declare your own integer variable which C programs can access
as `extern int j', you do this (making sure you are assembling in
the `_DATA' segment, if necessary):
global _j
_j dw 0
To access a C array, you need to know the size of the components of
the array. For example, `int' variables are two bytes long, so if a
C program declares an array as `int a[10]', you can access `a[3]' by
coding `mov ax,[_a+6]'. (The byte offset 6 is obtained by
multiplying the desired array index, 3, by the size of the array
element, 2.) The sizes of the C base types in 16-bit compilers are:
1 for `char', 2 for `short' and `int', 4 for `long' and `float', and
8 for `double'.
To access a C data structure, you need to know the offset from the
base of the structure to the field you are interested in. You can
either do this by converting the C structure definition into a NASM
structure definition (using `STRUC'), or by calculating the one
offset and using just that.
To do either of these, you should read your C compiler's manual to
find out how it organizes data structures. NASM gives no special
alignment to structure members in its own `STRUC' macro, so you have
to specify alignment yourself if the C compiler generates it.
Typically, you might find that a structure like
struct {
char c;
int i;
} foo;
might be four bytes long rather than three, since the `int' field
would be aligned to a two-byte boundary. However, this sort of
feature tends to be a configurable option in the C compiler, either
using command-line options or `#pragma' lines, so you have to find
out how your own compiler does it.
8.4.5 `c16.mac': Helper Macros for the 16-bit C Interface
Included in the NASM archives, in the `misc' directory, is a file
`c16.mac' of macros. It defines three macros: `proc', `arg' and
`endproc'. These are intended to be used for C-style procedure
definitions, and they automate a lot of the work involved in keeping
track of the calling convention.
(An alternative, TASM compatible form of `arg' is also now built
into NASM's preprocessor. See section 4.8 for details.)
An example of an assembly function using the macro set is given
here:
proc _nearproc
%$i arg
%$j arg
mov ax,[bp + %$i]
mov bx,[bp + %$j]
add ax,[bx]
endproc
This defines `_nearproc' to be a procedure taking two arguments, the
first (`i') an integer and the second (`j') a pointer to an integer.
It returns `i + *j'.
Note that the `arg' macro has an `EQU' as the first line of its
expansion, and since the label before the macro call gets prepended
to the first line of the expanded macro, the `EQU' works, defining
`%$i' to be an offset from `BP'. A context-local variable is used,
local to the context pushed by the `proc' macro and popped by the
`endproc' macro, so that the same argument name can be used in later
procedures. Of course, you don't _have_ to do that.
The macro set produces code for near functions (tiny, small and
compact-model code) by default. You can have it generate far
functions (medium, large and huge-model code) by means of coding
`%define FARCODE'. This changes the kind of return instruction
generated by `endproc', and also changes the starting point for the
argument offsets. The macro set contains no intrinsic dependency on
whether data pointers are far or not.
`arg' can take an optional parameter, giving the size of the
argument. If no size is given, 2 is assumed, since it is likely that
many function parameters will be of type `int'.
The large-model equivalent of the above function would look like
this:
%define FARCODE
proc _farproc
%$i arg
%$j arg 4
mov ax,[bp + %$i]
mov bx,[bp + %$j]
mov es,[bp + %$j + 2]
add ax,[bx]
endproc
This makes use of the argument to the `arg' macro to define a
parameter of size 4, because `j' is now a far pointer. When we load
from `j', we must load a segment and an offset.
8.5 Interfacing to Borland Pascal Programs
Interfacing to Borland Pascal programs is similar in concept to
interfacing to 16-bit C programs. The differences are:
(*) The leading underscore required for interfacing to C programs is
not required for Pascal.
(*) The memory model is always large: functions are far, data
pointers are far, and no data item can be more than 64K long.
(Actually, some functions are near, but only those functions
that are local to a Pascal unit and never called from outside
it. All assembly functions that Pascal calls, and all Pascal
functions that assembly routines are able to call, are far.)
However, all static data declared in a Pascal program goes into
the default data segment, which is the one whose segment address
will be in `DS' when control is passed to your assembly code.
The only things that do not live in the default data segment are
local variables (they live in the stack segment) and dynamically
allocated variables. All data _pointers_, however, are far.
(*) The function calling convention is different - described below.
(*) Some data types, such as strings, are stored differently.
(*) There are restrictions on the segment names you are allowed to
use - Borland Pascal will ignore code or data declared in a
segment it doesn't like the name of. The restrictions are
described below.
8.5.1 The Pascal Calling Convention
The 16-bit Pascal calling convention is as follows. In the following
description, the words _caller_ and _callee_ are used to denote the
function doing the calling and the function which gets called.
(*) The caller pushes the function's parameters on the stack, one
after another, in normal order (left to right, so that the first
argument specified to the function is pushed first).
(*) The caller then executes a far `CALL' instruction to pass
control to the callee.
(*) The callee receives control, and typically (although this is not
actually necessary, in functions which do not need to access
their parameters) starts by saving the value of `SP' in `BP' so
as to be able to use `BP' as a base pointer to find its
parameters on the stack. However, the caller was probably doing
this too, so part of the calling convention states that `BP'
must be preserved by any function. Hence the callee, if it is
going to set up `BP' as a frame pointer, must push the previous
value first.
(*) The callee may then access its parameters relative to `BP'. The
word at `[BP]' holds the previous value of `BP' as it was
pushed. The next word, at `[BP+2]', holds the offset part of the
return address, and the next one at `[BP+4]' the segment part.
The parameters begin at `[BP+6]'. The rightmost parameter of the
function, since it was pushed last, is accessible at this offset
from `BP'; the others follow, at successively greater offsets.
(*) The callee may also wish to decrease `SP' further, so as to
allocate space on the stack for local variables, which will then
be accessible at negative offsets from `BP'.
(*) The callee, if it wishes to return a value to the caller, should
leave the value in `AL', `AX' or `DX:AX' depending on the size
of the value. Floating-point results are returned in `ST0'.
Results of type `Real' (Borland's own custom floating-point data
type, not handled directly by the FPU) are returned in
`DX:BX:AX'. To return a result of type `String', the caller
pushes a pointer to a temporary string before pushing the
parameters, and the callee places the returned string value at
that location. The pointer is not a parameter, and should not be
removed from the stack by the `RETF' instruction.
(*) Once the callee has finished processing, it restores `SP' from
`BP' if it had allocated local stack space, then pops the
previous value of `BP', and returns via `RETF'. It uses the form
of `RETF' with an immediate parameter, giving the number of
bytes taken up by the parameters on the stack. This causes the
parameters to be removed from the stack as a side effect of the
return instruction.
(*) When the caller regains control from the callee, the function
parameters have already been removed from the stack, so it needs
to do nothing further.
Thus, you would define a function in Pascal style, taking two
`Integer'-type parameters, in the following way:
global myfunc
myfunc: push bp
mov bp,sp
sub sp,0x40 ; 64 bytes of local stack space
mov bx,[bp+8] ; first parameter to function
mov bx,[bp+6] ; second parameter to function
; some more code
mov sp,bp ; undo "sub sp,0x40" above
pop bp
retf 4 ; total size of params is 4
At the other end of the process, to call a Pascal function from your
assembly code, you would do something like this:
extern SomeFunc
; and then, further down...
push word seg mystring ; Now push the segment, and...
push word mystring ; ... offset of "mystring"
push word [myint] ; one of my variables
call far SomeFunc
This is equivalent to the Pascal code
procedure SomeFunc(String: PChar; Int: Integer);
SomeFunc(@mystring, myint);
8.5.2 Borland Pascal Segment Name Restrictions
Since Borland Pascal's internal unit file format is completely
different from `OBJ', it only makes a very sketchy job of actually
reading and understanding the various information contained in a
real `OBJ' file when it links that in. Therefore an object file
intended to be linked to a Pascal program must obey a number of
restrictions:
(*) Procedures and functions must be in a segment whose name is
either `CODE', `CSEG', or something ending in `_TEXT'.
(*) initialized data must be in a segment whose name is either
`CONST' or something ending in `_DATA'.
(*) Uninitialized data must be in a segment whose name is either
`DATA', `DSEG', or something ending in `_BSS'.
(*) Any other segments in the object file are completely ignored.
`GROUP' directives and segment attributes are also ignored.
8.5.3 Using `c16.mac' With Pascal Programs
The `c16.mac' macro package, described in section 8.4.5, can also be
used to simplify writing functions to be called from Pascal
programs, if you code `%define PASCAL'. This definition ensures that
functions are far (it implies `FARCODE'), and also causes procedure
return instructions to be generated with an operand.
Defining `PASCAL' does not change the code which calculates the
argument offsets; you must declare your function's arguments in
reverse order. For example:
%define PASCAL
proc _pascalproc
%$j arg 4
%$i arg
mov ax,[bp + %$i]
mov bx,[bp + %$j]
mov es,[bp + %$j + 2]
add ax,[bx]
endproc
This defines the same routine, conceptually, as the example in
section 8.4.5: it defines a function taking two arguments, an
integer and a pointer to an integer, which returns the sum of the
integer and the contents of the pointer. The only difference between
this code and the large-model C version is that `PASCAL' is defined
instead of `FARCODE', and that the arguments are declared in reverse
order.
Chapter 9: Writing 32-bit Code (Unix, Win32, DJGPP)
---------------------------------------------------
This chapter attempts to cover some of the common issues involved
when writing 32-bit code, to run under Win32 or Unix, or to be
linked with C code generated by a Unix-style C compiler such as
DJGPP. It covers how to write assembly code to interface with 32-bit
C routines, and how to write position-independent code for shared
libraries.
Almost all 32-bit code, and in particular all code running under
`Win32', `DJGPP' or any of the PC Unix variants, runs in _flat_
memory model. This means that the segment registers and paging have
already been set up to give you the same 32-bit 4Gb address space no
matter what segment you work relative to, and that you should ignore
all segment registers completely. When writing flat-model
application code, you never need to use a segment override or modify
any segment register, and the code-section addresses you pass to
`CALL' and `JMP' live in the same address space as the data-section
addresses you access your variables by and the stack-section
addresses you access local variables and procedure parameters by.
Every address is 32 bits long and contains only an offset part.
9.1 Interfacing to 32-bit C Programs
A lot of the discussion in section 8.4, about interfacing to 16-bit
C programs, still applies when working in 32 bits. The absence of
memory models or segmentation worries simplifies things a lot.
9.1.1 External Symbol Names
Most 32-bit C compilers share the convention used by 16-bit
compilers, that the names of all global symbols (functions or data)
they define are formed by prefixing an underscore to the name as it
appears in the C program. However, not all of them do: the `ELF'
specification states that C symbols do _not_ have a leading
underscore on their assembly-language names.
The older Linux `a.out' C compiler, all `Win32' compilers, `DJGPP',
and `NetBSD' and `FreeBSD', all use the leading underscore; for
these compilers, the macros `cextern' and `cglobal', as given in
section 8.4.1, will still work. For `ELF', though, the leading
underscore should not be used.
See also section 2.1.27.
9.1.2 Function Definitions and Function Calls
The C calling convention in 32-bit programs is as follows. In the
following description, the words _caller_ and _callee_ are used to
denote the function doing the calling and the function which gets
called.
(*) The caller pushes the function's parameters on the stack, one
after another, in reverse order (right to left, so that the
first argument specified to the function is pushed last).
(*) The caller then executes a near `CALL' instruction to pass
control to the callee.
(*) The callee receives control, and typically (although this is not
actually necessary, in functions which do not need to access
their parameters) starts by saving the value of `ESP' in `EBP'
so as to be able to use `EBP' as a base pointer to find its
parameters on the stack. However, the caller was probably doing
this too, so part of the calling convention states that `EBP'
must be preserved by any C function. Hence the callee, if it is
going to set up `EBP' as a frame pointer, must push the previous
value first.
(*) The callee may then access its parameters relative to `EBP'. The
doubleword at `[EBP]' holds the previous value of `EBP' as it
was pushed; the next doubleword, at `[EBP+4]', holds the return
address, pushed implicitly by `CALL'. The parameters start after
that, at `[EBP+8]'. The leftmost parameter of the function,
since it was pushed last, is accessible at this offset from
`EBP'; the others follow, at successively greater offsets. Thus,
in a function such as `printf' which takes a variable number of
parameters, the pushing of the parameters in reverse order means
that the function knows where to find its first parameter, which
tells it the number and type of the remaining ones.
(*) The callee may also wish to decrease `ESP' further, so as to
allocate space on the stack for local variables, which will then
be accessible at negative offsets from `EBP'.
(*) The callee, if it wishes to return a value to the caller, should
leave the value in `AL', `AX' or `EAX' depending on the size of
the value. Floating-point results are typically returned in
`ST0'.
(*) Once the callee has finished processing, it restores `ESP' from
`EBP' if it had allocated local stack space, then pops the
previous value of `EBP', and returns via `RET' (equivalently,
`RETN').
(*) When the caller regains control from the callee, the function
parameters are still on the stack, so it typically adds an
immediate constant to `ESP' to remove them (instead of executing
a number of slow `POP' instructions). Thus, if a function is
accidentally called with the wrong number of parameters due to a
prototype mismatch, the stack will still be returned to a
sensible state since the caller, which _knows_ how many
parameters it pushed, does the removing.
There is an alternative calling convention used by Win32 programs
for Windows API calls, and also for functions called _by_ the
Windows API such as window procedures: they follow what Microsoft
calls the `__stdcall' convention. This is slightly closer to the
Pascal convention, in that the callee clears the stack by passing a
parameter to the `RET' instruction. However, the parameters are
still pushed in right-to-left order.
Thus, you would define a function in C style in the following way:
global _myfunc
_myfunc:
push ebp
mov ebp,esp
sub esp,0x40 ; 64 bytes of local stack space
mov ebx,[ebp+8] ; first parameter to function
; some more code
leave ; mov esp,ebp / pop ebp
ret
At the other end of the process, to call a C function from your
assembly code, you would do something like this:
extern _printf
; and then, further down...
push dword [myint] ; one of my integer variables
push dword mystring ; pointer into my data segment
call _printf
add esp,byte 8 ; `byte' saves space
; then those data items...
segment _DATA
myint dd 1234
mystring db 'This number -> %d <- should be 1234',10,0
This piece of code is the assembly equivalent of the C code
int myint = 1234;
printf("This number -> %d <- should be 1234\n", myint);
9.1.3 Accessing Data Items
To get at the contents of C variables, or to declare variables which
C can access, you need only declare the names as `GLOBAL' or
`EXTERN'. (Again, the names require leading underscores, as stated
in section 9.1.1.) Thus, a C variable declared as `int i' can be
accessed from assembler as
extern _i
mov eax,[_i]
And to declare your own integer variable which C programs can access
as `extern int j', you do this (making sure you are assembling in
the `_DATA' segment, if necessary):
global _j
_j dd 0
To access a C array, you need to know the size of the components of
the array. For example, `int' variables are four bytes long, so if a
C program declares an array as `int a[10]', you can access `a[3]' by
coding `mov ax,[_a+12]'. (The byte offset 12 is obtained by
multiplying the desired array index, 3, by the size of the array
element, 4.) The sizes of the C base types in 32-bit compilers are:
1 for `char', 2 for `short', 4 for `int', `long' and `float', and 8
for `double'. Pointers, being 32-bit addresses, are also 4 bytes
long.
To access a C data structure, you need to know the offset from the
base of the structure to the field you are interested in. You can
either do this by converting the C structure definition into a NASM
structure definition (using `STRUC'), or by calculating the one
offset and using just that.
To do either of these, you should read your C compiler's manual to
find out how it organizes data structures. NASM gives no special
alignment to structure members in its own `STRUC' macro, so you have
to specify alignment yourself if the C compiler generates it.
Typically, you might find that a structure like
struct {
char c;
int i;
} foo;
might be eight bytes long rather than five, since the `int' field
would be aligned to a four-byte boundary. However, this sort of
feature is sometimes a configurable option in the C compiler, either
using command-line options or `#pragma' lines, so you have to find
out how your own compiler does it.
9.1.4 `c32.mac': Helper Macros for the 32-bit C Interface
Included in the NASM archives, in the `misc' directory, is a file
`c32.mac' of macros. It defines three macros: `proc', `arg' and
`endproc'. These are intended to be used for C-style procedure
definitions, and they automate a lot of the work involved in keeping
track of the calling convention.
An example of an assembly function using the macro set is given
here:
proc _proc32
%$i arg
%$j arg
mov eax,[ebp + %$i]
mov ebx,[ebp + %$j]
add eax,[ebx]
endproc
This defines `_proc32' to be a procedure taking two arguments, the
first (`i') an integer and the second (`j') a pointer to an integer.
It returns `i + *j'.
Note that the `arg' macro has an `EQU' as the first line of its
expansion, and since the label before the macro call gets prepended
to the first line of the expanded macro, the `EQU' works, defining
`%$i' to be an offset from `BP'. A context-local variable is used,
local to the context pushed by the `proc' macro and popped by the
`endproc' macro, so that the same argument name can be used in later
procedures. Of course, you don't _have_ to do that.
`arg' can take an optional parameter, giving the size of the
argument. If no size is given, 4 is assumed, since it is likely that
many function parameters will be of type `int' or pointers.
9.2 Writing NetBSD/FreeBSD/OpenBSD and Linux/ELF Shared Libraries
`ELF' replaced the older `a.out' object file format under Linux
because it contains support for position-independent code (PIC),
which makes writing shared libraries much easier. NASM supports the
`ELF' position-independent code features, so you can write Linux
`ELF' shared libraries in NASM.
NetBSD, and its close cousins FreeBSD and OpenBSD, take a different
approach by hacking PIC support into the `a.out' format. NASM
supports this as the `aoutb' output format, so you can write BSD
shared libraries in NASM too.
The operating system loads a PIC shared library by memory-mapping
the library file at an arbitrarily chosen point in the address space
of the running process. The contents of the library's code section
must therefore not depend on where it is loaded in memory.
Therefore, you cannot get at your variables by writing code like
this:
mov eax,[myvar] ; WRONG
Instead, the linker provides an area of memory called the _global
offset table_, or GOT; the GOT is situated at a constant distance
from your library's code, so if you can find out where your library
is loaded (which is typically done using a `CALL' and `POP'
combination), you can obtain the address of the GOT, and you can
then load the addresses of your variables out of linker-generated
entries in the GOT.
The _data_ section of a PIC shared library does not have these
restrictions: since the data section is writable, it has to be
copied into memory anyway rather than just paged in from the library
file, so as long as it's being copied it can be relocated too. So
you can put ordinary types of relocation in the data section without
too much worry (but see section 9.2.4 for a caveat).
9.2.1 Obtaining the Address of the GOT
Each code module in your shared library should define the GOT as an
external symbol:
extern _GLOBAL_OFFSET_TABLE_ ; in ELF
extern __GLOBAL_OFFSET_TABLE_ ; in BSD a.out
At the beginning of any function in your shared library which plans
to access your data or BSS sections, you must first calculate the
address of the GOT. This is typically done by writing the function
in this form:
func: push ebp
mov ebp,esp
push ebx
call .get_GOT
.get_GOT:
pop ebx
add ebx,_GLOBAL_OFFSET_TABLE_+$$-.get_GOT wrt ..gotpc
; the function body comes here
mov ebx,[ebp-4]
mov esp,ebp
pop ebp
ret
(For BSD, again, the symbol `_GLOBAL_OFFSET_TABLE' requires a second
leading underscore.)
The first two lines of this function are simply the standard C
prologue to set up a stack frame, and the last three lines are
standard C function epilogue. The third line, and the fourth to last
line, save and restore the `EBX' register, because PIC shared
libraries use this register to store the address of the GOT.
The interesting bit is the `CALL' instruction and the following two
lines. The `CALL' and `POP' combination obtains the address of the
label `.get_GOT', without having to know in advance where the
program was loaded (since the `CALL' instruction is encoded relative
to the current position). The `ADD' instruction makes use of one of
the special PIC relocation types: GOTPC relocation. With the
`WRT ..gotpc' qualifier specified, the symbol referenced (here
`_GLOBAL_OFFSET_TABLE_', the special symbol assigned to the GOT) is
given as an offset from the beginning of the section. (Actually,
`ELF' encodes it as the offset from the operand field of the `ADD'
instruction, but NASM simplifies this deliberately, so you do things
the same way for both `ELF' and `BSD'.) So the instruction then
_adds_ the beginning of the section, to get the real address of the
GOT, and subtracts the value of `.get_GOT' which it knows is in
`EBX'. Therefore, by the time that instruction has finished, `EBX'
contains the address of the GOT.
If you didn't follow that, don't worry: it's never necessary to
obtain the address of the GOT by any other means, so you can put
those three instructions into a macro and safely ignore them:
%macro get_GOT 0
call %%getgot
%%getgot:
pop ebx
add ebx,_GLOBAL_OFFSET_TABLE_+$$-%%getgot wrt ..gotpc
%endmacro
9.2.2 Finding Your Local Data Items
Having got the GOT, you can then use it to obtain the addresses of
your data items. Most variables will reside in the sections you have
declared; they can be accessed using the `..gotoff' special `WRT'
type. The way this works is like this:
lea eax,[ebx+myvar wrt ..gotoff]
The expression `myvar wrt ..gotoff' is calculated, when the shared
library is linked, to be the offset to the local variable `myvar'
from the beginning of the GOT. Therefore, adding it to `EBX' as
above will place the real address of `myvar' in `EAX'.
If you declare variables as `GLOBAL' without specifying a size for
them, they are shared between code modules in the library, but do
not get exported from the library to the program that loaded it.
They will still be in your ordinary data and BSS sections, so you
can access them in the same way as local variables, using the above
`..gotoff' mechanism.
Note that due to a peculiarity of the way BSD `a.out' format handles
this relocation type, there must be at least one non-local symbol in
the same section as the address you're trying to access.
9.2.3 Finding External and Common Data Items
If your library needs to get at an external variable (external to
the _library_, not just to one of the modules within it), you must
use the `..got' type to get at it. The `..got' type, instead of
giving you the offset from the GOT base to the variable, gives you
the offset from the GOT base to a GOT _entry_ containing the address
of the variable. The linker will set up this GOT entry when it
builds the library, and the dynamic linker will place the correct
address in it at load time. So to obtain the address of an external
variable `extvar' in `EAX', you would code
mov eax,[ebx+extvar wrt ..got]
This loads the address of `extvar' out of an entry in the GOT. The
linker, when it builds the shared library, collects together every
relocation of type `..got', and builds the GOT so as to ensure it
has every necessary entry present.
Common variables must also be accessed in this way.
9.2.4 Exporting Symbols to the Library User
If you want to export symbols to the user of the library, you have
to declare whether they are functions or data, and if they are data,
you have to give the size of the data item. This is because the
dynamic linker has to build procedure linkage table entries for any
exported functions, and also moves exported data items away from the
library's data section in which they were declared.
So to export a function to users of the library, you must use
global func:function ; declare it as a function
func: push ebp
; etc.
And to export a data item such as an array, you would have to code
global array:data array.end-array ; give the size too
array: resd 128
.end:
Be careful: If you export a variable to the library user, by
declaring it as `GLOBAL' and supplying a size, the variable will end
up living in the data section of the main program, rather than in
your library's data section, where you declared it. So you will have
to access your own global variable with the `..got' mechanism rather
than `..gotoff', as if it were external (which, effectively, it has
become).
Equally, if you need to store the address of an exported global in
one of your data sections, you can't do it by means of the standard
sort of code:
dataptr: dd global_data_item ; WRONG
NASM will interpret this code as an ordinary relocation, in which
`global_data_item' is merely an offset from the beginning of the
`.data' section (or whatever); so this reference will end up
pointing at your data section instead of at the exported global
which resides elsewhere.
Instead of the above code, then, you must write
dataptr: dd global_data_item wrt ..sym
which makes use of the special `WRT' type `..sym' to instruct NASM
to search the symbol table for a particular symbol at that address,
rather than just relocating by section base.
Either method will work for functions: referring to one of your
functions by means of
funcptr: dd my_function
will give the user the address of the code you wrote, whereas
funcptr: dd my_function wrt .sym
will give the address of the procedure linkage table for the
function, which is where the calling program will _believe_ the
function lives. Either address is a valid way to call the function.
9.2.5 Calling Procedures Outside the Library
Calling procedures outside your shared library has to be done by
means of a _procedure linkage table_, or PLT. The PLT is placed at a
known offset from where the library is loaded, so the library code
can make calls to the PLT in a position-independent way. Within the
PLT there is code to jump to offsets contained in the GOT, so
function calls to other shared libraries or to routines in the main
program can be transparently passed off to their real destinations.
To call an external routine, you must use another special PIC
relocation type, `WRT ..plt'. This is much easier than the GOT-based
ones: you simply replace calls such as `CALL printf' with the PLT-
relative version `CALL printf WRT ..plt'.
9.2.6 Generating the Library File
Having written some code modules and assembled them to `.o' files,
you then generate your shared library with a command such as
ld -shared -o library.so module1.o module2.o # for ELF
ld -Bshareable -o library.so module1.o module2.o # for BSD
For ELF, if your shared library is going to reside in system
directories such as `/usr/lib' or `/lib', it is usually worth using
the `-soname' flag to the linker, to store the final library file
name, with a version number, into the library:
ld -shared -soname library.so.1 -o library.so.1.2 *.o
You would then copy `library.so.1.2' into the library directory, and
create `library.so.1' as a symbolic link to it.
Chapter 10: Mixing 16 and 32 Bit Code
-------------------------------------
This chapter tries to cover some of the issues, largely related to
unusual forms of addressing and jump instructions, encountered when
writing operating system code such as protected-mode initialisation
routines, which require code that operates in mixed segment sizes,
such as code in a 16-bit segment trying to modify data in a 32-bit
one, or jumps between different-size segments.
10.1 Mixed-Size Jumps
The most common form of mixed-size instruction is the one used when
writing a 32-bit OS: having done your setup in 16-bit mode, such as
loading the kernel, you then have to boot it by switching into
protected mode and jumping to the 32-bit kernel start address. In a
fully 32-bit OS, this tends to be the _only_ mixed-size instruction
you need, since everything before it can be done in pure 16-bit
code, and everything after it can be pure 32-bit.
This jump must specify a 48-bit far address, since the target
segment is a 32-bit one. However, it must be assembled in a 16-bit
segment, so just coding, for example,
jmp 0x1234:0x56789ABC ; wrong!
will not work, since the offset part of the address will be
truncated to `0x9ABC' and the jump will be an ordinary 16-bit far
one.
The Linux kernel setup code gets round the inability of `as86' to
generate the required instruction by coding it manually, using `DB'
instructions. NASM can go one better than that, by actually
generating the right instruction itself. Here's how to do it right:
jmp dword 0x1234:0x56789ABC ; right
The `DWORD' prefix (strictly speaking, it should come _after_ the
colon, since it is declaring the _offset_ field to be a doubleword;
but NASM will accept either form, since both are unambiguous) forces
the offset part to be treated as far, in the assumption that you are
deliberately writing a jump from a 16-bit segment to a 32-bit one.
You can do the reverse operation, jumping from a 32-bit segment to a
16-bit one, by means of the `WORD' prefix:
jmp word 0x8765:0x4321 ; 32 to 16 bit
If the `WORD' prefix is specified in 16-bit mode, or the `DWORD'
prefix in 32-bit mode, they will be ignored, since each is
explicitly forcing NASM into a mode it was in anyway.
10.2 Addressing Between Different-Size Segments
If your OS is mixed 16 and 32-bit, or if you are writing a DOS
extender, you are likely to have to deal with some 16-bit segments
and some 32-bit ones. At some point, you will probably end up
writing code in a 16-bit segment which has to access data in a 32-
bit segment, or vice versa.
If the data you are trying to access in a 32-bit segment lies within
the first 64K of the segment, you may be able to get away with using
an ordinary 16-bit addressing operation for the purpose; but sooner
or later, you will want to do 32-bit addressing from 16-bit mode.
The easiest way to do this is to make sure you use a register for
the address, since any effective address containing a 32-bit
register is forced to be a 32-bit address. So you can do
mov eax,offset_into_32_bit_segment_specified_by_fs
mov dword [fs:eax],0x11223344
This is fine, but slightly cumbersome (since it wastes an
instruction and a register) if you already know the precise offset
you are aiming at. The x86 architecture does allow 32-bit effective
addresses to specify nothing but a 4-byte offset, so why shouldn't
NASM be able to generate the best instruction for the purpose?
It can. As in section 10.1, you need only prefix the address with
the `DWORD' keyword, and it will be forced to be a 32-bit address:
mov dword [fs:dword my_offset],0x11223344
Also as in section 10.1, NASM is not fussy about whether the `DWORD'
prefix comes before or after the segment override, so arguably a
nicer-looking way to code the above instruction is
mov dword [dword fs:my_offset],0x11223344
Don't confuse the `DWORD' prefix _outside_ the square brackets,
which controls the size of the data stored at the address, with the
one `inside' the square brackets which controls the length of the
address itself. The two can quite easily be different:
mov word [dword 0x12345678],0x9ABC
This moves 16 bits of data to an address specified by a 32-bit
offset.
You can also specify `WORD' or `DWORD' prefixes along with the `FAR'
prefix to indirect far jumps or calls. For example:
call dword far [fs:word 0x4321]
This instruction contains an address specified by a 16-bit offset;
it loads a 48-bit far pointer from that (16-bit segment and 32-bit
offset), and calls that address.
10.3 Other Mixed-Size Instructions
The other way you might want to access data might be using the
string instructions (`LODSx', `STOSx' and so on) or the `XLATB'
instruction. These instructions, since they take no parameters,
might seem to have no easy way to make them perform 32-bit
addressing when assembled in a 16-bit segment.
This is the purpose of NASM's `a16', `a32' and `a64' prefixes. If
you are coding `LODSB' in a 16-bit segment but it is supposed to be
accessing a string in a 32-bit segment, you should load the desired
address into `ESI' and then code
a32 lodsb
The prefix forces the addressing size to 32 bits, meaning that
`LODSB' loads from `[DS:ESI]' instead of `[DS:SI]'. To access a
string in a 16-bit segment when coding in a 32-bit one, the
corresponding `a16' prefix can be used.
The `a16', `a32' and `a64' prefixes can be applied to any
instruction in NASM's instruction table, but most of them can
generate all the useful forms without them. The prefixes are
necessary only for instructions with implicit addressing: `CMPSx',
`SCASx', `LODSx', `STOSx', `MOVSx', `INSx', `OUTSx', and `XLATB'.
Also, the various push and pop instructions (`PUSHA' and `POPF' as
well as the more usual `PUSH' and `POP') can accept `a16', `a32' or
`a64' prefixes to force a particular one of `SP', `ESP' or `RSP' to
be used as a stack pointer, in case the stack segment in use is a
different size from the code segment.
`PUSH' and `POP', when applied to segment registers in 32-bit mode,
also have the slightly odd behaviour that they push and pop 4 bytes
at a time, of which the top two are ignored and the bottom two give
the value of the segment register being manipulated. To force the
16-bit behaviour of segment-register push and pop instructions, you
can use the operand-size prefix `o16':
o16 push ss
o16 push ds
This code saves a doubleword of stack space by fitting two segment
registers into the space which would normally be consumed by pushing
one.
(You can also use the `o32' prefix to force the 32-bit behaviour
when in 16-bit mode, but this seems less useful.)
Chapter 11: Writing 64-bit Code (Unix, Win64)
---------------------------------------------
This chapter attempts to cover some of the common issues involved
when writing 64-bit code, to run under Win64 or Unix. It covers how
to write assembly code to interface with 64-bit C routines, and how
to write position-independent code for shared libraries.
All 64-bit code uses a flat memory model, since segmentation is not
available in 64-bit mode. The one exception is the `FS' and `GS'
registers, which still add their bases.
Position independence in 64-bit mode is significantly simpler, since
the processor supports `RIP'-relative addressing directly; see the
`REL' keyword (section 3.3). On most 64-bit platforms, it is
probably desirable to make that the default, using the directive
`DEFAULT REL' (section 6.2).
64-bit programming is relatively similar to 32-bit programming, but
of course pointers are 64 bits long; additionally, all existing
platforms pass arguments in registers rather than on the stack.
Furthermore, 64-bit platforms use SSE2 by default for floating
point. Please see the ABI documentation for your platform.
64-bit platforms differ in the sizes of the fundamental datatypes,
not just from 32-bit platforms but from each other. If a specific
size data type is desired, it is probably best to use the types
defined in the Standard C header `<inttypes.h>'.
In 64-bit mode, the default instruction size is still 32 bits. When
loading a value into a 32-bit register (but not an 8- or 16-bit
register), the upper 32 bits of the corresponding 64-bit register
are set to zero.
11.1 Register Names in 64-bit Mode
NASM uses the following names for general-purpose registers in 64-
bit mode, for 8-, 16-, 32- and 64-bit references, respecitively:
AL/AH, CL/CH, DL/DH, BL/BH, SPL, BPL, SIL, DIL, R8B-R15B
AX, CX, DX, BX, SP, BP, SI, DI, R8W-R15W
EAX, ECX, EDX, EBX, ESP, EBP, ESI, EDI, R8D-R15D
RAX, RCX, RDX, RBX, RSP, RBP, RSI, RDI, R8-R15
This is consistent with the AMD documentation and most other
assemblers. The Intel documentation, however, uses the names
`R8L-R15L' for 8-bit references to the higher registers. It is
possible to use those names by definiting them as macros; similarly,
if one wants to use numeric names for the low 8 registers, define
them as macros. The standard macro package `altreg' (see section
5.1) can be used for this purpose.
11.2 Immediates and Displacements in 64-bit Mode
In 64-bit mode, immediates and displacements are generally only 32
bits wide. NASM will therefore truncate most displacements and
immediates to 32 bits.
The only instruction which takes a full 64-bit immediate is:
MOV reg64,imm64
NASM will produce this instruction whenever the programmer uses
`MOV' with an immediate into a 64-bit register. If this is not
desirable, simply specify the equivalent 32-bit register, which will
be automatically zero-extended by the processor, or specify the
immediate as `DWORD':
mov rax,foo ; 64-bit immediate
mov rax,qword foo ; (identical)
mov eax,foo ; 32-bit immediate, zero-extended
mov rax,dword foo ; 32-bit immediate, sign-extended
The length of these instructions are 10, 5 and 7 bytes,
respectively.
The only instructions which take a full 64-bit _displacement_ is
loading or storing, using `MOV', `AL', `AX', `EAX' or `RAX' (but no
other registers) to an absolute 64-bit address. Since this is a
relatively rarely used instruction (64-bit code generally uses
relative addressing), the programmer has to explicitly declare the
displacement size as `QWORD':
default abs
mov eax,[foo] ; 32-bit absolute disp, sign-extended
mov eax,[a32 foo] ; 32-bit absolute disp, zero-extended
mov eax,[qword foo] ; 64-bit absolute disp
default rel
mov eax,[foo] ; 32-bit relative disp
mov eax,[a32 foo] ; d:o, address truncated to 32 bits(!)
mov eax,[qword foo] ; error
mov eax,[abs qword foo] ; 64-bit absolute disp
A sign-extended absolute displacement can access from -2 GB to +2
GB; a zero-extended absolute displacement can access from 0 to 4 GB.
11.3 Interfacing to 64-bit C Programs (Unix)
On Unix, the 64-bit ABI is defined by the document:
`http://www.x86-64.org/documentation/abi.pdf'
Although written for AT&T-syntax assembly, the concepts apply
equally well for NASM-style assembly. What follows is a simplified
summary.
The first six integer arguments (from the left) are passed in `RDI',
`RSI', `RDX', `RCX', `R8', and `R9', in that order. Additional
integer arguments are passed on the stack. These registers, plus
`RAX', `R10' and `R11' are destroyed by function calls, and thus are
available for use by the function without saving.
Integer return values are passed in `RAX' and `RDX', in that order.
Floating point is done using SSE registers, except for
`long double'. Floating-point arguments are passed in `XMM0' to
`XMM7'; return is `XMM0' and `XMM1'. `long double' are passed on the
stack, and returned in `ST0' and `ST1'.
All SSE and x87 registers are destroyed by function calls.
On 64-bit Unix, `long' is 64 bits.
Integer and SSE register arguments are counted separately, so for
the case of
void foo(long a, double b, int c)
`a' is passed in `RDI', `b' in `XMM0', and `c' in `ESI'.
11.4 Interfacing to 64-bit C Programs (Win64)
The Win64 ABI is described at:
`http://msdn2.microsoft.com/en-gb/library/ms794533.aspx'
What follows is a simplified summary.
The first four integer arguments are passed in `RCX', `RDX', `R8'
and `R9', in that order. Additional integer arguments are passed on
the stack. These registers, plus `RAX', `R10' and `R11' are
destroyed by function calls, and thus are available for use by the
function without saving.
Integer return values are passed in `RAX' only.
Floating point is done using SSE registers, except for
`long double'. Floating-point arguments are passed in `XMM0' to
`XMM3'; return is `XMM0' only.
On Win64, `long' is 32 bits; `long long' or `_int64' is 64 bits.
Integer and SSE register arguments are counted together, so for the
case of
void foo(long long a, double b, int c)
`a' is passed in `RCX', `b' in `XMM1', and `c' in `R8D'.
Chapter 12: Troubleshooting
---------------------------
This chapter describes some of the common problems that users have
been known to encounter with NASM, and answers them. It also gives
instructions for reporting bugs in NASM if you find a difficulty
that isn't listed here.
12.1 Common Problems
12.1.1 NASM Generates Inefficient Code
We sometimes get `bug' reports about NASM generating inefficient, or
even `wrong', code on instructions such as `ADD ESP,8'. This is a
deliberate design feature, connected to predictability of output:
NASM, on seeing `ADD ESP,8', will generate the form of the
instruction which leaves room for a 32-bit offset. You need to code
`ADD ESP,BYTE 8' if you want the space-efficient form of the
instruction. This isn't a bug, it's user error: if you prefer to
have NASM produce the more efficient code automatically enable
optimization with the `-O' option (see section 2.1.22).
12.1.2 My Jumps are Out of Range
Similarly, people complain that when they issue conditional jumps
(which are `SHORT' by default) that try to jump too far, NASM
reports `short jump out of range' instead of making the jumps
longer.
This, again, is partly a predictability issue, but in fact has a
more practical reason as well. NASM has no means of being told what
type of processor the code it is generating will be run on; so it
cannot decide for itself that it should generate `Jcc NEAR' type
instructions, because it doesn't know that it's working for a 386 or
above. Alternatively, it could replace the out-of-range short `JNE'
instruction with a very short `JE' instruction that jumps over a
`JMP NEAR'; this is a sensible solution for processors below a 386,
but hardly efficient on processors which have good branch prediction
_and_ could have used `JNE NEAR' instead. So, once again, it's up to
the user, not the assembler, to decide what instructions should be
generated. See section 2.1.22.
12.1.3 `ORG' Doesn't Work
People writing boot sector programs in the `bin' format often
complain that `ORG' doesn't work the way they'd like: in order to
place the `0xAA55' signature word at the end of a 512-byte boot
sector, people who are used to MASM tend to code
ORG 0
; some boot sector code
ORG 510
DW 0xAA55
This is not the intended use of the `ORG' directive in NASM, and
will not work. The correct way to solve this problem in NASM is to
use the `TIMES' directive, like this:
ORG 0
; some boot sector code
TIMES 510-($-$$) DB 0
DW 0xAA55
The `TIMES' directive will insert exactly enough zero bytes into the
output to move the assembly point up to 510. This method also has
the advantage that if you accidentally fill your boot sector too
full, NASM will catch the problem at assembly time and report it, so
you won't end up with a boot sector that you have to disassemble to
find out what's wrong with it.
12.1.4 `TIMES' Doesn't Work
The other common problem with the above code is people who write the
`TIMES' line as
TIMES 510-$ DB 0
by reasoning that `$' should be a pure number, just like 510, so the
difference between them is also a pure number and can happily be fed
to `TIMES'.
NASM is a _modular_ assembler: the various component parts are
designed to be easily separable for re-use, so they don't exchange
information unnecessarily. In consequence, the `bin' output format,
even though it has been told by the `ORG' directive that the `.text'
section should start at 0, does not pass that information back to
the expression evaluator. So from the evaluator's point of view, `$'
isn't a pure number: it's an offset from a section base. Therefore
the difference between `$' and 510 is also not a pure number, but
involves a section base. Values involving section bases cannot be
passed as arguments to `TIMES'.
The solution, as in the previous section, is to code the `TIMES'
line in the form
TIMES 510-($-$$) DB 0
in which `$' and `$$' are offsets from the same section base, and so
their difference is a pure number. This will solve the problem and
generate sensible code.
12.2 Bugs
We have never yet released a version of NASM with any _known_ bugs.
That doesn't usually stop there being plenty we didn't know about,
though. Any that you find should be reported firstly via the
`bugtracker' at `https://sourceforge.net/projects/nasm/' (click on
"Bugs"), or if that fails then through one of the contacts in
section 1.2.
Please read section 2.2 first, and don't report the bug if it's
listed in there as a deliberate feature. (If you think the feature
is badly thought out, feel free to send us reasons why you think it
should be changed, but don't just send us mail saying `This is a
bug' if the documentation says we did it on purpose.) Then read
section 12.1, and don't bother reporting the bug if it's listed
there.
If you do report a bug, _please_ give us all of the following
information:
(*) What operating system you're running NASM under. DOS, Linux,
NetBSD, Win16, Win32, VMS (I'd be impressed), whatever.
(*) If you're running NASM under DOS or Win32, tell us whether
you've compiled your own executable from the DOS source archive,
or whether you were using the standard distribution binaries out
of the archive. If you were using a locally built executable,
try to reproduce the problem using one of the standard binaries,
as this will make it easier for us to reproduce your problem
prior to fixing it.
(*) Which version of NASM you're using, and exactly how you invoked
it. Give us the precise command line, and the contents of the
`NASMENV' environment variable if any.
(*) Which versions of any supplementary programs you're using, and
how you invoked them. If the problem only becomes visible at
link time, tell us what linker you're using, what version of it
you've got, and the exact linker command line. If the problem
involves linking against object files generated by a compiler,
tell us what compiler, what version, and what command line or
options you used. (If you're compiling in an IDE, please try to
reproduce the problem with the command-line version of the
compiler.)
(*) If at all possible, send us a NASM source file which exhibits
the problem. If this causes copyright problems (e.g. you can
only reproduce the bug in restricted-distribution code) then
bear in mind the following two points: firstly, we guarantee
that any source code sent to us for the purposes of debugging
NASM will be used _only_ for the purposes of debugging NASM, and
that we will delete all our copies of it as soon as we have
found and fixed the bug or bugs in question; and secondly, we
would prefer _not_ to be mailed large chunks of code anyway. The
smaller the file, the better. A three-line sample file that does
nothing useful _except_ demonstrate the problem is much easier
to work with than a fully fledged ten-thousand-line program. (Of
course, some errors _do_ only crop up in large files, so this
may not be possible.)
(*) A description of what the problem actually _is_. `It doesn't
work' is _not_ a helpful description! Please describe exactly
what is happening that shouldn't be, or what isn't happening
that should. Examples might be: `NASM generates an error message
saying Line 3 for an error that's actually on Line 5'; `NASM
generates an error message that I believe it shouldn't be
generating at all'; `NASM fails to generate an error message
that I believe it _should_ be generating'; `the object file
produced from this source code crashes my linker'; `the ninth
byte of the output file is 66 and I think it should be 77
instead'.
(*) If you believe the output file from NASM to be faulty, send it
to us. That allows us to determine whether our own copy of NASM
generates the same file, or whether the problem is related to
portability issues between our development platforms and yours.
We can handle binary files mailed to us as MIME attachments,
uuencoded, and even BinHex. Alternatively, we may be able to
provide an FTP site you can upload the suspect files to; but
mailing them is easier for us.
(*) Any other information or data files that might be helpful. If,
for example, the problem involves NASM failing to generate an
object file while TASM can generate an equivalent file without
trouble, then send us _both_ object files, so we can see what
TASM is doing differently from us.
Appendix A: Ndisasm
-------------------
The Netwide Disassembler, NDISASM
A.1 Introduction
The Netwide Disassembler is a small companion program to the Netwide
Assembler, NASM. It seemed a shame to have an x86 assembler,
complete with a full instruction table, and not make as much use of
it as possible, so here's a disassembler which shares the
instruction table (and some other bits of code) with NASM.
The Netwide Disassembler does nothing except to produce
disassemblies of _binary_ source files. NDISASM does not have any
understanding of object file formats, like `objdump', and it will
not understand `DOS .EXE' files like `debug' will. It just
disassembles.
A.2 Getting Started: Installation
See section 1.3 for installation instructions. NDISASM, like NASM,
has a `man page' which you may want to put somewhere useful, if you
are on a Unix system.
A.3 Running NDISASM
To disassemble a file, you will typically use a command of the form
ndisasm -b {16|32|64} filename
NDISASM can disassemble 16-, 32- or 64-bit code equally easily,
provided of course that you remember to specify which it is to work
with. If no `-b' switch is present, NDISASM works in 16-bit mode by
default. The `-u' switch (for USE32) also invokes 32-bit mode.
Two more command line options are `-r' which reports the version
number of NDISASM you are running, and `-h' which gives a short
summary of command line options.
A.3.1 COM Files: Specifying an Origin
To disassemble a `DOS .COM' file correctly, a disassembler must
assume that the first instruction in the file is loaded at address
`0x100', rather than at zero. NDISASM, which assumes by default that
any file you give it is loaded at zero, will therefore need to be
informed of this.
The `-o' option allows you to declare a different origin for the
file you are disassembling. Its argument may be expressed in any of
the NASM numeric formats: decimal by default, if it begins with
``$'' or ``0x'' or ends in ``H'' it's `hex', if it ends in ``Q''
it's `octal', and if it ends in ``B'' it's `binary'.
Hence, to disassemble a `.COM' file:
ndisasm -o100h filename.com
will do the trick.
A.3.2 Code Following Data: Synchronisation
Suppose you are disassembling a file which contains some data which
isn't machine code, and _then_ contains some machine code. NDISASM
will faithfully plough through the data section, producing machine
instructions wherever it can (although most of them will look
bizarre, and some may have unusual prefixes, e.g.
``FS OR AX,0x240A''), and generating `DB' instructions ever so often
if it's totally stumped. Then it will reach the code section.
Supposing NDISASM has just finished generating a strange machine
instruction from part of the data section, and its file position is
now one byte _before_ the beginning of the code section. It's
entirely possible that another spurious instruction will get
generated, starting with the final byte of the data section, and
then the correct first instruction in the code section will not be
seen because the starting point skipped over it. This isn't really
ideal.
To avoid this, you can specify a ``synchronisation'' point, or
indeed as many synchronisation points as you like (although NDISASM
can only handle 2147483647 sync points internally). The definition
of a sync point is this: NDISASM guarantees to hit sync points
exactly during disassembly. If it is thinking about generating an
instruction which would cause it to jump over a sync point, it will
discard that instruction and output a ``db'' instead. So it _will_
start disassembly exactly from the sync point, and so you _will_ see
all the instructions in your code section.
Sync points are specified using the `-s' option: they are measured
in terms of the program origin, not the file position. So if you
want to synchronize after 32 bytes of a `.COM' file, you would have
to do
ndisasm -o100h -s120h file.com
rather than
ndisasm -o100h -s20h file.com
As stated above, you can specify multiple sync markers if you need
to, just by repeating the `-s' option.
A.3.3 Mixed Code and Data: Automatic (Intelligent) Synchronisation
Suppose you are disassembling the boot sector of a `DOS' floppy
(maybe it has a virus, and you need to understand the virus so that
you know what kinds of damage it might have done you). Typically,
this will contain a `JMP' instruction, then some data, then the rest
of the code. So there is a very good chance of NDISASM being
_misaligned_ when the data ends and the code begins. Hence a sync
point is needed.
On the other hand, why should you have to specify the sync point
manually? What you'd do in order to find where the sync point would
be, surely, would be to read the `JMP' instruction, and then to use
its target address as a sync point. So can NDISASM do that for you?
The answer, of course, is yes: using either of the synonymous
switches `-a' (for automatic sync) or `-i' (for intelligent sync)
will enable `auto-sync' mode. Auto-sync mode automatically generates
a sync point for any forward-referring PC-relative jump or call
instruction that NDISASM encounters. (Since NDISASM is one-pass, if
it encounters a PC-relative jump whose target has already been
processed, there isn't much it can do about it...)
Only PC-relative jumps are processed, since an absolute jump is
either through a register (in which case NDISASM doesn't know what
the register contains) or involves a segment address (in which case
the target code isn't in the same segment that NDISASM is working
in, and so the sync point can't be placed anywhere useful).
For some kinds of file, this mechanism will automatically put sync
points in all the right places, and save you from having to place
any sync points manually. However, it should be stressed that auto-
sync mode is _not_ guaranteed to catch all the sync points, and you
may still have to place some manually.
Auto-sync mode doesn't prevent you from declaring manual sync
points: it just adds automatically generated ones to the ones you
provide. It's perfectly feasible to specify `-i' _and_ some `-s'
options.
Another caveat with auto-sync mode is that if, by some unpleasant
fluke, something in your data section should disassemble to a PC-
relative call or jump instruction, NDISASM may obediently place a
sync point in a totally random place, for example in the middle of
one of the instructions in your code section. So you may end up with
a wrong disassembly even if you use auto-sync. Again, there isn't
much I can do about this. If you have problems, you'll have to use
manual sync points, or use the `-k' option (documented below) to
suppress disassembly of the data area.
A.3.4 Other Options
The `-e' option skips a header on the file, by ignoring the first N
bytes. This means that the header is _not_ counted towards the
disassembly offset: if you give `-e10 -o10', disassembly will start
at byte 10 in the file, and this will be given offset 10, not 20.
The `-k' option is provided with two comma-separated numeric
arguments, the first of which is an assembly offset and the second
is a number of bytes to skip. This _will_ count the skipped bytes
towards the assembly offset: its use is to suppress disassembly of a
data section which wouldn't contain anything you wanted to see
anyway.
A.4 Bugs and Improvements
There are no known bugs. However, any you find, with patches if
possible, should be sent to `nasm-bugs@lists.sourceforge.net', or to
the developer's site at `https://sourceforge.net/projects/nasm/' and
we'll try to fix them. Feel free to send contributions and new
features as well.
Appendix B: Instruction List
----------------------------
B.1 Introduction
The following sections show the instructions which NASM currently
supports. For each instruction, there is a separate entry for each
supported addressing mode. The third column shows the processor type
in which the instruction was introduced and, when appropriate, one
or more usage flags.
B.1.1 Special instructions...
DB
DW
DD
DQ
DT
DO
DY
RESB imm 8086
RESW
RESD
RESQ
REST
RESO
RESY
B.1.2 Conventional instructions
AAA 8086,NOLONG
AAD 8086,NOLONG
AAD imm 8086,NOLONG
AAM 8086,NOLONG
AAM imm 8086,NOLONG
AAS 8086,NOLONG
ADC mem,reg8 8086
ADC reg8,reg8 8086
ADC mem,reg16 8086
ADC reg16,reg16 8086
ADC mem,reg32 386
ADC reg32,reg32 386
ADC mem,reg64 X64
ADC reg64,reg64 X64
ADC reg8,mem 8086
ADC reg8,reg8 8086
ADC reg16,mem 8086
ADC reg16,reg16 8086
ADC reg32,mem 386
ADC reg32,reg32 386
ADC reg64,mem X64
ADC reg64,reg64 X64
ADC rm16,imm8 8086
ADC rm32,imm8 386
ADC rm64,imm8 X64
ADC reg_al,imm 8086
ADC reg_ax,sbyte16 8086
ADC reg_ax,imm 8086
ADC reg_eax,sbyte32 386
ADC reg_eax,imm 386
ADC reg_rax,sbyte64 X64
ADC reg_rax,imm X64
ADC rm8,imm 8086
ADC rm16,imm 8086
ADC rm32,imm 386
ADC rm64,imm X64
ADC mem,imm8 8086
ADC mem,imm16 8086
ADC mem,imm32 386
ADD mem,reg8 8086
ADD reg8,reg8 8086
ADD mem,reg16 8086
ADD reg16,reg16 8086
ADD mem,reg32 386
ADD reg32,reg32 386
ADD mem,reg64 X64
ADD reg64,reg64 X64
ADD reg8,mem 8086
ADD reg8,reg8 8086
ADD reg16,mem 8086
ADD reg16,reg16 8086
ADD reg32,mem 386
ADD reg32,reg32 386
ADD reg64,mem X64
ADD reg64,reg64 X64
ADD rm16,imm8 8086
ADD rm32,imm8 386
ADD rm64,imm8 X64
ADD reg_al,imm 8086
ADD reg_ax,sbyte16 8086
ADD reg_ax,imm 8086
ADD reg_eax,sbyte32 386
ADD reg_eax,imm 386
ADD reg_rax,sbyte64 X64
ADD reg_rax,imm X64
ADD rm8,imm 8086
ADD rm16,imm 8086
ADD rm32,imm 386
ADD rm64,imm X64
ADD mem,imm8 8086
ADD mem,imm16 8086
ADD mem,imm32 386
AND mem,reg8 8086
AND reg8,reg8 8086
AND mem,reg16 8086
AND reg16,reg16 8086
AND mem,reg32 386
AND reg32,reg32 386
AND mem,reg64 X64
AND reg64,reg64 X64
AND reg8,mem 8086
AND reg8,reg8 8086
AND reg16,mem 8086
AND reg16,reg16 8086
AND reg32,mem 386
AND reg32,reg32 386
AND reg64,mem X64
AND reg64,reg64 X64
AND rm16,imm8 8086
AND rm32,imm8 386
AND rm64,imm8 X64
AND reg_al,imm 8086
AND reg_ax,sbyte16 8086
AND reg_ax,imm 8086
AND reg_eax,sbyte32 386
AND reg_eax,imm 386
AND reg_rax,sbyte64 X64
AND reg_rax,imm X64
AND rm8,imm 8086
AND rm16,imm 8086
AND rm32,imm 386
AND rm64,imm X64
AND mem,imm8 8086
AND mem,imm16 8086
AND mem,imm32 386
ARPL mem,reg16 286,PROT,NOLONG
ARPL reg16,reg16 286,PROT,NOLONG
BB0_RESET PENT,CYRIX,ND
BB1_RESET PENT,CYRIX,ND
BOUND reg16,mem 186,NOLONG
BOUND reg32,mem 386,NOLONG
BSF reg16,mem 386
BSF reg16,reg16 386
BSF reg32,mem 386
BSF reg32,reg32 386
BSF reg64,mem X64
BSF reg64,reg64 X64
BSR reg16,mem 386
BSR reg16,reg16 386
BSR reg32,mem 386
BSR reg32,reg32 386
BSR reg64,mem X64
BSR reg64,reg64 X64
BSWAP reg32 486
BSWAP reg64 X64
BT mem,reg16 386
BT reg16,reg16 386
BT mem,reg32 386
BT reg32,reg32 386
BT mem,reg64 X64
BT reg64,reg64 X64
BT rm16,imm 386
BT rm32,imm 386
BT rm64,imm X64
BTC mem,reg16 386
BTC reg16,reg16 386
BTC mem,reg32 386
BTC reg32,reg32 386
BTC mem,reg64 X64
BTC reg64,reg64 X64
BTC rm16,imm 386
BTC rm32,imm 386
BTC rm64,imm X64
BTR mem,reg16 386
BTR reg16,reg16 386
BTR mem,reg32 386
BTR reg32,reg32 386
BTR mem,reg64 X64
BTR reg64,reg64 X64
BTR rm16,imm 386
BTR rm32,imm 386
BTR rm64,imm X64
BTS mem,reg16 386
BTS reg16,reg16 386
BTS mem,reg32 386
BTS reg32,reg32 386
BTS mem,reg64 X64
BTS reg64,reg64 X64
BTS rm16,imm 386
BTS rm32,imm 386
BTS rm64,imm X64
CALL imm 8086
CALL imm|near 8086
CALL imm|far 8086,ND,NOLONG
CALL imm16 8086
CALL imm16|near 8086
CALL imm16|far 8086,ND,NOLONG
CALL imm32 386
CALL imm32|near 386
CALL imm32|far 386,ND,NOLONG
CALL imm:imm 8086,NOLONG
CALL imm16:imm 8086,NOLONG
CALL imm:imm16 8086,NOLONG
CALL imm32:imm 386,NOLONG
CALL imm:imm32 386,NOLONG
CALL mem|far 8086,NOLONG
CALL mem|far X64
CALL mem16|far 8086
CALL mem32|far 386
CALL mem64|far X64
CALL mem|near 8086
CALL mem16|near 8086
CALL mem32|near 386,NOLONG
CALL mem64|near X64
CALL reg16 8086
CALL reg32 386,NOLONG
CALL reg64 X64
CALL mem 8086
CALL mem16 8086
CALL mem32 386,NOLONG
CALL mem64 X64
CBW 8086
CDQ 386
CDQE X64
CLC 8086
CLD 8086
CLGI X64,AMD
CLI 8086
CLTS 286,PRIV
CMC 8086
CMP mem,reg8 8086
CMP reg8,reg8 8086
CMP mem,reg16 8086
CMP reg16,reg16 8086
CMP mem,reg32 386
CMP reg32,reg32 386
CMP mem,reg64 X64
CMP reg64,reg64 X64
CMP reg8,mem 8086
CMP reg8,reg8 8086
CMP reg16,mem 8086
CMP reg16,reg16 8086
CMP reg32,mem 386
CMP reg32,reg32 386
CMP reg64,mem X64
CMP reg64,reg64 X64
CMP rm16,imm8 8086
CMP rm32,imm8 386
CMP rm64,imm8 X64
CMP reg_al,imm 8086
CMP reg_ax,sbyte16 8086
CMP reg_ax,imm 8086
CMP reg_eax,sbyte32 386
CMP reg_eax,imm 386
CMP reg_rax,sbyte64 X64
CMP reg_rax,imm X64
CMP rm8,imm 8086
CMP rm16,imm 8086
CMP rm32,imm 386
CMP rm64,imm X64
CMP mem,imm8 8086
CMP mem,imm16 8086
CMP mem,imm32 386
CMPSB 8086
CMPSD 386
CMPSQ X64
CMPSW 8086
CMPXCHG mem,reg8 PENT
CMPXCHG reg8,reg8 PENT
CMPXCHG mem,reg16 PENT
CMPXCHG reg16,reg16 PENT
CMPXCHG mem,reg32 PENT
CMPXCHG reg32,reg32 PENT
CMPXCHG mem,reg64 X64
CMPXCHG reg64,reg64 X64
CMPXCHG486 mem,reg8 486,UNDOC,ND
CMPXCHG486 reg8,reg8 486,UNDOC,ND
CMPXCHG486 mem,reg16 486,UNDOC,ND
CMPXCHG486 reg16,reg16 486,UNDOC,ND
CMPXCHG486 mem,reg32 486,UNDOC,ND
CMPXCHG486 reg32,reg32 486,UNDOC,ND
CMPXCHG8B mem PENT
CMPXCHG16B mem X64
CPUID PENT
CPU_READ PENT,CYRIX
CPU_WRITE PENT,CYRIX
CQO X64
CWD 8086
CWDE 386
DAA 8086,NOLONG
DAS 8086,NOLONG
DEC reg16 8086,NOLONG
DEC reg32 386,NOLONG
DEC rm8 8086
DEC rm16 8086
DEC rm32 386
DEC rm64 X64
DIV rm8 8086
DIV rm16 8086
DIV rm32 386
DIV rm64 X64
DMINT P6,CYRIX
EMMS PENT,MMX
ENTER imm,imm 186
EQU imm 8086
EQU imm:imm 8086
F2XM1 8086,FPU
FABS 8086,FPU
FADD mem32 8086,FPU
FADD mem64 8086,FPU
FADD fpureg|to 8086,FPU
FADD fpureg 8086,FPU
FADD fpureg,fpu0 8086,FPU
FADD fpu0,fpureg 8086,FPU
FADD 8086,FPU,ND
FADDP fpureg 8086,FPU
FADDP fpureg,fpu0 8086,FPU
FADDP 8086,FPU,ND
FBLD mem80 8086,FPU
FBLD mem 8086,FPU
FBSTP mem80 8086,FPU
FBSTP mem 8086,FPU
FCHS 8086,FPU
FCLEX 8086,FPU
FCMOVB fpureg P6,FPU
FCMOVB fpu0,fpureg P6,FPU
FCMOVB P6,FPU,ND
FCMOVBE fpureg P6,FPU
FCMOVBE fpu0,fpureg P6,FPU
FCMOVBE P6,FPU,ND
FCMOVE fpureg P6,FPU
FCMOVE fpu0,fpureg P6,FPU
FCMOVE P6,FPU,ND
FCMOVNB fpureg P6,FPU
FCMOVNB fpu0,fpureg P6,FPU
FCMOVNB P6,FPU,ND
FCMOVNBE fpureg P6,FPU
FCMOVNBE fpu0,fpureg P6,FPU
FCMOVNBE P6,FPU,ND
FCMOVNE fpureg P6,FPU
FCMOVNE fpu0,fpureg P6,FPU
FCMOVNE P6,FPU,ND
FCMOVNU fpureg P6,FPU
FCMOVNU fpu0,fpureg P6,FPU
FCMOVNU P6,FPU,ND
FCMOVU fpureg P6,FPU
FCMOVU fpu0,fpureg P6,FPU
FCMOVU P6,FPU,ND
FCOM mem32 8086,FPU
FCOM mem64 8086,FPU
FCOM fpureg 8086,FPU
FCOM fpu0,fpureg 8086,FPU
FCOM 8086,FPU,ND
FCOMI fpureg P6,FPU
FCOMI fpu0,fpureg P6,FPU
FCOMI P6,FPU,ND
FCOMIP fpureg P6,FPU
FCOMIP fpu0,fpureg P6,FPU
FCOMIP P6,FPU,ND
FCOMP mem32 8086,FPU
FCOMP mem64 8086,FPU
FCOMP fpureg 8086,FPU
FCOMP fpu0,fpureg 8086,FPU
FCOMP 8086,FPU,ND
FCOMPP 8086,FPU
FCOS 386,FPU
FDECSTP 8086,FPU
FDISI 8086,FPU
FDIV mem32 8086,FPU
FDIV mem64 8086,FPU
FDIV fpureg|to 8086,FPU
FDIV fpureg 8086,FPU
FDIV fpureg,fpu0 8086,FPU
FDIV fpu0,fpureg 8086,FPU
FDIV 8086,FPU,ND
FDIVP fpureg 8086,FPU
FDIVP fpureg,fpu0 8086,FPU
FDIVP 8086,FPU,ND
FDIVR mem32 8086,FPU
FDIVR mem64 8086,FPU
FDIVR fpureg|to 8086,FPU
FDIVR fpureg,fpu0 8086,FPU
FDIVR fpureg 8086,FPU
FDIVR fpu0,fpureg 8086,FPU
FDIVR 8086,FPU,ND
FDIVRP fpureg 8086,FPU
FDIVRP fpureg,fpu0 8086,FPU
FDIVRP 8086,FPU,ND
FEMMS PENT,3DNOW
FENI 8086,FPU
FFREE fpureg 8086,FPU
FFREE 8086,FPU
FFREEP fpureg 286,FPU,UNDOC
FFREEP 286,FPU,UNDOC
FIADD mem32 8086,FPU
FIADD mem16 8086,FPU
FICOM mem32 8086,FPU
FICOM mem16 8086,FPU
FICOMP mem32 8086,FPU
FICOMP mem16 8086,FPU
FIDIV mem32 8086,FPU
FIDIV mem16 8086,FPU
FIDIVR mem32 8086,FPU
FIDIVR mem16 8086,FPU
FILD mem32 8086,FPU
FILD mem16 8086,FPU
FILD mem64 8086,FPU
FIMUL mem32 8086,FPU
FIMUL mem16 8086,FPU
FINCSTP 8086,FPU
FINIT 8086,FPU
FIST mem32 8086,FPU
FIST mem16 8086,FPU
FISTP mem32 8086,FPU
FISTP mem16 8086,FPU
FISTP mem64 8086,FPU
FISTTP mem16 PRESCOTT,FPU
FISTTP mem32 PRESCOTT,FPU
FISTTP mem64 PRESCOTT,FPU
FISUB mem32 8086,FPU
FISUB mem16 8086,FPU
FISUBR mem32 8086,FPU
FISUBR mem16 8086,FPU
FLD mem32 8086,FPU
FLD mem64 8086,FPU
FLD mem80 8086,FPU
FLD fpureg 8086,FPU
FLD 8086,FPU,ND
FLD1 8086,FPU
FLDCW mem 8086,FPU,SW
FLDENV mem 8086,FPU
FLDL2E 8086,FPU
FLDL2T 8086,FPU
FLDLG2 8086,FPU
FLDLN2 8086,FPU
FLDPI 8086,FPU
FLDZ 8086,FPU
FMUL mem32 8086,FPU
FMUL mem64 8086,FPU
FMUL fpureg|to 8086,FPU
FMUL fpureg,fpu0 8086,FPU
FMUL fpureg 8086,FPU
FMUL fpu0,fpureg 8086,FPU
FMUL 8086,FPU,ND
FMULP fpureg 8086,FPU
FMULP fpureg,fpu0 8086,FPU
FMULP 8086,FPU,ND
FNCLEX 8086,FPU
FNDISI 8086,FPU
FNENI 8086,FPU
FNINIT 8086,FPU
FNOP 8086,FPU
FNSAVE mem 8086,FPU
FNSTCW mem 8086,FPU,SW
FNSTENV mem 8086,FPU
FNSTSW mem 8086,FPU,SW
FNSTSW reg_ax 286,FPU
FPATAN 8086,FPU
FPREM 8086,FPU
FPREM1 386,FPU
FPTAN 8086,FPU
FRNDINT 8086,FPU
FRSTOR mem 8086,FPU
FSAVE mem 8086,FPU
FSCALE 8086,FPU
FSETPM 286,FPU
FSIN 386,FPU
FSINCOS 386,FPU
FSQRT 8086,FPU
FST mem32 8086,FPU
FST mem64 8086,FPU
FST fpureg 8086,FPU
FST 8086,FPU,ND
FSTCW mem 8086,FPU,SW
FSTENV mem 8086,FPU
FSTP mem32 8086,FPU
FSTP mem64 8086,FPU
FSTP mem80 8086,FPU
FSTP fpureg 8086,FPU
FSTP 8086,FPU,ND
FSTSW mem 8086,FPU,SW
FSTSW reg_ax 286,FPU
FSUB mem32 8086,FPU
FSUB mem64 8086,FPU
FSUB fpureg|to 8086,FPU
FSUB fpureg,fpu0 8086,FPU
FSUB fpureg 8086,FPU
FSUB fpu0,fpureg 8086,FPU
FSUB 8086,FPU,ND
FSUBP fpureg 8086,FPU
FSUBP fpureg,fpu0 8086,FPU
FSUBP 8086,FPU,ND
FSUBR mem32 8086,FPU
FSUBR mem64 8086,FPU
FSUBR fpureg|to 8086,FPU
FSUBR fpureg,fpu0 8086,FPU
FSUBR fpureg 8086,FPU
FSUBR fpu0,fpureg 8086,FPU
FSUBR 8086,FPU,ND
FSUBRP fpureg 8086,FPU
FSUBRP fpureg,fpu0 8086,FPU
FSUBRP 8086,FPU,ND
FTST 8086,FPU
FUCOM fpureg 386,FPU
FUCOM fpu0,fpureg 386,FPU
FUCOM 386,FPU,ND
FUCOMI fpureg P6,FPU
FUCOMI fpu0,fpureg P6,FPU
FUCOMI P6,FPU,ND
FUCOMIP fpureg P6,FPU
FUCOMIP fpu0,fpureg P6,FPU
FUCOMIP P6,FPU,ND
FUCOMP fpureg 386,FPU
FUCOMP fpu0,fpureg 386,FPU
FUCOMP 386,FPU,ND
FUCOMPP 386,FPU
FXAM 8086,FPU
FXCH fpureg 8086,FPU
FXCH fpureg,fpu0 8086,FPU
FXCH fpu0,fpureg 8086,FPU
FXCH 8086,FPU,ND
FXTRACT 8086,FPU
FYL2X 8086,FPU
FYL2XP1 8086,FPU
HLT 8086,PRIV
IBTS mem,reg16 386,SW,UNDOC,ND
IBTS reg16,reg16 386,UNDOC,ND
IBTS mem,reg32 386,SD,UNDOC,ND
IBTS reg32,reg32 386,UNDOC,ND
ICEBP 386,ND
IDIV rm8 8086
IDIV rm16 8086
IDIV rm32 386
IDIV rm64 X64
IMUL rm8 8086
IMUL rm16 8086
IMUL rm32 386
IMUL rm64 X64
IMUL reg16,mem 386
IMUL reg16,reg16 386
IMUL reg32,mem 386
IMUL reg32,reg32 386
IMUL reg64,mem X64
IMUL reg64,reg64 X64
IMUL reg16,mem,imm8 186
IMUL reg16,mem,sbyte16 186,ND
IMUL reg16,mem,imm16 186
IMUL reg16,mem,imm 186,ND
IMUL reg16,reg16,imm8 186
IMUL reg16,reg16,sbyte16 186,ND
IMUL reg16,reg16,imm16 186
IMUL reg16,reg16,imm 186,ND
IMUL reg32,mem,imm8 386
IMUL reg32,mem,sbyte32 386,ND
IMUL reg32,mem,imm32 386
IMUL reg32,mem,imm 386,ND
IMUL reg32,reg32,imm8 386
IMUL reg32,reg32,sbyte32 386,ND
IMUL reg32,reg32,imm32 386
IMUL reg32,reg32,imm 386,ND
IMUL reg64,mem,imm8 X64
IMUL reg64,mem,sbyte64 X64,ND
IMUL reg64,mem,imm32 X64
IMUL reg64,mem,imm X64,ND
IMUL reg64,reg64,imm8 X64
IMUL reg64,reg64,sbyte64 X64,ND
IMUL reg64,reg64,imm32 X64
IMUL reg64,reg64,imm X64,ND
IMUL reg16,imm8 186
IMUL reg16,sbyte16 186,ND
IMUL reg16,imm16 186
IMUL reg16,imm 186,ND
IMUL reg32,imm8 386
IMUL reg32,sbyte32 386,ND
IMUL reg32,imm32 386
IMUL reg32,imm 386,ND
IMUL reg64,imm8 X64
IMUL reg64,sbyte64 X64,ND
IMUL reg64,imm32 X64
IMUL reg64,imm X64,ND
IN reg_al,imm 8086
IN reg_ax,imm 8086
IN reg_eax,imm 386
IN reg_al,reg_dx 8086
IN reg_ax,reg_dx 8086
IN reg_eax,reg_dx 386
INC reg16 8086,NOLONG
INC reg32 386,NOLONG
INC rm8 8086
INC rm16 8086
INC rm32 386
INC rm64 X64
INCBIN
INSB 186
INSD 386
INSW 186
INT imm 8086
INT01 386,ND
INT1 386
INT03 8086,ND
INT3 8086
INTO 8086,NOLONG
INVD 486,PRIV
INVLPG mem 486,PRIV
INVLPGA reg_ax,reg_ecx X86_64,AMD,NOLONG
INVLPGA reg_eax,reg_ecx X86_64,AMD
INVLPGA reg_rax,reg_ecx X64,AMD
INVLPGA X86_64,AMD
IRET 8086
IRETD 386
IRETQ X64
IRETW 8086
JCXZ imm 8086,NOLONG
JECXZ imm 386
JRCXZ imm X64
JMP imm|short 8086
JMP imm 8086,ND
JMP imm 8086
JMP imm|near 8086,ND
JMP imm|far 8086,ND,NOLONG
JMP imm16 8086
JMP imm16|near 8086,ND
JMP imm16|far 8086,ND,NOLONG
JMP imm32 386
JMP imm32|near 386,ND
JMP imm32|far 386,ND,NOLONG
JMP imm:imm 8086,NOLONG
JMP imm16:imm 8086,NOLONG
JMP imm:imm16 8086,NOLONG
JMP imm32:imm 386,NOLONG
JMP imm:imm32 386,NOLONG
JMP mem|far 8086,NOLONG
JMP mem|far X64
JMP mem16|far 8086
JMP mem32|far 386
JMP mem64|far X64
JMP mem|near 8086
JMP mem16|near 8086
JMP mem32|near 386,NOLONG
JMP mem64|near X64
JMP reg16 8086
JMP reg32 386,NOLONG
JMP reg64 X64
JMP mem 8086
JMP mem16 8086
JMP mem32 386,NOLONG
JMP mem64 X64
JMPE imm IA64
JMPE imm16 IA64
JMPE imm32 IA64
JMPE rm16 IA64
JMPE rm32 IA64
LAHF 8086
LAR reg16,mem 286,PROT,SW
LAR reg16,reg16 286,PROT
LAR reg16,reg32 386,PROT
LAR reg16,reg64 X64,PROT,ND
LAR reg32,mem 386,PROT,SW
LAR reg32,reg16 386,PROT
LAR reg32,reg32 386,PROT
LAR reg32,reg64 X64,PROT,ND
LAR reg64,mem X64,PROT,SW
LAR reg64,reg16 X64,PROT
LAR reg64,reg32 X64,PROT
LAR reg64,reg64 X64,PROT
LDS reg16,mem 8086,NOLONG
LDS reg32,mem 386,NOLONG
LEA reg16,mem 8086
LEA reg32,mem 386
LEA reg64,mem X64
LEAVE 186
LES reg16,mem 8086,NOLONG
LES reg32,mem 386,NOLONG
LFENCE X64,AMD
LFS reg16,mem 386
LFS reg32,mem 386
LGDT mem 286,PRIV
LGS reg16,mem 386
LGS reg32,mem 386
LIDT mem 286,PRIV
LLDT mem 286,PROT,PRIV
LLDT mem16 286,PROT,PRIV
LLDT reg16 286,PROT,PRIV
LMSW mem 286,PRIV
LMSW mem16 286,PRIV
LMSW reg16 286,PRIV
LOADALL 386,UNDOC
LOADALL286 286,UNDOC
LODSB 8086
LODSD 386
LODSQ X64
LODSW 8086
LOOP imm 8086
LOOP imm,reg_cx 8086,NOLONG
LOOP imm,reg_ecx 386
LOOP imm,reg_rcx X64
LOOPE imm 8086
LOOPE imm,reg_cx 8086,NOLONG
LOOPE imm,reg_ecx 386
LOOPE imm,reg_rcx X64
LOOPNE imm 8086
LOOPNE imm,reg_cx 8086,NOLONG
LOOPNE imm,reg_ecx 386
LOOPNE imm,reg_rcx X64
LOOPNZ imm 8086
LOOPNZ imm,reg_cx 8086,NOLONG
LOOPNZ imm,reg_ecx 386
LOOPNZ imm,reg_rcx X64
LOOPZ imm 8086
LOOPZ imm,reg_cx 8086,NOLONG
LOOPZ imm,reg_ecx 386
LOOPZ imm,reg_rcx X64
LSL reg16,mem 286,PROT,SW
LSL reg16,reg16 286,PROT
LSL reg16,reg32 386,PROT
LSL reg16,reg64 X64,PROT,ND
LSL reg32,mem 386,PROT,SW
LSL reg32,reg16 386,PROT
LSL reg32,reg32 386,PROT
LSL reg32,reg64 X64,PROT,ND
LSL reg64,mem X64,PROT,SW
LSL reg64,reg16 X64,PROT
LSL reg64,reg32 X64,PROT
LSL reg64,reg64 X64,PROT
LSS reg16,mem 386
LSS reg32,mem 386
LTR mem 286,PROT,PRIV
LTR mem16 286,PROT,PRIV
LTR reg16 286,PROT,PRIV
MFENCE X64,AMD
MONITOR PRESCOTT
MONITOR reg_eax,reg_ecx,reg_edx PRESCOTT,ND
MONITOR reg_rax,reg_ecx,reg_edx X64,ND
MOV mem,reg_sreg 8086
MOV reg16,reg_sreg 8086
MOV reg32,reg_sreg 386
MOV reg_sreg,mem 8086
MOV reg_sreg,reg16 8086
MOV reg_sreg,reg32 386
MOV reg_al,mem_offs 8086
MOV reg_ax,mem_offs 8086
MOV reg_eax,mem_offs 386
MOV reg_rax,mem_offs X64
MOV mem_offs,reg_al 8086
MOV mem_offs,reg_ax 8086
MOV mem_offs,reg_eax 386
MOV mem_offs,reg_rax X64
MOV reg32,reg_creg 386,PRIV,NOLONG
MOV reg64,reg_creg X64,PRIV
MOV reg_creg,reg32 386,PRIV,NOLONG
MOV reg_creg,reg64 X64,PRIV
MOV reg32,reg_dreg 386,PRIV,NOLONG
MOV reg64,reg_dreg X64,PRIV
MOV reg_dreg,reg32 386,PRIV,NOLONG
MOV reg_dreg,reg64 X64,PRIV
MOV reg32,reg_treg 386,NOLONG,ND
MOV reg_treg,reg32 386,NOLONG,ND
MOV mem,reg8 8086
MOV reg8,reg8 8086
MOV mem,reg16 8086
MOV reg16,reg16 8086
MOV mem,reg32 386
MOV reg32,reg32 386
MOV mem,reg64 X64
MOV reg64,reg64 X64
MOV reg8,mem 8086
MOV reg8,reg8 8086
MOV reg16,mem 8086
MOV reg16,reg16 8086
MOV reg32,mem 386
MOV reg32,reg32 386
MOV reg64,mem X64
MOV reg64,reg64 X64
MOV reg8,imm 8086
MOV reg16,imm 8086
MOV reg32,imm 386
MOV reg64,imm X64
MOV reg64,imm32 X64
MOV rm8,imm 8086
MOV rm16,imm 8086
MOV rm32,imm 386
MOV rm64,imm X64
MOV mem,imm8 8086
MOV mem,imm16 8086
MOV mem,imm32 386
MOVD mmxreg,mem PENT,MMX,SD
MOVD mmxreg,reg32 PENT,MMX
MOVD mem,mmxreg PENT,MMX,SD
MOVD reg32,mmxreg PENT,MMX
MOVD xmmreg,mem X64,SD
MOVD xmmreg,reg32 X64
MOVD mem,xmmreg X64,SD
MOVD reg32,xmmreg X64,SSE
MOVQ mmxreg,mmxrm PENT,MMX
MOVQ mmxrm,mmxreg PENT,MMX
MOVQ mmxreg,rm64 X64,MMX
MOVQ rm64,mmxreg X64,MMX
MOVSB 8086
MOVSD 386
MOVSQ X64
MOVSW 8086
MOVSX reg16,mem 386
MOVSX reg16,reg8 386
MOVSX reg32,rm8 386
MOVSX reg32,rm16 386
MOVSX reg64,rm8 X64
MOVSX reg64,rm16 X64
MOVSXD reg64,rm32 X64
MOVSX reg64,rm32 X64,ND
MOVZX reg16,mem 386
MOVZX reg16,reg8 386
MOVZX reg32,rm8 386
MOVZX reg32,rm16 386
MOVZX reg64,rm8 X64
MOVZX reg64,rm16 X64
MUL rm8 8086
MUL rm16 8086
MUL rm32 386
MUL rm64 X64
MWAIT PRESCOTT
MWAIT reg_eax,reg_ecx PRESCOTT,ND
NEG rm8 8086
NEG rm16 8086
NEG rm32 386
NEG rm64 X64
NOP 8086
NOP rm16 P6
NOP rm32 P6
NOP rm64 X64
NOT rm8 8086
NOT rm16 8086
NOT rm32 386
NOT rm64 X64
OR mem,reg8 8086
OR reg8,reg8 8086
OR mem,reg16 8086
OR reg16,reg16 8086
OR mem,reg32 386
OR reg32,reg32 386
OR mem,reg64 X64
OR reg64,reg64 X64
OR reg8,mem 8086
OR reg8,reg8 8086
OR reg16,mem 8086
OR reg16,reg16 8086
OR reg32,mem 386
OR reg32,reg32 386
OR reg64,mem X64
OR reg64,reg64 X64
OR rm16,imm8 8086
OR rm32,imm8 386
OR rm64,imm8 X64
OR reg_al,imm 8086
OR reg_ax,sbyte16 8086
OR reg_ax,imm 8086
OR reg_eax,sbyte32 386
OR reg_eax,imm 386
OR reg_rax,sbyte64 X64
OR reg_rax,imm X64
OR rm8,imm 8086
OR rm16,imm 8086
OR rm32,imm 386
OR rm64,imm X64
OR mem,imm8 8086
OR mem,imm16 8086
OR mem,imm32 386
OUT imm,reg_al 8086
OUT imm,reg_ax 8086
OUT imm,reg_eax 386
OUT reg_dx,reg_al 8086
OUT reg_dx,reg_ax 8086
OUT reg_dx,reg_eax 386
OUTSB 186
OUTSD 386
OUTSW 186
PACKSSDW mmxreg,mmxrm PENT,MMX
PACKSSWB mmxreg,mmxrm PENT,MMX
PACKUSWB mmxreg,mmxrm PENT,MMX
PADDB mmxreg,mmxrm PENT,MMX
PADDD mmxreg,mmxrm PENT,MMX
PADDSB mmxreg,mmxrm PENT,MMX
PADDSIW mmxreg,mmxrm PENT,MMX,CYRIX
PADDSW mmxreg,mmxrm PENT,MMX
PADDUSB mmxreg,mmxrm PENT,MMX
PADDUSW mmxreg,mmxrm PENT,MMX
PADDW mmxreg,mmxrm PENT,MMX
PAND mmxreg,mmxrm PENT,MMX
PANDN mmxreg,mmxrm PENT,MMX
PAUSE 8086
PAVEB mmxreg,mmxrm PENT,MMX,CYRIX
PAVGUSB mmxreg,mmxrm PENT,3DNOW
PCMPEQB mmxreg,mmxrm PENT,MMX
PCMPEQD mmxreg,mmxrm PENT,MMX
PCMPEQW mmxreg,mmxrm PENT,MMX
PCMPGTB mmxreg,mmxrm PENT,MMX
PCMPGTD mmxreg,mmxrm PENT,MMX
PCMPGTW mmxreg,mmxrm PENT,MMX
PDISTIB mmxreg,mem PENT,MMX,CYRIX
PF2ID mmxreg,mmxrm PENT,3DNOW
PFACC mmxreg,mmxrm PENT,3DNOW
PFADD mmxreg,mmxrm PENT,3DNOW
PFCMPEQ mmxreg,mmxrm PENT,3DNOW
PFCMPGE mmxreg,mmxrm PENT,3DNOW
PFCMPGT mmxreg,mmxrm PENT,3DNOW
PFMAX mmxreg,mmxrm PENT,3DNOW
PFMIN mmxreg,mmxrm PENT,3DNOW
PFMUL mmxreg,mmxrm PENT,3DNOW
PFRCP mmxreg,mmxrm PENT,3DNOW
PFRCPIT1 mmxreg,mmxrm PENT,3DNOW
PFRCPIT2 mmxreg,mmxrm PENT,3DNOW
PFRSQIT1 mmxreg,mmxrm PENT,3DNOW
PFRSQRT mmxreg,mmxrm PENT,3DNOW
PFSUB mmxreg,mmxrm PENT,3DNOW
PFSUBR mmxreg,mmxrm PENT,3DNOW
PI2FD mmxreg,mmxrm PENT,3DNOW
PMACHRIW mmxreg,mem PENT,MMX,CYRIX
PMADDWD mmxreg,mmxrm PENT,MMX
PMAGW mmxreg,mmxrm PENT,MMX,CYRIX
PMULHRIW mmxreg,mmxrm PENT,MMX,CYRIX
PMULHRWA mmxreg,mmxrm PENT,3DNOW
PMULHRWC mmxreg,mmxrm PENT,MMX,CYRIX
PMULHW mmxreg,mmxrm PENT,MMX
PMULLW mmxreg,mmxrm PENT,MMX
PMVGEZB mmxreg,mem PENT,MMX,CYRIX
PMVLZB mmxreg,mem PENT,MMX,CYRIX
PMVNZB mmxreg,mem PENT,MMX,CYRIX
PMVZB mmxreg,mem PENT,MMX,CYRIX
POP reg16 8086
POP reg32 386,NOLONG
POP reg64 X64
POP rm16 8086
POP rm32 386,NOLONG
POP rm64 X64
POP reg_cs 8086,UNDOC,ND
POP reg_dess 8086,NOLONG
POP reg_fsgs 386
POPA 186,NOLONG
POPAD 386,NOLONG
POPAW 186,NOLONG
POPF 8086
POPFD 386,NOLONG
POPFQ X64
POPFW 8086
POR mmxreg,mmxrm PENT,MMX
PREFETCH mem PENT,3DNOW
PREFETCHW mem PENT,3DNOW
PSLLD mmxreg,mmxrm PENT,MMX
PSLLD mmxreg,imm PENT,MMX
PSLLQ mmxreg,mmxrm PENT,MMX
PSLLQ mmxreg,imm PENT,MMX
PSLLW mmxreg,mmxrm PENT,MMX
PSLLW mmxreg,imm PENT,MMX
PSRAD mmxreg,mmxrm PENT,MMX
PSRAD mmxreg,imm PENT,MMX
PSRAW mmxreg,mmxrm PENT,MMX
PSRAW mmxreg,imm PENT,MMX
PSRLD mmxreg,mmxrm PENT,MMX
PSRLD mmxreg,imm PENT,MMX
PSRLQ mmxreg,mmxrm PENT,MMX
PSRLQ mmxreg,imm PENT,MMX
PSRLW mmxreg,mmxrm PENT,MMX
PSRLW mmxreg,imm PENT,MMX
PSUBB mmxreg,mmxrm PENT,MMX
PSUBD mmxreg,mmxrm PENT,MMX
PSUBSB mmxreg,mmxrm PENT,MMX
PSUBSIW mmxreg,mmxrm PENT,MMX,CYRIX
PSUBSW mmxreg,mmxrm PENT,MMX
PSUBUSB mmxreg,mmxrm PENT,MMX
PSUBUSW mmxreg,mmxrm PENT,MMX
PSUBW mmxreg,mmxrm PENT,MMX
PUNPCKHBW mmxreg,mmxrm PENT,MMX
PUNPCKHDQ mmxreg,mmxrm PENT,MMX
PUNPCKHWD mmxreg,mmxrm PENT,MMX
PUNPCKLBW mmxreg,mmxrm PENT,MMX
PUNPCKLDQ mmxreg,mmxrm PENT,MMX
PUNPCKLWD mmxreg,mmxrm PENT,MMX
PUSH reg16 8086
PUSH reg32 386,NOLONG
PUSH reg64 X64
PUSH rm16 8086
PUSH rm32 386,NOLONG
PUSH rm64 X64
PUSH reg_cs 8086,NOLONG
PUSH reg_dess 8086,NOLONG
PUSH reg_fsgs 386
PUSH imm8 186
PUSH imm16 186,AR0,SZ
PUSH imm32 386,NOLONG,AR0,SZ
PUSH imm32 386,NOLONG,SD
PUSH imm64 X64,AR0,SZ
PUSHA 186,NOLONG
PUSHAD 386,NOLONG
PUSHAW 186,NOLONG
PUSHF 8086
PUSHFD 386,NOLONG
PUSHFQ X64
PUSHFW 8086
PXOR mmxreg,mmxrm PENT,MMX
RCL rm8,unity 8086
RCL rm8,reg_cl 8086
RCL rm8,imm 186
RCL rm16,unity 8086
RCL rm16,reg_cl 8086
RCL rm16,imm 186
RCL rm32,unity 386
RCL rm32,reg_cl 386
RCL rm32,imm 386
RCL rm64,unity X64
RCL rm64,reg_cl X64
RCL rm64,imm X64
RCR rm8,unity 8086
RCR rm8,reg_cl 8086
RCR rm8,imm 186
RCR rm16,unity 8086
RCR rm16,reg_cl 8086
RCR rm16,imm 186
RCR rm32,unity 386
RCR rm32,reg_cl 386
RCR rm32,imm 386
RCR rm64,unity X64
RCR rm64,reg_cl X64
RCR rm64,imm X64
RDSHR rm32 P6,CYRIXM
RDMSR PENT,PRIV
RDPMC P6
RDTSC PENT
RDTSCP X86_64
RET 8086
RET imm 8086,SW
RETF 8086
RETF imm 8086,SW
RETN 8086
RETN imm 8086,SW
ROL rm8,unity 8086
ROL rm8,reg_cl 8086
ROL rm8,imm 186
ROL rm16,unity 8086
ROL rm16,reg_cl 8086
ROL rm16,imm 186
ROL rm32,unity 386
ROL rm32,reg_cl 386
ROL rm32,imm 386
ROL rm64,unity X64
ROL rm64,reg_cl X64
ROL rm64,imm X64
ROR rm8,unity 8086
ROR rm8,reg_cl 8086
ROR rm8,imm 186
ROR rm16,unity 8086
ROR rm16,reg_cl 8086
ROR rm16,imm 186
ROR rm32,unity 386
ROR rm32,reg_cl 386
ROR rm32,imm 386
ROR rm64,unity X64
ROR rm64,reg_cl X64
ROR rm64,imm X64
RDM P6,CYRIX,ND
RSDC reg_sreg,mem80 486,CYRIXM
RSLDT mem80 486,CYRIXM
RSM PENTM
RSTS mem80 486,CYRIXM
SAHF 8086
SAL rm8,unity 8086,ND
SAL rm8,reg_cl 8086,ND
SAL rm8,imm 186,ND
SAL rm16,unity 8086,ND
SAL rm16,reg_cl 8086,ND
SAL rm16,imm 186,ND
SAL rm32,unity 386,ND
SAL rm32,reg_cl 386,ND
SAL rm32,imm 386,ND
SAL rm64,unity X64,ND
SAL rm64,reg_cl X64,ND
SAL rm64,imm X64,ND
SALC 8086,UNDOC
SAR rm8,unity 8086
SAR rm8,reg_cl 8086
SAR rm8,imm 186
SAR rm16,unity 8086
SAR rm16,reg_cl 8086
SAR rm16,imm 186
SAR rm32,unity 386
SAR rm32,reg_cl 386
SAR rm32,imm 386
SAR rm64,unity X64
SAR rm64,reg_cl X64
SAR rm64,imm X64
SBB mem,reg8 8086
SBB reg8,reg8 8086
SBB mem,reg16 8086
SBB reg16,reg16 8086
SBB mem,reg32 386
SBB reg32,reg32 386
SBB mem,reg64 X64
SBB reg64,reg64 X64
SBB reg8,mem 8086
SBB reg8,reg8 8086
SBB reg16,mem 8086
SBB reg16,reg16 8086
SBB reg32,mem 386
SBB reg32,reg32 386
SBB reg64,mem X64
SBB reg64,reg64 X64
SBB rm16,imm8 8086
SBB rm32,imm8 386
SBB rm64,imm8 X64
SBB reg_al,imm 8086
SBB reg_ax,sbyte16 8086
SBB reg_ax,imm 8086
SBB reg_eax,sbyte32 386
SBB reg_eax,imm 386
SBB reg_rax,sbyte64 X64
SBB reg_rax,imm X64
SBB rm8,imm 8086
SBB rm16,imm 8086
SBB rm32,imm 386
SBB rm64,imm X64
SBB mem,imm8 8086
SBB mem,imm16 8086
SBB mem,imm32 386
SCASB 8086
SCASD 386
SCASQ X64
SCASW 8086
SFENCE X64,AMD
SGDT mem 286
SHL rm8,unity 8086
SHL rm8,reg_cl 8086
SHL rm8,imm 186
SHL rm16,unity 8086
SHL rm16,reg_cl 8086
SHL rm16,imm 186
SHL rm32,unity 386
SHL rm32,reg_cl 386
SHL rm32,imm 386
SHL rm64,unity X64
SHL rm64,reg_cl X64
SHL rm64,imm X64
SHLD mem,reg16,imm 3862
SHLD reg16,reg16,imm 3862
SHLD mem,reg32,imm 3862
SHLD reg32,reg32,imm 3862
SHLD mem,reg64,imm X642
SHLD reg64,reg64,imm X642
SHLD mem,reg16,reg_cl 386
SHLD reg16,reg16,reg_cl 386
SHLD mem,reg32,reg_cl 386
SHLD reg32,reg32,reg_cl 386
SHLD mem,reg64,reg_cl X64
SHLD reg64,reg64,reg_cl X64
SHR rm8,unity 8086
SHR rm8,reg_cl 8086
SHR rm8,imm 186
SHR rm16,unity 8086
SHR rm16,reg_cl 8086
SHR rm16,imm 186
SHR rm32,unity 386
SHR rm32,reg_cl 386
SHR rm32,imm 386
SHR rm64,unity X64
SHR rm64,reg_cl X64
SHR rm64,imm X64
SHRD mem,reg16,imm 3862
SHRD reg16,reg16,imm 3862
SHRD mem,reg32,imm 3862
SHRD reg32,reg32,imm 3862
SHRD mem,reg64,imm X642
SHRD reg64,reg64,imm X642
SHRD mem,reg16,reg_cl 386
SHRD reg16,reg16,reg_cl 386
SHRD mem,reg32,reg_cl 386
SHRD reg32,reg32,reg_cl 386
SHRD mem,reg64,reg_cl X64
SHRD reg64,reg64,reg_cl X64
SIDT mem 286
SLDT mem 286
SLDT mem16 286
SLDT reg16 286
SLDT reg32 386
SLDT reg64 X64,ND
SLDT reg64 X64
SKINIT X64
SMI 386,UNDOC
SMINT P6,CYRIX,ND
SMINTOLD 486,CYRIX,ND
SMSW mem 286
SMSW mem16 286
SMSW reg16 286
SMSW reg32 386
STC 8086
STD 8086
STGI X64
STI 8086
STOSB 8086
STOSD 386
STOSQ X64
STOSW 8086
STR mem 286,PROT
STR mem16 286,PROT
STR reg16 286,PROT
STR reg32 386,PROT
STR reg64 X64
SUB mem,reg8 8086
SUB reg8,reg8 8086
SUB mem,reg16 8086
SUB reg16,reg16 8086
SUB mem,reg32 386
SUB reg32,reg32 386
SUB mem,reg64 X64
SUB reg64,reg64 X64
SUB reg8,mem 8086
SUB reg8,reg8 8086
SUB reg16,mem 8086
SUB reg16,reg16 8086
SUB reg32,mem 386
SUB reg32,reg32 386
SUB reg64,mem X64
SUB reg64,reg64 X64
SUB rm16,imm8 8086
SUB rm32,imm8 386
SUB rm64,imm8 X64
SUB reg_al,imm 8086
SUB reg_ax,sbyte16 8086
SUB reg_ax,imm 8086
SUB reg_eax,sbyte32 386
SUB reg_eax,imm 386
SUB reg_rax,sbyte64 X64
SUB reg_rax,imm X64
SUB rm8,imm 8086
SUB rm16,imm 8086
SUB rm32,imm 386
SUB rm64,imm X64
SUB mem,imm8 8086
SUB mem,imm16 8086
SUB mem,imm32 386
SVDC mem80,reg_sreg 486,CYRIXM
SVLDT mem80 486,CYRIXM,ND
SVTS mem80 486,CYRIXM
SWAPGS X64
SYSCALL P6,AMD
SYSENTER P6
SYSEXIT P6,PRIV
SYSRET P6,PRIV,AMD
TEST mem,reg8 8086
TEST reg8,reg8 8086
TEST mem,reg16 8086
TEST reg16,reg16 8086
TEST mem,reg32 386
TEST reg32,reg32 386
TEST mem,reg64 X64
TEST reg64,reg64 X64
TEST reg8,mem 8086
TEST reg16,mem 8086
TEST reg32,mem 386
TEST reg64,mem X64
TEST reg_al,imm 8086
TEST reg_ax,imm 8086
TEST reg_eax,imm 386
TEST reg_rax,imm X64
TEST rm8,imm 8086
TEST rm16,imm 8086
TEST rm32,imm 386
TEST rm64,imm X64
TEST mem,imm8 8086
TEST mem,imm16 8086
TEST mem,imm32 386
UD0 186,UNDOC
UD1 186,UNDOC
UD2B 186,UNDOC,ND
UD2 186
UD2A 186,ND
UMOV mem,reg8 386,UNDOC,ND
UMOV reg8,reg8 386,UNDOC,ND
UMOV mem,reg16 386,UNDOC,ND
UMOV reg16,reg16 386,UNDOC,ND
UMOV mem,reg32 386,UNDOC,ND
UMOV reg32,reg32 386,UNDOC,ND
UMOV reg8,mem 386,UNDOC,ND
UMOV reg8,reg8 386,UNDOC,ND
UMOV reg16,mem 386,UNDOC,ND
UMOV reg16,reg16 386,UNDOC,ND
UMOV reg32,mem 386,UNDOC,ND
UMOV reg32,reg32 386,UNDOC,ND
VERR mem 286,PROT
VERR mem16 286,PROT
VERR reg16 286,PROT
VERW mem 286,PROT
VERW mem16 286,PROT
VERW reg16 286,PROT
FWAIT 8086
WBINVD 486,PRIV
WRSHR rm32 P6,CYRIXM
WRMSR PENT,PRIV
XADD mem,reg8 486
XADD reg8,reg8 486
XADD mem,reg16 486
XADD reg16,reg16 486
XADD mem,reg32 486
XADD reg32,reg32 486
XADD mem,reg64 X64
XADD reg64,reg64 X64
XBTS reg16,mem 386,SW,UNDOC,ND
XBTS reg16,reg16 386,UNDOC,ND
XBTS reg32,mem 386,SD,UNDOC,ND
XBTS reg32,reg32 386,UNDOC,ND
XCHG reg_ax,reg16 8086
XCHG reg_eax,reg32na 386
XCHG reg_rax,reg64 X64
XCHG reg16,reg_ax 8086
XCHG reg32na,reg_eax 386
XCHG reg64,reg_rax X64
XCHG reg_eax,reg_eax 386,NOLONG
XCHG reg8,mem 8086
XCHG reg8,reg8 8086
XCHG reg16,mem 8086
XCHG reg16,reg16 8086
XCHG reg32,mem 386
XCHG reg32,reg32 386
XCHG reg64,mem X64
XCHG reg64,reg64 X64
XCHG mem,reg8 8086
XCHG reg8,reg8 8086
XCHG mem,reg16 8086
XCHG reg16,reg16 8086
XCHG mem,reg32 386
XCHG reg32,reg32 386
XCHG mem,reg64 X64
XCHG reg64,reg64 X64
XLATB 8086
XLAT 8086
XOR mem,reg8 8086
XOR reg8,reg8 8086
XOR mem,reg16 8086
XOR reg16,reg16 8086
XOR mem,reg32 386
XOR reg32,reg32 386
XOR mem,reg64 X64
XOR reg64,reg64 X64
XOR reg8,mem 8086
XOR reg8,reg8 8086
XOR reg16,mem 8086
XOR reg16,reg16 8086
XOR reg32,mem 386
XOR reg32,reg32 386
XOR reg64,mem X64
XOR reg64,reg64 X64
XOR rm16,imm8 8086
XOR rm32,imm8 386
XOR rm64,imm8 X64
XOR reg_al,imm 8086
XOR reg_ax,sbyte16 8086
XOR reg_ax,imm 8086
XOR reg_eax,sbyte32 386
XOR reg_eax,imm 386
XOR reg_rax,sbyte64 X64
XOR reg_rax,imm X64
XOR rm8,imm 8086
XOR rm16,imm 8086
XOR rm32,imm 386
XOR rm64,imm X64
XOR mem,imm8 8086
XOR mem,imm16 8086
XOR mem,imm32 386
CMOVcc reg16,mem P6
CMOVcc reg16,reg16 P6
CMOVcc reg32,mem P6
CMOVcc reg32,reg32 P6
CMOVcc reg64,mem X64
CMOVcc reg64,reg64 X64
Jcc imm|near 386
Jcc imm16|near 386
Jcc imm32|near 386
Jcc imm|short 8086,ND
Jcc imm 8086,ND
Jcc imm 386,ND
Jcc imm 8086,ND
Jcc imm 8086
SETcc mem 386
SETcc reg8 386
B.1.3 Katmai Streaming SIMD instructions (SSE -- a.k.a. KNI, XMM, MMX2)
ADDPS xmmreg,xmmrm KATMAI,SSE
ADDSS xmmreg,xmmrm KATMAI,SSE,SD
ANDNPS xmmreg,xmmrm KATMAI,SSE
ANDPS xmmreg,xmmrm KATMAI,SSE
CMPEQPS xmmreg,xmmrm KATMAI,SSE
CMPEQSS xmmreg,xmmrm KATMAI,SSE
CMPLEPS xmmreg,xmmrm KATMAI,SSE
CMPLESS xmmreg,xmmrm KATMAI,SSE
CMPLTPS xmmreg,xmmrm KATMAI,SSE
CMPLTSS xmmreg,xmmrm KATMAI,SSE
CMPNEQPS xmmreg,xmmrm KATMAI,SSE
CMPNEQSS xmmreg,xmmrm KATMAI,SSE
CMPNLEPS xmmreg,xmmrm KATMAI,SSE
CMPNLESS xmmreg,xmmrm KATMAI,SSE
CMPNLTPS xmmreg,xmmrm KATMAI,SSE
CMPNLTSS xmmreg,xmmrm KATMAI,SSE
CMPORDPS xmmreg,xmmrm KATMAI,SSE
CMPORDSS xmmreg,xmmrm KATMAI,SSE
CMPUNORDPS xmmreg,xmmrm KATMAI,SSE
CMPUNORDSS xmmreg,xmmrm KATMAI,SSE
CMPPS xmmreg,mem,imm KATMAI,SSE
CMPPS xmmreg,xmmreg,imm KATMAI,SSE
CMPSS xmmreg,mem,imm KATMAI,SSE
CMPSS xmmreg,xmmreg,imm KATMAI,SSE
COMISS xmmreg,xmmrm KATMAI,SSE
CVTPI2PS xmmreg,mmxrm KATMAI,SSE,MMX
CVTPS2PI mmxreg,xmmrm KATMAI,SSE,MMX
CVTSI2SS xmmreg,mem KATMAI,SSE,SD,AR1,ND
CVTSI2SS xmmreg,rm32 KATMAI,SSE,SD,AR1
CVTSI2SS xmmreg,rm64 X64,SSE,AR1
CVTSS2SI reg32,xmmreg KATMAI,SSE,SD,AR1
CVTSS2SI reg32,mem KATMAI,SSE,SD,AR1
CVTSS2SI reg64,xmmreg X64,SSE,SD,AR1
CVTSS2SI reg64,mem X64,SSE,SD,AR1
CVTTPS2PI mmxreg,xmmrm KATMAI,SSE,MMX
CVTTSS2SI reg32,xmmrm KATMAI,SSE,SD,AR1
CVTTSS2SI reg64,xmmrm X64,SSE,SD,AR1
DIVPS xmmreg,xmmrm KATMAI,SSE
DIVSS xmmreg,xmmrm KATMAI,SSE
LDMXCSR mem KATMAI,SSE,SD
MAXPS xmmreg,xmmrm KATMAI,SSE
MAXSS xmmreg,xmmrm KATMAI,SSE
MINPS xmmreg,xmmrm KATMAI,SSE
MINSS xmmreg,xmmrm KATMAI,SSE
MOVAPS xmmreg,mem KATMAI,SSE
MOVAPS mem,xmmreg KATMAI,SSE
MOVAPS xmmreg,xmmreg KATMAI,SSE
MOVAPS xmmreg,xmmreg KATMAI,SSE
MOVHPS xmmreg,mem KATMAI,SSE
MOVHPS mem,xmmreg KATMAI,SSE
MOVLHPS xmmreg,xmmreg KATMAI,SSE
MOVLPS xmmreg,mem KATMAI,SSE
MOVLPS mem,xmmreg KATMAI,SSE
MOVHLPS xmmreg,xmmreg KATMAI,SSE
MOVMSKPS reg32,xmmreg KATMAI,SSE
MOVMSKPS reg64,xmmreg X64,SSE
MOVNTPS mem,xmmreg KATMAI,SSE
MOVSS xmmreg,mem KATMAI,SSE
MOVSS mem,xmmreg KATMAI,SSE
MOVSS xmmreg,xmmreg KATMAI,SSE
MOVSS xmmreg,xmmreg KATMAI,SSE
MOVUPS xmmreg,mem KATMAI,SSE
MOVUPS mem,xmmreg KATMAI,SSE
MOVUPS xmmreg,xmmreg KATMAI,SSE
MOVUPS xmmreg,xmmreg KATMAI,SSE
MULPS xmmreg,xmmrm KATMAI,SSE
MULSS xmmreg,xmmrm KATMAI,SSE
ORPS xmmreg,xmmrm KATMAI,SSE
RCPPS xmmreg,xmmrm KATMAI,SSE
RCPSS xmmreg,xmmrm KATMAI,SSE
RSQRTPS xmmreg,xmmrm KATMAI,SSE
RSQRTSS xmmreg,xmmrm KATMAI,SSE
SHUFPS xmmreg,mem,imm KATMAI,SSE
SHUFPS xmmreg,xmmreg,imm KATMAI,SSE
SQRTPS xmmreg,xmmrm KATMAI,SSE
SQRTSS xmmreg,xmmrm KATMAI,SSE
STMXCSR mem KATMAI,SSE,SD
SUBPS xmmreg,xmmrm KATMAI,SSE
SUBSS xmmreg,xmmrm KATMAI,SSE
UCOMISS xmmreg,xmmrm KATMAI,SSE
UNPCKHPS xmmreg,xmmrm KATMAI,SSE
UNPCKLPS xmmreg,xmmrm KATMAI,SSE
XORPS xmmreg,xmmrm KATMAI,SSE
B.1.4 Introduced in Deschutes but necessary for SSE support
FXRSTOR mem P6,SSE,FPU
FXSAVE mem P6,SSE,FPU
B.1.5 XSAVE group (AVX and extended state)
XGETBV NEHALEM
XSETBV NEHALEM,PRIV
XSAVE mem NEHALEM
XRSTOR mem NEHALEM
B.1.6 Generic memory operations
PREFETCHNTA mem KATMAI
PREFETCHT0 mem KATMAI
PREFETCHT1 mem KATMAI
PREFETCHT2 mem KATMAI
SFENCE KATMAI
B.1.7 New MMX instructions introduced in Katmai
MASKMOVQ mmxreg,mmxreg KATMAI,MMX
MOVNTQ mem,mmxreg KATMAI,MMX
PAVGB mmxreg,mmxrm KATMAI,MMX
PAVGW mmxreg,mmxrm KATMAI,MMX
PEXTRW reg32,mmxreg,imm KATMAI,MMX
PINSRW mmxreg,mem,imm KATMAI,MMX
PINSRW mmxreg,rm16,imm KATMAI,MMX
PINSRW mmxreg,reg32,imm KATMAI,MMX
PMAXSW mmxreg,mmxrm KATMAI,MMX
PMAXUB mmxreg,mmxrm KATMAI,MMX
PMINSW mmxreg,mmxrm KATMAI,MMX
PMINUB mmxreg,mmxrm KATMAI,MMX
PMOVMSKB reg32,mmxreg KATMAI,MMX
PMULHUW mmxreg,mmxrm KATMAI,MMX
PSADBW mmxreg,mmxrm KATMAI,MMX
PSHUFW mmxreg,mmxrm,imm KATMAI,MMX2
B.1.8 AMD Enhanced 3DNow! (Athlon) instructions
PF2IW mmxreg,mmxrm PENT,3DNOW
PFNACC mmxreg,mmxrm PENT,3DNOW
PFPNACC mmxreg,mmxrm PENT,3DNOW
PI2FW mmxreg,mmxrm PENT,3DNOW
PSWAPD mmxreg,mmxrm PENT,3DNOW
B.1.9 Willamette SSE2 Cacheability Instructions
MASKMOVDQU xmmreg,xmmreg WILLAMETTE,SSE2
CLFLUSH mem WILLAMETTE,SSE2
MOVNTDQ mem,xmmreg WILLAMETTE,SSE2,SO
MOVNTI mem,reg32 WILLAMETTE,SD
MOVNTI mem,reg64 X64
MOVNTPD mem,xmmreg WILLAMETTE,SSE2,SO
LFENCE WILLAMETTE,SSE2
MFENCE WILLAMETTE,SSE2
B.1.10 Willamette MMX instructions (SSE2 SIMD Integer Instructions)
MOVD mem,xmmreg WILLAMETTE,SSE2,SD
MOVD xmmreg,mem WILLAMETTE,SSE2,SD
MOVD xmmreg,rm32 WILLAMETTE,SSE2
MOVD rm32,xmmreg WILLAMETTE,SSE2
MOVDQA xmmreg,xmmreg WILLAMETTE,SSE2
MOVDQA mem,xmmreg WILLAMETTE,SSE2,SO
MOVDQA xmmreg,mem WILLAMETTE,SSE2,SO
MOVDQA xmmreg,xmmreg WILLAMETTE,SSE2
MOVDQU xmmreg,xmmreg WILLAMETTE,SSE2
MOVDQU mem,xmmreg WILLAMETTE,SSE2,SO
MOVDQU xmmreg,mem WILLAMETTE,SSE2,SO
MOVDQU xmmreg,xmmreg WILLAMETTE,SSE2
MOVDQ2Q mmxreg,xmmreg WILLAMETTE,SSE2
MOVQ xmmreg,xmmreg WILLAMETTE,SSE2
MOVQ xmmreg,xmmreg WILLAMETTE,SSE2
MOVQ mem,xmmreg WILLAMETTE,SSE2
MOVQ xmmreg,mem WILLAMETTE,SSE2
MOVQ xmmreg,rm64 X64,SSE2
MOVQ rm64,xmmreg X64,SSE2
MOVQ2DQ xmmreg,mmxreg WILLAMETTE,SSE2
PACKSSWB xmmreg,xmmrm WILLAMETTE,SSE2,SO
PACKSSDW xmmreg,xmmrm WILLAMETTE,SSE2,SO
PACKUSWB xmmreg,xmmrm WILLAMETTE,SSE2,SO
PADDB xmmreg,xmmrm WILLAMETTE,SSE2,SO
PADDW xmmreg,xmmrm WILLAMETTE,SSE2,SO
PADDD xmmreg,xmmrm WILLAMETTE,SSE2,SO
PADDQ mmxreg,mmxrm WILLAMETTE,MMX
PADDQ xmmreg,xmmrm WILLAMETTE,SSE2,SO
PADDSB xmmreg,xmmrm WILLAMETTE,SSE2,SO
PADDSW xmmreg,xmmrm WILLAMETTE,SSE2,SO
PADDUSB xmmreg,xmmrm WILLAMETTE,SSE2,SO
PADDUSW xmmreg,xmmrm WILLAMETTE,SSE2,SO
PAND xmmreg,xmmrm WILLAMETTE,SSE2,SO
PANDN xmmreg,xmmrm WILLAMETTE,SSE2,SO
PAVGB xmmreg,xmmrm WILLAMETTE,SSE2,SO
PAVGW xmmreg,xmmrm WILLAMETTE,SSE2,SO
PCMPEQB xmmreg,xmmrm WILLAMETTE,SSE2,SO
PCMPEQW xmmreg,xmmrm WILLAMETTE,SSE2,SO
PCMPEQD xmmreg,xmmrm WILLAMETTE,SSE2,SO
PCMPGTB xmmreg,xmmrm WILLAMETTE,SSE2,SO
PCMPGTW xmmreg,xmmrm WILLAMETTE,SSE2,SO
PCMPGTD xmmreg,xmmrm WILLAMETTE,SSE2,SO
PEXTRW reg32,xmmreg,imm WILLAMETTE,SSE2
PINSRW xmmreg,reg16,imm WILLAMETTE,SSE2
PINSRW xmmreg,reg32,imm WILLAMETTE,SSE2,ND
PINSRW xmmreg,mem,imm WILLAMETTE,SSE2
PINSRW xmmreg,mem16,imm WILLAMETTE,SSE2
PMADDWD xmmreg,xmmrm WILLAMETTE,SSE2,SO
PMAXSW xmmreg,xmmrm WILLAMETTE,SSE2,SO
PMAXUB xmmreg,xmmrm WILLAMETTE,SSE2,SO
PMINSW xmmreg,xmmrm WILLAMETTE,SSE2,SO
PMINUB xmmreg,xmmrm WILLAMETTE,SSE2,SO
PMOVMSKB reg32,xmmreg WILLAMETTE,SSE2
PMULHUW xmmreg,xmmrm WILLAMETTE,SSE2,SO
PMULHW xmmreg,xmmrm WILLAMETTE,SSE2,SO
PMULLW xmmreg,xmmrm WILLAMETTE,SSE2,SO
PMULUDQ mmxreg,mmxrm WILLAMETTE,SSE2,SO
PMULUDQ xmmreg,xmmrm WILLAMETTE,SSE2,SO
POR xmmreg,xmmrm WILLAMETTE,SSE2,SO
PSADBW xmmreg,xmmrm WILLAMETTE,SSE2,SO
PSHUFD xmmreg,xmmreg,imm WILLAMETTE,SSE2
PSHUFD xmmreg,mem,imm WILLAMETTE,SSE22
PSHUFHW xmmreg,xmmreg,imm WILLAMETTE,SSE2
PSHUFHW xmmreg,mem,imm WILLAMETTE,SSE22
PSHUFLW xmmreg,xmmreg,imm WILLAMETTE,SSE2
PSHUFLW xmmreg,mem,imm WILLAMETTE,SSE22
PSLLDQ xmmreg,imm WILLAMETTE,SSE2,AR1
PSLLW xmmreg,xmmrm WILLAMETTE,SSE2,SO
PSLLW xmmreg,imm WILLAMETTE,SSE2,AR1
PSLLD xmmreg,xmmrm WILLAMETTE,SSE2,SO
PSLLD xmmreg,imm WILLAMETTE,SSE2,AR1
PSLLQ xmmreg,xmmrm WILLAMETTE,SSE2,SO
PSLLQ xmmreg,imm WILLAMETTE,SSE2,AR1
PSRAW xmmreg,xmmrm WILLAMETTE,SSE2,SO
PSRAW xmmreg,imm WILLAMETTE,SSE2,AR1
PSRAD xmmreg,xmmrm WILLAMETTE,SSE2,SO
PSRAD xmmreg,imm WILLAMETTE,SSE2,AR1
PSRLDQ xmmreg,imm WILLAMETTE,SSE2,AR1
PSRLW xmmreg,xmmrm WILLAMETTE,SSE2,SO
PSRLW xmmreg,imm WILLAMETTE,SSE2,AR1
PSRLD xmmreg,xmmrm WILLAMETTE,SSE2,SO
PSRLD xmmreg,imm WILLAMETTE,SSE2,AR1
PSRLQ xmmreg,xmmrm WILLAMETTE,SSE2,SO
PSRLQ xmmreg,imm WILLAMETTE,SSE2,AR1
PSUBB xmmreg,xmmrm WILLAMETTE,SSE2,SO
PSUBW xmmreg,xmmrm WILLAMETTE,SSE2,SO
PSUBD xmmreg,xmmrm WILLAMETTE,SSE2,SO
PSUBQ mmxreg,mmxrm WILLAMETTE,SSE2,SO
PSUBQ xmmreg,xmmrm WILLAMETTE,SSE2,SO
PSUBSB xmmreg,xmmrm WILLAMETTE,SSE2,SO
PSUBSW xmmreg,xmmrm WILLAMETTE,SSE2,SO
PSUBUSB xmmreg,xmmrm WILLAMETTE,SSE2,SO
PSUBUSW xmmreg,xmmrm WILLAMETTE,SSE2,SO
PUNPCKHBW xmmreg,xmmrm WILLAMETTE,SSE2,SO
PUNPCKHWD xmmreg,xmmrm WILLAMETTE,SSE2,SO
PUNPCKHDQ xmmreg,xmmrm WILLAMETTE,SSE2,SO
PUNPCKHQDQ xmmreg,xmmrm WILLAMETTE,SSE2,SO
PUNPCKLBW xmmreg,xmmrm WILLAMETTE,SSE2,SO
PUNPCKLWD xmmreg,xmmrm WILLAMETTE,SSE2,SO
PUNPCKLDQ xmmreg,xmmrm WILLAMETTE,SSE2,SO
PUNPCKLQDQ xmmreg,xmmrm WILLAMETTE,SSE2,SO
PXOR xmmreg,xmmrm WILLAMETTE,SSE2,SO
B.1.11 Willamette Streaming SIMD instructions (SSE2)
ADDPD xmmreg,xmmrm WILLAMETTE,SSE2,SO
ADDSD xmmreg,xmmrm WILLAMETTE,SSE2
ANDNPD xmmreg,xmmrm WILLAMETTE,SSE2,SO
ANDPD xmmreg,xmmrm WILLAMETTE,SSE2,SO
CMPEQPD xmmreg,xmmrm WILLAMETTE,SSE2,SO
CMPEQSD xmmreg,xmmrm WILLAMETTE,SSE2
CMPLEPD xmmreg,xmmrm WILLAMETTE,SSE2,SO
CMPLESD xmmreg,xmmrm WILLAMETTE,SSE2
CMPLTPD xmmreg,xmmrm WILLAMETTE,SSE2,SO
CMPLTSD xmmreg,xmmrm WILLAMETTE,SSE2
CMPNEQPD xmmreg,xmmrm WILLAMETTE,SSE2,SO
CMPNEQSD xmmreg,xmmrm WILLAMETTE,SSE2
CMPNLEPD xmmreg,xmmrm WILLAMETTE,SSE2,SO
CMPNLESD xmmreg,xmmrm WILLAMETTE,SSE2
CMPNLTPD xmmreg,xmmrm WILLAMETTE,SSE2,SO
CMPNLTSD xmmreg,xmmrm WILLAMETTE,SSE2
CMPORDPD xmmreg,xmmrm WILLAMETTE,SSE2,SO
CMPORDSD xmmreg,xmmrm WILLAMETTE,SSE2
CMPUNORDPD xmmreg,xmmrm WILLAMETTE,SSE2,SO
CMPUNORDSD xmmreg,xmmrm WILLAMETTE,SSE2
CMPPD xmmreg,xmmrm,imm WILLAMETTE,SSE22
CMPSD xmmreg,xmmrm,imm WILLAMETTE,SSE2
COMISD xmmreg,xmmrm WILLAMETTE,SSE2
CVTDQ2PD xmmreg,xmmrm WILLAMETTE,SSE2
CVTDQ2PS xmmreg,xmmrm WILLAMETTE,SSE2,SO
CVTPD2DQ xmmreg,xmmrm WILLAMETTE,SSE2,SO
CVTPD2PI mmxreg,xmmrm WILLAMETTE,SSE2,SO
CVTPD2PS xmmreg,xmmrm WILLAMETTE,SSE2,SO
CVTPI2PD xmmreg,mmxrm WILLAMETTE,SSE2
CVTPS2DQ xmmreg,xmmrm WILLAMETTE,SSE2,SO
CVTPS2PD xmmreg,xmmrm WILLAMETTE,SSE2
CVTSD2SI reg32,xmmreg WILLAMETTE,SSE2,AR1
CVTSD2SI reg32,mem WILLAMETTE,SSE2,AR1
CVTSD2SI reg64,xmmreg X64,SSE2,AR1
CVTSD2SI reg64,mem X64,SSE2,AR1
CVTSD2SS xmmreg,xmmrm WILLAMETTE,SSE2
CVTSI2SD xmmreg,mem WILLAMETTE,SSE2,SD,AR1,ND
CVTSI2SD xmmreg,rm32 WILLAMETTE,SSE2,SD,AR1
CVTSI2SD xmmreg,rm64 X64,SSE2,AR1
CVTSS2SD xmmreg,xmmrm WILLAMETTE,SSE2,SD
CVTTPD2PI mmxreg,xmmrm WILLAMETTE,SSE2,SO
CVTTPD2DQ xmmreg,xmmrm WILLAMETTE,SSE2,SO
CVTTPS2DQ xmmreg,xmmrm WILLAMETTE,SSE2,SO
CVTTSD2SI reg32,xmmreg WILLAMETTE,SSE2,AR1
CVTTSD2SI reg32,mem WILLAMETTE,SSE2,AR1
CVTTSD2SI reg64,xmmreg X64,SSE2,AR1
CVTTSD2SI reg64,mem X64,SSE2,AR1
DIVPD xmmreg,xmmrm WILLAMETTE,SSE2,SO
DIVSD xmmreg,xmmrm WILLAMETTE,SSE2
MAXPD xmmreg,xmmrm WILLAMETTE,SSE2,SO
MAXSD xmmreg,xmmrm WILLAMETTE,SSE2
MINPD xmmreg,xmmrm WILLAMETTE,SSE2,SO
MINSD xmmreg,xmmrm WILLAMETTE,SSE2
MOVAPD xmmreg,xmmreg WILLAMETTE,SSE2
MOVAPD xmmreg,xmmreg WILLAMETTE,SSE2
MOVAPD mem,xmmreg WILLAMETTE,SSE2,SO
MOVAPD xmmreg,mem WILLAMETTE,SSE2,SO
MOVHPD mem,xmmreg WILLAMETTE,SSE2
MOVHPD xmmreg,mem WILLAMETTE,SSE2
MOVLPD mem,xmmreg WILLAMETTE,SSE2
MOVLPD xmmreg,mem WILLAMETTE,SSE2
MOVMSKPD reg32,xmmreg WILLAMETTE,SSE2
MOVMSKPD reg64,xmmreg X64,SSE2
MOVSD xmmreg,xmmreg WILLAMETTE,SSE2
MOVSD xmmreg,xmmreg WILLAMETTE,SSE2
MOVSD mem,xmmreg WILLAMETTE,SSE2
MOVSD xmmreg,mem WILLAMETTE,SSE2
MOVUPD xmmreg,xmmreg WILLAMETTE,SSE2
MOVUPD xmmreg,xmmreg WILLAMETTE,SSE2
MOVUPD mem,xmmreg WILLAMETTE,SSE2,SO
MOVUPD xmmreg,mem WILLAMETTE,SSE2,SO
MULPD xmmreg,xmmrm WILLAMETTE,SSE2,SO
MULSD xmmreg,xmmrm WILLAMETTE,SSE2
ORPD xmmreg,xmmrm WILLAMETTE,SSE2,SO
SHUFPD xmmreg,xmmreg,imm WILLAMETTE,SSE2
SHUFPD xmmreg,mem,imm WILLAMETTE,SSE2
SQRTPD xmmreg,xmmrm WILLAMETTE,SSE2,SO
SQRTSD xmmreg,xmmrm WILLAMETTE,SSE2
SUBPD xmmreg,xmmrm WILLAMETTE,SSE2,SO
SUBSD xmmreg,xmmrm WILLAMETTE,SSE2
UCOMISD xmmreg,xmmrm WILLAMETTE,SSE2
UNPCKHPD xmmreg,xmmrm WILLAMETTE,SSE2,SO
UNPCKLPD xmmreg,xmmrm WILLAMETTE,SSE2,SO
XORPD xmmreg,xmmrm WILLAMETTE,SSE2,SO
B.1.12 Prescott New Instructions (SSE3)
ADDSUBPD xmmreg,xmmrm PRESCOTT,SSE3,SO
ADDSUBPS xmmreg,xmmrm PRESCOTT,SSE3,SO
HADDPD xmmreg,xmmrm PRESCOTT,SSE3,SO
HADDPS xmmreg,xmmrm PRESCOTT,SSE3,SO
HSUBPD xmmreg,xmmrm PRESCOTT,SSE3,SO
HSUBPS xmmreg,xmmrm PRESCOTT,SSE3,SO
LDDQU xmmreg,mem PRESCOTT,SSE3,SO
MOVDDUP xmmreg,xmmrm PRESCOTT,SSE3
MOVSHDUP xmmreg,xmmrm PRESCOTT,SSE3
MOVSLDUP xmmreg,xmmrm PRESCOTT,SSE3
B.1.13 VMX Instructions
VMCALL VMX
VMCLEAR mem VMX
VMLAUNCH VMX
VMLOAD X64,VMX
VMMCALL X64,VMX
VMPTRLD mem VMX
VMPTRST mem VMX
VMREAD rm32,reg32 VMX,NOLONG,SD
VMREAD rm64,reg64 X64,VMX
VMRESUME VMX
VMRUN X64,VMX
VMSAVE X64,VMX
VMWRITE reg32,rm32 VMX,NOLONG,SD
VMWRITE reg64,rm64 X64,VMX
VMXOFF VMX
VMXON mem VMX
B.1.14 Extended Page Tables VMX instructions
INVEPT reg32,mem VMX,SO,NOLONG
INVEPT reg64,mem VMX,SO,LONG
INVVPID reg32,mem VMX,SO,NOLONG
INVVPID reg64,mem VMX,SO,LONG
B.1.15 Tejas New Instructions (SSSE3)
PABSB mmxreg,mmxrm SSSE3,MMX
PABSB xmmreg,xmmrm SSSE3
PABSW mmxreg,mmxrm SSSE3,MMX
PABSW xmmreg,xmmrm SSSE3
PABSD mmxreg,mmxrm SSSE3,MMX
PABSD xmmreg,xmmrm SSSE3
PALIGNR mmxreg,mmxrm,imm SSSE3,MMX
PALIGNR xmmreg,xmmrm,imm SSSE3
PHADDW mmxreg,mmxrm SSSE3,MMX
PHADDW xmmreg,xmmrm SSSE3
PHADDD mmxreg,mmxrm SSSE3,MMX
PHADDD xmmreg,xmmrm SSSE3
PHADDSW mmxreg,mmxrm SSSE3,MMX
PHADDSW xmmreg,xmmrm SSSE3
PHSUBW mmxreg,mmxrm SSSE3,MMX
PHSUBW xmmreg,xmmrm SSSE3
PHSUBD mmxreg,mmxrm SSSE3,MMX
PHSUBD xmmreg,xmmrm SSSE3
PHSUBSW mmxreg,mmxrm SSSE3,MMX
PHSUBSW xmmreg,xmmrm SSSE3
PMADDUBSW mmxreg,mmxrm SSSE3,MMX
PMADDUBSW xmmreg,xmmrm SSSE3
PMULHRSW mmxreg,mmxrm SSSE3,MMX
PMULHRSW xmmreg,xmmrm SSSE3
PSHUFB mmxreg,mmxrm SSSE3,MMX
PSHUFB xmmreg,xmmrm SSSE3
PSIGNB mmxreg,mmxrm SSSE3,MMX
PSIGNB xmmreg,xmmrm SSSE3
PSIGNW mmxreg,mmxrm SSSE3,MMX
PSIGNW xmmreg,xmmrm SSSE3
PSIGND mmxreg,mmxrm SSSE3,MMX
PSIGND xmmreg,xmmrm SSSE3
B.1.16 AMD SSE4A
EXTRQ xmmreg,imm,imm SSE4A,AMD
EXTRQ xmmreg,xmmreg SSE4A,AMD
INSERTQ xmmreg,xmmreg,imm,imm SSE4A,AMD
INSERTQ xmmreg,xmmreg SSE4A,AMD
MOVNTSD mem,xmmreg SSE4A,AMD
MOVNTSS mem,xmmreg SSE4A,AMD,SD
B.1.17 New instructions in Barcelona
LZCNT reg16,rm16 P6,AMD
LZCNT reg32,rm32 P6,AMD
LZCNT reg64,rm64 X64,AMD
B.1.18 Penryn New Instructions (SSE4.1)
BLENDPD xmmreg,xmmrm,imm SSE41
BLENDPS xmmreg,xmmrm,imm SSE41
BLENDVPD xmmreg,xmmrm,xmm0 SSE41
BLENDVPS xmmreg,xmmrm,xmm0 SSE41
DPPD xmmreg,xmmrm,imm SSE41
DPPS xmmreg,xmmrm,imm SSE41
EXTRACTPS rm32,xmmreg,imm SSE41
EXTRACTPS reg64,xmmreg,imm SSE41,X64
INSERTPS xmmreg,xmmrm,imm SSE41,SD
MOVNTDQA xmmreg,mem SSE41
MPSADBW xmmreg,xmmrm,imm SSE41
PACKUSDW xmmreg,xmmrm SSE41
PBLENDVB xmmreg,xmmrm,xmm0 SSE41
PBLENDW xmmreg,xmmrm,imm SSE41
PCMPEQQ xmmreg,xmmrm SSE41
PEXTRB reg32,xmmreg,imm SSE41
PEXTRB mem8,xmmreg,imm SSE41
PEXTRB reg64,xmmreg,imm SSE41,X64
PEXTRD rm32,xmmreg,imm SSE41
PEXTRQ rm64,xmmreg,imm SSE41,X64
PEXTRW reg32,xmmreg,imm SSE41
PEXTRW mem16,xmmreg,imm SSE41
PEXTRW reg64,xmmreg,imm SSE41,X64
PHMINPOSUW xmmreg,xmmrm SSE41
PINSRB xmmreg,mem,imm SSE41
PINSRB xmmreg,rm8,imm SSE41
PINSRB xmmreg,reg32,imm SSE41
PINSRD xmmreg,mem,imm SSE41
PINSRD xmmreg,rm32,imm SSE41
PINSRQ xmmreg,mem,imm SSE41,X64
PINSRQ xmmreg,rm64,imm SSE41,X64
PMAXSB xmmreg,xmmrm SSE41
PMAXSD xmmreg,xmmrm SSE41
PMAXUD xmmreg,xmmrm SSE41
PMAXUW xmmreg,xmmrm SSE41
PMINSB xmmreg,xmmrm SSE41
PMINSD xmmreg,xmmrm SSE41
PMINUD xmmreg,xmmrm SSE41
PMINUW xmmreg,xmmrm SSE41
PMOVSXBW xmmreg,xmmrm SSE41
PMOVSXBD xmmreg,xmmrm SSE41,SD
PMOVSXBQ xmmreg,xmmrm SSE41,SW
PMOVSXWD xmmreg,xmmrm SSE41
PMOVSXWQ xmmreg,xmmrm SSE41,SD
PMOVSXDQ xmmreg,xmmrm SSE41
PMOVZXBW xmmreg,xmmrm SSE41
PMOVZXBD xmmreg,xmmrm SSE41,SD
PMOVZXBQ xmmreg,xmmrm SSE41,SW
PMOVZXWD xmmreg,xmmrm SSE41
PMOVZXWQ xmmreg,xmmrm SSE41,SD
PMOVZXDQ xmmreg,xmmrm SSE41
PMULDQ xmmreg,xmmrm SSE41
PMULLD xmmreg,xmmrm SSE41
PTEST xmmreg,xmmrm SSE41
ROUNDPD xmmreg,xmmrm,imm SSE41
ROUNDPS xmmreg,xmmrm,imm SSE41
ROUNDSD xmmreg,xmmrm,imm SSE41
ROUNDSS xmmreg,xmmrm,imm SSE41
B.1.19 Nehalem New Instructions (SSE4.2)
CRC32 reg32,rm8 SSE42
CRC32 reg32,rm16 SSE42
CRC32 reg32,rm32 SSE42
CRC32 reg64,rm8 SSE42,X64
CRC32 reg64,rm64 SSE42,X64
PCMPESTRI xmmreg,xmmrm,imm SSE42
PCMPESTRM xmmreg,xmmrm,imm SSE42
PCMPISTRI xmmreg,xmmrm,imm SSE42
PCMPISTRM xmmreg,xmmrm,imm SSE42
PCMPGTQ xmmreg,xmmrm SSE42
POPCNT reg16,rm16 NEHALEM,SW
POPCNT reg32,rm32 NEHALEM,SD
POPCNT reg64,rm64 NEHALEM,X64
B.1.20 Intel SMX
GETSEC KATMAI
B.1.21 Geode (Cyrix) 3DNow! additions
PFRCPV mmxreg,mmxrm PENT,3DNOW,CYRIX
PFRSQRTV mmxreg,mmxrm PENT,3DNOW,CYRIX
B.1.22 Intel new instructions in ???
MOVBE reg16,mem16 NEHALEM
MOVBE reg32,mem32 NEHALEM
MOVBE reg64,mem64 NEHALEM
MOVBE mem16,reg16 NEHALEM
MOVBE mem32,reg32 NEHALEM
MOVBE mem64,reg64 NEHALEM
B.1.23 Intel AES instructions
AESENC xmmreg,xmmrm128 SSE,WESTMERE
AESENCLAST xmmreg,xmmrm128 SSE,WESTMERE
AESDEC xmmreg,xmmrm128 SSE,WESTMERE
AESDECLAST xmmreg,xmmrm128 SSE,WESTMERE
AESIMC xmmreg,xmmrm128 SSE,WESTMERE
AESKEYGENASSIST xmmreg,xmmrm128,imm8 SSE,WESTMERE
B.1.24 Intel AVX AES instructions
VAESENC xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VAESENCLAST xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VAESDEC xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VAESDECLAST xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VAESIMC xmmreg,xmmrm128 AVX,SANDYBRIDGE
VAESKEYGENASSIST xmmreg,xmmrm128,imm8 AVX,SANDYBRIDGE
B.1.25 Intel AVX instructions
VADDPD xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VADDPD ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VADDPS xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VADDPS ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VADDSD xmmreg,xmmreg*,xmmrm64 AVX,SANDYBRIDGE
VADDSS xmmreg,xmmreg*,xmmrm32 AVX,SANDYBRIDGE
VADDSUBPD xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VADDSUBPD ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VADDSUBPS xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VADDSUBPS ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VANDPD xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VANDPD ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VANDPS xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VANDPS ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VANDNPD xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VANDNPD ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VANDNPS xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VANDNPS ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VBLENDPD xmmreg,xmmreg*,xmmrm128,imm8 AVX,SANDYBRIDGE
VBLENDPD ymmreg,ymmreg*,ymmrm256,imm8 AVX,SANDYBRIDGE
VBLENDPS xmmreg,xmmreg*,xmmrm128,imm8 AVX,SANDYBRIDGE
VBLENDPS ymmreg,ymmreg*,ymmrm256,imm8 AVX,SANDYBRIDGE
VBLENDVPD xmmreg,xmmreg,xmmrm128,xmmreg AVX,SANDYBRIDGE
VBLENDVPD xmmreg,xmmrm128,xmm0 AVX,SANDYBRIDGE
VBLENDVPD ymmreg,ymmreg,ymmrm256,ymmreg AVX,SANDYBRIDGE
VBLENDVPD ymmreg,ymmrm256,ymm0 AVX,SANDYBRIDGE
VBLENDVPS xmmreg,xmmreg,xmmrm128,xmmreg AVX,SANDYBRIDGE
VBLENDVPS xmmreg,xmmrm128,xmm0 AVX,SANDYBRIDGE
VBLENDVPS ymmreg,ymmreg,ymmrm256,ymmreg AVX,SANDYBRIDGE
VBLENDVPD ymmreg,ymmrm256,ymm0 AVX,SANDYBRIDGE
VBROADCASTSS xmmreg,mem32 AVX,SANDYBRIDGE
VBROADCASTSS ymmreg,mem32 AVX,SANDYBRIDGE
VBROADCASTSD ymmreg,mem64 AVX,SANDYBRIDGE
VBROADCASTF128 ymmreg,mem128 AVX,SANDYBRIDGE
VCMPEQPD xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VCMPEQPD ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VCMPLTPD xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VCMPLTPD ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VCMPLEPD xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VCMPLEPD ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VCMPUNORDPD xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VCMPUNORDPD ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VCMPNEQPD xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VCMPNEQPD ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VCMPNLTPD xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VCMPNLTPD ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VCMPNLEPD xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VCMPNLEPD ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VCMPORDPD xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VCMPORDPD ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VCMPEQ_UQPD xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VCMPEQ_UQPD ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VCMPNGEPD xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VCMPNGEPD ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VCMPNGTPD xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VCMPNGTPD ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VCMPFALSEPD xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VCMPFALSEPD ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VCMPNEQ_OQPD xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VCMPNEQ_OQPD ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VCMPGEPD xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VCMPGEPD ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VCMPGTPD xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VCMPGTPD ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VCMPTRUEPD xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VCMPTRUEPD ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VCMPEQ_OSPD xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VCMPEQ_OSPD ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VCMPLT_OQPD xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VCMPLT_OQPD ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VCMPLE_OQPD xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VCMPLE_OQPD ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VCMPUNORD_SPD xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VCMPUNORD_SPD ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VCMPNEQ_USPD xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VCMPNEQ_USPD ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VCMPNLT_UQPD xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VCMPNLT_UQPD ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VCMPNLE_UQPD xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VCMPNLE_UQPD ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VCMPORD_SPD xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VCMPORD_SPD ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VCMPEQ_USPD xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VCMPEQ_USPD ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VCMPNGE_UQPD xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VCMPNGE_UQPD ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VCMPNGT_UQPD xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VCMPNGT_UQPD ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VCMPFALSE_OSPD xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VCMPFALSE_OSPD ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VCMPNEQ_OSPD xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VCMPNEQ_OSPD ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VCMPGE_OQPD xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VCMPGE_OQPD ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VCMPGT_OQPD xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VCMPGT_OQPD ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VCMPTRUE_USPD xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VCMPTRUE_USPD ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VCMPPD xmmreg,xmmreg*,xmmrm128,imm8 AVX,SANDYBRIDGE
VCMPPD ymmreg,ymmreg*,ymmrm256,imm8 AVX,SANDYBRIDGE
VCMPEQPS xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VCMPEQPS ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VCMPLTPS xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VCMPLTPS ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VCMPLEPS xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VCMPLEPS ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VCMPUNORDPS xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VCMPUNORDPS ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VCMPNEQPS xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VCMPNEQPS ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VCMPNLTPS xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VCMPNLTPS ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VCMPNLEPS xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VCMPNLEPS ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VCMPORDPS xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VCMPORDPS ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VCMPEQ_UQPS xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VCMPEQ_UQPS ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VCMPNGEPS xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VCMPNGEPS ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VCMPNGTPS xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VCMPNGTPS ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VCMPFALSEPS xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VCMPFALSEPS ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VCMPNEQ_OQPS xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VCMPNEQ_OQPS ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VCMPGEPS xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VCMPGEPS ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VCMPGTPS xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VCMPGTPS ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VCMPTRUEPS xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VCMPTRUEPS ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VCMPEQ_OSPS xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VCMPEQ_OSPS ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VCMPLT_OQPS xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VCMPLT_OQPS ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VCMPLE_OQPS xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VCMPLE_OQPS ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VCMPUNORD_SPS xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VCMPUNORD_SPS ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VCMPNEQ_USPS xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VCMPNEQ_USPS ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VCMPNLT_UQPS xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VCMPNLT_UQPS ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VCMPNLE_UQPS xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VCMPNLE_UQPS ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VCMPORD_SPS xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VCMPORD_SPS ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VCMPEQ_USPS xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VCMPEQ_USPS ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VCMPNGE_UQPS xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VCMPNGE_UQPS ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VCMPNGT_UQPS xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VCMPNGT_UQPS ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VCMPFALSE_OSPS xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VCMPFALSE_OSPS ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VCMPNEQ_OSPS xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VCMPNEQ_OSPS ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VCMPGE_OQPS xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VCMPGE_OQPS ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VCMPGT_OQPS xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VCMPGT_OQPS ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VCMPTRUE_USPS xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VCMPTRUE_USPS ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VCMPPS xmmreg,xmmreg*,xmmrm128,imm8 AVX,SANDYBRIDGE
VCMPPS ymmreg,ymmreg*,ymmrm256,imm8 AVX,SANDYBRIDGE
VCMPEQSD xmmreg,xmmreg*,xmmrm64 AVX,SANDYBRIDGE
VCMPLTSD xmmreg,xmmreg*,xmmrm64 AVX,SANDYBRIDGE
VCMPLESD xmmreg,xmmreg*,xmmrm64 AVX,SANDYBRIDGE
VCMPUNORDSD xmmreg,xmmreg*,xmmrm64 AVX,SANDYBRIDGE
VCMPNEQSD xmmreg,xmmreg*,xmmrm64 AVX,SANDYBRIDGE
VCMPNLTSD xmmreg,xmmreg*,xmmrm64 AVX,SANDYBRIDGE
VCMPNLESD xmmreg,xmmreg*,xmmrm64 AVX,SANDYBRIDGE
VCMPORDSD xmmreg,xmmreg*,xmmrm64 AVX,SANDYBRIDGE
VCMPEQ_UQSD xmmreg,xmmreg*,xmmrm64 AVX,SANDYBRIDGE
VCMPNGESD xmmreg,xmmreg*,xmmrm64 AVX,SANDYBRIDGE
VCMPNGTSD xmmreg,xmmreg*,xmmrm64 AVX,SANDYBRIDGE
VCMPFALSESD xmmreg,xmmreg*,xmmrm64 AVX,SANDYBRIDGE
VCMPNEQ_OQSD xmmreg,xmmreg*,xmmrm64 AVX,SANDYBRIDGE
VCMPGESD xmmreg,xmmreg*,xmmrm64 AVX,SANDYBRIDGE
VCMPGTSD xmmreg,xmmreg*,xmmrm64 AVX,SANDYBRIDGE
VCMPTRUESD xmmreg,xmmreg*,xmmrm64 AVX,SANDYBRIDGE
VCMPEQ_OSSD xmmreg,xmmreg*,xmmrm64 AVX,SANDYBRIDGE
VCMPLT_OQSD xmmreg,xmmreg*,xmmrm64 AVX,SANDYBRIDGE
VCMPLE_OQSD xmmreg,xmmreg*,xmmrm64 AVX,SANDYBRIDGE
VCMPUNORD_SSD xmmreg,xmmreg*,xmmrm64 AVX,SANDYBRIDGE
VCMPNEQ_USSD xmmreg,xmmreg*,xmmrm64 AVX,SANDYBRIDGE
VCMPNLT_UQSD xmmreg,xmmreg*,xmmrm64 AVX,SANDYBRIDGE
VCMPNLE_UQSD xmmreg,xmmreg*,xmmrm64 AVX,SANDYBRIDGE
VCMPORD_SSD xmmreg,xmmreg*,xmmrm64 AVX,SANDYBRIDGE
VCMPEQ_USSD xmmreg,xmmreg*,xmmrm64 AVX,SANDYBRIDGE
VCMPNGE_UQSD xmmreg,xmmreg*,xmmrm64 AVX,SANDYBRIDGE
VCMPNGT_UQSD xmmreg,xmmreg*,xmmrm64 AVX,SANDYBRIDGE
VCMPFALSE_OSSD xmmreg,xmmreg*,xmmrm64 AVX,SANDYBRIDGE
VCMPNEQ_OSSD xmmreg,xmmreg*,xmmrm64 AVX,SANDYBRIDGE
VCMPGE_OQSD xmmreg,xmmreg*,xmmrm64 AVX,SANDYBRIDGE
VCMPGT_OQSD xmmreg,xmmreg*,xmmrm64 AVX,SANDYBRIDGE
VCMPTRUE_USSD xmmreg,xmmreg*,xmmrm64 AVX,SANDYBRIDGE
VCMPSD xmmreg,xmmreg*,xmmrm64,imm8 AVX,SANDYBRIDGE
VCMPEQSS xmmreg,xmmreg*,xmmrm32 AVX,SANDYBRIDGE
VCMPLTSS xmmreg,xmmreg*,xmmrm32 AVX,SANDYBRIDGE
VCMPLESS xmmreg,xmmreg*,xmmrm32 AVX,SANDYBRIDGE
VCMPUNORDSS xmmreg,xmmreg*,xmmrm32 AVX,SANDYBRIDGE
VCMPNEQSS xmmreg,xmmreg*,xmmrm32 AVX,SANDYBRIDGE
VCMPNLTSS xmmreg,xmmreg*,xmmrm32 AVX,SANDYBRIDGE
VCMPNLESS xmmreg,xmmreg*,xmmrm32 AVX,SANDYBRIDGE
VCMPORDSS xmmreg,xmmreg*,xmmrm32 AVX,SANDYBRIDGE
VCMPEQ_UQSS xmmreg,xmmreg*,xmmrm32 AVX,SANDYBRIDGE
VCMPNGESS xmmreg,xmmreg*,xmmrm32 AVX,SANDYBRIDGE
VCMPNGTSS xmmreg,xmmreg*,xmmrm32 AVX,SANDYBRIDGE
VCMPFALSESS xmmreg,xmmreg*,xmmrm32 AVX,SANDYBRIDGE
VCMPNEQ_OQSS xmmreg,xmmreg*,xmmrm32 AVX,SANDYBRIDGE
VCMPGESS xmmreg,xmmreg*,xmmrm32 AVX,SANDYBRIDGE
VCMPGTSS xmmreg,xmmreg*,xmmrm32 AVX,SANDYBRIDGE
VCMPTRUESS xmmreg,xmmreg*,xmmrm32 AVX,SANDYBRIDGE
VCMPEQ_OSSS xmmreg,xmmreg*,xmmrm32 AVX,SANDYBRIDGE
VCMPLT_OQSS xmmreg,xmmreg*,xmmrm32 AVX,SANDYBRIDGE
VCMPLE_OQSS xmmreg,xmmreg*,xmmrm32 AVX,SANDYBRIDGE
VCMPUNORD_SSS xmmreg,xmmreg*,xmmrm32 AVX,SANDYBRIDGE
VCMPNEQ_USSS xmmreg,xmmreg*,xmmrm32 AVX,SANDYBRIDGE
VCMPNLT_UQSS xmmreg,xmmreg*,xmmrm32 AVX,SANDYBRIDGE
VCMPNLE_UQSS xmmreg,xmmreg*,xmmrm32 AVX,SANDYBRIDGE
VCMPORD_SSS xmmreg,xmmreg*,xmmrm32 AVX,SANDYBRIDGE
VCMPEQ_USSS xmmreg,xmmreg*,xmmrm32 AVX,SANDYBRIDGE
VCMPNGE_UQSS xmmreg,xmmreg*,xmmrm32 AVX,SANDYBRIDGE
VCMPNGT_UQSS xmmreg,xmmreg*,xmmrm32 AVX,SANDYBRIDGE
VCMPFALSE_OSSS xmmreg,xmmreg*,xmmrm32 AVX,SANDYBRIDGE
VCMPNEQ_OSSS xmmreg,xmmreg*,xmmrm32 AVX,SANDYBRIDGE
VCMPGE_OQSS xmmreg,xmmreg*,xmmrm32 AVX,SANDYBRIDGE
VCMPGT_OQSS xmmreg,xmmreg*,xmmrm32 AVX,SANDYBRIDGE
VCMPTRUE_USSS xmmreg,xmmreg*,xmmrm32 AVX,SANDYBRIDGE
VCMPSS xmmreg,xmmreg*,xmmrm32,imm8 AVX,SANDYBRIDGE
VCOMISD xmmreg,xmmrm64 AVX,SANDYBRIDGE
VCOMISS xmmreg,xmmrm32 AVX,SANDYBRIDGE
VCVTDQ2PD xmmreg,xmmrm64 AVX,SANDYBRIDGE
VCVTDQ2PD ymmreg,xmmrm128 AVX,SANDYBRIDGE
VCVTDQ2PS xmmreg,xmmrm128 AVX,SANDYBRIDGE
VCVTDQ2PS ymmreg,ymmrm256 AVX,SANDYBRIDGE
VCVTPD2DQ xmmreg,xmmreg AVX,SANDYBRIDGE
VCVTPD2DQ xmmreg,mem128 AVX,SANDYBRIDGE,SO
VCVTPD2DQ xmmreg,ymmreg AVX,SANDYBRIDGE
VCVTPD2DQ xmmreg,mem256 AVX,SANDYBRIDGE,SY
VCVTPD2PS xmmreg,xmmreg AVX,SANDYBRIDGE
VCVTPD2PS xmmreg,mem128 AVX,SANDYBRIDGE,SO
VCVTPD2PS xmmreg,ymmreg AVX,SANDYBRIDGE
VCVTPD2PS xmmreg,mem256 AVX,SANDYBRIDGE,SY
VCVTPS2DQ xmmreg,xmmrm128 AVX,SANDYBRIDGE
VCVTPS2DQ ymmreg,ymmrm256 AVX,SANDYBRIDGE
VCVTPS2PD xmmreg,xmmrm64 AVX,SANDYBRIDGE
VCVTPS2PD ymmreg,xmmrm128 AVX,SANDYBRIDGE
VCVTSD2SI reg32,xmmrm64 AVX,SANDYBRIDGE
VCVTSD2SI reg64,xmmrm64 AVX,SANDYBRIDGE,LONG
VCVTSD2SS xmmreg,xmmreg*,xmmrm64 AVX,SANDYBRIDGE
VCVTSI2SD xmmreg,xmmreg*,rm32 AVX,SANDYBRIDGE,SD
VCVTSI2SD xmmreg,xmmreg*,mem32 AVX,SANDYBRIDGE,ND,SD
VCVTSI2SD xmmreg,xmmreg*,rm64 AVX,SANDYBRIDGE,LONG
VCVTSI2SS xmmreg,xmmreg*,rm32 AVX,SANDYBRIDGE,SD
VCVTSI2SS xmmreg,xmmreg*,mem32 AVX,SANDYBRIDGE,ND,SD
VCVTSI2SS xmmreg,xmmreg*,rm64 AVX,SANDYBRIDGE,LONG
VCVTSS2SD xmmreg,xmmreg*,xmmrm32 AVX,SANDYBRIDGE
VCVTSS2SI reg32,xmmrm32 AVX,SANDYBRIDGE
VCVTSS2SI reg64,xmmrm32 AVX,SANDYBRIDGE,LONG
VCVTTPD2DQ xmmreg,xmmreg AVX,SANDYBRIDGE
VCVTTPD2DQ xmmreg,mem128 AVX,SANDYBRIDGE,SO
VCVTTPD2DQ xmmreg,ymmreg AVX,SANDYBRIDGE
VCVTTPD2DQ xmmreg,mem256 AVX,SANDYBRIDGE,SY
VCVTTPS2DQ xmmreg,xmmrm128 AVX,SANDYBRIDGE
VCVTTPS2DQ ymmreg,ymmrm256 AVX,SANDYBRIDGE
VCVTTSD2SI reg32,xmmrm64 AVX,SANDYBRIDGE
VCVTTSD2SI reg64,xmmrm64 AVX,SANDYBRIDGE,LONG
VCVTTSS2SI reg32,xmmrm32 AVX,SANDYBRIDGE
VCVTTSS2SI reg64,xmmrm32 AVX,SANDYBRIDGE,LONG
VDIVPD xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VDIVPD ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VDIVPS xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VDIVPS ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VDIVSD xmmreg,xmmreg*,xmmrm64 AVX,SANDYBRIDGE
VDIVSS xmmreg,xmmreg*,xmmrm32 AVX,SANDYBRIDGE
VDPPD xmmreg,xmmreg*,xmmrm128,imm8 AVX,SANDYBRIDGE
VDPPS xmmreg,xmmreg*,xmmrm128,imm8 AVX,SANDYBRIDGE
VDPPS ymmreg,ymmreg*,ymmrm256,imm8 AVX,SANDYBRIDGE
VEXTRACTF128 xmmrm128,xmmreg,imm8 AVX,SANDYBRIDGE
VEXTRACTPS rm32,xmmreg,imm8 AVX,SANDYBRIDGE
VHADDPD xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VHADDPD ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VHADDPS xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VHADDPS ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VHSUBPD xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VHSUBPD ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VHSUBPS xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VHSUBPS ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VINSERTF128 ymmreg,ymmreg,xmmrm128,imm8 AVX,SANDYBRIDGE
VINSERTPS xmmreg,xmmreg*,xmmrm32,imm8 AVX,SANDYBRIDGE
VLDDQU xmmreg,mem128 AVX,SANDYBRIDGE
VLDQQU ymmreg,mem256 AVX,SANDYBRIDGE
VLDDQU ymmreg,mem256 AVX,SANDYBRIDGE
VLDMXCSR mem32 AVX,SANDYBRIDGE
VMASKMOVDQU xmmreg,xmmreg AVX,SANDYBRIDGE
VMASKMOVPS xmmreg,xmmreg,mem128 AVX,SANDYBRIDGE
VMASKMOVPS ymmreg,ymmreg,mem256 AVX,SANDYBRIDGE
VMASKMOVPS mem128,xmmreg,xmmreg AVX,SANDYBRIDGE,SO
VMASKMOVPS mem256,xmmreg,xmmreg AVX,SANDYBRIDGE,SY
VMASKMOVPD xmmreg,xmmreg,mem128 AVX,SANDYBRIDGE
VMASKMOVPD ymmreg,ymmreg,mem256 AVX,SANDYBRIDGE
VMASKMOVPD mem128,xmmreg,xmmreg AVX,SANDYBRIDGE
VMASKMOVPD mem256,ymmreg,ymmreg AVX,SANDYBRIDGE
VMAXPD xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VMAXPD ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VMAXPS xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VMAXPS ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VMAXSD xmmreg,xmmreg*,xmmrm64 AVX,SANDYBRIDGE
VMAXSS xmmreg,xmmreg*,xmmrm32 AVX,SANDYBRIDGE
VMINPD xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VMINPD ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VMINPS xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VMINPS ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VMINSD xmmreg,xmmreg*,xmmrm64 AVX,SANDYBRIDGE
VMINSS xmmreg,xmmreg*,xmmrm32 AVX,SANDYBRIDGE
VMOVAPD xmmreg,xmmrm128 AVX,SANDYBRIDGE
VMOVAPD xmmrm128,xmmreg AVX,SANDYBRIDGE
VMOVAPD ymmreg,ymmrm256 AVX,SANDYBRIDGE
VMOVAPD ymmrm256,ymmreg AVX,SANDYBRIDGE
VMOVAPS xmmreg,xmmrm128 AVX,SANDYBRIDGE
VMOVAPS xmmrm128,xmmreg AVX,SANDYBRIDGE
VMOVAPS ymmreg,ymmrm256 AVX,SANDYBRIDGE
VMOVAPS ymmrm256,ymmreg AVX,SANDYBRIDGE
VMOVQ xmmreg,xmmrm64 AVX,SANDYBRIDGE
VMOVQ xmmrm64,xmmreg AVX,SANDYBRIDGE
VMOVQ xmmreg,rm64 AVX,SANDYBRIDGE,LONG
VMOVQ rm64,xmmreg AVX,SANDYBRIDGE,LONG
VMOVD xmmreg,rm32 AVX,SANDYBRIDGE
VMOVD rm32,xmmreg AVX,SANDYBRIDGE
VMOVDDUP xmmreg,xmmrm64 AVX,SANDYBRIDGE
VMOVDDUP ymmreg,ymmrm256 AVX,SANDYBRIDGE
VMOVDQA xmmreg,xmmrm128 AVX,SANDYBRIDGE
VMOVDQA xmmrm128,xmmreg AVX,SANDYBRIDGE
VMOVQQA ymmreg,ymmrm256 AVX,SANDYBRIDGE
VMOVQQA ymmrm256,ymmreg AVX,SANDYBRIDGE
VMOVDQA ymmreg,ymmrm AVX,SANDYBRIDGE
VMOVDQA ymmrm256,ymmreg AVX,SANDYBRIDGE
VMOVDQU xmmreg,xmmrm128 AVX,SANDYBRIDGE
VMOVDQU xmmrm128,xmmreg AVX,SANDYBRIDGE
VMOVQQU ymmreg,ymmrm256 AVX,SANDYBRIDGE
VMOVQQU ymmrm256,ymmreg AVX,SANDYBRIDGE
VMOVDQU ymmreg,ymmrm256 AVX,SANDYBRIDGE
VMOVDQU ymmrm256,ymmreg AVX,SANDYBRIDGE
VMOVHLPS xmmreg,xmmreg*,xmmreg AVX,SANDYBRIDGE
VMOVHPD xmmreg,xmmreg*,mem64 AVX,SANDYBRIDGE
VMOVHPD mem64,xmmreg AVX,SANDYBRIDGE
VMOVHPS xmmreg,xmmreg*,mem64 AVX,SANDYBRIDGE
VMOVHPS mem64,xmmreg AVX,SANDYBRIDGE
VMOVLHPS xmmreg,xmmreg*,xmmreg AVX,SANDYBRIDGE
VMOVLPD xmmreg,xmmreg*,mem64 AVX,SANDYBRIDGE
VMOVLPD mem64,xmmreg AVX,SANDYBRIDGE
VMOVLPS xmmreg,xmmreg*,mem64 AVX,SANDYBRIDGE
VMOVLPS mem64,xmmreg AVX,SANDYBRIDGE
VMOVMSKPD reg64,xmmreg AVX,SANDYBRIDGE,LONG
VMOVMSKPD reg32,xmmreg AVX,SANDYBRIDGE
VMOVMSKPD reg64,ymmreg AVX,SANDYBRIDGE,LONG
VMOVMSKPD reg32,ymmreg AVX,SANDYBRIDGE
VMOVMSKPS reg64,xmmreg AVX,SANDYBRIDGE,LONG
VMOVMSKPS reg32,xmmreg AVX,SANDYBRIDGE
VMOVMSKPS reg64,ymmreg AVX,SANDYBRIDGE,LONG
VMOVMSKPS reg32,ymmreg AVX,SANDYBRIDGE
VMOVNTDQ mem128,xmmreg AVX,SANDYBRIDGE
VMOVNTQQ mem256,ymmreg AVX,SANDYBRIDGE
VMOVNTDQ mem256,ymmreg AVX,SANDYBRIDGE
VMOVNTDQA xmmreg,mem128 AVX,SANDYBRIDGE
VMOVNTPD mem128,xmmreg AVX,SANDYBRIDGE
VMOVNTPD mem256,ymmreg AVX,SANDYBRIDGE
VMOVNTPS mem128,xmmreg AVX,SANDYBRIDGE
VMOVNTPS mem128,ymmreg AVX,SANDYBRIDGE
VMOVSD xmmreg,xmmreg*,xmmreg AVX,SANDYBRIDGE
VMOVSD xmmreg,mem64 AVX,SANDYBRIDGE
VMOVSD xmmreg,xmmreg*,xmmreg AVX,SANDYBRIDGE
VMOVSD mem64,xmmreg AVX,SANDYBRIDGE
VMOVSHDUP xmmreg,xmmrm128 AVX,SANDYBRIDGE
VMOVSHDUP ymmreg,ymmrm256 AVX,SANDYBRIDGE
VMOVSLDUP xmmreg,xmmrm128 AVX,SANDYBRIDGE
VMOVSLDUP ymmreg,ymmrm256 AVX,SANDYBRIDGE
VMOVSS xmmreg,xmmreg*,xmmreg AVX,SANDYBRIDGE
VMOVSS xmmreg,mem64 AVX,SANDYBRIDGE
VMOVSS xmmreg,xmmreg*,xmmreg AVX,SANDYBRIDGE
VMOVSS mem64,xmmreg AVX,SANDYBRIDGE
VMOVUPD xmmreg,xmmrm128 AVX,SANDYBRIDGE
VMOVUPD xmmrm128,xmmreg AVX,SANDYBRIDGE
VMOVUPD ymmreg,ymmrm256 AVX,SANDYBRIDGE
VMOVUPD ymmrm256,ymmreg AVX,SANDYBRIDGE
VMOVUPS xmmreg,xmmrm128 AVX,SANDYBRIDGE
VMOVUPS xmmrm128,xmmreg AVX,SANDYBRIDGE
VMOVUPS ymmreg,ymmrm256 AVX,SANDYBRIDGE
VMOVUPS ymmrm256,ymmreg AVX,SANDYBRIDGE
VMPSADBW xmmreg,xmmreg*,xmmrm128,imm8 AVX,SANDYBRIDGE
VMULPD xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VMULPD ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VMULPS xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VMULPS ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VMULSD xmmreg,xmmreg*,xmmrm64 AVX,SANDYBRIDGE
VMULSS xmmreg,xmmreg*,xmmrm32 AVX,SANDYBRIDGE
VORPD xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VORPD ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VORPS xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VORPS ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VPABSB xmmreg,xmmrm128 AVX,SANDYBRIDGE
VPABSW xmmreg,xmmrm128 AVX,SANDYBRIDGE
VPABSD xmmreg,xmmrm128 AVX,SANDYBRIDGE
VPACKSSWB xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VPACKSSDW xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VPACKUSWB xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VPACKUSDW xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VPADDB xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VPADDW xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VPADDD xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VPADDQ xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VPADDSB xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VPADDSW xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VPADDUSB xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VPADDUSW xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VPALIGNR xmmreg,xmmreg*,xmmrm128,imm8 AVX,SANDYBRIDGE
VPAND xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VPANDN xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VPAVGB xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VPAVGW xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VPBLENDVB xmmreg,xmmreg*,xmmrm128,xmmreg AVX,SANDYBRIDGE
VPBLENDW xmmreg,xmmreg*,xmmrm128,imm8 AVX,SANDYBRIDGE
VPCMPESTRI xmmreg,xmmrm128,imm8 AVX,SANDYBRIDGE
VPCMPESTRM xmmreg,xmmrm128,imm8 AVX,SANDYBRIDGE
VPCMPISTRI xmmreg,xmmrm128,imm8 AVX,SANDYBRIDGE
VPCMPISTRM xmmreg,xmmrm128,imm8 AVX,SANDYBRIDGE
VPCMPEQB xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VPCMPEQW xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VPCMPEQD xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VPCMPEQQ xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VPCMPGTB xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VPCMPGTW xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VPCMPGTD xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VPCMPGTQ xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VPERMILPD xmmreg,xmmreg,xmmrm128 AVX,SANDYBRIDGE
VPERMILPD ymmreg,ymmreg,ymmrm256 AVX,SANDYBRIDGE
VPERMILPD xmmreg,xmmrm128,imm8 AVX,SANDYBRIDGE
VPERMILPD ymmreg,ymmrm256,imm8 AVX,SANDYBRIDGE
VPERMILTD2PD xmmreg,xmmreg,xmmrm128,xmmreg AVX,SANDYBRIDGE
VPERMILTD2PD xmmreg,xmmreg,xmmreg,xmmrm128 AVX,SANDYBRIDGE
VPERMILTD2PD ymmreg,ymmreg,ymmrm256,ymmreg AVX,SANDYBRIDGE
VPERMILTD2PD ymmreg,ymmreg,ymmreg,ymmrm256 AVX,SANDYBRIDGE
VPERMILMO2PD xmmreg,xmmreg,xmmrm128,xmmreg AVX,SANDYBRIDGE
VPERMILMO2PD xmmreg,xmmreg,xmmreg,xmmrm128 AVX,SANDYBRIDGE
VPERMILMO2PD ymmreg,ymmreg,ymmrm256,ymmreg AVX,SANDYBRIDGE
VPERMILMO2PD ymmreg,ymmreg,ymmreg,ymmrm256 AVX,SANDYBRIDGE
VPERMILMZ2PD xmmreg,xmmreg,xmmrm128,xmmreg AVX,SANDYBRIDGE
VPERMILMZ2PD xmmreg,xmmreg,xmmreg,xmmrm128 AVX,SANDYBRIDGE
VPERMILMZ2PD ymmreg,ymmreg,ymmrm256,ymmreg AVX,SANDYBRIDGE
VPERMILMZ2PD ymmreg,ymmreg,ymmreg,ymmrm256 AVX,SANDYBRIDGE
VPERMIL2PD xmmreg,xmmreg,xmmrm128,xmmreg,imm8 AVX,SANDYBRIDGE
VPERMIL2PD xmmreg,xmmreg,xmmreg,xmmrm128,imm8 AVX,SANDYBRIDGE
VPERMIL2PD ymmreg,ymmreg,ymmrm256,ymmreg,imm8 AVX,SANDYBRIDGE
VPERMIL2PD ymmreg,ymmreg,ymmreg,ymmrm256,imm8 AVX,SANDYBRIDGE
VPERMILPS xmmreg,xmmreg,xmmrm128 AVX,SANDYBRIDGE
VPERMILPS ymmreg,ymmreg,ymmrm256 AVX,SANDYBRIDGE
VPERMILPS xmmreg,xmmrm128,imm8 AVX,SANDYBRIDGE
VPERMILPS ymmreg,ymmrm256,imm8 AVX,SANDYBRIDGE
VPERMILTD2PS xmmreg,xmmreg,xmmrm128,xmmreg AVX,SANDYBRIDGE
VPERMILTD2PS xmmreg,xmmreg,xmmreg,xmmrm128 AVX,SANDYBRIDGE
VPERMILTD2PS ymmreg,ymmreg,ymmrm256,ymmreg AVX,SANDYBRIDGE
VPERMILTD2PS ymmreg,ymmreg,ymmreg,ymmrm256 AVX,SANDYBRIDGE
VPERMILMO2PS xmmreg,xmmreg,xmmrm128,xmmreg AVX,SANDYBRIDGE
VPERMILMO2PS xmmreg,xmmreg,xmmreg,xmmrm128 AVX,SANDYBRIDGE
VPERMILMO2PS ymmreg,ymmreg,ymmrm256,ymmreg AVX,SANDYBRIDGE
VPERMILMO2PS ymmreg,ymmreg,ymmreg,ymmrm256 AVX,SANDYBRIDGE
VPERMILMZ2PS xmmreg,xmmreg,xmmrm128,xmmreg AVX,SANDYBRIDGE
VPERMILMZ2PS xmmreg,xmmreg,xmmreg,xmmrm128 AVX,SANDYBRIDGE
VPERMILMZ2PS ymmreg,ymmreg,ymmrm256,ymmreg AVX,SANDYBRIDGE
VPERMILMZ2PS ymmreg,ymmreg,ymmreg,ymmrm256 AVX,SANDYBRIDGE
VPERMIL2PS xmmreg,xmmreg,xmmrm128,xmmreg,imm8 AVX,SANDYBRIDGE
VPERMIL2PS xmmreg,xmmreg,xmmreg,xmmrm128,imm8 AVX,SANDYBRIDGE
VPERMIL2PS ymmreg,ymmreg,ymmrm256,ymmreg,imm8 AVX,SANDYBRIDGE
VPERMIL2PS ymmreg,ymmreg,ymmreg,ymmrm256,imm8 AVX,SANDYBRIDGE
VPERM2F128 ymmreg,ymmreg,ymmrm256,imm8 AVX,SANDYBRIDGE
VPEXTRB reg64,xmmreg,imm8 AVX,SANDYBRIDGE,LONG
VPEXTRB reg32,xmmreg,imm8 AVX,SANDYBRIDGE
VPEXTRB mem8,xmmreg,imm8 AVX,SANDYBRIDGE
VPEXTRW reg64,xmmreg,imm8 AVX,SANDYBRIDGE,LONG
VPEXTRW reg32,xmmreg,imm8 AVX,SANDYBRIDGE
VPEXTRW mem16,xmmreg,imm8 AVX,SANDYBRIDGE
VPEXTRW reg64,xmmreg,imm8 AVX,SANDYBRIDGE,LONG
VPEXTRW reg32,xmmreg,imm8 AVX,SANDYBRIDGE
VPEXTRW mem16,xmmreg,imm8 AVX,SANDYBRIDGE
VPEXTRD reg64,xmmreg,imm8 AVX,SANDYBRIDGE,LONG
VPEXTRD rm32,xmmreg,imm8 AVX,SANDYBRIDGE
VPEXTRQ rm64,xmmreg,imm8 AVX,SANDYBRIDGE,LONG
VPHADDW xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VPHADDD xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VPHADDSW xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VPHMINPOSUW xmmreg,xmmrm128 AVX,SANDYBRIDGE
VPHSUBW xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VPHSUBD xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VPHSUBSW xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VPINSRB xmmreg,xmmreg*,mem8,imm8 AVX,SANDYBRIDGE
VPINSRB xmmreg,xmmreg*,rm8,imm8 AVX,SANDYBRIDGE
VPINSRB xmmreg,xmmreg*,reg32,imm8 AVX,SANDYBRIDGE
VPINSRW xmmreg,xmmreg*,mem16,imm8 AVX,SANDYBRIDGE
VPINSRW xmmreg,xmmreg*,rm16,imm8 AVX,SANDYBRIDGE
VPINSRW xmmreg,xmmreg*,reg32,imm8 AVX,SANDYBRIDGE
VPINSRD xmmreg,xmmreg*,mem32,imm8 AVX,SANDYBRIDGE
VPINSRD xmmreg,xmmreg*,rm32,imm8 AVX,SANDYBRIDGE
VPINSRQ xmmreg,xmmreg*,mem64,imm8 AVX,SANDYBRIDGE,LONG
VPINSRQ xmmreg,xmmreg*,rm64,imm8 AVX,SANDYBRIDGE,LONG
VPMADDWD xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VPMADDUBSW xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VPMAXSB xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VPMAXSW xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VPMAXSD xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VPMAXUB xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VPMAXUW xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VPMAXUD xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VPMINSB xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VPMINSW xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VPMINSD xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VPMINUB xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VPMINUW xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VPMINUD xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VPMOVMSKB reg64,xmmreg AVX,SANDYBRIDGE,LONG
VPMOVMSKB reg32,xmmreg AVX,SANDYBRIDGE
VPMOVSXBW xmmreg,xmmrm64 AVX,SANDYBRIDGE
VPMOVSXBD xmmreg,xmmrm32 AVX,SANDYBRIDGE
VPMOVSXBQ xmmreg,xmmrm16 AVX,SANDYBRIDGE
VPMOVSXWD xmmreg,xmmrm64 AVX,SANDYBRIDGE
VPMOVSXWQ xmmreg,xmmrm32 AVX,SANDYBRIDGE
VPMOVSXDQ xmmreg,xmmrm64 AVX,SANDYBRIDGE
VPMOVZXBW xmmreg,xmmrm64 AVX,SANDYBRIDGE
VPMOVZXBD xmmreg,xmmrm32 AVX,SANDYBRIDGE
VPMOVZXBQ xmmreg,xmmrm16 AVX,SANDYBRIDGE
VPMOVZXWD xmmreg,xmmrm64 AVX,SANDYBRIDGE
VPMOVZXWQ xmmreg,xmmrm32 AVX,SANDYBRIDGE
VPMOVZXDQ xmmreg,xmmrm64 AVX,SANDYBRIDGE
VPMULHUW xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VPMULHRSW xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VPMULHW xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VPMULLW xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VPMULLD xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VPMULUDQ xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VPMULDQ xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VPOR xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VPSADBW xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VPSHUFB xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VPSHUFD xmmreg,xmmrm128,imm8 AVX,SANDYBRIDGE
VPSHUFHW xmmreg,xmmrm128,imm8 AVX,SANDYBRIDGE
VPSHUFLW xmmreg,xmmrm128,imm8 AVX,SANDYBRIDGE
VPSIGNB xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VPSIGNW xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VPSIGND xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VPSLLDQ xmmreg,xmmreg*,imm8 AVX,SANDYBRIDGE
VPSRLDQ xmmreg,xmmreg*,imm8 AVX,SANDYBRIDGE
VPSLLW xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VPSLLW xmmreg,xmmreg*,imm8 AVX,SANDYBRIDGE
VPSLLD xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VPSLLD xmmreg,xmmreg*,imm8 AVX,SANDYBRIDGE
VPSLLQ xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VPSLLQ xmmreg,xmmreg*,imm8 AVX,SANDYBRIDGE
VPSRAW xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VPSRAW xmmreg,xmmreg*,imm8 AVX,SANDYBRIDGE
VPSRAD xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VPSRAD xmmreg,xmmreg*,imm8 AVX,SANDYBRIDGE
VPSRLW xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VPSRLW xmmreg,xmmreg*,imm8 AVX,SANDYBRIDGE
VPSRLD xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VPSRLD xmmreg,xmmreg*,imm8 AVX,SANDYBRIDGE
VPSRLQ xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VPSRLQ xmmreg,xmmreg*,imm8 AVX,SANDYBRIDGE
VPTEST xmmreg,xmmrm128 AVX,SANDYBRIDGE
VPTEST ymmreg,ymmrm256 AVX,SANDYBRIDGE
VPSUBB xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VPSUBW xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VPSUBD xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VPSUBQ xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VPSUBSB xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VPSUBSW xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VPSUBUSB xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VPSUBUSW xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VPUNPCKHBW xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VPUNPCKHWD xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VPUNPCKHDQ xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VPUNPCKHQDQ xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VPUNPCKLBW xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VPUNPCKLWD xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VPUNPCKLDQ xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VPUNPCKLQDQ xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VPXOR xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VRCPPS xmmreg,xmmrm128 AVX,SANDYBRIDGE
VRCPPS ymmreg,ymmrm256 AVX,SANDYBRIDGE
VRCPSS xmmreg,xmmreg*,xmmrm32 AVX,SANDYBRIDGE
VRSQRTPS xmmreg,xmmrm128 AVX,SANDYBRIDGE
VRSQRTPS ymmreg,ymmrm256 AVX,SANDYBRIDGE
VRSQRTSS xmmreg,xmmreg*,xmmrm32 AVX,SANDYBRIDGE
VROUNDPD xmmreg,xmmrm128,imm8 AVX,SANDYBRIDGE
VROUNDPD ymmreg,ymmrm256,imm8 AVX,SANDYBRIDGE
VROUNDPS xmmreg,xmmrm128,imm8 AVX,SANDYBRIDGE
VROUNDPS ymmreg,ymmrm256,imm8 AVX,SANDYBRIDGE
VROUNDSD xmmreg,xmmreg*,xmmrm64,imm8 AVX,SANDYBRIDGE
VROUNDSS xmmreg,xmmreg*,xmmrm32,imm8 AVX,SANDYBRIDGE
VSHUFPD xmmreg,xmmreg*,xmmrm128,imm8 AVX,SANDYBRIDGE
VSHUFPD ymmreg,ymmreg*,ymmrm256,imm8 AVX,SANDYBRIDGE
VSHUFPS xmmreg,xmmreg*,xmmrm128,imm8 AVX,SANDYBRIDGE
VSHUFPS ymmreg,ymmreg*,ymmrm256,imm8 AVX,SANDYBRIDGE
VSQRTPD xmmreg,xmmrm128 AVX,SANDYBRIDGE
VSQRTPD ymmreg,ymmrm256 AVX,SANDYBRIDGE
VSQRTPS xmmreg,xmmrm128 AVX,SANDYBRIDGE
VSQRTPS ymmreg,ymmrm256 AVX,SANDYBRIDGE
VSQRTSD xmmreg,xmmreg*,xmmrm64 AVX,SANDYBRIDGE
VSQRTSS xmmreg,xmmreg*,xmmrm32 AVX,SANDYBRIDGE
VSTMXCSR mem32 AVX,SANDYBRIDGE
VSUBPD xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VSUBPD ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VSUBPS xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VSUBPS ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VSUBSD xmmreg,xmmreg*,xmmrm64 AVX,SANDYBRIDGE
VSUBSS xmmreg,xmmreg*,xmmrm32 AVX,SANDYBRIDGE
VTESTPS xmmreg,xmmrm128 AVX,SANDYBRIDGE
VTESTPS ymmreg,ymmrm256 AVX,SANDYBRIDGE
VTESTPD xmmreg,xmmrm128 AVX,SANDYBRIDGE
VTESTPD ymmreg,ymmrm256 AVX,SANDYBRIDGE
VUCOMISD xmmreg,xmmrm64 AVX,SANDYBRIDGE
VUCOMISS xmmreg,xmmrm32 AVX,SANDYBRIDGE
VUNPCKHPD xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VUNPCKHPD ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VUNPCKHPS xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VUNPCKHPS ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VUNPCKLPD xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VUNPCKLPD ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VUNPCKLPS xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VUNPCKLPS ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VXORPD xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VXORPD ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VXORPS xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VXORPS ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VZEROALL AVX,SANDYBRIDGE
VZEROUPPER AVX,SANDYBRIDGE
B.1.26 Intel Carry-Less Multiplication instructions (CLMUL)
PCLMULLQLQDQ xmmreg,xmmrm128 SSE,WESTMERE
PCLMULHQLQDQ xmmreg,xmmrm128 SSE,WESTMERE
PCLMULLQHQDQ xmmreg,xmmrm128 SSE,WESTMERE
PCLMULHQHQDQ xmmreg,xmmrm128 SSE,WESTMERE
PCLMULQDQ xmmreg,xmmrm128,imm8 SSE,WESTMERE
B.1.27 Intel AVX Carry-Less Multiplication instructions (CLMUL)
VPCLMULLQLQDQ xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VPCLMULHQLQDQ xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VPCLMULLQHQDQ xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VPCLMULHQHQDQ xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VPCLMULQDQ xmmreg,xmmreg*,xmmrm128,imm8 AVX,SANDYBRIDGE
B.1.28 Intel Fused Multiply-Add instructions (FMA)
VFMADD132PS xmmreg,xmmreg,xmmrm128 FMA,FUTURE
VFMADD132PS ymmreg,ymmreg,ymmrm256 FMA,FUTURE
VFMADD132PD xmmreg,xmmreg,xmmrm128 FMA,FUTURE
VFMADD132PD ymmreg,ymmreg,ymmrm256 FMA,FUTURE
VFMADD312PS xmmreg,xmmreg,xmmrm128 FMA,FUTURE
VFMADD312PS ymmreg,ymmreg,ymmrm256 FMA,FUTURE
VFMADD312PD xmmreg,xmmreg,xmmrm128 FMA,FUTURE
VFMADD312PD ymmreg,ymmreg,ymmrm256 FMA,FUTURE
VFMADD213PS xmmreg,xmmreg,xmmrm128 FMA,FUTURE
VFMADD213PS ymmreg,ymmreg,ymmrm256 FMA,FUTURE
VFMADD213PD xmmreg,xmmreg,xmmrm128 FMA,FUTURE
VFMADD213PD ymmreg,ymmreg,ymmrm256 FMA,FUTURE
VFMADD123PS xmmreg,xmmreg,xmmrm128 FMA,FUTURE
VFMADD123PS ymmreg,ymmreg,ymmrm256 FMA,FUTURE
VFMADD123PD xmmreg,xmmreg,xmmrm128 FMA,FUTURE
VFMADD123PD ymmreg,ymmreg,ymmrm256 FMA,FUTURE
VFMADD231PS xmmreg,xmmreg,xmmrm128 FMA,FUTURE
VFMADD231PS ymmreg,ymmreg,ymmrm256 FMA,FUTURE
VFMADD231PD xmmreg,xmmreg,xmmrm128 FMA,FUTURE
VFMADD231PD ymmreg,ymmreg,ymmrm256 FMA,FUTURE
VFMADD321PS xmmreg,xmmreg,xmmrm128 FMA,FUTURE
VFMADD321PS ymmreg,ymmreg,ymmrm256 FMA,FUTURE
VFMADD321PD xmmreg,xmmreg,xmmrm128 FMA,FUTURE
VFMADD321PD ymmreg,ymmreg,ymmrm256 FMA,FUTURE
VFMADDSUB132PS xmmreg,xmmreg,xmmrm128 FMA,FUTURE
VFMADDSUB132PS ymmreg,ymmreg,ymmrm256 FMA,FUTURE
VFMADDSUB132PD xmmreg,xmmreg,xmmrm128 FMA,FUTURE
VFMADDSUB132PD ymmreg,ymmreg,ymmrm256 FMA,FUTURE
VFMADDSUB312PS xmmreg,xmmreg,xmmrm128 FMA,FUTURE
VFMADDSUB312PS ymmreg,ymmreg,ymmrm256 FMA,FUTURE
VFMADDSUB312PD xmmreg,xmmreg,xmmrm128 FMA,FUTURE
VFMADDSUB312PD ymmreg,ymmreg,ymmrm256 FMA,FUTURE
VFMADDSUB213PS xmmreg,xmmreg,xmmrm128 FMA,FUTURE
VFMADDSUB213PS ymmreg,ymmreg,ymmrm256 FMA,FUTURE
VFMADDSUB213PD xmmreg,xmmreg,xmmrm128 FMA,FUTURE
VFMADDSUB213PD ymmreg,ymmreg,ymmrm256 FMA,FUTURE
VFMADDSUB123PS xmmreg,xmmreg,xmmrm128 FMA,FUTURE
VFMADDSUB123PS ymmreg,ymmreg,ymmrm256 FMA,FUTURE
VFMADDSUB123PD xmmreg,xmmreg,xmmrm128 FMA,FUTURE
VFMADDSUB123PD ymmreg,ymmreg,ymmrm256 FMA,FUTURE
VFMADDSUB231PS xmmreg,xmmreg,xmmrm128 FMA,FUTURE
VFMADDSUB231PS ymmreg,ymmreg,ymmrm256 FMA,FUTURE
VFMADDSUB231PD xmmreg,xmmreg,xmmrm128 FMA,FUTURE
VFMADDSUB231PD ymmreg,ymmreg,ymmrm256 FMA,FUTURE
VFMADDSUB321PS xmmreg,xmmreg,xmmrm128 FMA,FUTURE
VFMADDSUB321PS ymmreg,ymmreg,ymmrm256 FMA,FUTURE
VFMADDSUB321PD xmmreg,xmmreg,xmmrm128 FMA,FUTURE
VFMADDSUB321PD ymmreg,ymmreg,ymmrm256 FMA,FUTURE
VFMSUB132PS xmmreg,xmmreg,xmmrm128 FMA,FUTURE
VFMSUB132PS ymmreg,ymmreg,ymmrm256 FMA,FUTURE
VFMSUB132PD xmmreg,xmmreg,xmmrm128 FMA,FUTURE
VFMSUB132PD ymmreg,ymmreg,ymmrm256 FMA,FUTURE
VFMSUB312PS xmmreg,xmmreg,xmmrm128 FMA,FUTURE
VFMSUB312PS ymmreg,ymmreg,ymmrm256 FMA,FUTURE
VFMSUB312PD xmmreg,xmmreg,xmmrm128 FMA,FUTURE
VFMSUB312PD ymmreg,ymmreg,ymmrm256 FMA,FUTURE
VFMSUB213PS xmmreg,xmmreg,xmmrm128 FMA,FUTURE
VFMSUB213PS ymmreg,ymmreg,ymmrm256 FMA,FUTURE
VFMSUB213PD xmmreg,xmmreg,xmmrm128 FMA,FUTURE
VFMSUB213PD ymmreg,ymmreg,ymmrm256 FMA,FUTURE
VFMSUB123PS xmmreg,xmmreg,xmmrm128 FMA,FUTURE
VFMSUB123PS ymmreg,ymmreg,ymmrm256 FMA,FUTURE
VFMSUB123PD xmmreg,xmmreg,xmmrm128 FMA,FUTURE
VFMSUB123PD ymmreg,ymmreg,ymmrm256 FMA,FUTURE
VFMSUB231PS xmmreg,xmmreg,xmmrm128 FMA,FUTURE
VFMSUB231PS ymmreg,ymmreg,ymmrm256 FMA,FUTURE
VFMSUB231PD xmmreg,xmmreg,xmmrm128 FMA,FUTURE
VFMSUB231PD ymmreg,ymmreg,ymmrm256 FMA,FUTURE
VFMSUB321PS xmmreg,xmmreg,xmmrm128 FMA,FUTURE
VFMSUB321PS ymmreg,ymmreg,ymmrm256 FMA,FUTURE
VFMSUB321PD xmmreg,xmmreg,xmmrm128 FMA,FUTURE
VFMSUB321PD ymmreg,ymmreg,ymmrm256 FMA,FUTURE
VFMSUBADD132PS xmmreg,xmmreg,xmmrm128 FMA,FUTURE
VFMSUBADD132PS ymmreg,ymmreg,ymmrm256 FMA,FUTURE
VFMSUBADD132PD xmmreg,xmmreg,xmmrm128 FMA,FUTURE
VFMSUBADD132PD ymmreg,ymmreg,ymmrm256 FMA,FUTURE
VFMSUBADD312PS xmmreg,xmmreg,xmmrm128 FMA,FUTURE
VFMSUBADD312PS ymmreg,ymmreg,ymmrm256 FMA,FUTURE
VFMSUBADD312PD xmmreg,xmmreg,xmmrm128 FMA,FUTURE
VFMSUBADD312PD ymmreg,ymmreg,ymmrm256 FMA,FUTURE
VFMSUBADD213PS xmmreg,xmmreg,xmmrm128 FMA,FUTURE
VFMSUBADD213PS ymmreg,ymmreg,ymmrm256 FMA,FUTURE
VFMSUBADD213PD xmmreg,xmmreg,xmmrm128 FMA,FUTURE
VFMSUBADD213PD ymmreg,ymmreg,ymmrm256 FMA,FUTURE
VFMSUBADD123PS xmmreg,xmmreg,xmmrm128 FMA,FUTURE
VFMSUBADD123PS ymmreg,ymmreg,ymmrm256 FMA,FUTURE
VFMSUBADD123PD xmmreg,xmmreg,xmmrm128 FMA,FUTURE
VFMSUBADD123PD ymmreg,ymmreg,ymmrm256 FMA,FUTURE
VFMSUBADD231PS xmmreg,xmmreg,xmmrm128 FMA,FUTURE
VFMSUBADD231PS ymmreg,ymmreg,ymmrm256 FMA,FUTURE
VFMSUBADD231PD xmmreg,xmmreg,xmmrm128 FMA,FUTURE
VFMSUBADD231PD ymmreg,ymmreg,ymmrm256 FMA,FUTURE
VFMSUBADD321PS xmmreg,xmmreg,xmmrm128 FMA,FUTURE
VFMSUBADD321PS ymmreg,ymmreg,ymmrm256 FMA,FUTURE
VFMSUBADD321PD xmmreg,xmmreg,xmmrm128 FMA,FUTURE
VFMSUBADD321PD ymmreg,ymmreg,ymmrm256 FMA,FUTURE
VFNMADD132PS xmmreg,xmmreg,xmmrm128 FMA,FUTURE
VFNMADD132PS ymmreg,ymmreg,ymmrm256 FMA,FUTURE
VFNMADD132PD xmmreg,xmmreg,xmmrm128 FMA,FUTURE
VFNMADD132PD ymmreg,ymmreg,ymmrm256 FMA,FUTURE
VFNMADD312PS xmmreg,xmmreg,xmmrm128 FMA,FUTURE
VFNMADD312PS ymmreg,ymmreg,ymmrm256 FMA,FUTURE
VFNMADD312PD xmmreg,xmmreg,xmmrm128 FMA,FUTURE
VFNMADD312PD ymmreg,ymmreg,ymmrm256 FMA,FUTURE
VFNMADD213PS xmmreg,xmmreg,xmmrm128 FMA,FUTURE
VFNMADD213PS ymmreg,ymmreg,ymmrm256 FMA,FUTURE
VFNMADD213PD xmmreg,xmmreg,xmmrm128 FMA,FUTURE
VFNMADD213PD ymmreg,ymmreg,ymmrm256 FMA,FUTURE
VFNMADD123PS xmmreg,xmmreg,xmmrm128 FMA,FUTURE
VFNMADD123PS ymmreg,ymmreg,ymmrm256 FMA,FUTURE
VFNMADD123PD xmmreg,xmmreg,xmmrm128 FMA,FUTURE
VFNMADD123PD ymmreg,ymmreg,ymmrm256 FMA,FUTURE
VFNMADD231PS xmmreg,xmmreg,xmmrm128 FMA,FUTURE
VFNMADD231PS ymmreg,ymmreg,ymmrm256 FMA,FUTURE
VFNMADD231PD xmmreg,xmmreg,xmmrm128 FMA,FUTURE
VFNMADD231PD ymmreg,ymmreg,ymmrm256 FMA,FUTURE
VFNMADD321PS xmmreg,xmmreg,xmmrm128 FMA,FUTURE
VFNMADD321PS ymmreg,ymmreg,ymmrm256 FMA,FUTURE
VFNMADD321PD xmmreg,xmmreg,xmmrm128 FMA,FUTURE
VFNMADD321PD ymmreg,ymmreg,ymmrm256 FMA,FUTURE
VFNMSUB132PS xmmreg,xmmreg,xmmrm128 FMA,FUTURE
VFNMSUB132PS ymmreg,ymmreg,ymmrm256 FMA,FUTURE
VFNMSUB132PD xmmreg,xmmreg,xmmrm128 FMA,FUTURE
VFNMSUB132PD ymmreg,ymmreg,ymmrm256 FMA,FUTURE
VFNMSUB312PS xmmreg,xmmreg,xmmrm128 FMA,FUTURE
VFNMSUB312PS ymmreg,ymmreg,ymmrm256 FMA,FUTURE
VFNMSUB312PD xmmreg,xmmreg,xmmrm128 FMA,FUTURE
VFNMSUB312PD ymmreg,ymmreg,ymmrm256 FMA,FUTURE
VFNMSUB213PS xmmreg,xmmreg,xmmrm128 FMA,FUTURE
VFNMSUB213PS ymmreg,ymmreg,ymmrm256 FMA,FUTURE
VFNMSUB213PD xmmreg,xmmreg,xmmrm128 FMA,FUTURE
VFNMSUB213PD ymmreg,ymmreg,ymmrm256 FMA,FUTURE
VFNMSUB123PS xmmreg,xmmreg,xmmrm128 FMA,FUTURE
VFNMSUB123PS ymmreg,ymmreg,ymmrm256 FMA,FUTURE
VFNMSUB123PD xmmreg,xmmreg,xmmrm128 FMA,FUTURE
VFNMSUB123PD ymmreg,ymmreg,ymmrm256 FMA,FUTURE
VFNMSUB231PS xmmreg,xmmreg,xmmrm128 FMA,FUTURE
VFNMSUB231PS ymmreg,ymmreg,ymmrm256 FMA,FUTURE
VFNMSUB231PD xmmreg,xmmreg,xmmrm128 FMA,FUTURE
VFNMSUB231PD ymmreg,ymmreg,ymmrm256 FMA,FUTURE
VFNMSUB321PS xmmreg,xmmreg,xmmrm128 FMA,FUTURE
VFNMSUB321PS ymmreg,ymmreg,ymmrm256 FMA,FUTURE
VFNMSUB321PD xmmreg,xmmreg,xmmrm128 FMA,FUTURE
VFNMSUB321PD ymmreg,ymmreg,ymmrm256 FMA,FUTURE
VFMADD132SS xmmreg,xmmreg,xmmrm32 FMA,FUTURE
VFMADD132SD xmmreg,xmmreg,xmmrm64 FMA,FUTURE
VFMADD312SS xmmreg,xmmreg,xmmrm32 FMA,FUTURE
VFMADD312SD xmmreg,xmmreg,xmmrm64 FMA,FUTURE
VFMADD213SS xmmreg,xmmreg,xmmrm32 FMA,FUTURE
VFMADD213SD xmmreg,xmmreg,xmmrm64 FMA,FUTURE
VFMADD123SS xmmreg,xmmreg,xmmrm32 FMA,FUTURE
VFMADD123SD xmmreg,xmmreg,xmmrm64 FMA,FUTURE
VFMADD231SS xmmreg,xmmreg,xmmrm32 FMA,FUTURE
VFMADD231SD xmmreg,xmmreg,xmmrm64 FMA,FUTURE
VFMADD321SS xmmreg,xmmreg,xmmrm32 FMA,FUTURE
VFMADD321SD xmmreg,xmmreg,xmmrm64 FMA,FUTURE
VFMSUB132SS xmmreg,xmmreg,xmmrm32 FMA,FUTURE
VFMSUB132SD xmmreg,xmmreg,xmmrm64 FMA,FUTURE
VFMSUB312SS xmmreg,xmmreg,xmmrm32 FMA,FUTURE
VFMSUB312SD xmmreg,xmmreg,xmmrm64 FMA,FUTURE
VFMSUB213SS xmmreg,xmmreg,xmmrm32 FMA,FUTURE
VFMSUB213SD xmmreg,xmmreg,xmmrm64 FMA,FUTURE
VFMSUB123SS xmmreg,xmmreg,xmmrm32 FMA,FUTURE
VFMSUB123SD xmmreg,xmmreg,xmmrm64 FMA,FUTURE
VFMSUB231SS xmmreg,xmmreg,xmmrm32 FMA,FUTURE
VFMSUB231SD xmmreg,xmmreg,xmmrm64 FMA,FUTURE
VFMSUB321SS xmmreg,xmmreg,xmmrm32 FMA,FUTURE
VFMSUB321SD xmmreg,xmmreg,xmmrm64 FMA,FUTURE
VFNMADD132SS xmmreg,xmmreg,xmmrm32 FMA,FUTURE
VFNMADD132SD xmmreg,xmmreg,xmmrm64 FMA,FUTURE
VFNMADD312SS xmmreg,xmmreg,xmmrm32 FMA,FUTURE
VFNMADD312SD xmmreg,xmmreg,xmmrm64 FMA,FUTURE
VFNMADD213SS xmmreg,xmmreg,xmmrm32 FMA,FUTURE
VFNMADD213SD xmmreg,xmmreg,xmmrm64 FMA,FUTURE
VFNMADD123SS xmmreg,xmmreg,xmmrm32 FMA,FUTURE
VFNMADD123SD xmmreg,xmmreg,xmmrm64 FMA,FUTURE
VFNMADD231SS xmmreg,xmmreg,xmmrm32 FMA,FUTURE
VFNMADD231SD xmmreg,xmmreg,xmmrm64 FMA,FUTURE
VFNMADD321SS xmmreg,xmmreg,xmmrm32 FMA,FUTURE
VFNMADD321SD xmmreg,xmmreg,xmmrm64 FMA,FUTURE
VFNMSUB132SS xmmreg,xmmreg,xmmrm32 FMA,FUTURE
VFNMSUB132SD xmmreg,xmmreg,xmmrm64 FMA,FUTURE
VFNMSUB312SS xmmreg,xmmreg,xmmrm32 FMA,FUTURE
VFNMSUB312SD xmmreg,xmmreg,xmmrm64 FMA,FUTURE
VFNMSUB213SS xmmreg,xmmreg,xmmrm32 FMA,FUTURE
VFNMSUB213SD xmmreg,xmmreg,xmmrm64 FMA,FUTURE
VFNMSUB123SS xmmreg,xmmreg,xmmrm32 FMA,FUTURE
VFNMSUB123SD xmmreg,xmmreg,xmmrm64 FMA,FUTURE
VFNMSUB231SS xmmreg,xmmreg,xmmrm32 FMA,FUTURE
VFNMSUB231SD xmmreg,xmmreg,xmmrm64 FMA,FUTURE
VFNMSUB321SS xmmreg,xmmreg,xmmrm32 FMA,FUTURE
VFNMSUB321SD xmmreg,xmmreg,xmmrm64 FMA,FUTURE
B.1.29 VIA (Centaur) security instructions
XSTORE PENT,CYRIX
XCRYPTECB PENT,CYRIX
XCRYPTCBC PENT,CYRIX
XCRYPTCTR PENT,CYRIX
XCRYPTCFB PENT,CYRIX
XCRYPTOFB PENT,CYRIX
MONTMUL PENT,CYRIX
XSHA1 PENT,CYRIX
XSHA256 PENT,CYRIX
B.1.30 AMD Lightweight Profiling (LWP) instructions
LLWPCB reg16 AMD
LLWPCB reg32 AMD,386
LLWPCB reg64 AMD,X64
SLWPCB reg16 AMD
SLWPCB reg32 AMD,386
SLWPCB reg64 AMD,X64
LWPVAL reg16,rm32,imm16 AMD,386
LWPVAL reg32,rm32,imm32 AMD,386
LWPVAL reg64,rm32,imm32 AMD,X64
LWPINS reg16,rm32,imm16 AMD,386
LWPINS reg32,rm32,imm32 AMD,386
LWPINS reg64,rm32,imm32 AMD,X64
B.1.31 AMD XOP, FMA4 and CVT16 instructions (SSE5)
VCVTPH2PS xmmreg,xmmrm64*,imm8 AMD,SSE5
VCVTPH2PS ymmreg,xmmrm128,imm8 AMD,SSE5
VCVTPH2PS ymmreg,ymmrm128*,imm8 AMD,SSE5
VCVTPS2PH xmmrm64,xmmreg*,imm8 AMD,SSE5
VCVTPS2PH xmmrm128,ymmreg,imm8 AMD,SSE5
VCVTPS2PH ymmrm128,ymmreg*,imm8 AMD,SSE5
VFMADDPD xmmreg,xmmreg*,xmmrm128,xmmreg AMD,SSE5
VFMADDPD ymmreg,ymmreg*,ymmrm256,ymmreg AMD,SSE5
VFMADDPD xmmreg,xmmreg*,xmmreg,xmmrm128 AMD,SSE5
VFMADDPD ymmreg,ymmreg*,ymmreg,ymmrm256 AMD,SSE5
VFMADDPS xmmreg,xmmreg*,xmmrm128,xmmreg AMD,SSE5
VFMADDPS ymmreg,ymmreg*,ymmrm256,ymmreg AMD,SSE5
VFMADDPS xmmreg,xmmreg*,xmmreg,xmmrm128 AMD,SSE5
VFMADDPS ymmreg,ymmreg*,ymmreg,ymmrm256 AMD,SSE5
VFMADDSD xmmreg,xmmreg*,xmmrm64,xmmreg AMD,SSE5
VFMADDSD xmmreg,xmmreg*,xmmreg,xmmrm64 AMD,SSE5
VFMADDSS xmmreg,xmmreg*,xmmrm32,xmmreg AMD,SSE5
VFMADDSS xmmreg,xmmreg*,xmmreg,xmmrm32 AMD,SSE5
VFMADDSUBPD xmmreg,xmmreg*,xmmrm128,xmmreg AMD,SSE5
VFMADDSUBPD ymmreg,ymmreg*,ymmrm256,ymmreg AMD,SSE5
VFMADDSUBPD xmmreg,xmmreg*,xmmreg,xmmrm128 AMD,SSE5
VFMADDSUBPD ymmreg,ymmreg*,ymmreg,ymmrm256 AMD,SSE5
VFMADDSUBPS xmmreg,xmmreg*,xmmrm128,xmmreg AMD,SSE5
VFMADDSUBPS ymmreg,ymmreg*,ymmrm256,ymmreg AMD,SSE5
VFMADDSUBPS xmmreg,xmmreg*,xmmreg,xmmrm128 AMD,SSE5
VFMADDSUBPS ymmreg,ymmreg*,ymmreg,ymmrm256 AMD,SSE5
VFMSUBADDPD xmmreg,xmmreg*,xmmrm128,xmmreg AMD,SSE5
VFMSUBADDPD ymmreg,ymmreg*,ymmrm256,ymmreg AMD,SSE5
VFMSUBADDPD xmmreg,xmmreg*,xmmreg,xmmrm128 AMD,SSE5
VFMSUBADDPD ymmreg,ymmreg*,ymmreg,ymmrm256 AMD,SSE5
VFMSUBADDPS xmmreg,xmmreg*,xmmrm128,xmmreg AMD,SSE5
VFMSUBADDPS ymmreg,ymmreg*,ymmrm256,ymmreg AMD,SSE5
VFMSUBADDPS xmmreg,xmmreg*,xmmreg,xmmrm128 AMD,SSE5
VFMSUBADDPS ymmreg,ymmreg*,ymmreg,ymmrm256 AMD,SSE5
VFMSUBPD xmmreg,xmmreg*,xmmrm128,xmmreg AMD,SSE5
VFMSUBPD ymmreg,ymmreg*,ymmrm256,ymmreg AMD,SSE5
VFMSUBPD xmmreg,xmmreg*,xmmreg,xmmrm128 AMD,SSE5
VFMSUBPD ymmreg,ymmreg*,ymmreg,ymmrm256 AMD,SSE5
VFMSUBPS xmmreg,xmmreg*,xmmrm128,xmmreg AMD,SSE5
VFMSUBPS ymmreg,ymmreg*,ymmrm256,ymmreg AMD,SSE5
VFMSUBPS xmmreg,xmmreg*,xmmreg,xmmrm128 AMD,SSE5
VFMSUBPS ymmreg,ymmreg*,ymmreg,ymmrm256 AMD,SSE5
VFMSUBSD xmmreg,xmmreg*,xmmrm64,xmmreg AMD,SSE5
VFMSUBSD xmmreg,xmmreg*,xmmreg,xmmrm64 AMD,SSE5
VFMSUBSS xmmreg,xmmreg*,xmmrm32,xmmreg AMD,SSE5
VFMSUBSS xmmreg,xmmreg*,xmmreg,xmmrm32 AMD,SSE5
VFNMADDPD xmmreg,xmmreg*,xmmrm128,xmmreg AMD,SSE5
VFNMADDPD ymmreg,ymmreg*,ymmrm256,ymmreg AMD,SSE5
VFNMADDPD xmmreg,xmmreg*,xmmreg,xmmrm128 AMD,SSE5
VFNMADDPD ymmreg,ymmreg*,ymmreg,ymmrm256 AMD,SSE5
VFNMADDPS xmmreg,xmmreg*,xmmrm128,xmmreg AMD,SSE5
VFNMADDPS ymmreg,ymmreg*,ymmrm256,ymmreg AMD,SSE5
VFNMADDPS xmmreg,xmmreg*,xmmreg,xmmrm128 AMD,SSE5
VFNMADDPS ymmreg,ymmreg*,ymmreg,ymmrm256 AMD,SSE5
VFNMADDSD xmmreg,xmmreg*,xmmrm64,xmmreg AMD,SSE5
VFNMADDSD xmmreg,xmmreg*,xmmreg,xmmrm64 AMD,SSE5
VFNMADDSS xmmreg,xmmreg*,xmmrm32,xmmreg AMD,SSE5
VFNMADDSS xmmreg,xmmreg*,xmmreg,xmmrm32 AMD,SSE5
VFNMSUBPD xmmreg,xmmreg*,xmmrm128,xmmreg AMD,SSE5
VFNMSUBPD ymmreg,ymmreg*,ymmrm256,ymmreg AMD,SSE5
VFNMSUBPD xmmreg,xmmreg*,xmmreg,xmmrm128 AMD,SSE5
VFNMSUBPD ymmreg,ymmreg*,ymmreg,ymmrm256 AMD,SSE5
VFNMSUBPS xmmreg,xmmreg*,xmmrm128,xmmreg AMD,SSE5
VFNMSUBPS ymmreg,ymmreg*,ymmrm256,ymmreg AMD,SSE5
VFNMSUBPS xmmreg,xmmreg*,xmmreg,xmmrm128 AMD,SSE5
VFNMSUBPS ymmreg,ymmreg*,ymmreg,ymmrm256 AMD,SSE5
VFNMSUBSD xmmreg,xmmreg*,xmmrm64,xmmreg AMD,SSE5
VFNMSUBSD xmmreg,xmmreg*,xmmreg,xmmrm64 AMD,SSE5
VFNMSUBSS xmmreg,xmmreg*,xmmrm32,xmmreg AMD,SSE5
VFNMSUBSS xmmreg,xmmreg*,xmmreg,xmmrm32 AMD,SSE5
VFRCZPD xmmreg,xmmrm128* AMD,SSE5
VFRCZPD ymmreg,ymmrm256* AMD,SSE5
VFRCZPS xmmreg,xmmrm128* AMD,SSE5
VFRCZPS ymmreg,ymmrm256* AMD,SSE5
VFRCZSD xmmreg,xmmrm64* AMD,SSE5
VFRCZSS xmmreg,xmmrm32* AMD,SSE5
VPCMOV xmmreg,xmmreg*,xmmrm128,xmmreg AMD,SSE5
VPCMOV ymmreg,ymmreg*,ymmrm256,ymmreg AMD,SSE5
VPCMOV xmmreg,xmmreg*,xmmreg,xmmrm128 AMD,SSE5
VPCMOV ymmreg,ymmreg*,ymmreg,ymmrm256 AMD,SSE5
VPCOMB xmmreg,xmmreg*,xmmrm128,imm8 AMD,SSE5
VPCOMD xmmreg,xmmreg*,xmmrm128,imm8 AMD,SSE5
VPCOMQ xmmreg,xmmreg*,xmmrm128,imm8 AMD,SSE5
VPCOMUB xmmreg,xmmreg*,xmmrm128,imm8 AMD,SSE5
VPCOMUD xmmreg,xmmreg*,xmmrm128,imm8 AMD,SSE5
VPCOMUQ xmmreg,xmmreg*,xmmrm128,imm8 AMD,SSE5
VPCOMUW xmmreg,xmmreg*,xmmrm128,imm8 AMD,SSE5
VPCOMW xmmreg,xmmreg*,xmmrm128,imm8 AMD,SSE5
VPHADDBD xmmreg,xmmrm128* AMD,SSE5
VPHADDBQ xmmreg,xmmrm128* AMD,SSE5
VPHADDBW xmmreg,xmmrm128* AMD,SSE5
VPHADDDQ xmmreg,xmmrm128* AMD,SSE5
VPHADDUBD xmmreg,xmmrm128* AMD,SSE5
VPHADDUBQ xmmreg,xmmrm128* AMD,SSE5
VPHADDUBW xmmreg,xmmrm128* AMD,SSE5
VPHADDUDQ xmmreg,xmmrm128* AMD,SSE5
VPHADDUWD xmmreg,xmmrm128* AMD,SSE5
VPHADDUWQ xmmreg,xmmrm128* AMD,SSE5
VPHADDWD xmmreg,xmmrm128* AMD,SSE5
VPHADDWQ xmmreg,xmmrm128* AMD,SSE5
VPHSUBBW xmmreg,xmmrm128* AMD,SSE5
VPHSUBDQ xmmreg,xmmrm128* AMD,SSE5
VPHSUBWD xmmreg,xmmrm128* AMD,SSE5
VPMACSDD xmmreg,xmmreg*,xmmrm128,xmmreg AMD,SSE5
VPMACSDQH xmmreg,xmmreg*,xmmrm128,xmmreg AMD,SSE5
VPMACSDQL xmmreg,xmmreg*,xmmrm128,xmmreg AMD,SSE5
VPMACSSDD xmmreg,xmmreg*,xmmrm128,xmmreg AMD,SSE5
VPMACSSDQH xmmreg,xmmreg*,xmmrm128,xmmreg AMD,SSE5
VPMACSSDQL xmmreg,xmmreg*,xmmrm128,xmmreg AMD,SSE5
VPMACSSWD xmmreg,xmmreg*,xmmrm128,xmmreg AMD,SSE5
VPMACSSWW xmmreg,xmmreg*,xmmrm128,xmmreg AMD,SSE5
VPMACSWD xmmreg,xmmreg*,xmmrm128,xmmreg AMD,SSE5
VPMACSWW xmmreg,xmmreg*,xmmrm128,xmmreg AMD,SSE5
VPMADCSSWD xmmreg,xmmreg*,xmmrm128,xmmreg AMD,SSE5
VPMADCSWD xmmreg,xmmreg*,xmmrm128,xmmreg AMD,SSE5
VPPERM xmmreg,xmmreg*,xmmreg,xmmrm128 AMD,SSE5
VPPERM xmmreg,xmmreg*,xmmrm128,xmmreg AMD,SSE5
VPROTB xmmreg,xmmrm128*,xmmreg AMD,SSE5
VPROTB xmmreg,xmmreg*,xmmrm128 AMD,SSE5
VPROTB xmmreg,xmmrm128*,imm8 AMD,SSE5
VPROTD xmmreg,xmmrm128*,xmmreg AMD,SSE5
VPROTD xmmreg,xmmreg*,xmmrm128 AMD,SSE5
VPROTD xmmreg,xmmrm128*,imm8 AMD,SSE5
VPROTQ xmmreg,xmmrm128*,xmmreg AMD,SSE5
VPROTQ xmmreg,xmmreg*,xmmrm128 AMD,SSE5
VPROTQ xmmreg,xmmrm128*,imm8 AMD,SSE5
VPROTW xmmreg,xmmrm128*,xmmreg AMD,SSE5
VPROTW xmmreg,xmmreg*,xmmrm128 AMD,SSE5
VPROTW xmmreg,xmmrm128*,imm8 AMD,SSE5
VPSHAB xmmreg,xmmrm128*,xmmreg AMD,SSE5
VPSHAB xmmreg,xmmreg*,xmmrm128 AMD,SSE5
VPSHAD xmmreg,xmmrm128*,xmmreg AMD,SSE5
VPSHAD xmmreg,xmmreg*,xmmrm128 AMD,SSE5
VPSHAQ xmmreg,xmmrm128*,xmmreg AMD,SSE5
VPSHAQ xmmreg,xmmreg*,xmmrm128 AMD,SSE5
VPSHAW xmmreg,xmmrm128*,xmmreg AMD,SSE5
VPSHAW xmmreg,xmmreg*,xmmrm128 AMD,SSE5
VPSHLB xmmreg,xmmrm128*,xmmreg AMD,SSE5
VPSHLB xmmreg,xmmreg*,xmmrm128 AMD,SSE5
VPSHLD xmmreg,xmmrm128*,xmmreg AMD,SSE5
VPSHLD xmmreg,xmmreg*,xmmrm128 AMD,SSE5
VPSHLQ xmmreg,xmmrm128*,xmmreg AMD,SSE5
VPSHLQ xmmreg,xmmreg*,xmmrm128 AMD,SSE5
VPSHLW xmmreg,xmmrm128*,xmmreg AMD,SSE5
VPSHLW xmmreg,xmmreg*,xmmrm128 AMD,SSE5
B.1.32 Systematic names for the hinting nop instructions
HINT_NOP0 rm16 P6,UNDOC
HINT_NOP0 rm32 P6,UNDOC
HINT_NOP0 rm64 X64,UNDOC
HINT_NOP1 rm16 P6,UNDOC
HINT_NOP1 rm32 P6,UNDOC
HINT_NOP1 rm64 X64,UNDOC
HINT_NOP2 rm16 P6,UNDOC
HINT_NOP2 rm32 P6,UNDOC
HINT_NOP2 rm64 X64,UNDOC
HINT_NOP3 rm16 P6,UNDOC
HINT_NOP3 rm32 P6,UNDOC
HINT_NOP3 rm64 X64,UNDOC
HINT_NOP4 rm16 P6,UNDOC
HINT_NOP4 rm32 P6,UNDOC
HINT_NOP4 rm64 X64,UNDOC
HINT_NOP5 rm16 P6,UNDOC
HINT_NOP5 rm32 P6,UNDOC
HINT_NOP5 rm64 X64,UNDOC
HINT_NOP6 rm16 P6,UNDOC
HINT_NOP6 rm32 P6,UNDOC
HINT_NOP6 rm64 X64,UNDOC
HINT_NOP7 rm16 P6,UNDOC
HINT_NOP7 rm32 P6,UNDOC
HINT_NOP7 rm64 X64,UNDOC
HINT_NOP8 rm16 P6,UNDOC
HINT_NOP8 rm32 P6,UNDOC
HINT_NOP8 rm64 X64,UNDOC
HINT_NOP9 rm16 P6,UNDOC
HINT_NOP9 rm32 P6,UNDOC
HINT_NOP9 rm64 X64,UNDOC
HINT_NOP10 rm16 P6,UNDOC
HINT_NOP10 rm32 P6,UNDOC
HINT_NOP10 rm64 X64,UNDOC
HINT_NOP11 rm16 P6,UNDOC
HINT_NOP11 rm32 P6,UNDOC
HINT_NOP11 rm64 X64,UNDOC
HINT_NOP12 rm16 P6,UNDOC
HINT_NOP12 rm32 P6,UNDOC
HINT_NOP12 rm64 X64,UNDOC
HINT_NOP13 rm16 P6,UNDOC
HINT_NOP13 rm32 P6,UNDOC
HINT_NOP13 rm64 X64,UNDOC
HINT_NOP14 rm16 P6,UNDOC
HINT_NOP14 rm32 P6,UNDOC
HINT_NOP14 rm64 X64,UNDOC
HINT_NOP15 rm16 P6,UNDOC
HINT_NOP15 rm32 P6,UNDOC
HINT_NOP15 rm64 X64,UNDOC
HINT_NOP16 rm16 P6,UNDOC
HINT_NOP16 rm32 P6,UNDOC
HINT_NOP16 rm64 X64,UNDOC
HINT_NOP17 rm16 P6,UNDOC
HINT_NOP17 rm32 P6,UNDOC
HINT_NOP17 rm64 X64,UNDOC
HINT_NOP18 rm16 P6,UNDOC
HINT_NOP18 rm32 P6,UNDOC
HINT_NOP18 rm64 X64,UNDOC
HINT_NOP19 rm16 P6,UNDOC
HINT_NOP19 rm32 P6,UNDOC
HINT_NOP19 rm64 X64,UNDOC
HINT_NOP20 rm16 P6,UNDOC
HINT_NOP20 rm32 P6,UNDOC
HINT_NOP20 rm64 X64,UNDOC
HINT_NOP21 rm16 P6,UNDOC
HINT_NOP21 rm32 P6,UNDOC
HINT_NOP21 rm64 X64,UNDOC
HINT_NOP22 rm16 P6,UNDOC
HINT_NOP22 rm32 P6,UNDOC
HINT_NOP22 rm64 X64,UNDOC
HINT_NOP23 rm16 P6,UNDOC
HINT_NOP23 rm32 P6,UNDOC
HINT_NOP23 rm64 X64,UNDOC
HINT_NOP24 rm16 P6,UNDOC
HINT_NOP24 rm32 P6,UNDOC
HINT_NOP24 rm64 X64,UNDOC
HINT_NOP25 rm16 P6,UNDOC
HINT_NOP25 rm32 P6,UNDOC
HINT_NOP25 rm64 X64,UNDOC
HINT_NOP26 rm16 P6,UNDOC
HINT_NOP26 rm32 P6,UNDOC
HINT_NOP26 rm64 X64,UNDOC
HINT_NOP27 rm16 P6,UNDOC
HINT_NOP27 rm32 P6,UNDOC
HINT_NOP27 rm64 X64,UNDOC
HINT_NOP28 rm16 P6,UNDOC
HINT_NOP28 rm32 P6,UNDOC
HINT_NOP28 rm64 X64,UNDOC
HINT_NOP29 rm16 P6,UNDOC
HINT_NOP29 rm32 P6,UNDOC
HINT_NOP29 rm64 X64,UNDOC
HINT_NOP30 rm16 P6,UNDOC
HINT_NOP30 rm32 P6,UNDOC
HINT_NOP30 rm64 X64,UNDOC
HINT_NOP31 rm16 P6,UNDOC
HINT_NOP31 rm32 P6,UNDOC
HINT_NOP31 rm64 X64,UNDOC
HINT_NOP32 rm16 P6,UNDOC
HINT_NOP32 rm32 P6,UNDOC
HINT_NOP32 rm64 X64,UNDOC
HINT_NOP33 rm16 P6,UNDOC
HINT_NOP33 rm32 P6,UNDOC
HINT_NOP33 rm64 X64,UNDOC
HINT_NOP34 rm16 P6,UNDOC
HINT_NOP34 rm32 P6,UNDOC
HINT_NOP34 rm64 X64,UNDOC
HINT_NOP35 rm16 P6,UNDOC
HINT_NOP35 rm32 P6,UNDOC
HINT_NOP35 rm64 X64,UNDOC
HINT_NOP36 rm16 P6,UNDOC
HINT_NOP36 rm32 P6,UNDOC
HINT_NOP36 rm64 X64,UNDOC
HINT_NOP37 rm16 P6,UNDOC
HINT_NOP37 rm32 P6,UNDOC
HINT_NOP37 rm64 X64,UNDOC
HINT_NOP38 rm16 P6,UNDOC
HINT_NOP38 rm32 P6,UNDOC
HINT_NOP38 rm64 X64,UNDOC
HINT_NOP39 rm16 P6,UNDOC
HINT_NOP39 rm32 P6,UNDOC
HINT_NOP39 rm64 X64,UNDOC
HINT_NOP40 rm16 P6,UNDOC
HINT_NOP40 rm32 P6,UNDOC
HINT_NOP40 rm64 X64,UNDOC
HINT_NOP41 rm16 P6,UNDOC
HINT_NOP41 rm32 P6,UNDOC
HINT_NOP41 rm64 X64,UNDOC
HINT_NOP42 rm16 P6,UNDOC
HINT_NOP42 rm32 P6,UNDOC
HINT_NOP42 rm64 X64,UNDOC
HINT_NOP43 rm16 P6,UNDOC
HINT_NOP43 rm32 P6,UNDOC
HINT_NOP43 rm64 X64,UNDOC
HINT_NOP44 rm16 P6,UNDOC
HINT_NOP44 rm32 P6,UNDOC
HINT_NOP44 rm64 X64,UNDOC
HINT_NOP45 rm16 P6,UNDOC
HINT_NOP45 rm32 P6,UNDOC
HINT_NOP45 rm64 X64,UNDOC
HINT_NOP46 rm16 P6,UNDOC
HINT_NOP46 rm32 P6,UNDOC
HINT_NOP46 rm64 X64,UNDOC
HINT_NOP47 rm16 P6,UNDOC
HINT_NOP47 rm32 P6,UNDOC
HINT_NOP47 rm64 X64,UNDOC
HINT_NOP48 rm16 P6,UNDOC
HINT_NOP48 rm32 P6,UNDOC
HINT_NOP48 rm64 X64,UNDOC
HINT_NOP49 rm16 P6,UNDOC
HINT_NOP49 rm32 P6,UNDOC
HINT_NOP49 rm64 X64,UNDOC
HINT_NOP50 rm16 P6,UNDOC
HINT_NOP50 rm32 P6,UNDOC
HINT_NOP50 rm64 X64,UNDOC
HINT_NOP51 rm16 P6,UNDOC
HINT_NOP51 rm32 P6,UNDOC
HINT_NOP51 rm64 X64,UNDOC
HINT_NOP52 rm16 P6,UNDOC
HINT_NOP52 rm32 P6,UNDOC
HINT_NOP52 rm64 X64,UNDOC
HINT_NOP53 rm16 P6,UNDOC
HINT_NOP53 rm32 P6,UNDOC
HINT_NOP53 rm64 X64,UNDOC
HINT_NOP54 rm16 P6,UNDOC
HINT_NOP54 rm32 P6,UNDOC
HINT_NOP54 rm64 X64,UNDOC
HINT_NOP55 rm16 P6,UNDOC
HINT_NOP55 rm32 P6,UNDOC
HINT_NOP55 rm64 X64,UNDOC
HINT_NOP56 rm16 P6,UNDOC
HINT_NOP56 rm32 P6,UNDOC
HINT_NOP56 rm64 X64,UNDOC
HINT_NOP57 rm16 P6,UNDOC
HINT_NOP57 rm32 P6,UNDOC
HINT_NOP57 rm64 X64,UNDOC
HINT_NOP58 rm16 P6,UNDOC
HINT_NOP58 rm32 P6,UNDOC
HINT_NOP58 rm64 X64,UNDOC
HINT_NOP59 rm16 P6,UNDOC
HINT_NOP59 rm32 P6,UNDOC
HINT_NOP59 rm64 X64,UNDOC
HINT_NOP60 rm16 P6,UNDOC
HINT_NOP60 rm32 P6,UNDOC
HINT_NOP60 rm64 X64,UNDOC
HINT_NOP61 rm16 P6,UNDOC
HINT_NOP61 rm32 P6,UNDOC
HINT_NOP61 rm64 X64,UNDOC
HINT_NOP62 rm16 P6,UNDOC
HINT_NOP62 rm32 P6,UNDOC
HINT_NOP62 rm64 X64,UNDOC
HINT_NOP63 rm16 P6,UNDOC
HINT_NOP63 rm32 P6,UNDOC
HINT_NOP63 rm64 X64,UNDOC
Appendix C: NASM Version History
--------------------------------
C.1 NASM 2 Series
The NASM 2 series support x86-64, and is the production version of
NASM since 2007.
C.1.1 Version 2.08
(*) A number of enhancements/fixes in macros area.
(*) Support for arbitrarily terminating macro expansions
`%exitmacro'. See section 4.3.12.
(*) Support for recursive macro expansion `%rmacro/irmacro'. See
section 4.3.1.
(*) Support for converting strings to tokens. See section 4.1.9.
(*) Fuzzy operand size logic introduced.
(*) Fix COFF stack overrun on too long export identifiers.
(*) Fix Macho-O alignment bug.
(*) Fix crashes with -fwin32 on file with many exports.
(*) Fix stack overrun for too long [DEBUG id].
(*) Fix incorrect sbyte usage in IMUL (hit only if optimization flag
passed).
(*) Append ending token for `.stabs' records in the ELF output
format.
(*) New NSIS script which uses ModernUI and MultiUser approach.
(*) Visual Studio 2008 NASM integration (rules file).
(*) Warn a user if a constant is too long (and as result will be
stripped).
(*) The obsoleted pre-XOP AMD SSE5 instruction set which was never
actualized was removed.
(*) Fix stack overrun on too long error file name passed from the
command line.
(*) Bind symbols to the .text section by default (ie in case if
SECTION directive was omitted) in the ELF output format.
(*) Fix sync points array index wrapping.
(*) A few fixes for FMA4 and XOP instruction templates.
(*) Add AMD Lightweight Profiling (LWP) instructions.
C.1.2 Version 2.07
(*) NASM is now under the 2-clause BSD license. See section 1.1.2.
(*) Fix the section type for the `.strtab' section in the `elf64'
output format.
(*) Fix the handling of `COMMON' directives in the `obj' output
format.
(*) New `ith' and `srec' output formats; these are variants of the
`bin' output format which output Intel hex and Motorola S-
records, respectively. See section 7.2 and section 7.3.
(*) `rdf2ihx' replaced with an enhanced `rdf2bin', which can output
binary, COM, Intel hex or Motorola S-records.
(*) The Windows installer now puts the NASM directory first in the
`PATH' of the "NASM Shell".
(*) Revert the early expansion behavior of `%+' to pre-2.06
behavior: `%+' is only expanded late.
(*) Yet another Mach-O alignment fix.
(*) Don't delete the list file on errors. Also, include error and
warning information in the list file.
(*) Support for 64-bit Mach-O output, see section 7.8.
(*) Fix assert failure on certain operations that involve strings
with high-bit bytes.
C.1.3 Version 2.06
(*) This release is dedicated to the memory of Charles A. Crayne,
long time NASM developer as well as moderator of
`comp.lang.asm.x86' and author of the book _Serious Assembler_.
We miss you, Chuck.
(*) Support for indirect macro expansion (`%[...]'). See section
4.1.3.
(*) `%pop' can now take an argument, see section 4.7.1.
(*) The argument to `%use' is no longer macro-expanded. Use `%[...]'
if macro expansion is desired.
(*) Support for thread-local storage in ELF32 and ELF64. See section
7.9.4.
(*) Fix crash on `%ifmacro' without an argument.
(*) Correct the arguments to the `POPCNT' instruction.
(*) Fix section alignment in the Mach-O format.
(*) Update AVX support to version 5 of the Intel specification.
(*) Fix the handling of accesses to context-local macros from higher
levels in the context stack.
(*) Treat `WAIT' as a prefix rather than as an instruction, thereby
allowing constructs like `O16 FSAVE' to work correctly.
(*) Support for structures with a non-zero base offset. See section
4.11.10.
(*) Correctly handle preprocessor token concatenation (see section
4.3.8) involving floating-point numbers.
(*) The `PINSR' series of instructions have been corrected and
rationalized.
(*) Removed AMD SSE5, replaced with the new XOP/FMA4/CVT16 (rev
3.03) spec.
(*) The ELF backends no longer automatically generate a `.comment'
section.
(*) Add additional "well-known" ELF sections with default
attributes. See section 7.9.2.
C.1.4 Version 2.05.01
(*) Fix the `-w'/`-W' option parsing, which was broken in NASM 2.05.
C.1.5 Version 2.05
(*) Fix redundant REX.W prefix on `JMP reg64'.
(*) Make the behaviour of `-O0' match NASM 0.98 legacy behavior. See
section 2.1.22.
(*) `-w-user' can be used to suppress the output of `%warning'
directives. See section 2.1.24.
(*) Fix bug where `ALIGN' would issue a full alignment datum instead
of zero bytes.
(*) Fix offsets in list files.
(*) Fix `%include' inside multi-line macros or loops.
(*) Fix error where NASM would generate a spurious warning on valid
optimizations of immediate values.
(*) Fix arguments to a number of the `CVT' SSE instructions.
(*) Fix RIP-relative offsets when the instruction carries an
immediate.
(*) Massive overhaul of the ELF64 backend for spec compliance.
(*) Fix the Geode `PFRCPV' and `PFRSQRTV' instruction.
(*) Fix the SSE 4.2 `CRC32' instruction.
C.1.6 Version 2.04
(*) Sanitize macro handing in the `%error' directive.
(*) New `%warning' directive to issue user-controlled warnings.
(*) `%error' directives are now deferred to the final assembly
phase.
(*) New `%fatal' directive to immediately terminate assembly.
(*) New `%strcat' directive to join quoted strings together.
(*) New `%use' macro directive to support standard macro directives.
See section 4.6.4.
(*) Excess default parameters to `%macro' now issues a warning by
default. See section 4.3.
(*) Fix `%ifn' and `%elifn'.
(*) Fix nested `%else' clauses.
(*) Correct the handling of nested `%rep's.
(*) New `%unmacro' directive to undeclare a multi-line macro. See
section 4.3.11.
(*) Builtin macro `__PASS__' which expands to the current assembly
pass. See section 4.11.9.
(*) `__utf16__' and `__utf32__' operators to generate UTF-16 and
UTF-32 strings. See section 3.4.5.
(*) Fix bug in case-insensitive matching when compiled on platforms
that don't use the `configure' script. Of the official release
binaries, that only affected the OS/2 binary.
(*) Support for x87 packed BCD constants. See section 3.4.7.
(*) Correct the `LTR' and `SLDT' instructions in 64-bit mode.
(*) Fix unnecessary REX.W prefix on indirect jumps in 64-bit mode.
(*) Add AVX versions of the AES instructions (`VAES'...).
(*) Fix the 256-bit FMA instructions.
(*) Add 256-bit AVX stores per the latest AVX spec.
(*) VIA XCRYPT instructions can now be written either with or
without `REP', apparently different versions of the VIA spec
wrote them differently.
(*) Add missing 64-bit `MOVNTI' instruction.
(*) Fix the operand size of `VMREAD' and `VMWRITE'.
(*) Numerous bug fixes, especially to the AES, AVX and VTX
instructions.
(*) The optimizer now always runs until it converges. It also runs
even when disabled, but doesn't optimize. This allows most
forward references to be resolved properly.
(*) `%push' no longer needs a context identifier; omitting the
context identifier results in an anonymous context.
C.1.7 Version 2.03.01
(*) Fix buffer overflow in the listing module.
(*) Fix the handling of hexadecimal escape codes in `...` strings.
(*) The Postscript/PDF documentation has been reformatted.
(*) The `-F' option now implies `-g'.
C.1.8 Version 2.03
(*) Add support for Intel AVX, CLMUL and FMA instructions, including
YMM registers.
(*) `dy', `resy' and `yword' for 32-byte operands.
(*) Fix some SSE5 instructions.
(*) Intel `INVEPT', `INVVPID' and `MOVBE' instructions.
(*) Fix checking for critical expressions when the optimizer is
enabled.
(*) Support the DWARF debugging format for ELF targets.
(*) Fix optimizations of signed bytes.
(*) Fix operation on bigendian machines.
(*) Fix buffer overflow in the preprocessor.
(*) `SAFESEH' support for Win32, `IMAGEREL' for Win64 (SEH).
(*) `%?' and `%??' to refer to the name of a macro itself. In
particular, `%idefine keyword $%?' can be used to make a keyword
"disappear".
(*) New options for dependency generation: `-MD', `-MF', `-MP',
`-MT', `-MQ'.
(*) New preprocessor directives `%pathsearch' and `%depend'; INCBIN
reimplemented as a macro.
(*) `%include' now resolves macros in a sane manner.
(*) `%substr' can now be used to get other than one-character
substrings.
(*) New type of character/string constants, using backquotes
(``...`'), which support C-style escape sequences.
(*) `%defstr' and `%idefstr' to stringize macro definitions before
creation.
(*) Fix forward references used in `EQU' statements.
C.1.9 Version 2.02
(*) Additional fixes for MMX operands with explicit `qword', as well
as (hopefully) SSE operands with `oword'.
(*) Fix handling of truncated strings with `DO'.
(*) Fix segfaults due to memory overwrites when floating-point
constants were used.
(*) Fix segfaults due to missing include files.
(*) Fix OpenWatcom Makefiles for DOS and OS/2.
(*) Add autogenerated instruction list back into the documentation.
(*) ELF: Fix segfault when generating stabs, and no symbols have
been defined.
(*) ELF: Experimental support for DWARF debugging information.
(*) New compile date and time standard macros.
(*) `%ifnum' now returns true for negative numbers.
(*) New `%iftoken' test for a single token.
(*) New `%ifempty' test for empty expansion.
(*) Add support for the `XSAVE' instruction group.
(*) Makefile for Netware/gcc.
(*) Fix issue with some warnings getting emitted way too many times.
(*) Autogenerated instruction list added to the documentation.
C.1.10 Version 2.01
(*) Fix the handling of MMX registers with explicit `qword' tags on
memory (broken in 2.00 due to 64-bit changes.)
(*) Fix the PREFETCH instructions.
(*) Fix the documentation.
(*) Fix debugging info when using `-f elf' (backwards compatibility
alias for `-f elf32').
(*) Man pages for rdoff tools (from the Debian project.)
(*) ELF: handle large numbers of sections.
(*) Fix corrupt output when the optimizer runs out of passes.
C.1.11 Version 2.00
(*) Added c99 data-type compliance.
(*) Added general x86-64 support.
(*) Added win64 (x86-64 COFF) output format.
(*) Added `__BITS__' standard macro.
(*) Renamed the `elf' output format to `elf32' for clarity.
(*) Added `elf64' and `macho' (MacOS X) output formats.
(*) Added Numeric constants in `dq' directive.
(*) Added `oword', `do' and `reso' pseudo operands.
(*) Allow underscores in numbers.
(*) Added 8-, 16- and 128-bit floating-point formats.
(*) Added binary, octal and hexadecimal floating-point.
(*) Correct the generation of floating-point constants.
(*) Added floating-point option control.
(*) Added Infinity and NaN floating point support.
(*) Added ELF Symbol Visibility support.
(*) Added setting OSABI value in ELF header directive.
(*) Added Generate Makefile Dependencies option.
(*) Added Unlimited Optimization Passes option.
(*) Added `%IFN' and `%ELIFN' support.
(*) Added Logical Negation Operator.
(*) Enhanced Stack Relative Preprocessor Directives.
(*) Enhanced ELF Debug Formats.
(*) Enhanced Send Errors to a File option.
(*) Added SSSE3, SSE4.1, SSE4.2, SSE5 support.
(*) Added a large number of additional instructions.
(*) Significant performance improvements.
(*) `-w+warning' and `-w-warning' can now be written as -Wwarning
and -Wno-warning, respectively. See section 2.1.24.
(*) Add `-w+error' to treat warnings as errors. See section 2.1.24.
(*) Add `-w+all' and `-w-all' to enable or disable all suppressible
warnings. See section 2.1.24.
C.2 NASM 0.98 Series
The 0.98 series was the production versions of NASM from 1999 to
2007.
C.2.1 Version 0.98.39
(*) fix buffer overflow
(*) fix outas86's `.bss' handling
(*) "make spotless" no longer deletes config.h.in.
(*) `%(el)if(n)idn' insensitivity to string quotes difference
(#809300).
(*) (nasm.c)`__OUTPUT_FORMAT__' changed to string value instead of
symbol.
C.2.2 Version 0.98.38
(*) Add Makefile for 16-bit DOS binaries under OpenWatcom, and
modify `mkdep.pl' to be able to generate completely pathless
dependencies, as required by OpenWatcom wmake (it supports path
searches, but not explicit paths.)
(*) Fix the `STR' instruction.
(*) Fix the ELF output format, which was broken under certain
circumstances due to the addition of stabs support.
(*) Quick-fix Borland format debug-info for `-f obj'
(*) Fix for `%rep' with no arguments (#560568)
(*) Fix concatenation of preprocessor function call (#794686)
(*) Fix long label causes coredump (#677841)
(*) Use autoheader as well as autoconf to keep configure from
generating ridiculously long command lines.
(*) Make sure that all of the formats which support debugging output
actually will suppress debugging output when `-g' not specified.
C.2.3 Version 0.98.37
(*) Paths given in `-I' switch searched for `incbin'-ed as well as
`%include'-ed files.
(*) Added stabs debugging for the ELF output format, patch from
Martin Wawro.
(*) Fix `output/outbin.c' to allow origin > 80000000h.
(*) Make `-U' switch work.
(*) Fix the use of relative offsets with explicit prefixes, e.g.
`a32 loop foo'.
(*) Remove `backslash()'.
(*) Fix the `SMSW' and `SLDT' instructions.
(*) `-O2' and `-O3' are no longer aliases for `-O10' and `-O15'. If
you mean the latter, please say so! :)
C.2.4 Version 0.98.36
(*) Update rdoff - librarian/archiver - common rec - docs!
(*) Fix signed/unsigned problems.
(*) Fix `JMP FAR label' and `CALL FAR label'.
(*) Add new multisection support - map files - fix align bug
(*) Fix sysexit, movhps/movlps reg,reg bugs in insns.dat
(*) `Q' or `O' suffixes indicate octal
(*) Support Prescott new instructions (PNI).
(*) Cyrix `XSTORE' instruction.
C.2.5 Version 0.98.35
(*) Fix build failure on 16-bit DOS (Makefile.bc3 workaround for
compiler bug.)
(*) Fix dependencies and compiler warnings.
(*) Add "const" in a number of places.
(*) Add -X option to specify error reporting format (use -Xvc to
integrate with Microsoft Visual Studio.)
(*) Minor changes for code legibility.
(*) Drop use of tmpnam() in rdoff (security fix.)
C.2.6 Version 0.98.34
(*) Correct additional address-size vs. operand-size confusions.
(*) Generate dependencies for all Makefiles automatically.
(*) Add support for unimplemented (but theoretically available)
registers such as tr0 and cr5. Segment registers 6 and 7 are
called segr6 and segr7 for the operations which they can be
represented.
(*) Correct some disassembler bugs related to redundant address-size
prefixes. Some work still remains in this area.
(*) Correctly generate an error for things like "SEG eax".
(*) Add the JMPE instruction, enabled by "CPU IA64".
(*) Correct compilation on newer gcc/glibc platforms.
(*) Issue an error on things like "jmp far eax".
C.2.7 Version 0.98.33
(*) New __NASM_PATCHLEVEL__ and __NASM_VERSION_ID__ standard macros
to round out the version-query macros. version.pl now
understands X.YYplWW or X.YY.ZZplWW as a version number,
equivalent to X.YY.ZZ.WW (or X.YY.0.WW, as appropriate).
(*) New keyword "strict" to disable the optimization of specific
operands.
(*) Fix the handing of size overrides with JMP instructions
(instructions such as "jmp dword foo".)
(*) Fix the handling of "ABSOLUTE label", where "label" points into
a relocatable segment.
(*) Fix OBJ output format with lots of externs.
(*) More documentation updates.
(*) Add -Ov option to get verbose information about optimizations.
(*) Undo a braindead change which broke `%elif' directives.
(*) Makefile updates.
C.2.8 Version 0.98.32
(*) Fix NASM crashing when `%macro' directives were left
unterminated.
(*) Lots of documentation updates.
(*) Complete rewrite of the PostScript/PDF documentation generator.
(*) The MS Visual C++ Makefile was updated and corrected.
(*) Recognize .rodata as a standard section name in ELF.
(*) Fix some obsolete Perl4-isms in Perl scripts.
(*) Fix configure.in to work with autoconf 2.5x.
(*) Fix a couple of "make cleaner" misses.
(*) Make the normal "./configure && make" work with Cygwin.
C.2.9 Version 0.98.31
(*) Correctly build in a separate object directory again.
(*) Derive all references to the version number from the version
file.
(*) New standard macros __NASM_SUBMINOR__ and __NASM_VER__ macros.
(*) Lots of Makefile updates and bug fixes.
(*) New `%ifmacro' directive to test for multiline macros.
(*) Documentation updates.
(*) Fixes for 16-bit OBJ format output.
(*) Changed the NASM environment variable to NASMENV.
C.2.10 Version 0.98.30
(*) Changed doc files a lot: completely removed old READMExx and
Wishlist files, incorporating all information in CHANGES and
TODO.
(*) I waited a long time to rename zoutieee.c to (original)
outieee.c
(*) moved all output modules to output/ subdirectory.
(*) Added 'make strip' target to strip debug info from nasm &
ndisasm.
(*) Added INSTALL file with installation instructions.
(*) Added -v option description to nasm man.
(*) Added dist makefile target to produce source distributions.
(*) 16-bit support for ELF output format (GNU extension, but
useful.)
C.2.11 Version 0.98.28
(*) Fastcooked this for Debian's Woody release: Frank applied the
INCBIN bug patch to 0.98.25alt and called it 0.98.28 to not
confuse poor little apt-get.
C.2.12 Version 0.98.26
(*) Reorganised files even better from 0.98.25alt
C.2.13 Version 0.98.25alt
(*) Prettified the source tree. Moved files to more reasonable
places.
(*) Added findleak.pl script to misc/ directory.
(*) Attempted to fix doc.
C.2.14 Version 0.98.25
(*) Line continuation character `\'.
(*) Docs inadvertantly reverted - "dos packaging".
C.2.15 Version 0.98.24p1
(*) FIXME: Someone, document this please.
C.2.16 Version 0.98.24
(*) Documentation - Ndisasm doc added to Nasm.doc.
C.2.17 Version 0.98.23
(*) Attempted to remove rdoff version1
(*) Lino Mastrodomenico's patches to preproc.c (%$$ bug?).
C.2.18 Version 0.98.22
(*) Update rdoff2 - attempt to remove v1.
C.2.19 Version 0.98.21
(*) Optimization fixes.
C.2.20 Version 0.98.20
(*) Optimization fixes.
C.2.21 Version 0.98.19
(*) H. J. Lu's patch back out.
C.2.22 Version 0.98.18
(*) Added ".rdata" to "-f win32".
C.2.23 Version 0.98.17
(*) H. J. Lu's "bogus elf" patch. (Red Hat problem?)
C.2.24 Version 0.98.16
(*) Fix whitespace before "[section ..." bug.
C.2.25 Version 0.98.15
(*) Rdoff changes (?).
(*) Fix fixes to memory leaks.
C.2.26 Version 0.98.14
(*) Fix memory leaks.
C.2.27 Version 0.98.13
(*) There was no 0.98.13
C.2.28 Version 0.98.12
(*) Update optimization (new function of "-O1")
(*) Changes to test/bintest.asm (?).
C.2.29 Version 0.98.11
(*) Optimization changes.
(*) Ndisasm fixed.
C.2.30 Version 0.98.10
(*) There was no 0.98.10
C.2.31 Version 0.98.09
(*) Add multiple sections support to "-f bin".
(*) Changed GLOBAL_TEMP_BASE in outelf.c from 6 to 15.
(*) Add "-v" as an alias to the "-r" switch.
(*) Remove "#ifdef" from Tasm compatibility options.
(*) Remove redundant size-overrides on "mov ds, ex", etc.
(*) Fixes to SSE2, other insns.dat (?).
(*) Enable uppercase "I" and "P" switches.
(*) Case insinsitive "seg" and "wrt".
(*) Update install.sh (?).
(*) Allocate tokens in blocks.
(*) Improve "invalid effective address" messages.
C.2.32 Version 0.98.08
(*) Add "`%strlen'" and "`%substr'" macro operators
(*) Fixed broken c16.mac.
(*) Unterminated string error reported.
(*) Fixed bugs as per 0.98bf
C.2.33 Version 0.98.09b with John Coffman patches released 28-Oct-2001
Changes from 0.98.07 release to 98.09b as of 28-Oct-2001
(*) More closely compatible with 0.98 when -O0 is implied or
specified. Not strictly identical, since backward branches in
range of short offsets are recognized, and signed byte values
with no explicit size specification will be assembled as a
single byte.
(*) More forgiving with the PUSH instruction. 0.98 requires a size
to be specified always. 0.98.09b will imply the size from the
current BITS setting (16 or 32).
(*) Changed definition of the optimization flag:
-O0 strict two-pass assembly, JMP and Jcc are handled more like
0.98, except that back- ward JMPs are short, if possible.
-O1 strict two-pass assembly, but forward branches are assembled
with code guaranteed to reach; may produce larger code than -O0, but
will produce successful assembly more often if branch offset sizes
are not specified.
-O2 multi-pass optimization, minimize branch offsets; also will
minimize signed immed- iate bytes, overriding size specification.
-O3 like -O2, but more passes taken, if needed
C.2.34 Version 0.98.07 released 01/28/01
(*) Added Stepane Denis' SSE2 instructions to a *working* version of
the code - some earlier versions were based on broken code -
sorry 'bout that. version "0.98.07"
01/28/01
(*) Cosmetic modifications to nasm.c, nasm.h, AUTHORS, MODIFIED
C.2.35 Version 0.98.06f released 01/18/01
(*) - Add "metalbrain"s jecxz bug fix in insns.dat - alter
nasmdoc.src to match - version "0.98.06f"
C.2.36 Version 0.98.06e released 01/09/01
(*) Removed the "outforms.h" file - it appears to be someone's old
backup of "outform.h". version "0.98.06e"
01/09/01
(*) fbk - finally added the fix for the "multiple %includes bug",
known since 7/27/99 - reported originally (?) and sent to us by
Austin Lunnen - he reports that John Fine had a fix within the
day. Here it is...
(*) Nelson Rush resigns from the group. Big thanks to Nelson for his
leadership and enthusiasm in getting these changes incorporated
into Nasm!
(*) fbk - [list +], [list -] directives - ineptly implemented,
should be re-written or removed, perhaps.
(*) Brian Raiter / fbk - "elfso bug" fix - applied to aoutb format
as well - testing might be desirable...
08/07/00
(*) James Seter - -postfix, -prefix command line switches.
(*) Yuri Zaporogets - rdoff utility changes.
C.2.37 Version 0.98p1
(*) GAS-like palign (Panos Minos)
(*) FIXME: Someone, fill this in with details
C.2.38 Version 0.98bf (bug-fixed)
(*) Fixed - elf and aoutb bug - shared libraries - multiple
"%include" bug in "-f obj" - jcxz, jecxz bug - unrecognized
option bug in ndisasm
C.2.39 Version 0.98.03 with John Coffman's changes released 27-Jul-2000
(*) Added signed byte optimizations for the 0x81/0x83 class of
instructions: ADC, ADD, AND, CMP, OR, SBB, SUB, XOR: when used
as 'ADD reg16,imm' or 'ADD reg32,imm.' Also optimization of
signed byte form of 'PUSH imm' and 'IMUL reg,imm'/'IMUL
reg,reg,imm.' No size specification is needed.
(*) Added multi-pass JMP and Jcc offset optimization. Offsets on
forward references will preferentially use the short form,
without the need to code a specific size (short or near) for the
branch. Added instructions for 'Jcc label' to use the form
'Jnotcc $+3/JMP label', in cases where a short offset is out of
bounds. If compiling for a 386 or higher CPU, then the 386 form
of Jcc will be used instead.
This feature is controlled by a new command-line switch: "O", (upper
case letter O). "-O0" reverts the assembler to no extra optimization
passes, "-O1" allows up to 5 extra passes, and "-O2"(default),
allows up to 10 extra optimization passes.
(*) Added a new directive: 'cpu XXX', where XXX is any of: 8086,
186, 286, 386, 486, 586, pentium, 686, PPro, P2, P3 or Katmai.
All are case insensitive. All instructions will be selected only
if they apply to the selected cpu or lower. Corrected a couple
of bugs in cpu-dependence in 'insns.dat'.
(*) Added to 'standard.mac', the "use16" and "use32" forms of the
"bits 16/32" directive. This is nothing new, just conforms to a
lot of other assemblers. (minor)
(*) Changed label allocation from 320/32 (10000 labels @ 200K+) to
32/37 (1000 labels); makes running under DOS much easier. Since
additional label space is allocated dynamically, this should
have no effect on large programs with lots of labels. The 37 is
a prime, believed to be better for hashing. (minor)
C.2.40 Version 0.98.03
"Integrated patchfile 0.98-0.98.01. I call this version 0.98.03 for
historical reasons: 0.98.02 was trashed." --John Coffman
<johninsd@san.rr.com>, 27-Jul-2000
(*) Kendall Bennett's SciTech MGL changes
(*) Note that you must define "TASM_COMPAT" at compile-time to get
the Tasm Ideal Mode compatibility.
(*) All changes can be compiled in and out using the TASM_COMPAT
macros, and when compiled without TASM_COMPAT defined we get the
exact same binary as the unmodified 0.98 sources.
(*) standard.mac, macros.c: Added macros to ignore TASM directives
before first include
(*) nasm.h: Added extern declaration for tasm_compatible_mode
(*) nasm.c: Added global variable tasm_compatible_mode
(*) Added command line switch for TASM compatible mode (-t)
(*) Changed version command line to reflect when compiled with TASM
additions
(*) Added response file processing to allow all arguments on a
single line (response file is @resp rather than -@resp for NASM
format).
(*) labels.c: Changes islocal() macro to support TASM style @@local
labels.
(*) Added islocalchar() macro to support TASM style @@local labels.
(*) parser.c: Added support for TASM style memory references (ie:
mov [DWORD eax],10 rather than the NASM style mov DWORD
[eax],10).
(*) preproc.c: Added new directives, `%arg', `%local', `%stacksize'
to directives table
(*) Added support for TASM style directives without a leading %
symbol.
(*) Integrated a block of changes from Andrew Zabolotny
<bit@eltech.ru>:
(*) A new keyword `%xdefine' and its case-insensitive counterpart
`%ixdefine'. They work almost the same way as `%define' and
`%idefine' but expand the definition immediately, not on the
invocation. Something like a cross between `%define' and
`%assign'. The "x" suffix stands for "eXpand", so "xdefine" can
be deciphered as "expand-and-define". Thus you can do things
like this:
%assign ofs 0
%macro arg 1
%xdefine %1 dword [esp+ofs]
%assign ofs ofs+4
%endmacro
(*) Changed the place where the expansion of %$name macros are
expanded. Now they are converted into ..@ctxnum.name form when
detokenizing, so there are no quirks as before when using %$name
arguments to macros, in macros etc. For example:
%macro abc 1
%define %1 hello
%endm
abc %$here
%$here
Now last line will be expanded into "hello" as expected. This also
allows for lots of goodies, a good example are extended "proc"
macros included in this archive.
(*) Added a check for "cstk" in smacro_defined() before calling
get_ctx() - this allows for things like:
%ifdef %$abc
%endif
to work without warnings even in no context.
(*) Added a check for "cstk" in %if*ctx and %elif*ctx directives -
this allows to use `%ifctx' without excessive warnings. If there
is no active context, `%ifctx' goes through "false" branch.
(*) Removed "user error: " prefix with `%error' directive: it just
clobbers the output and has absolutely no functionality.
Besides, this allows to write macros that does not differ from
built-in functions in any way.
(*) Added expansion of string that is output by `%error' directive.
Now you can do things like:
%define hello(x) Hello, x!
%define %$name andy
%error "hello(%$name)"
Same happened with `%include' directive.
(*) Now all directives that expect an identifier will try to expand
and concatenate everything without whitespaces in between before
usage. For example, with "unfixed" nasm the commands
%define %$abc hello
%define __%$abc goodbye
__%$abc
would produce "incorrect" output: last line will expand to
hello goodbyehello
Not quite what you expected, eh? :-) The answer is that preprocessor
treats the `%define' construct as if it would be
%define __ %$abc goodbye
(note the white space between __ and %$abc). After my "fix" it will
"correctly" expand into
goodbye
as expected. Note that I use quotes around words "correct",
"incorrect" etc because this is rather a feature not a bug; however
current behaviour is more logical (and allows more advanced macro
usage :-).
Same change was applied to:
`%push',`%macro',`%imacro',`%define',`%idefine',`%xdefine',`%ixdefine',
`%assign',`%iassign',`%undef'
(*) A new directive [WARNING {+|-}warning-id] have been added. It
works only if the assembly phase is enabled (i.e. it doesn't
work with nasm -e).
(*) A new warning type: macro-selfref. By default this warning is
disabled; when enabled NASM warns when a macro self-references
itself; for example the following source:
[WARNING macro-selfref]
%macro push 1-*
%rep %0
push %1
%rotate 1
%endrep
%endmacro
push eax,ebx,ecx
will produce a warning, but if we remove the first line we won't see
it anymore (which is The Right Thing To Do {tm} IMHO since C
preprocessor eats such constructs without warnings at all).
(*) Added a "error" routine to preprocessor which always will set
ERR_PASS1 bit in severity_code. This removes annoying repeated
errors on first and second passes from preprocessor.
(*) Added the %+ operator in single-line macros for concatenating
two identifiers. Usage example:
%define _myfunc _otherfunc
%define cextern(x) _ %+ x
cextern (myfunc)
After first expansion, third line will become "_myfunc". After this
expansion is performed again so it becomes "_otherunc".
(*) Now if preprocessor is in a non-emitting state, no warning or
error will be emitted. Example:
%if 1
mov eax,ebx
%else
put anything you want between these two brackets,
even macro-parameter references %1 or local
labels %$zz or macro-local labels %%zz - no
warning will be emitted.
%endif
(*) Context-local variables on expansion as a last resort are looked
up in outer contexts. For example, the following piece:
%push outer
%define %$a [esp]
%push inner
%$a
%pop
%pop
will expand correctly the fourth line to [esp]; if we'll define
another %$a inside the "inner" context, it will take precedence over
outer definition. However, this modification has been applied only
to expand_smacro and not to smacro_define: as a consequence
expansion looks in outer contexts, but `%ifdef' won't look in outer
contexts.
This behaviour is needed because we don't want nested contexts to
act on already defined local macros. Example:
%define %$arg1 [esp+4]
test eax,eax
if nz
mov eax,%$arg1
endif
In this example the "if" mmacro enters into the "if" context, so
%$arg1 is not valid anymore inside "if". Of course it could be
worked around by using explicitely %$$arg1 but this is ugly IMHO.
(*) Fixed memory leak in `%undef'. The origline wasn't freed before
exiting on success.
(*) Fixed trap in preprocessor when line expanded to empty set of
tokens. This happens, for example, in the following case:
#define SOMETHING
SOMETHING
C.2.41 Version 0.98
All changes since NASM 0.98p3 have been produced by H. Peter Anvin
<hpa@zytor.com>.
(*) The documentation comment delimiter is
(*) Allow EQU definitions to refer to external labels; reported by
Pedro Gimeno.
(*) Re-enable support for RDOFF v1; reported by Pedro Gimeno.
(*) Updated License file per OK from Simon and Julian.
C.2.42 Version 0.98p9
(*) Update documentation (although the instruction set reference
will have to wait; I don't want to hold up the 0.98 release for
it.)
(*) Verified that the NASM implementation of the PEXTRW and PMOVMSKB
instructions is correct. The encoding differs from what the
Intel manuals document, but the Pentium III behaviour matches
NASM, not the Intel manuals.
(*) Fix handling of implicit sizes in PSHUFW and PINSRW, reported by
Stefan Hoffmeister.
(*) Resurrect the -s option, which was removed when changing the
diagnostic output to stdout.
C.2.43 Version 0.98p8
(*) Fix for "DB" when NASM is running on a bigendian machine.
(*) Invoke insns.pl once for each output script, making Makefile.in
legal for "make -j".
(*) Improve the Unix configure-based makefiles to make package
creation easier.
(*) Included an RPM .spec file for building RPM (RedHat Package
Manager) packages on Linux or Unix systems.
(*) Fix Makefile dependency problems.
(*) Change src/rdsrc.pl to include sectioning information in info
output; required for install-info to work.
(*) Updated the RDOFF distribution to version 2 from Jules; minor
massaging to make it compile in my environment.
(*) Split doc files that can be built by anyone with a Perl
interpreter off into a separate archive.
(*) "Dress rehearsal" release!
C.2.44 Version 0.98p7
(*) Fixed opcodes with a third byte-sized immediate argument to not
complain if given "byte" on the immediate.
(*) Allow `%undef' to remove single-line macros with arguments. This
matches the behaviour of #undef in the C preprocessor.
(*) Allow -d, -u, -i and -p to be specified as -D, -U, -I and -P for
compatibility with most C compilers and preprocessors. This
allows Makefile options to be shared between cc and nasm, for
example.
(*) Minor cleanups.
(*) Went through the list of Katmai instructions and hopefully fixed
the (rather few) mistakes in it.
(*) (Hopefully) fixed a number of disassembler bugs related to
ambiguous instructions (disambiguated by -p) and SSE
instructions with REP.
(*) Fix for bug reported by Mark Junger: "call dword 0x12345678"
should work and may add an OSP (affected CALL, JMP, Jcc).
(*) Fix for environments when "stderr" isn't a compile-time
constant.
C.2.45 Version 0.98p6
(*) Took officially over coordination of the 0.98 release; so drop
the p3.x notation. Skipped p4 and p5 to avoid confusion with
John Fine's J4 and J5 releases.
(*) Update the documentation; however, it still doesn't include
documentation for the various new instructions. I somehow wonder
if it makes sense to have an instruction set reference in the
assembler manual when Intel et al have PDF versions of their
manuals online.
(*) Recognize "idt" or "centaur" for the -p option to ndisasm.
(*) Changed error messages back to stderr where they belong, but add
an -E option to redirect them elsewhere (the DOS shell cannot
redirect stderr.)
(*) -M option to generate Makefile dependencies (based on code from
Alex Verstak.)
(*) `%undef' preprocessor directive, and -u option, that undefines a
single-line macro.
(*) OS/2 Makefile (Mkfiles/Makefile.os2) for Borland under OS/2;
from Chuck Crayne.
(*) Various minor bugfixes (reported by): - Dangling `%s' in
preproc.c (Martin Junker)
(*) THERE ARE KNOWN BUGS IN SSE AND THE OTHER KATMAI INSTRUCTIONS. I
am on a trip and didn't bring the Katmai instruction reference,
so I can't work on them right now.
(*) Updated the License file per agreement with Simon and Jules to
include a GPL distribution clause.
C.2.46 Version 0.98p3.7
(*) (Hopefully) fixed the canned Makefiles to include the outrdf2
and zoutieee modules.
(*) Renamed changes.asm to changed.asm.
C.2.47 Version 0.98p3.6
(*) Fixed a bunch of instructions that were added in 0.98p3.5 which
had memory operands, and the address-size prefix was missing
from the instruction pattern.
C.2.48 Version 0.98p3.5
(*) Merged in changes from John S. Fine's 0.98-J5 release. John's
based 0.98-J5 on my 0.98p3.3 release; this merges the changes.
(*) Expanded the instructions flag field to a long so we can fit
more flags; mark SSE (KNI) and AMD or Katmai-specific
instructions as such.
(*) Fix the "PRIV" flag on a bunch of instructions, and create new
"PROT" flag for protected-mode-only instructions (orthogonal to
if the instruction is privileged!) and new "SMM" flag for SMM-
only instructions.
(*) Added AMD-only SYSCALL and SYSRET instructions.
(*) Make SSE actually work, and add new Katmai MMX instructions.
(*) Added a -p (preferred vendor) option to ndisasm so that it can
distinguish e.g. Cyrix opcodes also used in SSE. For example:
ndisasm -p cyrix aliased.bin
00000000 670F514310 paddsiw mm0,[ebx+0x10]
00000005 670F514320 paddsiw mm0,[ebx+0x20]
ndisasm -p intel aliased.bin
00000000 670F514310 sqrtps xmm0,[ebx+0x10]
00000005 670F514320 sqrtps xmm0,[ebx+0x20]
(*) Added a bunch of Cyrix-specific instructions.
C.2.49 Version 0.98p3.4
(*) Made at least an attempt to modify all the additional Makefiles
(in the Mkfiles directory). I can't test it, but this was the
best I could do.
(*) DOS DJGPP+"Opus Make" Makefile from John S. Fine.
(*) changes.asm changes from John S. Fine.
C.2.50 Version 0.98p3.3
(*) Patch from Conan Brink to allow nesting of `%rep' directives.
(*) If we're going to allow INT01 as an alias for INT1/ICEBP (one of
Jules 0.98p3 changes), then we should allow INT03 as an alias
for INT3 as well.
(*) Updated changes.asm to include the latest changes.
(*) Tried to clean up the <CR>s that had snuck in from a DOS/Windows
environment into my Unix environment, and try to make sure than
DOS/Windows users get them back.
(*) We would silently generate broken tools if insns.dat wasn't
sorted properly. Change insns.pl so that the order doesn't
matter.
(*) Fix bug in insns.pl (introduced by me) which would cause
conditional instructions to have an extra "cc" in disassembly,
e.g. "jnz" disassembled as "jccnz".
C.2.51 Version 0.98p3.2
(*) Merged in John S. Fine's changes from his 0.98-J4 prerelease;
see http://www.csoft.net/cz/johnfine/
(*) Changed previous "spotless" Makefile target (appropriate for
distribution) to "distclean", and added "cleaner" target which
is same as "clean" except deletes files generated by Perl
scripts; "spotless" is union.
(*) Removed BASIC programs from distribution. Get a Perl interpreter
instead (see below.)
(*) Calling this "pre-release 3.2" rather than "p3-hpa2" because of
John's contributions.
(*) Actually link in the IEEE output format (zoutieee.c); fix a
bunch of compiler warnings in that file. Note I don't know what
IEEE output is supposed to look like, so these changes were made
"blind".
C.2.52 Version 0.98p3-hpa
(*) Merged nasm098p3.zip with nasm-0.97.tar.gz to create a fully
buildable version for Unix systems (Makefile.in updates, etc.)
(*) Changed insns.pl to create the instruction tables in nasm.h and
names.c, so that a new instruction can be added by adding it
*only* to insns.dat.
(*) Added the following new instructions: SYSENTER, SYSEXIT, FXSAVE,
FXRSTOR, UD1, UD2 (the latter two are two opcodes that Intel
guarantee will never be used; one of them is documented as UD2
in Intel documentation, the other one just as "Undefined Opcode"
-- calling it UD1 seemed to make sense.)
(*) MAX_SYMBOL was defined to be 9, but LOADALL286 and LOADALL386
are 10 characters long. Now MAX_SYMBOL is derived from
insns.dat.
(*) A note on the BASIC programs included: forget them. insns.bas is
already out of date. Get yourself a Perl interpreter for your
platform of choice at http://www.cpan.org/ports/index.html.
C.2.53 Version 0.98 pre-release 3
(*) added response file support, improved command line handling, new
layout help screen
(*) fixed limit checking bug, 'OUT byte nn, reg' bug, and a couple
of rdoff related bugs, updated Wishlist; 0.98 Prerelease 3.
C.2.54 Version 0.98 pre-release 2
(*) fixed bug in outcoff.c to do with truncating section names
longer than 8 characters, referencing beyond end of string; 0.98
pre-release 2
C.2.55 Version 0.98 pre-release 1
(*) Fixed a bug whereby STRUC didn't work at all in RDF.
(*) Fixed a problem with group specification in PUBDEFs in OBJ.
(*) Improved ease of adding new output formats. Contribution due to
Fox Cutter.
(*) Fixed a bug in relocations in the `bin' format: was showing up
when a relocatable reference crossed an 8192-byte boundary in
any output section.
(*) Fixed a bug in local labels: local-label lookups were
inconsistent between passes one and two if an EQU occurred
between the definition of a global label and the subsequent use
of a local label local to that global.
(*) Fixed a seg-fault in the preprocessor (again) which happened
when you use a blank line as the first line of a multi-line
macro definition and then defined a label on the same line as a
call to that macro.
(*) Fixed a stale-pointer bug in the handling of the NASM
environment variable. Thanks to Thomas McWilliams.
(*) ELF had a hard limit on the number of sections which caused
segfaults when transgressed. Fixed.
(*) Added ability for ndisasm to read from stdin by using `-' as the
filename.
(*) ndisasm wasn't outputting the TO keyword. Fixed.
(*) Fixed error cascade on bogus expression in `%if' - an error in
evaluation was causing the entire `%if' to be discarded, thus
creating trouble later when the `%else' or `%endif' was
encountered.
(*) Forward reference tracking was instruction-granular not operand-
granular, which was causing 286-specific code to be generated
needlessly on code of the form `shr word [forwardref],1'. Thanks
to Jim Hague for sending a patch.
(*) All messages now appear on stdout, as sending them to stderr
serves no useful purpose other than to make redirection
difficult.
(*) Fixed the problem with EQUs pointing to an external symbol -
this now generates an error message.
(*) Allowed multiple size prefixes to an operand, of which only the
first is taken into account.
(*) Incorporated John Fine's changes, including fixes of a large
number of preprocessor bugs, some small problems in OBJ, and a
reworking of label handling to define labels before their line
is assembled, rather than after.
(*) Reformatted a lot of the source code to be more readable.
Included 'coding.txt' as a guideline for how to format code for
contributors.
(*) Stopped nested `%reps' causing a panic - they now cause a
slightly more friendly error message instead.
(*) Fixed floating point constant problems (patch by Pedro Gimeno)
(*) Fixed the return value of insn_size() not being checked for -1,
indicating an error.
(*) Incorporated 3Dnow! instructions.
(*) Fixed the 'mov eax, eax + ebx' bug.
(*) Fixed the GLOBAL EQU bug in ELF. Released developers release 3.
(*) Incorporated John Fine's command line parsing changes
(*) Incorporated David Lindauer's OMF debug support
(*) Made changes for LCC 4.0 support (`__NASM_CDecl__', removed
register size specification warning when sizes agree).
C.3 NASM 0.9 Series
Revisions before 0.98.
C.3.1 Version 0.97 released December 1997
(*) This was entirely a bug-fix release to 0.96, which seems to have
got cursed. Silly me.
(*) Fixed stupid mistake in OBJ which caused `MOV EAX,<constant>' to
fail. Caused by an error in the `MOV EAX,<segment>' support.
(*) ndisasm hung at EOF when compiled with lcc on Linux because lcc
on Linux somehow breaks feof(). ndisasm now does not rely on
feof().
(*) A heading in the documentation was missing due to a markup error
in the indexing. Fixed.
(*) Fixed failure to update all pointers on realloc() within
extended- operand code in parser.c. Was causing wrong behaviour
and seg faults on lines such as `dd 0.0,0.0,0.0,0.0,...'
(*) Fixed a subtle preprocessor bug whereby invoking one multi-line
macro on the first line of the expansion of another, when the
second had been invoked with a label defined before it, didn't
expand the inner macro.
(*) Added internal.doc back in to the distribution archives - it was
missing in 0.96 *blush*
(*) Fixed bug causing 0.96 to be unable to assemble its own test
files, specifically objtest.asm. *blush again*
(*) Fixed seg-faults and bogus error messages caused by mismatching
`%rep' and `%endrep' within multi-line macro definitions.
(*) Fixed a problem with buffer overrun in OBJ, which was causing
corruption at ends of long PUBDEF records.
(*) Separated DOS archives into main-program and documentation to
reduce download size.
C.3.2 Version 0.96 released November 1997
(*) Fixed a bug whereby, if `nasm sourcefile' would cause a filename
collision warning and put output into `nasm.out', then `nasm
sourcefile -o outputfile' still gave the warning even though the
`-o' was honoured. Fixed name pollution under Digital UNIX: one
of its header files defined R_SP, which broke the enum in
nasm.h.
(*) Fixed minor instruction table problems: FUCOM and FUCOMP didn't
have two-operand forms; NDISASM didn't recognise the longer
register forms of PUSH and POP (eg FF F3 for PUSH BX); TEST
mem,imm32 was flagged as undocumented; the 32-bit forms of CMOV
had 16-bit operand size prefixes; `AAD imm' and `AAM imm' are no
longer flagged as undocumented because the Intel Architecture
reference documents them.
(*) Fixed a problem with the local-label mechanism, whereby strange
types of symbol (EQUs, auto-defined OBJ segment base symbols)
interfered with the `previous global label' value and screwed up
local labels.
(*) Fixed a bug whereby the stub preprocessor didn't communicate
with the listing file generator, so that the -a and -l options
in conjunction would produce a useless listing file.
(*) Merged `os2' object file format back into `obj', after
discovering that `obj' _also_ shouldn't have a link pass
separator in a module containing a non-trivial MODEND. Flat
segments are now declared using the FLAT attribute. `os2' is no
longer a valid object format name: use `obj'.
(*) Removed the fixed-size temporary storage in the evaluator. Very
very long expressions (like `mov ax,1+1+1+1+...' for two hundred
1s or so) should now no longer crash NASM.
(*) Fixed a bug involving segfaults on disassembly of MMX
instructions, by changing the meaning of one of the operand-type
flags in nasm.h. This may cause other apparently unrelated MMX
problems; it needs to be tested thoroughly.
(*) Fixed some buffer overrun problems with large OBJ output files.
Thanks to DJ Delorie for the bug report and fix.
(*) Made preprocess-only mode actually listen to the `%line' markers
as it prints them, so that it can report errors more sanely.
(*) Re-designed the evaluator to keep more sensible track of
expressions involving forward references: can now cope with
previously-nightmare situations such as:
mov ax,foo | bar
foo equ 1
bar equ 2
(*) Added the ALIGN and ALIGNB standard macros.
(*) Added PIC support in ELF: use of WRT to obtain the four extra
relocation types needed.
(*) Added the ability for output file formats to define their own
extensions to the GLOBAL, COMMON and EXTERN directives.
(*) Implemented common-variable alignment, and global-symbol type
and size declarations, in ELF.
(*) Implemented NEAR and FAR keywords for common variables, plus
far-common element size specification, in OBJ.
(*) Added a feature whereby EXTERNs and COMMONs in OBJ can be given
a default WRT specification (either a segment or a group).
(*) Transformed the Unix NASM archive into an auto-configuring
package.
(*) Added a sanity-check for people applying SEG to things which are
already segment bases: this previously went unnoticed by the SEG
processing and caused OBJ-driver panics later.
(*) Added the ability, in OBJ format, to deal with `MOV
EAX,<segment>' type references: OBJ doesn't directly support
dword-size segment base fixups, but as long as the low two bytes
of the constant term are zero, a word-size fixup can be
generated instead and it will work.
(*) Added the ability to specify sections' alignment requirements in
Win32 object files and pure binary files.
(*) Added preprocess-time expression evaluation: the `%assign' (and
`%iassign') directive and the bare `%if' (and `%elif')
conditional. Added relational operators to the evaluator, for
use only in `%if' constructs: the standard relationals = < > <=
>= <> (and C-like synonyms == and !=) plus low-precedence
logical operators &&, ^^ and ||.
(*) Added a preprocessor repeat construct: `%rep' / `%exitrep' /
`%endrep'.
(*) Added the __FILE__ and __LINE__ standard macros.
(*) Added a sanity check for number constants being greater than
0xFFFFFFFF. The warning can be disabled.
(*) Added the %0 token whereby a variadic multi-line macro can tell
how many parameters it's been given in a specific invocation.
(*) Added `%rotate', allowing multi-line macro parameters to be
cycled.
(*) Added the `*' option for the maximum parameter count on multi-
line macros, allowing them to take arbitrarily many parameters.
(*) Added the ability for the user-level forms of EXTERN, GLOBAL and
COMMON to take more than one argument.
(*) Added the IMPORT and EXPORT directives in OBJ format, to deal
with Windows DLLs.
(*) Added some more preprocessor `%if' constructs: `%ifidn' /
`%ifidni' (exact textual identity), and `%ifid' / `%ifnum' /
`%ifstr' (token type testing).
(*) Added the ability to distinguish SHL AX,1 (the 8086 version)
from SHL AX,BYTE 1 (the 286-and-upwards version whose constant
happens to be 1).
(*) Added NetBSD/FreeBSD/OpenBSD's variant of a.out format, complete
with PIC shared library features.
(*) Changed NASM's idiosyncratic handling of FCLEX, FDISI, FENI,
FINIT, FSAVE, FSTCW, FSTENV, and FSTSW to bring it into line
with the otherwise accepted standard. The previous behaviour,
though it was a deliberate feature, was a deliberate feature
based on a misunderstanding. Apologies for the inconvenience.
(*) Improved the flexibility of ABSOLUTE: you can now give it an
expression rather than being restricted to a constant, and it
can take relocatable arguments as well.
(*) Added the ability for a variable to be declared as EXTERN
multiple times, and the subsequent definitions are just ignored.
(*) We now allow instruction prefixes (CS, DS, LOCK, REPZ etc) to be
alone on a line (without a following instruction).
(*) Improved sanity checks on whether the arguments to EXTERN,
GLOBAL and COMMON are valid identifiers.
(*) Added misc/exebin.mac to allow direct generation of .EXE files
by hacking up an EXE header using DB and DW; also added
test/binexe.asm to demonstrate the use of this. Thanks to Yann
Guidon for contributing the EXE header code.
(*) ndisasm forgot to check whether the input file had been
successfully opened. Now it does. Doh!
(*) Added the Cyrix extensions to the MMX instruction set.
(*) Added a hinting mechanism to allow [EAX+EBX] and [EBX+EAX] to be
assembled differently. This is important since [ESI+EBP] and
[EBP+ESI] have different default base segment registers.
(*) Added support for the PharLap OMF extension for 4096-byte
segment alignment.
C.3.3 Version 0.95 released July 1997
(*) Fixed yet another ELF bug. This one manifested if the user
relied on the default segment, and attempted to define global
symbols without first explicitly declaring the target segment.
(*) Added makefiles (for NASM and the RDF tools) to build Win32
console apps under Symantec C++. Donated by Mark Junker.
(*) Added `macros.bas' and `insns.bas', QBasic versions of the Perl
scripts that convert `standard.mac' to `macros.c' and convert
`insns.dat' to `insnsa.c' and `insnsd.c'. Also thanks to Mark
Junker.
(*) Changed the diassembled forms of the conditional instructions so
that JB is now emitted as JC, and other similar changes.
Suggested list by Ulrich Doewich.
(*) Added `@' to the list of valid characters to begin an identifier
with.
(*) Documentary changes, notably the addition of the `Common
Problems' section in nasm.doc.
(*) Fixed a bug relating to 32-bit PC-relative fixups in OBJ.
(*) Fixed a bug in perm_copy() in labels.c which was causing
exceptions in cleanup_labels() on some systems.
(*) Positivity sanity check in TIMES argument changed from a warning
to an error following a further complaint.
(*) Changed the acceptable limits on byte and word operands to allow
things like `~10111001b' to work.
(*) Fixed a major problem in the preprocessor which caused seg-
faults if macro definitions contained blank lines or comment-
only lines.
(*) Fixed inadequate error checking on the commas separating the
arguments to `db', `dw' etc.
(*) Fixed a crippling bug in the handling of macros with operand
counts defined with a `+' modifier.
(*) Fixed a bug whereby object file formats which stored the input
file name in the output file (such as OBJ and COFF) weren't
doing so correctly when the output file name was specified on
the command line.
(*) Removed [INC] and [INCLUDE] support for good, since they were
obsolete anyway.
(*) Fixed a bug in OBJ which caused all fixups to be output in 16-
bit (old-format) FIXUPP records, rather than putting the 32-bit
ones in FIXUPP32 (new-format) records.
(*) Added, tentatively, OS/2 object file support (as a minor variant
on OBJ).
(*) Updates to Fox Cutter's Borland C makefile, Makefile.bc2.
(*) Removed a spurious second fclose() on the output file.
(*) Added the `-s' command line option to redirect all messages
which would go to stderr (errors, help text) to stdout instead.
(*) Added the `-w' command line option to selectively suppress some
classes of assembly warning messages.
(*) Added the `-p' pre-include and `-d' pre-define command-line
options.
(*) Added an include file search path: the `-i' command line option.
(*) Fixed a silly little preprocessor bug whereby starting a line
with a `%!' environment-variable reference caused an `unknown
directive' error.
(*) Added the long-awaited listing file support: the `-l' command
line option.
(*) Fixed a problem with OBJ format whereby, in the absence of any
explicit segment definition, non-global symbols declared in the
implicit default segment generated spurious EXTDEF records in
the output.
(*) Added the NASM environment variable.
(*) From this version forward, Win32 console-mode binaries will be
included in the DOS distribution in addition to the 16-bit
binaries. Added Makefile.vc for this purpose.
(*) Added `return 0;' to test/objlink.c to prevent compiler
warnings.
(*) Added the __NASM_MAJOR__ and __NASM_MINOR__ standard defines.
(*) Added an alternative memory-reference syntax in which prefixing
an operand with `&' is equivalent to enclosing it in square
brackets, at the request of Fox Cutter.
(*) Errors in pass two now cause the program to return a non-zero
error code, which they didn't before.
(*) Fixed the single-line macro cycle detection, which didn't work
at all on macros with no parameters (caused an infinite loop).
Also changed the behaviour of single-line macro cycle detection
to work like cpp, so that macros like `extrn' as given in the
documentation can be implemented.
(*) Fixed the implementation of WRT, which was too restrictive in
that you couldn't do `mov ax,[di+abc wrt dgroup]' because
(di+abc) wasn't a relocatable reference.
C.3.4 Version 0.94 released April 1997
(*) Major item: added the macro processor.
(*) Added undocumented instructions SMI, IBTS, XBTS and LOADALL286.
Also reorganised CMPXCHG instruction into early-486 and Pentium
forms. Thanks to Thobias Jones for the information.
(*) Fixed two more stupid bugs in ELF, which were causing `ld' to
continue to seg-fault in a lot of non-trivial cases.
(*) Fixed a seg-fault in the label manager.
(*) Stopped FBLD and FBSTP from _requiring_ the TWORD keyword, which
is the only option for BCD loads/stores in any case.
(*) Ensured FLDCW, FSTCW and FSTSW can cope with the WORD keyword,
if anyone bothers to provide it. Previously they complained
unless no keyword at all was present.
(*) Some forms of FDIV/FDIVR and FSUB/FSUBR were still inverted: a
vestige of a bug that I thought had been fixed in 0.92. This was
fixed, hopefully for good this time...
(*) Another minor phase error (insofar as a phase error can _ever_
be minor) fixed, this one occurring in code of the form
rol ax,forward_reference
forward_reference equ 1
(*) The number supplied to TIMES is now sanity-checked for
positivity, and also may be greater than 64K (which previously
didn't work on 16-bit systems).
(*) Added Watcom C makefiles, and misc/pmw.bat, donated by Dominik
Behr.
(*) Added the INCBIN pseudo-opcode.
(*) Due to the advent of the preprocessor, the [INCLUDE] and [INC]
directives have become obsolete. They are still supported in
this version, with a warning, but won't be in the next.
(*) Fixed a bug in OBJ format, which caused incorrect object records
to be output when absolute labels were made global.
(*) Updates to RDOFF subdirectory, and changes to outrdf.c.
C.3.5 Version 0.93 released January 1997
This release went out in a great hurry after semi-crippling bugs
were found in 0.92.
(*) Really _did_ fix the stack overflows this time. *blush*
(*) Had problems with EA instruction sizes changing between passes,
when an offset contained a forward reference and so 4 bytes were
allocated for the offset in pass one; by pass two the symbol had
been defined and happened to be a small absolute value, so only
1 byte got allocated, causing instruction size mismatch between
passes and hence incorrect address calculations. Fixed.
(*) Stupid bug in the revised ELF section generation fixed
(associated string-table section for .symtab was hard-coded as
7, even when this didn't fit with the real section table). Was
causing `ld' to seg-fault under Linux.
(*) Included a new Borland C makefile, Makefile.bc2, donated by Fox
Cutter <lmb@comtch.iea.com>.
C.3.6 Version 0.92 released January 1997
(*) The FDIVP/FDIVRP and FSUBP/FSUBRP pairs had been inverted: this
was fixed. This also affected the LCC driver.
(*) Fixed a bug regarding 32-bit effective addresses of the form
`[other_register+ESP]'.
(*) Documentary changes, notably documentation of the fact that
Borland Win32 compilers use `obj' rather than `win32' object
format.
(*) Fixed the COMENT record in OBJ files, which was formatted
incorrectly.
(*) Fixed a bug causing segfaults in large RDF files.
(*) OBJ format now strips initial periods from segment and group
definitions, in order to avoid complications with the local
label syntax.
(*) Fixed a bug in disassembling far calls and jumps in NDISASM.
(*) Added support for user-defined sections in COFF and ELF files.
(*) Compiled the DOS binaries with a sensible amount of stack, to
prevent stack overflows on any arithmetic expression containing
parentheses.
(*) Fixed a bug in handling of files that do not terminate in a
newline.
C.3.7 Version 0.91 released November 1996
(*) Loads of bug fixes.
(*) Support for RDF added.
(*) Support for DBG debugging format added.
(*) Support for 32-bit extensions to Microsoft OBJ format added.
(*) Revised for Borland C: some variable names changed, makefile
added.
(*) LCC support revised to actually work.
(*) JMP/CALL NEAR/FAR notation added.
(*) `a16', `o16', `a32' and `o32' prefixes added.
(*) Range checking on short jumps implemented.
(*) MMX instruction support added.
(*) Negative floating point constant support added.
(*) Memory handling improved to bypass 64K barrier under DOS.
(*) `$' prefix to force treatment of reserved words as identifiers
added.
(*) Default-size mechanism for object formats added.
(*) Compile-time configurability added.
(*) `#', `@', `~' and c{?} are now valid characters in labels.
(*) `-e' and `-k' options in NDISASM added.
C.3.8 Version 0.90 released October 1996
First release version. First support for object file output. Other
changes from previous version (0.3x) too numerous to document.
|