summaryrefslogtreecommitdiff
path: root/dfa.c
diff options
context:
space:
mode:
Diffstat (limited to 'dfa.c')
-rw-r--r--dfa.c1099
1 files changed, 1099 insertions, 0 deletions
diff --git a/dfa.c b/dfa.c
new file mode 100644
index 0000000..8613d75
--- /dev/null
+++ b/dfa.c
@@ -0,0 +1,1099 @@
+/* dfa - DFA construction routines */
+
+/* Copyright (c) 1990 The Regents of the University of California. */
+/* All rights reserved. */
+
+/* This code is derived from software contributed to Berkeley by */
+/* Vern Paxson. */
+
+/* The United States Government has rights in this work pursuant */
+/* to contract no. DE-AC03-76SF00098 between the United States */
+/* Department of Energy and the University of California. */
+
+/* Redistribution and use in source and binary forms, with or without */
+/* modification, are permitted provided that the following conditions */
+/* are met: */
+
+/* 1. Redistributions of source code must retain the above copyright */
+/* notice, this list of conditions and the following disclaimer. */
+/* 2. Redistributions in binary form must reproduce the above copyright */
+/* notice, this list of conditions and the following disclaimer in the */
+/* documentation and/or other materials provided with the distribution. */
+
+/* Neither the name of the University nor the names of its contributors */
+/* may be used to endorse or promote products derived from this software */
+/* without specific prior written permission. */
+
+/* THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR */
+/* IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED */
+/* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR */
+/* PURPOSE. */
+
+#include "flexdef.h"
+#include "tables.h"
+
+/* declare functions that have forward references */
+
+void dump_associated_rules PROTO ((FILE *, int));
+void dump_transitions PROTO ((FILE *, int[]));
+void sympartition PROTO ((int[], int, int[], int[]));
+int symfollowset PROTO ((int[], int, int, int[]));
+
+
+/* check_for_backing_up - check a DFA state for backing up
+ *
+ * synopsis
+ * void check_for_backing_up( int ds, int state[numecs] );
+ *
+ * ds is the number of the state to check and state[] is its out-transitions,
+ * indexed by equivalence class.
+ */
+
+void check_for_backing_up (ds, state)
+ int ds;
+ int state[];
+{
+ if ((reject && !dfaacc[ds].dfaacc_set) || (!reject && !dfaacc[ds].dfaacc_state)) { /* state is non-accepting */
+ ++num_backing_up;
+
+ if (backing_up_report) {
+ fprintf (backing_up_file,
+ _("State #%d is non-accepting -\n"), ds);
+
+ /* identify the state */
+ dump_associated_rules (backing_up_file, ds);
+
+ /* Now identify it further using the out- and
+ * jam-transitions.
+ */
+ dump_transitions (backing_up_file, state);
+
+ putc ('\n', backing_up_file);
+ }
+ }
+}
+
+
+/* check_trailing_context - check to see if NFA state set constitutes
+ * "dangerous" trailing context
+ *
+ * synopsis
+ * void check_trailing_context( int nfa_states[num_states+1], int num_states,
+ * int accset[nacc+1], int nacc );
+ *
+ * NOTES
+ * Trailing context is "dangerous" if both the head and the trailing
+ * part are of variable size \and/ there's a DFA state which contains
+ * both an accepting state for the head part of the rule and NFA states
+ * which occur after the beginning of the trailing context.
+ *
+ * When such a rule is matched, it's impossible to tell if having been
+ * in the DFA state indicates the beginning of the trailing context or
+ * further-along scanning of the pattern. In these cases, a warning
+ * message is issued.
+ *
+ * nfa_states[1 .. num_states] is the list of NFA states in the DFA.
+ * accset[1 .. nacc] is the list of accepting numbers for the DFA state.
+ */
+
+void check_trailing_context (nfa_states, num_states, accset, nacc)
+ int *nfa_states, num_states;
+ int *accset;
+ int nacc;
+{
+ register int i, j;
+
+ for (i = 1; i <= num_states; ++i) {
+ int ns = nfa_states[i];
+ register int type = state_type[ns];
+ register int ar = assoc_rule[ns];
+
+ if (type == STATE_NORMAL || rule_type[ar] != RULE_VARIABLE) { /* do nothing */
+ }
+
+ else if (type == STATE_TRAILING_CONTEXT) {
+ /* Potential trouble. Scan set of accepting numbers
+ * for the one marking the end of the "head". We
+ * assume that this looping will be fairly cheap
+ * since it's rare that an accepting number set
+ * is large.
+ */
+ for (j = 1; j <= nacc; ++j)
+ if (accset[j] & YY_TRAILING_HEAD_MASK) {
+ line_warning (_
+ ("dangerous trailing context"),
+ rule_linenum[ar]);
+ return;
+ }
+ }
+ }
+}
+
+
+/* dump_associated_rules - list the rules associated with a DFA state
+ *
+ * Goes through the set of NFA states associated with the DFA and
+ * extracts the first MAX_ASSOC_RULES unique rules, sorts them,
+ * and writes a report to the given file.
+ */
+
+void dump_associated_rules (file, ds)
+ FILE *file;
+ int ds;
+{
+ register int i, j;
+ register int num_associated_rules = 0;
+ int rule_set[MAX_ASSOC_RULES + 1];
+ int *dset = dss[ds];
+ int size = dfasiz[ds];
+
+ for (i = 1; i <= size; ++i) {
+ register int rule_num = rule_linenum[assoc_rule[dset[i]]];
+
+ for (j = 1; j <= num_associated_rules; ++j)
+ if (rule_num == rule_set[j])
+ break;
+
+ if (j > num_associated_rules) { /* new rule */
+ if (num_associated_rules < MAX_ASSOC_RULES)
+ rule_set[++num_associated_rules] =
+ rule_num;
+ }
+ }
+
+ bubble (rule_set, num_associated_rules);
+
+ fprintf (file, _(" associated rule line numbers:"));
+
+ for (i = 1; i <= num_associated_rules; ++i) {
+ if (i % 8 == 1)
+ putc ('\n', file);
+
+ fprintf (file, "\t%d", rule_set[i]);
+ }
+
+ putc ('\n', file);
+}
+
+
+/* dump_transitions - list the transitions associated with a DFA state
+ *
+ * synopsis
+ * dump_transitions( FILE *file, int state[numecs] );
+ *
+ * Goes through the set of out-transitions and lists them in human-readable
+ * form (i.e., not as equivalence classes); also lists jam transitions
+ * (i.e., all those which are not out-transitions, plus EOF). The dump
+ * is done to the given file.
+ */
+
+void dump_transitions (file, state)
+ FILE *file;
+ int state[];
+{
+ register int i, ec;
+ int out_char_set[CSIZE];
+
+ for (i = 0; i < csize; ++i) {
+ ec = ABS (ecgroup[i]);
+ out_char_set[i] = state[ec];
+ }
+
+ fprintf (file, _(" out-transitions: "));
+
+ list_character_set (file, out_char_set);
+
+ /* now invert the members of the set to get the jam transitions */
+ for (i = 0; i < csize; ++i)
+ out_char_set[i] = !out_char_set[i];
+
+ fprintf (file, _("\n jam-transitions: EOF "));
+
+ list_character_set (file, out_char_set);
+
+ putc ('\n', file);
+}
+
+
+/* epsclosure - construct the epsilon closure of a set of ndfa states
+ *
+ * synopsis
+ * int *epsclosure( int t[num_states], int *numstates_addr,
+ * int accset[num_rules+1], int *nacc_addr,
+ * int *hashval_addr );
+ *
+ * NOTES
+ * The epsilon closure is the set of all states reachable by an arbitrary
+ * number of epsilon transitions, which themselves do not have epsilon
+ * transitions going out, unioned with the set of states which have non-null
+ * accepting numbers. t is an array of size numstates of nfa state numbers.
+ * Upon return, t holds the epsilon closure and *numstates_addr is updated.
+ * accset holds a list of the accepting numbers, and the size of accset is
+ * given by *nacc_addr. t may be subjected to reallocation if it is not
+ * large enough to hold the epsilon closure.
+ *
+ * hashval is the hash value for the dfa corresponding to the state set.
+ */
+
+int *epsclosure (t, ns_addr, accset, nacc_addr, hv_addr)
+ int *t, *ns_addr, accset[], *nacc_addr, *hv_addr;
+{
+ register int stkpos, ns, tsp;
+ int numstates = *ns_addr, nacc, hashval, transsym, nfaccnum;
+ int stkend, nstate;
+ static int did_stk_init = false, *stk;
+
+#define MARK_STATE(state) \
+do{ trans1[state] = trans1[state] - MARKER_DIFFERENCE;} while(0)
+
+#define IS_MARKED(state) (trans1[state] < 0)
+
+#define UNMARK_STATE(state) \
+do{ trans1[state] = trans1[state] + MARKER_DIFFERENCE;} while(0)
+
+#define CHECK_ACCEPT(state) \
+do{ \
+nfaccnum = accptnum[state]; \
+if ( nfaccnum != NIL ) \
+accset[++nacc] = nfaccnum; \
+}while(0)
+
+#define DO_REALLOCATION() \
+do { \
+current_max_dfa_size += MAX_DFA_SIZE_INCREMENT; \
+++num_reallocs; \
+t = reallocate_integer_array( t, current_max_dfa_size ); \
+stk = reallocate_integer_array( stk, current_max_dfa_size ); \
+}while(0) \
+
+#define PUT_ON_STACK(state) \
+do { \
+if ( ++stkend >= current_max_dfa_size ) \
+DO_REALLOCATION(); \
+stk[stkend] = state; \
+MARK_STATE(state); \
+}while(0)
+
+#define ADD_STATE(state) \
+do { \
+if ( ++numstates >= current_max_dfa_size ) \
+DO_REALLOCATION(); \
+t[numstates] = state; \
+hashval += state; \
+}while(0)
+
+#define STACK_STATE(state) \
+do { \
+PUT_ON_STACK(state); \
+CHECK_ACCEPT(state); \
+if ( nfaccnum != NIL || transchar[state] != SYM_EPSILON ) \
+ADD_STATE(state); \
+}while(0)
+
+
+ if (!did_stk_init) {
+ stk = allocate_integer_array (current_max_dfa_size);
+ did_stk_init = true;
+ }
+
+ nacc = stkend = hashval = 0;
+
+ for (nstate = 1; nstate <= numstates; ++nstate) {
+ ns = t[nstate];
+
+ /* The state could be marked if we've already pushed it onto
+ * the stack.
+ */
+ if (!IS_MARKED (ns)) {
+ PUT_ON_STACK (ns);
+ CHECK_ACCEPT (ns);
+ hashval += ns;
+ }
+ }
+
+ for (stkpos = 1; stkpos <= stkend; ++stkpos) {
+ ns = stk[stkpos];
+ transsym = transchar[ns];
+
+ if (transsym == SYM_EPSILON) {
+ tsp = trans1[ns] + MARKER_DIFFERENCE;
+
+ if (tsp != NO_TRANSITION) {
+ if (!IS_MARKED (tsp))
+ STACK_STATE (tsp);
+
+ tsp = trans2[ns];
+
+ if (tsp != NO_TRANSITION
+ && !IS_MARKED (tsp))
+ STACK_STATE (tsp);
+ }
+ }
+ }
+
+ /* Clear out "visit" markers. */
+
+ for (stkpos = 1; stkpos <= stkend; ++stkpos) {
+ if (IS_MARKED (stk[stkpos]))
+ UNMARK_STATE (stk[stkpos]);
+ else
+ flexfatal (_
+ ("consistency check failed in epsclosure()"));
+ }
+
+ *ns_addr = numstates;
+ *hv_addr = hashval;
+ *nacc_addr = nacc;
+
+ return t;
+}
+
+
+/* increase_max_dfas - increase the maximum number of DFAs */
+
+void increase_max_dfas ()
+{
+ current_max_dfas += MAX_DFAS_INCREMENT;
+
+ ++num_reallocs;
+
+ base = reallocate_integer_array (base, current_max_dfas);
+ def = reallocate_integer_array (def, current_max_dfas);
+ dfasiz = reallocate_integer_array (dfasiz, current_max_dfas);
+ accsiz = reallocate_integer_array (accsiz, current_max_dfas);
+ dhash = reallocate_integer_array (dhash, current_max_dfas);
+ dss = reallocate_int_ptr_array (dss, current_max_dfas);
+ dfaacc = reallocate_dfaacc_union (dfaacc, current_max_dfas);
+
+ if (nultrans)
+ nultrans =
+ reallocate_integer_array (nultrans,
+ current_max_dfas);
+}
+
+
+/* ntod - convert an ndfa to a dfa
+ *
+ * Creates the dfa corresponding to the ndfa we've constructed. The
+ * dfa starts out in state #1.
+ */
+
+void ntod ()
+{
+ int *accset, ds, nacc, newds;
+ int sym, hashval, numstates, dsize;
+ int num_full_table_rows=0; /* used only for -f */
+ int *nset, *dset;
+ int targptr, totaltrans, i, comstate, comfreq, targ;
+ int symlist[CSIZE + 1];
+ int num_start_states;
+ int todo_head, todo_next;
+
+ struct yytbl_data *yynxt_tbl = 0;
+ flex_int32_t *yynxt_data = 0, yynxt_curr = 0;
+
+ /* Note that the following are indexed by *equivalence classes*
+ * and not by characters. Since equivalence classes are indexed
+ * beginning with 1, even if the scanner accepts NUL's, this
+ * means that (since every character is potentially in its own
+ * equivalence class) these arrays must have room for indices
+ * from 1 to CSIZE, so their size must be CSIZE + 1.
+ */
+ int duplist[CSIZE + 1], state[CSIZE + 1];
+ int targfreq[CSIZE + 1], targstate[CSIZE + 1];
+
+ /* accset needs to be large enough to hold all of the rules present
+ * in the input, *plus* their YY_TRAILING_HEAD_MASK variants.
+ */
+ accset = allocate_integer_array ((num_rules + 1) * 2);
+ nset = allocate_integer_array (current_max_dfa_size);
+
+ /* The "todo" queue is represented by the head, which is the DFA
+ * state currently being processed, and the "next", which is the
+ * next DFA state number available (not in use). We depend on the
+ * fact that snstods() returns DFA's \in increasing order/, and thus
+ * need only know the bounds of the dfas to be processed.
+ */
+ todo_head = todo_next = 0;
+
+ for (i = 0; i <= csize; ++i) {
+ duplist[i] = NIL;
+ symlist[i] = false;
+ }
+
+ for (i = 0; i <= num_rules; ++i)
+ accset[i] = NIL;
+
+ if (trace) {
+ dumpnfa (scset[1]);
+ fputs (_("\n\nDFA Dump:\n\n"), stderr);
+ }
+
+ inittbl ();
+
+ /* Check to see whether we should build a separate table for
+ * transitions on NUL characters. We don't do this for full-speed
+ * (-F) scanners, since for them we don't have a simple state
+ * number lying around with which to index the table. We also
+ * don't bother doing it for scanners unless (1) NUL is in its own
+ * equivalence class (indicated by a positive value of
+ * ecgroup[NUL]), (2) NUL's equivalence class is the last
+ * equivalence class, and (3) the number of equivalence classes is
+ * the same as the number of characters. This latter case comes
+ * about when useecs is false or when it's true but every character
+ * still manages to land in its own class (unlikely, but it's
+ * cheap to check for). If all these things are true then the
+ * character code needed to represent NUL's equivalence class for
+ * indexing the tables is going to take one more bit than the
+ * number of characters, and therefore we won't be assured of
+ * being able to fit it into a YY_CHAR variable. This rules out
+ * storing the transitions in a compressed table, since the code
+ * for interpreting them uses a YY_CHAR variable (perhaps it
+ * should just use an integer, though; this is worth pondering ...
+ * ###).
+ *
+ * Finally, for full tables, we want the number of entries in the
+ * table to be a power of two so the array references go fast (it
+ * will just take a shift to compute the major index). If
+ * encoding NUL's transitions in the table will spoil this, we
+ * give it its own table (note that this will be the case if we're
+ * not using equivalence classes).
+ */
+
+ /* Note that the test for ecgroup[0] == numecs below accomplishes
+ * both (1) and (2) above
+ */
+ if (!fullspd && ecgroup[0] == numecs) {
+ /* NUL is alone in its equivalence class, which is the
+ * last one.
+ */
+ int use_NUL_table = (numecs == csize);
+
+ if (fulltbl && !use_NUL_table) {
+ /* We still may want to use the table if numecs
+ * is a power of 2.
+ */
+ int power_of_two;
+
+ for (power_of_two = 1; power_of_two <= csize;
+ power_of_two *= 2)
+ if (numecs == power_of_two) {
+ use_NUL_table = true;
+ break;
+ }
+ }
+
+ if (use_NUL_table)
+ nultrans =
+ allocate_integer_array (current_max_dfas);
+
+ /* From now on, nultrans != nil indicates that we're
+ * saving null transitions for later, separate encoding.
+ */
+ }
+
+
+ if (fullspd) {
+ for (i = 0; i <= numecs; ++i)
+ state[i] = 0;
+
+ place_state (state, 0, 0);
+ dfaacc[0].dfaacc_state = 0;
+ }
+
+ else if (fulltbl) {
+ if (nultrans)
+ /* We won't be including NUL's transitions in the
+ * table, so build it for entries from 0 .. numecs - 1.
+ */
+ num_full_table_rows = numecs;
+
+ else
+ /* Take into account the fact that we'll be including
+ * the NUL entries in the transition table. Build it
+ * from 0 .. numecs.
+ */
+ num_full_table_rows = numecs + 1;
+
+ /* Begin generating yy_nxt[][]
+ * This spans the entire LONG function.
+ * This table is tricky because we don't know how big it will be.
+ * So we'll have to realloc() on the way...
+ * we'll wait until we can calculate yynxt_tbl->td_hilen.
+ */
+ yynxt_tbl =
+ (struct yytbl_data *) calloc (1,
+ sizeof (struct
+ yytbl_data));
+ yytbl_data_init (yynxt_tbl, YYTD_ID_NXT);
+ yynxt_tbl->td_hilen = 1;
+ yynxt_tbl->td_lolen = num_full_table_rows;
+ yynxt_tbl->td_data = yynxt_data =
+ (flex_int32_t *) calloc (yynxt_tbl->td_lolen *
+ yynxt_tbl->td_hilen,
+ sizeof (flex_int32_t));
+ yynxt_curr = 0;
+
+ buf_prints (&yydmap_buf,
+ "\t{YYTD_ID_NXT, (void**)&yy_nxt, sizeof(%s)},\n",
+ long_align ? "flex_int32_t" : "flex_int16_t");
+
+ /* Unless -Ca, declare it "short" because it's a real
+ * long-shot that that won't be large enough.
+ */
+ if (gentables)
+ out_str_dec
+ ("static yyconst %s yy_nxt[][%d] =\n {\n",
+ long_align ? "flex_int32_t" : "flex_int16_t",
+ num_full_table_rows);
+ else {
+ out_dec ("#undef YY_NXT_LOLEN\n#define YY_NXT_LOLEN (%d)\n", num_full_table_rows);
+ out_str ("static yyconst %s *yy_nxt =0;\n",
+ long_align ? "flex_int32_t" : "flex_int16_t");
+ }
+
+
+ if (gentables)
+ outn (" {");
+
+ /* Generate 0 entries for state #0. */
+ for (i = 0; i < num_full_table_rows; ++i) {
+ mk2data (0);
+ yynxt_data[yynxt_curr++] = 0;
+ }
+
+ dataflush ();
+ if (gentables)
+ outn (" },\n");
+ }
+
+ /* Create the first states. */
+
+ num_start_states = lastsc * 2;
+
+ for (i = 1; i <= num_start_states; ++i) {
+ numstates = 1;
+
+ /* For each start condition, make one state for the case when
+ * we're at the beginning of the line (the '^' operator) and
+ * one for the case when we're not.
+ */
+ if (i % 2 == 1)
+ nset[numstates] = scset[(i / 2) + 1];
+ else
+ nset[numstates] =
+ mkbranch (scbol[i / 2], scset[i / 2]);
+
+ nset = epsclosure (nset, &numstates, accset, &nacc,
+ &hashval);
+
+ if (snstods (nset, numstates, accset, nacc, hashval, &ds)) {
+ numas += nacc;
+ totnst += numstates;
+ ++todo_next;
+
+ if (variable_trailing_context_rules && nacc > 0)
+ check_trailing_context (nset, numstates,
+ accset, nacc);
+ }
+ }
+
+ if (!fullspd) {
+ if (!snstods (nset, 0, accset, 0, 0, &end_of_buffer_state))
+ flexfatal (_
+ ("could not create unique end-of-buffer state"));
+
+ ++numas;
+ ++num_start_states;
+ ++todo_next;
+ }
+
+
+ while (todo_head < todo_next) {
+ targptr = 0;
+ totaltrans = 0;
+
+ for (i = 1; i <= numecs; ++i)
+ state[i] = 0;
+
+ ds = ++todo_head;
+
+ dset = dss[ds];
+ dsize = dfasiz[ds];
+
+ if (trace)
+ fprintf (stderr, _("state # %d:\n"), ds);
+
+ sympartition (dset, dsize, symlist, duplist);
+
+ for (sym = 1; sym <= numecs; ++sym) {
+ if (symlist[sym]) {
+ symlist[sym] = 0;
+
+ if (duplist[sym] == NIL) {
+ /* Symbol has unique out-transitions. */
+ numstates =
+ symfollowset (dset, dsize,
+ sym, nset);
+ nset = epsclosure (nset,
+ &numstates,
+ accset, &nacc,
+ &hashval);
+
+ if (snstods
+ (nset, numstates, accset, nacc,
+ hashval, &newds)) {
+ totnst = totnst +
+ numstates;
+ ++todo_next;
+ numas += nacc;
+
+ if (variable_trailing_context_rules && nacc > 0)
+ check_trailing_context
+ (nset,
+ numstates,
+ accset,
+ nacc);
+ }
+
+ state[sym] = newds;
+
+ if (trace)
+ fprintf (stderr,
+ "\t%d\t%d\n", sym,
+ newds);
+
+ targfreq[++targptr] = 1;
+ targstate[targptr] = newds;
+ ++numuniq;
+ }
+
+ else {
+ /* sym's equivalence class has the same
+ * transitions as duplist(sym)'s
+ * equivalence class.
+ */
+ targ = state[duplist[sym]];
+ state[sym] = targ;
+
+ if (trace)
+ fprintf (stderr,
+ "\t%d\t%d\n", sym,
+ targ);
+
+ /* Update frequency count for
+ * destination state.
+ */
+
+ i = 0;
+ while (targstate[++i] != targ) ;
+
+ ++targfreq[i];
+ ++numdup;
+ }
+
+ ++totaltrans;
+ duplist[sym] = NIL;
+ }
+ }
+
+
+ numsnpairs += totaltrans;
+
+ if (ds > num_start_states)
+ check_for_backing_up (ds, state);
+
+ if (nultrans) {
+ nultrans[ds] = state[NUL_ec];
+ state[NUL_ec] = 0; /* remove transition */
+ }
+
+ if (fulltbl) {
+
+ /* Each time we hit here, it's another td_hilen, so we realloc. */
+ yynxt_tbl->td_hilen++;
+ yynxt_tbl->td_data = yynxt_data =
+ (flex_int32_t *) realloc (yynxt_data,
+ yynxt_tbl->td_hilen *
+ yynxt_tbl->td_lolen *
+ sizeof (flex_int32_t));
+
+
+ if (gentables)
+ outn (" {");
+
+ /* Supply array's 0-element. */
+ if (ds == end_of_buffer_state) {
+ mk2data (-end_of_buffer_state);
+ yynxt_data[yynxt_curr++] =
+ -end_of_buffer_state;
+ }
+ else {
+ mk2data (end_of_buffer_state);
+ yynxt_data[yynxt_curr++] =
+ end_of_buffer_state;
+ }
+
+ for (i = 1; i < num_full_table_rows; ++i) {
+ /* Jams are marked by negative of state
+ * number.
+ */
+ mk2data (state[i] ? state[i] : -ds);
+ yynxt_data[yynxt_curr++] =
+ state[i] ? state[i] : -ds;
+ }
+
+ dataflush ();
+ if (gentables)
+ outn (" },\n");
+ }
+
+ else if (fullspd)
+ place_state (state, ds, totaltrans);
+
+ else if (ds == end_of_buffer_state)
+ /* Special case this state to make sure it does what
+ * it's supposed to, i.e., jam on end-of-buffer.
+ */
+ stack1 (ds, 0, 0, JAMSTATE);
+
+ else { /* normal, compressed state */
+
+ /* Determine which destination state is the most
+ * common, and how many transitions to it there are.
+ */
+
+ comfreq = 0;
+ comstate = 0;
+
+ for (i = 1; i <= targptr; ++i)
+ if (targfreq[i] > comfreq) {
+ comfreq = targfreq[i];
+ comstate = targstate[i];
+ }
+
+ bldtbl (state, ds, totaltrans, comstate, comfreq);
+ }
+ }
+
+ if (fulltbl) {
+ dataend ();
+ if (tablesext) {
+ yytbl_data_compress (yynxt_tbl);
+ if (yytbl_data_fwrite (&tableswr, yynxt_tbl) < 0)
+ flexerror (_
+ ("Could not write yynxt_tbl[][]"));
+ }
+ if (yynxt_tbl) {
+ yytbl_data_destroy (yynxt_tbl);
+ yynxt_tbl = 0;
+ }
+ }
+
+ else if (!fullspd) {
+ cmptmps (); /* create compressed template entries */
+
+ /* Create tables for all the states with only one
+ * out-transition.
+ */
+ while (onesp > 0) {
+ mk1tbl (onestate[onesp], onesym[onesp],
+ onenext[onesp], onedef[onesp]);
+ --onesp;
+ }
+
+ mkdeftbl ();
+ }
+
+ flex_free ((void *) accset);
+ flex_free ((void *) nset);
+}
+
+
+/* snstods - converts a set of ndfa states into a dfa state
+ *
+ * synopsis
+ * is_new_state = snstods( int sns[numstates], int numstates,
+ * int accset[num_rules+1], int nacc,
+ * int hashval, int *newds_addr );
+ *
+ * On return, the dfa state number is in newds.
+ */
+
+int snstods (sns, numstates, accset, nacc, hashval, newds_addr)
+ int sns[], numstates, accset[], nacc, hashval, *newds_addr;
+{
+ int didsort = 0;
+ register int i, j;
+ int newds, *oldsns;
+
+ for (i = 1; i <= lastdfa; ++i)
+ if (hashval == dhash[i]) {
+ if (numstates == dfasiz[i]) {
+ oldsns = dss[i];
+
+ if (!didsort) {
+ /* We sort the states in sns so we
+ * can compare it to oldsns quickly.
+ * We use bubble because there probably
+ * aren't very many states.
+ */
+ bubble (sns, numstates);
+ didsort = 1;
+ }
+
+ for (j = 1; j <= numstates; ++j)
+ if (sns[j] != oldsns[j])
+ break;
+
+ if (j > numstates) {
+ ++dfaeql;
+ *newds_addr = i;
+ return 0;
+ }
+
+ ++hshcol;
+ }
+
+ else
+ ++hshsave;
+ }
+
+ /* Make a new dfa. */
+
+ if (++lastdfa >= current_max_dfas)
+ increase_max_dfas ();
+
+ newds = lastdfa;
+
+ dss[newds] = allocate_integer_array (numstates + 1);
+
+ /* If we haven't already sorted the states in sns, we do so now,
+ * so that future comparisons with it can be made quickly.
+ */
+
+ if (!didsort)
+ bubble (sns, numstates);
+
+ for (i = 1; i <= numstates; ++i)
+ dss[newds][i] = sns[i];
+
+ dfasiz[newds] = numstates;
+ dhash[newds] = hashval;
+
+ if (nacc == 0) {
+ if (reject)
+ dfaacc[newds].dfaacc_set = (int *) 0;
+ else
+ dfaacc[newds].dfaacc_state = 0;
+
+ accsiz[newds] = 0;
+ }
+
+ else if (reject) {
+ /* We sort the accepting set in increasing order so the
+ * disambiguating rule that the first rule listed is considered
+ * match in the event of ties will work. We use a bubble
+ * sort since the list is probably quite small.
+ */
+
+ bubble (accset, nacc);
+
+ dfaacc[newds].dfaacc_set =
+ allocate_integer_array (nacc + 1);
+
+ /* Save the accepting set for later */
+ for (i = 1; i <= nacc; ++i) {
+ dfaacc[newds].dfaacc_set[i] = accset[i];
+
+ if (accset[i] <= num_rules)
+ /* Who knows, perhaps a REJECT can yield
+ * this rule.
+ */
+ rule_useful[accset[i]] = true;
+ }
+
+ accsiz[newds] = nacc;
+ }
+
+ else {
+ /* Find lowest numbered rule so the disambiguating rule
+ * will work.
+ */
+ j = num_rules + 1;
+
+ for (i = 1; i <= nacc; ++i)
+ if (accset[i] < j)
+ j = accset[i];
+
+ dfaacc[newds].dfaacc_state = j;
+
+ if (j <= num_rules)
+ rule_useful[j] = true;
+ }
+
+ *newds_addr = newds;
+
+ return 1;
+}
+
+
+/* symfollowset - follow the symbol transitions one step
+ *
+ * synopsis
+ * numstates = symfollowset( int ds[current_max_dfa_size], int dsize,
+ * int transsym, int nset[current_max_dfa_size] );
+ */
+
+int symfollowset (ds, dsize, transsym, nset)
+ int ds[], dsize, transsym, nset[];
+{
+ int ns, tsp, sym, i, j, lenccl, ch, numstates, ccllist;
+
+ numstates = 0;
+
+ for (i = 1; i <= dsize; ++i) { /* for each nfa state ns in the state set of ds */
+ ns = ds[i];
+ sym = transchar[ns];
+ tsp = trans1[ns];
+
+ if (sym < 0) { /* it's a character class */
+ sym = -sym;
+ ccllist = cclmap[sym];
+ lenccl = ccllen[sym];
+
+ if (cclng[sym]) {
+ for (j = 0; j < lenccl; ++j) {
+ /* Loop through negated character
+ * class.
+ */
+ ch = ccltbl[ccllist + j];
+
+ if (ch == 0)
+ ch = NUL_ec;
+
+ if (ch > transsym)
+ /* Transsym isn't in negated
+ * ccl.
+ */
+ break;
+
+ else if (ch == transsym)
+ /* next 2 */
+ goto bottom;
+ }
+
+ /* Didn't find transsym in ccl. */
+ nset[++numstates] = tsp;
+ }
+
+ else
+ for (j = 0; j < lenccl; ++j) {
+ ch = ccltbl[ccllist + j];
+
+ if (ch == 0)
+ ch = NUL_ec;
+
+ if (ch > transsym)
+ break;
+ else if (ch == transsym) {
+ nset[++numstates] = tsp;
+ break;
+ }
+ }
+ }
+
+ else if (sym == SYM_EPSILON) { /* do nothing */
+ }
+
+ else if (ABS (ecgroup[sym]) == transsym)
+ nset[++numstates] = tsp;
+
+ bottom:;
+ }
+
+ return numstates;
+}
+
+
+/* sympartition - partition characters with same out-transitions
+ *
+ * synopsis
+ * sympartition( int ds[current_max_dfa_size], int numstates,
+ * int symlist[numecs], int duplist[numecs] );
+ */
+
+void sympartition (ds, numstates, symlist, duplist)
+ int ds[], numstates;
+ int symlist[], duplist[];
+{
+ int tch, i, j, k, ns, dupfwd[CSIZE + 1], lenccl, cclp, ich;
+
+ /* Partitioning is done by creating equivalence classes for those
+ * characters which have out-transitions from the given state. Thus
+ * we are really creating equivalence classes of equivalence classes.
+ */
+
+ for (i = 1; i <= numecs; ++i) { /* initialize equivalence class list */
+ duplist[i] = i - 1;
+ dupfwd[i] = i + 1;
+ }
+
+ duplist[1] = NIL;
+ dupfwd[numecs] = NIL;
+
+ for (i = 1; i <= numstates; ++i) {
+ ns = ds[i];
+ tch = transchar[ns];
+
+ if (tch != SYM_EPSILON) {
+ if (tch < -lastccl || tch >= csize) {
+ flexfatal (_
+ ("bad transition character detected in sympartition()"));
+ }
+
+ if (tch >= 0) { /* character transition */
+ int ec = ecgroup[tch];
+
+ mkechar (ec, dupfwd, duplist);
+ symlist[ec] = 1;
+ }
+
+ else { /* character class */
+ tch = -tch;
+
+ lenccl = ccllen[tch];
+ cclp = cclmap[tch];
+ mkeccl (ccltbl + cclp, lenccl, dupfwd,
+ duplist, numecs, NUL_ec);
+
+ if (cclng[tch]) {
+ j = 0;
+
+ for (k = 0; k < lenccl; ++k) {
+ ich = ccltbl[cclp + k];
+
+ if (ich == 0)
+ ich = NUL_ec;
+
+ for (++j; j < ich; ++j)
+ symlist[j] = 1;
+ }
+
+ for (++j; j <= numecs; ++j)
+ symlist[j] = 1;
+ }
+
+ else
+ for (k = 0; k < lenccl; ++k) {
+ ich = ccltbl[cclp + k];
+
+ if (ich == 0)
+ ich = NUL_ec;
+
+ symlist[ich] = 1;
+ }
+ }
+ }
+ }
+}