summaryrefslogtreecommitdiff
path: root/src/mips/ffi.c
diff options
context:
space:
mode:
Diffstat (limited to 'src/mips/ffi.c')
-rw-r--r--src/mips/ffi.c1029
1 files changed, 1029 insertions, 0 deletions
diff --git a/src/mips/ffi.c b/src/mips/ffi.c
new file mode 100644
index 0000000..d714cc9
--- /dev/null
+++ b/src/mips/ffi.c
@@ -0,0 +1,1029 @@
+/* -----------------------------------------------------------------------
+ ffi.c - Copyright (c) 1996, 2007, 2008 Red Hat, Inc.
+ Copyright (c) 2008 David Daney
+
+ MIPS Foreign Function Interface
+
+ Permission is hereby granted, free of charge, to any person obtaining
+ a copy of this software and associated documentation files (the
+ ``Software''), to deal in the Software without restriction, including
+ without limitation the rights to use, copy, modify, merge, publish,
+ distribute, sublicense, and/or sell copies of the Software, and to
+ permit persons to whom the Software is furnished to do so, subject to
+ the following conditions:
+
+ The above copyright notice and this permission notice shall be included
+ in all copies or substantial portions of the Software.
+
+ THE SOFTWARE IS PROVIDED ``AS IS'', WITHOUT WARRANTY OF ANY KIND,
+ EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
+ MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
+ NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
+ HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
+ WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
+ DEALINGS IN THE SOFTWARE.
+ ----------------------------------------------------------------------- */
+
+#include <ffi.h>
+#include <ffi_common.h>
+
+#include <stdlib.h>
+
+#ifdef __GNUC__
+# if (__GNUC__ > 4) || ((__GNUC__ == 4) && (__GNUC_MINOR__ >= 3))
+# define USE__BUILTIN___CLEAR_CACHE 1
+# endif
+#endif
+
+#ifndef USE__BUILTIN___CLEAR_CACHE
+#include <sys/cachectl.h>
+#endif
+
+#ifdef FFI_DEBUG
+# define FFI_MIPS_STOP_HERE() ffi_stop_here()
+#else
+# define FFI_MIPS_STOP_HERE() do {} while(0)
+#endif
+
+#ifdef FFI_MIPS_N32
+#define FIX_ARGP \
+FFI_ASSERT(argp <= &stack[bytes]); \
+if (argp == &stack[bytes]) \
+{ \
+ argp = stack; \
+ FFI_MIPS_STOP_HERE(); \
+}
+#else
+#define FIX_ARGP
+#endif
+
+
+/* ffi_prep_args is called by the assembly routine once stack space
+ has been allocated for the function's arguments */
+
+static void ffi_prep_args(char *stack,
+ extended_cif *ecif,
+ int bytes,
+ int flags)
+{
+ int i;
+ void **p_argv;
+ char *argp;
+ ffi_type **p_arg;
+
+#ifdef FFI_MIPS_N32
+ /* If more than 8 double words are used, the remainder go
+ on the stack. We reorder stuff on the stack here to
+ support this easily. */
+ if (bytes > 8 * sizeof(ffi_arg))
+ argp = &stack[bytes - (8 * sizeof(ffi_arg))];
+ else
+ argp = stack;
+#else
+ argp = stack;
+#endif
+
+ memset(stack, 0, bytes);
+
+#ifdef FFI_MIPS_N32
+ if ( ecif->cif->rstruct_flag != 0 )
+#else
+ if ( ecif->cif->rtype->type == FFI_TYPE_STRUCT )
+#endif
+ {
+ *(ffi_arg *) argp = (ffi_arg) ecif->rvalue;
+ argp += sizeof(ffi_arg);
+ FIX_ARGP;
+ }
+
+ p_argv = ecif->avalue;
+
+ for (i = 0, p_arg = ecif->cif->arg_types; i < ecif->cif->nargs; i++, p_arg++)
+ {
+ size_t z;
+ unsigned int a;
+
+ /* Align if necessary. */
+ a = (*p_arg)->alignment;
+ if (a < sizeof(ffi_arg))
+ a = sizeof(ffi_arg);
+
+ if ((a - 1) & (unsigned long) argp)
+ {
+ argp = (char *) ALIGN(argp, a);
+ FIX_ARGP;
+ }
+
+ z = (*p_arg)->size;
+ if (z <= sizeof(ffi_arg))
+ {
+ int type = (*p_arg)->type;
+ z = sizeof(ffi_arg);
+
+ /* The size of a pointer depends on the ABI */
+ if (type == FFI_TYPE_POINTER)
+ type = (ecif->cif->abi == FFI_N64
+ || ecif->cif->abi == FFI_N64_SOFT_FLOAT)
+ ? FFI_TYPE_SINT64 : FFI_TYPE_SINT32;
+
+ if (i < 8 && (ecif->cif->abi == FFI_N32_SOFT_FLOAT
+ || ecif->cif->abi == FFI_N64_SOFT_FLOAT))
+ {
+ switch (type)
+ {
+ case FFI_TYPE_FLOAT:
+ type = FFI_TYPE_UINT32;
+ break;
+ case FFI_TYPE_DOUBLE:
+ type = FFI_TYPE_UINT64;
+ break;
+ default:
+ break;
+ }
+ }
+ switch (type)
+ {
+ case FFI_TYPE_SINT8:
+ *(ffi_arg *)argp = *(SINT8 *)(* p_argv);
+ break;
+
+ case FFI_TYPE_UINT8:
+ *(ffi_arg *)argp = *(UINT8 *)(* p_argv);
+ break;
+
+ case FFI_TYPE_SINT16:
+ *(ffi_arg *)argp = *(SINT16 *)(* p_argv);
+ break;
+
+ case FFI_TYPE_UINT16:
+ *(ffi_arg *)argp = *(UINT16 *)(* p_argv);
+ break;
+
+ case FFI_TYPE_SINT32:
+ *(ffi_arg *)argp = *(SINT32 *)(* p_argv);
+ break;
+
+ case FFI_TYPE_UINT32:
+ *(ffi_arg *)argp = *(UINT32 *)(* p_argv);
+ break;
+
+ /* This can only happen with 64bit slots. */
+ case FFI_TYPE_FLOAT:
+ *(float *) argp = *(float *)(* p_argv);
+ break;
+
+ /* Handle structures. */
+ default:
+ memcpy(argp, *p_argv, (*p_arg)->size);
+ break;
+ }
+ }
+ else
+ {
+#ifdef FFI_MIPS_O32
+ memcpy(argp, *p_argv, z);
+#else
+ {
+ unsigned long end = (unsigned long) argp + z;
+ unsigned long cap = (unsigned long) stack + bytes;
+
+ /* Check if the data will fit within the register space.
+ Handle it if it doesn't. */
+
+ if (end <= cap)
+ memcpy(argp, *p_argv, z);
+ else
+ {
+ unsigned long portion = cap - (unsigned long)argp;
+
+ memcpy(argp, *p_argv, portion);
+ argp = stack;
+ z -= portion;
+ memcpy(argp, (void*)((unsigned long)(*p_argv) + portion),
+ z);
+ }
+ }
+#endif
+ }
+ p_argv++;
+ argp += z;
+ FIX_ARGP;
+ }
+}
+
+#ifdef FFI_MIPS_N32
+
+/* The n32 spec says that if "a chunk consists solely of a double
+ float field (but not a double, which is part of a union), it
+ is passed in a floating point register. Any other chunk is
+ passed in an integer register". This code traverses structure
+ definitions and generates the appropriate flags. */
+
+static unsigned
+calc_n32_struct_flags(int soft_float, ffi_type *arg,
+ unsigned *loc, unsigned *arg_reg)
+{
+ unsigned flags = 0;
+ unsigned index = 0;
+
+ ffi_type *e;
+
+ if (soft_float)
+ return 0;
+
+ while ((e = arg->elements[index]))
+ {
+ /* Align this object. */
+ *loc = ALIGN(*loc, e->alignment);
+ if (e->type == FFI_TYPE_DOUBLE)
+ {
+ /* Already aligned to FFI_SIZEOF_ARG. */
+ *arg_reg = *loc / FFI_SIZEOF_ARG;
+ if (*arg_reg > 7)
+ break;
+ flags += (FFI_TYPE_DOUBLE << (*arg_reg * FFI_FLAG_BITS));
+ *loc += e->size;
+ }
+ else
+ *loc += e->size;
+ index++;
+ }
+ /* Next Argument register at alignment of FFI_SIZEOF_ARG. */
+ *arg_reg = ALIGN(*loc, FFI_SIZEOF_ARG) / FFI_SIZEOF_ARG;
+
+ return flags;
+}
+
+static unsigned
+calc_n32_return_struct_flags(int soft_float, ffi_type *arg)
+{
+ unsigned flags = 0;
+ unsigned small = FFI_TYPE_SMALLSTRUCT;
+ ffi_type *e;
+
+ /* Returning structures under n32 is a tricky thing.
+ A struct with only one or two floating point fields
+ is returned in $f0 (and $f2 if necessary). Any other
+ struct results at most 128 bits are returned in $2
+ (the first 64 bits) and $3 (remainder, if necessary).
+ Larger structs are handled normally. */
+
+ if (arg->size > 16)
+ return 0;
+
+ if (arg->size > 8)
+ small = FFI_TYPE_SMALLSTRUCT2;
+
+ e = arg->elements[0];
+
+ if (e->type == FFI_TYPE_DOUBLE)
+ flags = FFI_TYPE_DOUBLE;
+ else if (e->type == FFI_TYPE_FLOAT)
+ flags = FFI_TYPE_FLOAT;
+
+ if (flags && (e = arg->elements[1]))
+ {
+ if (e->type == FFI_TYPE_DOUBLE)
+ flags += FFI_TYPE_DOUBLE << FFI_FLAG_BITS;
+ else if (e->type == FFI_TYPE_FLOAT)
+ flags += FFI_TYPE_FLOAT << FFI_FLAG_BITS;
+ else
+ return small;
+
+ if (flags && (arg->elements[2]))
+ {
+ /* There are three arguments and the first two are
+ floats! This must be passed the old way. */
+ return small;
+ }
+ if (soft_float)
+ flags += FFI_TYPE_STRUCT_SOFT;
+ }
+ else
+ if (!flags)
+ return small;
+
+ return flags;
+}
+
+#endif
+
+/* Perform machine dependent cif processing */
+ffi_status ffi_prep_cif_machdep(ffi_cif *cif)
+{
+ cif->flags = 0;
+
+#ifdef FFI_MIPS_O32
+ /* Set the flags necessary for O32 processing. FFI_O32_SOFT_FLOAT
+ * does not have special handling for floating point args.
+ */
+
+ if (cif->rtype->type != FFI_TYPE_STRUCT && cif->abi == FFI_O32)
+ {
+ if (cif->nargs > 0)
+ {
+ switch ((cif->arg_types)[0]->type)
+ {
+ case FFI_TYPE_FLOAT:
+ case FFI_TYPE_DOUBLE:
+ cif->flags += (cif->arg_types)[0]->type;
+ break;
+
+ default:
+ break;
+ }
+
+ if (cif->nargs > 1)
+ {
+ /* Only handle the second argument if the first
+ is a float or double. */
+ if (cif->flags)
+ {
+ switch ((cif->arg_types)[1]->type)
+ {
+ case FFI_TYPE_FLOAT:
+ case FFI_TYPE_DOUBLE:
+ cif->flags += (cif->arg_types)[1]->type << FFI_FLAG_BITS;
+ break;
+
+ default:
+ break;
+ }
+ }
+ }
+ }
+ }
+
+ /* Set the return type flag */
+
+ if (cif->abi == FFI_O32_SOFT_FLOAT)
+ {
+ switch (cif->rtype->type)
+ {
+ case FFI_TYPE_VOID:
+ case FFI_TYPE_STRUCT:
+ cif->flags += cif->rtype->type << (FFI_FLAG_BITS * 2);
+ break;
+
+ case FFI_TYPE_SINT64:
+ case FFI_TYPE_UINT64:
+ case FFI_TYPE_DOUBLE:
+ cif->flags += FFI_TYPE_UINT64 << (FFI_FLAG_BITS * 2);
+ break;
+
+ case FFI_TYPE_FLOAT:
+ default:
+ cif->flags += FFI_TYPE_INT << (FFI_FLAG_BITS * 2);
+ break;
+ }
+ }
+ else
+ {
+ /* FFI_O32 */
+ switch (cif->rtype->type)
+ {
+ case FFI_TYPE_VOID:
+ case FFI_TYPE_STRUCT:
+ case FFI_TYPE_FLOAT:
+ case FFI_TYPE_DOUBLE:
+ cif->flags += cif->rtype->type << (FFI_FLAG_BITS * 2);
+ break;
+
+ case FFI_TYPE_SINT64:
+ case FFI_TYPE_UINT64:
+ cif->flags += FFI_TYPE_UINT64 << (FFI_FLAG_BITS * 2);
+ break;
+
+ default:
+ cif->flags += FFI_TYPE_INT << (FFI_FLAG_BITS * 2);
+ break;
+ }
+ }
+#endif
+
+#ifdef FFI_MIPS_N32
+ /* Set the flags necessary for N32 processing */
+ {
+ int type;
+ unsigned arg_reg = 0;
+ unsigned loc = 0;
+ unsigned count = (cif->nargs < 8) ? cif->nargs : 8;
+ unsigned index = 0;
+
+ unsigned struct_flags = 0;
+ int soft_float = (cif->abi == FFI_N32_SOFT_FLOAT
+ || cif->abi == FFI_N64_SOFT_FLOAT);
+
+ if (cif->rtype->type == FFI_TYPE_STRUCT)
+ {
+ struct_flags = calc_n32_return_struct_flags(soft_float, cif->rtype);
+
+ if (struct_flags == 0)
+ {
+ /* This means that the structure is being passed as
+ a hidden argument */
+
+ arg_reg = 1;
+ count = (cif->nargs < 7) ? cif->nargs : 7;
+
+ cif->rstruct_flag = !0;
+ }
+ else
+ cif->rstruct_flag = 0;
+ }
+ else
+ cif->rstruct_flag = 0;
+
+ while (count-- > 0 && arg_reg < 8)
+ {
+ type = (cif->arg_types)[index]->type;
+ if (soft_float)
+ {
+ switch (type)
+ {
+ case FFI_TYPE_FLOAT:
+ type = FFI_TYPE_UINT32;
+ break;
+ case FFI_TYPE_DOUBLE:
+ type = FFI_TYPE_UINT64;
+ break;
+ default:
+ break;
+ }
+ }
+ switch (type)
+ {
+ case FFI_TYPE_FLOAT:
+ case FFI_TYPE_DOUBLE:
+ cif->flags +=
+ ((cif->arg_types)[index]->type << (arg_reg * FFI_FLAG_BITS));
+ arg_reg++;
+ break;
+ case FFI_TYPE_LONGDOUBLE:
+ /* Align it. */
+ arg_reg = ALIGN(arg_reg, 2);
+ /* Treat it as two adjacent doubles. */
+ if (soft_float)
+ {
+ arg_reg += 2;
+ }
+ else
+ {
+ cif->flags +=
+ (FFI_TYPE_DOUBLE << (arg_reg * FFI_FLAG_BITS));
+ arg_reg++;
+ cif->flags +=
+ (FFI_TYPE_DOUBLE << (arg_reg * FFI_FLAG_BITS));
+ arg_reg++;
+ }
+ break;
+
+ case FFI_TYPE_STRUCT:
+ loc = arg_reg * FFI_SIZEOF_ARG;
+ cif->flags += calc_n32_struct_flags(soft_float,
+ (cif->arg_types)[index],
+ &loc, &arg_reg);
+ break;
+
+ default:
+ arg_reg++;
+ break;
+ }
+
+ index++;
+ }
+
+ /* Set the return type flag */
+ switch (cif->rtype->type)
+ {
+ case FFI_TYPE_STRUCT:
+ {
+ if (struct_flags == 0)
+ {
+ /* The structure is returned through a hidden
+ first argument. Do nothing, 'cause FFI_TYPE_VOID
+ is 0 */
+ }
+ else
+ {
+ /* The structure is returned via some tricky
+ mechanism */
+ cif->flags += FFI_TYPE_STRUCT << (FFI_FLAG_BITS * 8);
+ cif->flags += struct_flags << (4 + (FFI_FLAG_BITS * 8));
+ }
+ break;
+ }
+
+ case FFI_TYPE_VOID:
+ /* Do nothing, 'cause FFI_TYPE_VOID is 0 */
+ break;
+
+ case FFI_TYPE_POINTER:
+ if (cif->abi == FFI_N32_SOFT_FLOAT || cif->abi == FFI_N32)
+ cif->flags += FFI_TYPE_SINT32 << (FFI_FLAG_BITS * 8);
+ else
+ cif->flags += FFI_TYPE_INT << (FFI_FLAG_BITS * 8);
+ break;
+
+ case FFI_TYPE_FLOAT:
+ if (soft_float)
+ {
+ cif->flags += FFI_TYPE_SINT32 << (FFI_FLAG_BITS * 8);
+ break;
+ }
+ /* else fall through */
+ case FFI_TYPE_DOUBLE:
+ if (soft_float)
+ cif->flags += FFI_TYPE_INT << (FFI_FLAG_BITS * 8);
+ else
+ cif->flags += cif->rtype->type << (FFI_FLAG_BITS * 8);
+ break;
+
+ case FFI_TYPE_LONGDOUBLE:
+ /* Long double is returned as if it were a struct containing
+ two doubles. */
+ if (soft_float)
+ {
+ cif->flags += FFI_TYPE_STRUCT << (FFI_FLAG_BITS * 8);
+ cif->flags += FFI_TYPE_SMALLSTRUCT2 << (4 + (FFI_FLAG_BITS * 8));
+ }
+ else
+ {
+ cif->flags += FFI_TYPE_STRUCT << (FFI_FLAG_BITS * 8);
+ cif->flags += (FFI_TYPE_DOUBLE
+ + (FFI_TYPE_DOUBLE << FFI_FLAG_BITS))
+ << (4 + (FFI_FLAG_BITS * 8));
+ }
+ break;
+ default:
+ cif->flags += FFI_TYPE_INT << (FFI_FLAG_BITS * 8);
+ break;
+ }
+ }
+#endif
+
+ return FFI_OK;
+}
+
+/* Low level routine for calling O32 functions */
+extern int ffi_call_O32(void (*)(char *, extended_cif *, int, int),
+ extended_cif *, unsigned,
+ unsigned, unsigned *, void (*)(void));
+
+/* Low level routine for calling N32 functions */
+extern int ffi_call_N32(void (*)(char *, extended_cif *, int, int),
+ extended_cif *, unsigned,
+ unsigned, void *, void (*)(void));
+
+void ffi_call(ffi_cif *cif, void (*fn)(void), void *rvalue, void **avalue)
+{
+ extended_cif ecif;
+
+ ecif.cif = cif;
+ ecif.avalue = avalue;
+
+ /* If the return value is a struct and we don't have a return */
+ /* value address then we need to make one */
+
+ if ((rvalue == NULL) &&
+ (cif->rtype->type == FFI_TYPE_STRUCT))
+ ecif.rvalue = alloca(cif->rtype->size);
+ else
+ ecif.rvalue = rvalue;
+
+ switch (cif->abi)
+ {
+#ifdef FFI_MIPS_O32
+ case FFI_O32:
+ case FFI_O32_SOFT_FLOAT:
+ ffi_call_O32(ffi_prep_args, &ecif, cif->bytes,
+ cif->flags, ecif.rvalue, fn);
+ break;
+#endif
+
+#ifdef FFI_MIPS_N32
+ case FFI_N32:
+ case FFI_N32_SOFT_FLOAT:
+ case FFI_N64:
+ case FFI_N64_SOFT_FLOAT:
+ {
+ int copy_rvalue = 0;
+ int copy_offset = 0;
+ char *rvalue_copy = ecif.rvalue;
+ if (cif->rtype->type == FFI_TYPE_STRUCT && cif->rtype->size < 16)
+ {
+ /* For structures smaller than 16 bytes we clobber memory
+ in 8 byte increments. Make a copy so we don't clobber
+ the callers memory outside of the struct bounds. */
+ rvalue_copy = alloca(16);
+ copy_rvalue = 1;
+ }
+ else if (cif->rtype->type == FFI_TYPE_FLOAT
+ && (cif->abi == FFI_N64_SOFT_FLOAT
+ || cif->abi == FFI_N32_SOFT_FLOAT))
+ {
+ rvalue_copy = alloca (8);
+ copy_rvalue = 1;
+#if defined(__MIPSEB__) || defined(_MIPSEB)
+ copy_offset = 4;
+#endif
+ }
+ ffi_call_N32(ffi_prep_args, &ecif, cif->bytes,
+ cif->flags, rvalue_copy, fn);
+ if (copy_rvalue)
+ memcpy(ecif.rvalue, rvalue_copy + copy_offset, cif->rtype->size);
+ }
+ break;
+#endif
+
+ default:
+ FFI_ASSERT(0);
+ break;
+ }
+}
+
+#if FFI_CLOSURES
+#if defined(FFI_MIPS_O32)
+extern void ffi_closure_O32(void);
+#else
+extern void ffi_closure_N32(void);
+#endif /* FFI_MIPS_O32 */
+
+ffi_status
+ffi_prep_closure_loc (ffi_closure *closure,
+ ffi_cif *cif,
+ void (*fun)(ffi_cif*,void*,void**,void*),
+ void *user_data,
+ void *codeloc)
+{
+ unsigned int *tramp = (unsigned int *) &closure->tramp[0];
+ void * fn;
+ char *clear_location = (char *) codeloc;
+
+#if defined(FFI_MIPS_O32)
+ FFI_ASSERT(cif->abi == FFI_O32 || cif->abi == FFI_O32_SOFT_FLOAT);
+ fn = ffi_closure_O32;
+#else /* FFI_MIPS_N32 */
+ FFI_ASSERT(cif->abi == FFI_N32 || cif->abi == FFI_N64);
+ fn = ffi_closure_N32;
+#endif /* FFI_MIPS_O32 */
+
+#if defined(FFI_MIPS_O32) || (_MIPS_SIM ==_ABIN32)
+ /* lui $25,high(fn) */
+ tramp[0] = 0x3c190000 | ((unsigned)fn >> 16);
+ /* ori $25,low(fn) */
+ tramp[1] = 0x37390000 | ((unsigned)fn & 0xffff);
+ /* lui $12,high(codeloc) */
+ tramp[2] = 0x3c0c0000 | ((unsigned)codeloc >> 16);
+ /* jr $25 */
+ tramp[3] = 0x03200008;
+ /* ori $12,low(codeloc) */
+ tramp[4] = 0x358c0000 | ((unsigned)codeloc & 0xffff);
+#else
+ /* N64 has a somewhat larger trampoline. */
+ /* lui $25,high(fn) */
+ tramp[0] = 0x3c190000 | ((unsigned long)fn >> 48);
+ /* lui $12,high(codeloc) */
+ tramp[1] = 0x3c0c0000 | ((unsigned long)codeloc >> 48);
+ /* ori $25,mid-high(fn) */
+ tramp[2] = 0x37390000 | (((unsigned long)fn >> 32 ) & 0xffff);
+ /* ori $12,mid-high(codeloc) */
+ tramp[3] = 0x358c0000 | (((unsigned long)codeloc >> 32) & 0xffff);
+ /* dsll $25,$25,16 */
+ tramp[4] = 0x0019cc38;
+ /* dsll $12,$12,16 */
+ tramp[5] = 0x000c6438;
+ /* ori $25,mid-low(fn) */
+ tramp[6] = 0x37390000 | (((unsigned long)fn >> 16 ) & 0xffff);
+ /* ori $12,mid-low(codeloc) */
+ tramp[7] = 0x358c0000 | (((unsigned long)codeloc >> 16) & 0xffff);
+ /* dsll $25,$25,16 */
+ tramp[8] = 0x0019cc38;
+ /* dsll $12,$12,16 */
+ tramp[9] = 0x000c6438;
+ /* ori $25,low(fn) */
+ tramp[10] = 0x37390000 | ((unsigned long)fn & 0xffff);
+ /* jr $25 */
+ tramp[11] = 0x03200008;
+ /* ori $12,low(codeloc) */
+ tramp[12] = 0x358c0000 | ((unsigned long)codeloc & 0xffff);
+
+#endif
+
+ closure->cif = cif;
+ closure->fun = fun;
+ closure->user_data = user_data;
+
+#ifdef USE__BUILTIN___CLEAR_CACHE
+ __builtin___clear_cache(clear_location, clear_location + FFI_TRAMPOLINE_SIZE);
+#else
+ cacheflush (clear_location, FFI_TRAMPOLINE_SIZE, ICACHE);
+#endif
+ return FFI_OK;
+}
+
+/*
+ * Decodes the arguments to a function, which will be stored on the
+ * stack. AR is the pointer to the beginning of the integer arguments
+ * (and, depending upon the arguments, some floating-point arguments
+ * as well). FPR is a pointer to the area where floating point
+ * registers have been saved, if any.
+ *
+ * RVALUE is the location where the function return value will be
+ * stored. CLOSURE is the prepared closure to invoke.
+ *
+ * This function should only be called from assembly, which is in
+ * turn called from a trampoline.
+ *
+ * Returns the function return type.
+ *
+ * Based on the similar routine for sparc.
+ */
+int
+ffi_closure_mips_inner_O32 (ffi_closure *closure,
+ void *rvalue, ffi_arg *ar,
+ double *fpr)
+{
+ ffi_cif *cif;
+ void **avaluep;
+ ffi_arg *avalue;
+ ffi_type **arg_types;
+ int i, avn, argn, seen_int;
+
+ cif = closure->cif;
+ avalue = alloca (cif->nargs * sizeof (ffi_arg));
+ avaluep = alloca (cif->nargs * sizeof (ffi_arg));
+
+ seen_int = (cif->abi == FFI_O32_SOFT_FLOAT);
+ argn = 0;
+
+ if ((cif->flags >> (FFI_FLAG_BITS * 2)) == FFI_TYPE_STRUCT)
+ {
+ rvalue = (void *)(UINT32)ar[0];
+ argn = 1;
+ }
+
+ i = 0;
+ avn = cif->nargs;
+ arg_types = cif->arg_types;
+
+ while (i < avn)
+ {
+ if (i < 2 && !seen_int &&
+ (arg_types[i]->type == FFI_TYPE_FLOAT ||
+ arg_types[i]->type == FFI_TYPE_DOUBLE ||
+ arg_types[i]->type == FFI_TYPE_LONGDOUBLE))
+ {
+#if defined(__MIPSEB__) || defined(_MIPSEB)
+ if (arg_types[i]->type == FFI_TYPE_FLOAT)
+ avaluep[i] = ((char *) &fpr[i]) + sizeof (float);
+ else
+#endif
+ avaluep[i] = (char *) &fpr[i];
+ }
+ else
+ {
+ if (arg_types[i]->alignment == 8 && (argn & 0x1))
+ argn++;
+ switch (arg_types[i]->type)
+ {
+ case FFI_TYPE_SINT8:
+ avaluep[i] = &avalue[i];
+ *(SINT8 *) &avalue[i] = (SINT8) ar[argn];
+ break;
+
+ case FFI_TYPE_UINT8:
+ avaluep[i] = &avalue[i];
+ *(UINT8 *) &avalue[i] = (UINT8) ar[argn];
+ break;
+
+ case FFI_TYPE_SINT16:
+ avaluep[i] = &avalue[i];
+ *(SINT16 *) &avalue[i] = (SINT16) ar[argn];
+ break;
+
+ case FFI_TYPE_UINT16:
+ avaluep[i] = &avalue[i];
+ *(UINT16 *) &avalue[i] = (UINT16) ar[argn];
+ break;
+
+ default:
+ avaluep[i] = (char *) &ar[argn];
+ break;
+ }
+ seen_int = 1;
+ }
+ argn += ALIGN(arg_types[i]->size, FFI_SIZEOF_ARG) / FFI_SIZEOF_ARG;
+ i++;
+ }
+
+ /* Invoke the closure. */
+ (closure->fun) (cif, rvalue, avaluep, closure->user_data);
+
+ if (cif->abi == FFI_O32_SOFT_FLOAT)
+ {
+ switch (cif->rtype->type)
+ {
+ case FFI_TYPE_FLOAT:
+ return FFI_TYPE_INT;
+ case FFI_TYPE_DOUBLE:
+ return FFI_TYPE_UINT64;
+ default:
+ return cif->rtype->type;
+ }
+ }
+ else
+ {
+ return cif->rtype->type;
+ }
+}
+
+#if defined(FFI_MIPS_N32)
+
+static void
+copy_struct_N32(char *target, unsigned offset, ffi_abi abi, ffi_type *type,
+ int argn, unsigned arg_offset, ffi_arg *ar,
+ ffi_arg *fpr, int soft_float)
+{
+ ffi_type **elt_typep = type->elements;
+ while(*elt_typep)
+ {
+ ffi_type *elt_type = *elt_typep;
+ unsigned o;
+ char *tp;
+ char *argp;
+ char *fpp;
+
+ o = ALIGN(offset, elt_type->alignment);
+ arg_offset += o - offset;
+ offset = o;
+ argn += arg_offset / sizeof(ffi_arg);
+ arg_offset = arg_offset % sizeof(ffi_arg);
+
+ argp = (char *)(ar + argn);
+ fpp = (char *)(argn >= 8 ? ar + argn : fpr + argn);
+
+ tp = target + offset;
+
+ if (elt_type->type == FFI_TYPE_DOUBLE && !soft_float)
+ *(double *)tp = *(double *)fpp;
+ else
+ memcpy(tp, argp + arg_offset, elt_type->size);
+
+ offset += elt_type->size;
+ arg_offset += elt_type->size;
+ elt_typep++;
+ argn += arg_offset / sizeof(ffi_arg);
+ arg_offset = arg_offset % sizeof(ffi_arg);
+ }
+}
+
+/*
+ * Decodes the arguments to a function, which will be stored on the
+ * stack. AR is the pointer to the beginning of the integer
+ * arguments. FPR is a pointer to the area where floating point
+ * registers have been saved.
+ *
+ * RVALUE is the location where the function return value will be
+ * stored. CLOSURE is the prepared closure to invoke.
+ *
+ * This function should only be called from assembly, which is in
+ * turn called from a trampoline.
+ *
+ * Returns the function return flags.
+ *
+ */
+int
+ffi_closure_mips_inner_N32 (ffi_closure *closure,
+ void *rvalue, ffi_arg *ar,
+ ffi_arg *fpr)
+{
+ ffi_cif *cif;
+ void **avaluep;
+ ffi_arg *avalue;
+ ffi_type **arg_types;
+ int i, avn, argn;
+ int soft_float;
+ ffi_arg *argp;
+
+ cif = closure->cif;
+ soft_float = cif->abi == FFI_N64_SOFT_FLOAT
+ || cif->abi == FFI_N32_SOFT_FLOAT;
+ avalue = alloca (cif->nargs * sizeof (ffi_arg));
+ avaluep = alloca (cif->nargs * sizeof (ffi_arg));
+
+ argn = 0;
+
+ if (cif->rstruct_flag)
+ {
+#if _MIPS_SIM==_ABIN32
+ rvalue = (void *)(UINT32)ar[0];
+#else /* N64 */
+ rvalue = (void *)ar[0];
+#endif
+ argn = 1;
+ }
+
+ i = 0;
+ avn = cif->nargs;
+ arg_types = cif->arg_types;
+
+ while (i < avn)
+ {
+ if (arg_types[i]->type == FFI_TYPE_FLOAT
+ || arg_types[i]->type == FFI_TYPE_DOUBLE
+ || arg_types[i]->type == FFI_TYPE_LONGDOUBLE)
+ {
+ argp = (argn >= 8 || soft_float) ? ar + argn : fpr + argn;
+ if ((arg_types[i]->type == FFI_TYPE_LONGDOUBLE) && ((unsigned)argp & (arg_types[i]->alignment-1)))
+ {
+ argp=(ffi_arg*)ALIGN(argp,arg_types[i]->alignment);
+ argn++;
+ }
+#if defined(__MIPSEB__) || defined(_MIPSEB)
+ if (arg_types[i]->type == FFI_TYPE_FLOAT && argn < 8)
+ avaluep[i] = ((char *) argp) + sizeof (float);
+ else
+#endif
+ avaluep[i] = (char *) argp;
+ }
+ else
+ {
+ unsigned type = arg_types[i]->type;
+
+ if (arg_types[i]->alignment > sizeof(ffi_arg))
+ argn = ALIGN(argn, arg_types[i]->alignment / sizeof(ffi_arg));
+
+ argp = ar + argn;
+
+ /* The size of a pointer depends on the ABI */
+ if (type == FFI_TYPE_POINTER)
+ type = (cif->abi == FFI_N64 || cif->abi == FFI_N64_SOFT_FLOAT)
+ ? FFI_TYPE_SINT64 : FFI_TYPE_SINT32;
+
+ if (soft_float && type == FFI_TYPE_FLOAT)
+ type = FFI_TYPE_UINT32;
+
+ switch (type)
+ {
+ case FFI_TYPE_SINT8:
+ avaluep[i] = &avalue[i];
+ *(SINT8 *) &avalue[i] = (SINT8) *argp;
+ break;
+
+ case FFI_TYPE_UINT8:
+ avaluep[i] = &avalue[i];
+ *(UINT8 *) &avalue[i] = (UINT8) *argp;
+ break;
+
+ case FFI_TYPE_SINT16:
+ avaluep[i] = &avalue[i];
+ *(SINT16 *) &avalue[i] = (SINT16) *argp;
+ break;
+
+ case FFI_TYPE_UINT16:
+ avaluep[i] = &avalue[i];
+ *(UINT16 *) &avalue[i] = (UINT16) *argp;
+ break;
+
+ case FFI_TYPE_SINT32:
+ avaluep[i] = &avalue[i];
+ *(SINT32 *) &avalue[i] = (SINT32) *argp;
+ break;
+
+ case FFI_TYPE_UINT32:
+ avaluep[i] = &avalue[i];
+ *(UINT32 *) &avalue[i] = (UINT32) *argp;
+ break;
+
+ case FFI_TYPE_STRUCT:
+ if (argn < 8)
+ {
+ /* Allocate space for the struct as at least part of
+ it was passed in registers. */
+ avaluep[i] = alloca(arg_types[i]->size);
+ copy_struct_N32(avaluep[i], 0, cif->abi, arg_types[i],
+ argn, 0, ar, fpr, soft_float);
+
+ break;
+ }
+ /* Else fall through. */
+ default:
+ avaluep[i] = (char *) argp;
+ break;
+ }
+ }
+ argn += ALIGN(arg_types[i]->size, sizeof(ffi_arg)) / sizeof(ffi_arg);
+ i++;
+ }
+
+ /* Invoke the closure. */
+ (closure->fun) (cif, rvalue, avaluep, closure->user_data);
+
+ return cif->flags >> (FFI_FLAG_BITS * 8);
+}
+
+#endif /* FFI_MIPS_N32 */
+
+#endif /* FFI_CLOSURES */