1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
|
/*
* Copyright (c) 2000, 2001, 2002 Virtual Unlimited B.V.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
*/
/*!\file elgamal.h
* \brief ElGamal algorithm.
*
* For more information on this algorithm, see:
* "Handbook of Applied Cryptography",
* 11.5.2: "The ElGamal signature scheme", p. 454-459
*
* Two of the signature variants in Note 11.70 are implemented.
*
* \todo Implement ElGamal encryption and decryption.
*
* \todo Explore the possibility of using simultaneous multiple exponentiation,
* as described in HAC, 14.87 (iii).
*
* \author Bob Deblier <bob.deblier@pandora.be>
* \ingroup DL_m DL_elgamal_m
*/
#ifndef _ELGAMAL_H
#define _ELGAMAL_H
#include "mpbarrett.h"
#ifdef __cplusplus
extern "C" {
#endif
/**
* The raw ElGamal signing funcion, variant 1.
*
* Signing equations:
*
* \li \f$r=g^{k}\ \textrm{mod}\ p\f$
* \li \f$s=k^{-1}(h(m)-xr)\ \textrm{mod}\ (p-1)\f$
*
* @param p The prime.
* @param n The reducer mod (p-1).
* @param g The generator.
* @param rgc The pseudo-random generator.
* @param hm The hash to be signed.
* @param x The private key value.
* @param r The signature's \e r value.
* @param s The signature's \e r value.
* @retval 0 on success, -1 on failure.
*/
BEECRYPTAPI /*@unused@*/
int elgv1sign(const mpbarrett* p, const mpbarrett* n, const mpnumber* g, randomGeneratorContext* rgc, const mpnumber* hm, const mpnumber* x, mpnumber* r, mpnumber* s)
/*@modifies r, s */;
/**
* The raw ElGamal signing funcion, variant 3.
*
* Signing equations:
*
* \li \f$r=g^{k}\ \textrm{mod}\ p\f$
* \li \f$s=xr+kh(m)\ \textrm{mod}\ (p-1)\f$
*
* @param p The prime.
* @param n The reducer mod (p-1).
* @param g The generator.
* @param rgc The pseudo-random generator.
* @param hm The hash to be signed.
* @param x The private key value.
* @param r The signature's \e r value.
* @param s The signature's \e r value.
* @retval 0 on success, -1 on failure.
*/
BEECRYPTAPI /*@unused@*/
int elgv3sign(const mpbarrett* p, const mpbarrett* n, const mpnumber* g, randomGeneratorContext* rgc, const mpnumber* hm, const mpnumber* x, mpnumber* r, mpnumber* s)
/*@modifies r, s */;
/**
* The raw ElGamal verification funcion, variant 1.
*
* Verifying equations:
*
* \li Check \f$0<r<p\f$ and \f$0<s<(p-1)\f$
* \li \f$v_1=y^{r}r^{s}\ \textrm{mod}\ p\f$
* \li \f$v_2=g^{h(m)}\ \textrm{mod}\ p\f$
* \li Check \f$v_1=v_2\f$
*
* @warning The return type of this function should be a boolean, but since
* that type isn't as portable, an int is used.
*
* @param p The prime.
* @param n The reducer mod (p-1).
* @param g The generator.
* @param hm The hash to be signed.
* @param y The public key value.
* @param r The signature's \e r value.
* @param s The signature's \e r value.
* @retval 1 on success, 0 on failure.
*/
BEECRYPTAPI /*@unused@*/
int elgv1vrfy(const mpbarrett* p, const mpbarrett* n, const mpnumber* g, const mpnumber* hm, const mpnumber* y, const mpnumber* r, const mpnumber* s)
/*@*/;
/**
* The raw ElGamal verification funcion, variant 3.
*
* Verifying equations:
*
* \li Check \f$0<r<p\f$ and \f$0<s<(p-1)\f$
* \li \f$v_1=g^{s}\ \textrm{mod}\ p\f$
* \li \f$v_2=y^{r}r^{h(m)}\ \textrm{mod}\ p\f$
* \li Check \f$v_1=v_2\f$
*
* @warning The return type of this function should be a boolean, but since
* that type isn't as portable, an int is used.
*
* @param p The prime.
* @param n The reducer mod (p-1).
* @param g The generator.
* @param hm The hash to be signed.
* @param y The public key value.
* @param r The signature's \e r value.
* @param s The signature's \e r value.
* @retval 1 on success, 0 on failure.
*/
BEECRYPTAPI /*@unused@*/
int elgv3vrfy(const mpbarrett* p, const mpbarrett* n, const mpnumber* g, const mpnumber* hm, const mpnumber* y, const mpnumber* r, const mpnumber* s)
/*@*/;
#ifdef __cplusplus
}
#endif
#endif
|