summaryrefslogtreecommitdiff
path: root/cloog-core/doc/cloog.texi
blob: 00f32c8493ad1e5caa99eae835913ddc04d1a55f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
\input texinfo
@c %
@c %  /**-----------------------------------------------------------------**
@c %   **                              CLooG                              **
@c %   **-----------------------------------------------------------------**
@c %   **                            cloog.texi                           **
@c %   **-----------------------------------------------------------------**
@c %   **                   First version: july 6th 2002                  **
@c %   **-----------------------------------------------------------------**/
@c %
@c % release 1.0: September 17th 2002
@c % release 1.1: December   5th 2002
@c % release 1.2: April     22th 2003
@c % release 2.0: November  21th 2005 (and now in texinfo instead of LaTeX)
@c % release 2.1: October   15th 2007
@c %
@c %/**************************************************************************
@c % *               CLooG : the Chunky Loop Generator (experimental)         *
@c % **************************************************************************/
@c %/* CAUTION: the English used is probably the worst you ever read, please
@c % *          feel free to correct and improve it !
@c % */

@c %\textit{"I found the ultimate transformation functions, optimization for
@c %static control programs is now a closed problem, I have \textnormal{just}
@c %to generate the target code !"} 



@c % /*************************************************************************
@c %  *                              PART I: HEADER                           *
@c %  *************************************************************************/
@c %**start of header
@setfilename cloog.info
@settitle CLooG - a loop generator for scanning polyhedra

@set EDITION 2.1
@include gitversion.texi
@set UPDATED October 15th 2007
@setchapternewpage odd

@c %**end of header

@c % /*************************************************************************
@c %  *                 PART II: SUMMARY DESCRIPTION AND COPYRIGHT            *
@c %  *************************************************************************/

@copying
This manual is for CLooG version @value{VERSION}, a software
which generates loops for scanning Z-polyhedra. That is, CLooG produces a
code visiting each integral point of a union of parametrized
polyhedra. CLooG is designed to avoid control overhead and to produce a very
efficient code.

It would be quite kind to refer the following paper in any publication that
results from the use of the CLooG software or its library:

@example
@@InProceedings@{Bas04,
@ @ author =@ @ @ @ @{C. Bastoul@},
@ @ title =@ @ @ @ @ @{Code Generation in the Polyhedral Model
@ @ @ @ @ @ @ @ @ @ @ @ @ @ @ Is Easier Than You Think@},
@ @ booktitle = @{PACT'13 IEEE International Conference on
@ @ @ @ @ @ @ @ @ @ @ @ @ @ @ Parallel Architecture and Compilation Techniques@},
@ @ year =@ @ @ @ @ @ 2004,
@ @ pages =@ @ @ @ @ @{7--16@},
@ @ month =@ @ @ @ @ @{september@},
@ @ address =@ @ @ @{Juan-les-Pins@}
@}
@end example

Copyright @copyright{} 2002-2005 C@'edric Bastoul.

@c quotation
Permission is granted to copy, distribute and/or modify this document under
the terms of the GNU Free Documentation License, Version 1.2 
published by the Free Software Foundation. To receive a copy of the
GNU Free Documentation License, write to the Free Software Foundation, Inc.,
59 Temple Place, Suite 330, Boston, MA  02111-1307 USA.
@c end quotation
@end copying

@c % /*************************************************************************
@c %  *                 PART III: TITLEPAGE, CONTENTS, COPYRIGHT              *
@c %  *************************************************************************/
@titlepage
@title CLooG
@subtitle A Loop Generator For Scanning Polyhedra
@subtitle Edition @value{EDITION}, for CLooG @value{VERSION}
@subtitle @value{UPDATED}
@author C@'edric Bastoul
     
@c The following two commands start the copyright page.
@page
@noindent (September 2001)
@table @code
@item C@'edric Bastoul
SCHEDULES GENERATE !!! I just need to apply them now, where can I find
a good code generator ?!
     
@item Paul Feautrier
Hmmm. I fear that if you want something powerful enough, you'll have to
write it yourself !
@end table

@vskip 0pt plus 1filll
@insertcopying
@end titlepage
     
@c Output the table of contents at the beginning.
@contents

@c % /*************************************************************************
@c %  *                     PART IV: TOP NODE AND MASTER MENU                 *
@c %  *************************************************************************/
@ifnottex
@node Top
@top CLooG
     
@insertcopying
@end ifnottex

@menu
* Introduction::
* CLooG Software::
* CLooG Library::
@c * Hacking::
* Installing::
* Documentation::
* References::
@end menu
 


@c % /*************************************************************************
@c %  *                       PART V: BODY OF THE DOCUMENT                    *
@c %  *************************************************************************/

@c %  ****************************** INTRODUCTION ******************************
@node Introduction
@chapter Introduction
CLooG is a free software and library generating loops for scanning Z-polyhedra.
That is, it finds a code (e.g. in C, FORTRAN...) that reaches each integral
point of one or more parameterized polyhedra. CLooG has been originally
written to solve the code generation problem for optimizing compilers based on
the polytope model. Nevertheless it is used now in various area, e.g., to build
control automata for high-level synthesis or to find the best polynomial
approximation of a function. CLooG may help in any situation where scanning
polyhedra matters. It uses the best state-of-the-art code generation
algorithm known as the Quiller@'e et al. algorithm (@pxref{Qui00})
with our own improvements and extensions (@pxref{Bas04}).
The user has full control on generated code quality.
On one hand, generated code size has to be tuned for sake of
readability or instruction cache use. On the other hand, we must ensure that
a bad control management does not hamper performance of the generated code,
for instance by producing redundant guards or complex loop bounds.
CLooG is specially designed to avoid control overhead and to produce a very
efficient code.

CLooG stands for @emph{Chunky Loop Generator}: it is a part of the Chunky
project, a research tool for data locality improvement (@pxref{Bas03a}).
It is designed
also to be the back-end of automatic parallelizers like LooPo (@pxref{Gri04}).
Thus it is very
compilable code oriented and provides powerful program transformation
facilities. Mainly, it allows the user to specify very general schedules where, 
e.g., unimodularity or invertibility of the transformation doesn't matter.

The current version is still under
evaluation, and there is no guarantee that the upward compatibility
will be respected (but the previous API has been stable for two years,
we hope this one will be as successful -and we believe it-).
A lot of reports are necessary to freeze the library
API and the input file shape. Most API changes from 0.12.x to 0.14.x
have been requested by the users themselves.
Thus you are very welcome and encouraged
to post reports on bugs, wishes, critics, comments, suggestions or
successful experiences in the forum of @code{http://www.CLooG.org}
or to send them to cedric.bastoul@@inria.fr directly.

@menu
* Basics::
* Scattering::
@end menu

@node Basics
@section Basically, what's the point ?
If you want to use CLooG, this is because you want to scan or to find
something inside the integral points of a set of polyhedra. There are many
reasons for that. Maybe you need the generated code itself because it
actually implements a very smart program transformation you found.
Maybe you want to use the generated code
because you know that the solution of your problem belongs to the integral
points of those damned polyhedra and you don't know which one. Maybe you just
want to know if a polyhedron has integral points depending on some parameters,
which is the lexicographic minimum, maximum, the third on the basis of the
left etc. Probably you have your own reasons to use CLooG.

Let us illustrate a basic use of CLooG. Suppose we have a set of affine
constraints that describes a part of a whatever-dimensional space,
called a @strong{domain}, and we
want to scan it. Let us consider for instance the following set of constraints
where @samp{i}
and @samp{j} are the unknown (the two dimensions of the space) and
@samp{m} and @samp{n} are the parameters (some symbolic constants):
@example
@group
2<=i<=n
2<=j<=m
j<=n+2-i
@end group
@end example
Let us also consider that we have a partial knowledge of the parameter values,
called the @strong{context}, expressed as affine constraints as well,
for instance:
@example
@group
m>=2
n>=2
@end group
@end example
Note that using parameters is optional, if you are not comfortable with
parameter manipulation, just replace them with any scalar value that fits
@code{m>=2} and @code{n>=2}.
A graphical representation of this part of the 2-dimensional space, where
the integral points are represented using heavy dots would be for instance:

@image{images/basic,6cm}

The affine constraints of both the domain and the context are what we will
provide to CLooG as input (in a particular shape that will be described later).
The output of CLooG is a pseudo-code to scan the integral points of the
input domain according to the context:
@example
@group
for (i=2;i<=n;i++) @{
  for (j=2;j<=min(m,-i+n+2);j++) @{    
    S1(i,j) ;
  @}
@}
@end group
@end example
If you felt such a basic example is yet interesting, there is a good chance
that CLooG is appropriate for you. CLooG can do much more: scanning several
polyhedra or unions of polyhedra at the same time, applying general affine
transformations to the polyhedra, generate compilable code etc. Welcome
to the CLooG's user's guide !

@node Scattering
@section Defining a Scanning Order: Scattering Functions
In CLooG, domains only define the set of integral points to scan and their
coordinates. In particular, CLooG is free to choose the scanning order for
generating the most efficient code. This means, for optimizing/parallelizing
compiler people, that CLooG doesn't make any speculation on dependences on and
between statements (by the way, it's not its job !).
For instance, if an user give to
CLooG only two domains @code{S1:1<=i<=n}, @code{S2:1<=i<=n} and the context
@code{n>=1}, the following pseudo-codes are considered to be equivalent:

@example
@group
/* A convenient target pseudo-code. */
for (i=1;i<=N;i++) @{
 S1(i) ;
@}
for (i=1;i<=N;i++) @{
 S2(i) ;
@}
@end group
@end example

@example
@group
/* Another convenient target pseudo-code. */
for (i=1;i<=N;i++) @{
 S1(i) ;
 S2(i) ;
@}
@end group
@end example

The default behaviour
of CLooG is to generate the second one, since it is optimized in control. 
It is right if there are no data dependences
between @code{S1} and @code{S2}, but wrong otherwise. 

Thus it is often useful to force scanning to respect a given order. This can be
done in CLooG by using @strong{scattering functions}. Scattering is a
shortcut for scheduling, allocation, chunking functions and the like we can
find in the restructuring compilation literature. There are a lot of reasons
to scatter the integral points of the domains (i.e. the statement instances
of a program, for compilation people), parallelization or optimization are good
examples. For instance, if the user wants for any reason to set some
precedence constraints between the statements of our example above
in order to force the generation of the
first code, he can do it easily by setting (for example) the following
scheduling functions:

@tex
$$\theta _{S1}(i) =  (1)$$
$$\theta _{S2}(j) =  (2)$$
@end tex

@ifnottex
@example
@group
T_S1(i) = (1)
T_S2(j) = (2)
@end group
@end example
@end ifnottex

This scattering means that each integral point of the domain @code{S1}
is scanned at logical date @code{1} while each integral point of the domain
@code{S2} is scanned at logical date @code{2}. As a result, the whole
domain @code{S1} is scanned before domain @code{S2} and the first code in our
example is generated.

The user can set every kind of affine scanning order thanks to the
scattering functions. Each domain has its own scattering function and
each scattering function may be multi-dimensional. A multi-dimensional logical
date may be seen as classical date (year,month,day,hour,minute,etc.) where
the first dimensions are the most significant. Each scattering dimension
may depend linearly on the original dimensions (e.g., @code{i}), the
parameters (e.g., @code{n}) ans scalars (e.g., @code{2}).

A very useful example of multi-dimensional scattering functions is, for
compilation people, the scheduling of the original program.
The basic data to use for code generation are statement iteration domains.
As we saw, these data are not sufficient to rebuild the original
program (what is the ordering between instances of different statements ?).
The missing data can be put in the scattering functions as the original
scheduling. The method to compute it is quite simple (@pxref{Fea92}). The idea is to
build an abstract syntax tree of the program and to read the scheduling for
each statement. For instance, let us consider the following implementation of
a Cholesky factorization:

@example
@group
/* A Cholesky factorization kernel. */
for (i=1;i<=N;i++) @{
  for (j=1;j<=i-1;j++) @{
    a[i][i] -= a[i][j] ;           /* S1 */
  @}
  a[i][i] = sqrt(a[i][i]) ;        /* S2 */
  for (j=i+1;j<=N;j++) @{
    for (k=1;k<=i-1;k++) @{
      a[j][i] -= a[j][k]*a[i][k] ; /* S3 */
    @}
    a[j][i] /= a[i][i] ;           /* S4 */
    @}
  @}
@}
@end group
@end example

The corresponding abstract syntax tree is given in the following figure.
It directly gives the scattering functions (schedules) for all the
statements of the program.

@image{images/tree,6cm}

@tex
$$
\hbox{$ \cases{ \theta _{S1}(i,j)^T    &$=  (0,i,0,j,0)^T$\cr
                \theta _{S2}(i)        &$=  (0,i,1)^T$\cr
                \theta _{S3}(i,j,k)^T  &$=  (0,i,2,j,0,k,0)^T$\cr
                \theta _{S4}(i,j)^T    &$=  (0,i,2,j,1)^T$}$}
$$
@end tex

@ifnottex
@example
@group
T_S1(i,j)^T   = (0,i,0,j,0)^T
T_S2(i)       = (0,i,1)^T
T_S3(i,j,k)^T = (0,i,2,j,0,k,0)^T
T_S4(i,j)^T   = (0,i,2,j,1)^T
@end group
@end example
@end ifnottex

These schedules depend on the iterators and give for each instance of each
statement a unique execution date. Using such scattering functions allow
CLooG to re-generate the input code. 





@c %  ***********************Using the CLooG Software **************************
@node CLooG Software
@chapter Using the CLooG Software


@menu
* A First Example::
* Writing The Input File::
* Calling CLooG::
* CLooG Options::
* Full Example::
@end menu

@c %/*************************************************************************
@c % *                              A FIRST EXAMPLE                          *
@c % *************************************************************************/
@node A First Example
@section A First Example
CLooG takes as input a file that must be written accordingly to a grammar
described in depth in a further section (@pxref{Writing The Input File}). 
Moreover it supports many options to tune the target code presentation or
quality as discussed in a dedicated section (@pxref{Calling CLooG}).
However, a basic use
of CLooG is not very complex and we present in this section how to generate the
code corresponding to a basic example discussed earlier (@pxref{Basics}).

The problem is to find the code that scans a 2-dimensional polyhedron
where @samp{i} and @samp{j} are the unknown (the two dimensions of the space)
and @samp{m} and @samp{n} are the parameters (the symbolic constants),
defined by the following set of constraints:
@example
@group
2<=i<=n
2<=j<=m
j<=n+2-i
@end group
@end example
@noindent We also consider a partial knowledge of the parameter values,
expressed thanks to the following affine constraints:
@example
@group
m>=2
n>=2
@end group
@end example

An input file that corresponds to this problem, and asks for a generated
code in C, may be the following. Note that we do not describe here precisely
the structure and the components of this file (@pxref{Writing The Input File}
 for such information, if you feel it necessary):

@example
# ---------------------- CONTEXT ----------------------
c # language is C

# Context (constraints on two parameters)
2 4                   # 2 lines and 4 columns
# eq/in m  n  1         eq/in: 1 for inequality >=0, 0 for equality =0
    1   1  0 -2       # 1*m + 0*n -2*1 >= 0, i.e. m>=2
    1   0  1 -2       # 0*m + 1*n -2*1 >= 0, i.e. n>=2

1 # We want to set manually the parameter names
m n                   # parameter names

# --------------------- STATEMENTS --------------------
1 # Number of statements

1 # First statement: one domain
# First domain
5 6                   # 5 lines and 6 columns
# eq/in i  j  m  n  1 
    1   1  0  0  0 -2 # i >= 2
    1  -1  0  0  1  0 # i <= n
    1   0  1  0  0 -2 # j >= 2
    1   0 -1  1  0  0 # j <= m
    1  -1 -1  0  1  2 # n+2-i>=j
0  0  0               # for future options

1 # We want to set manually the iterator names
i j                   # iterator names

# --------------------- SCATTERING --------------------
0 # No scattering functions
@end example

This file may be called @samp{basic.cloog}
(this example is provided in the CLooG distribution as
@code{test/manual_basic.cloog}) and we can ask CLooG to process it
and to generate the code by a simple calling to CLooG with this file as input:
@samp{cloog basic.cloog}. By default, CLooG will print the generated code in
the standard output:

@example
@group
/* Generated by CLooG v@value{VERSION} in 0.00s. */
for (i=2;i<=n;i++) @{
  for (j=2;j<=min(m,-i+n+2);j++) @{    
    S1(i,j) ;
  @}
@}
@end group
@end example

@c %/*************************************************************************
@c % *                                Input file                             *
@c % *************************************************************************/
@node Writing The Input File
@section Writing The Input File
The input text file contains a problem description, i.e. the context,
the domains and the scattering functions.
Because CLooG is very 'compilable code generation oriented', we can associate
some additional informations to each domain. We call this association a
@emph{statement}. The set of all informations is 
called a @emph{program}. The input file respects the grammar below
(terminals are preceded by "_"):

@example
File             ::= Program
Program          ::= Context Statements Scattering
Context          ::= Language      Domain_union   Naming
Statements       ::= Nb_statements Statement_list Naming
Scatterings      ::= Nb_functions  Scattering_list Naming
Naming           ::= Option Name_list
Name_list        ::= _String   Name_list      | (void)
Statement_list   ::= Statement Statement_list | (void)
Domain_list      ::= _Domain   Domain_list    | (void)
Scattering_list  ::= Domain_union Scattering_list | (void)
Statement        ::= Iteration_domain 0 0 0
Iteration_domain ::= Domain_union
Domain_union     ::= Nb_domains Domain_list
Option           ::= 0 | 1
Language         ::= c | f
Nb_statements    ::= _Integer
Nb_domains       ::= _Integer
Nb_functions     ::= _Integer
@end example

Note: if there is only one domain in a @samp{Domain_union},
i.e., if @samp{Nb_domains} is 1, then this 1 may be omitted.

@itemize @bullet
@item  @samp{Context} represents the informations that are
       shared by all the statements. It consists on
       the language used (which can be @samp{c} for C or @samp{f} for FORTRAN 90)
       and the global constraints on parameters.
       These constraints are essential
       since they give to CLooG the number of parameters. If there is no
       parameter or no constraints on parameters, just give a constraint
       always satisfied like @math{1 \geq 0}. @samp{Naming} sets the parameter
       names.
       If the naming option @samp{Option} is 1, parameter names will be read
       on the next line. There must be exactly as many names as parameters.
       If the naming option @samp{Option} is 0, parameter names are
       automatically generated. The name of the first parameter will
       be @samp{M}, and the name of the @math{(n+1)^{th}} parameter directly
       follows the name of the @math{n^{th}} parameter in ASCII code.
       It is the user responsibility to ensure that parameter names,
       iterators and scattering dimension names are different. 
@item  @samp{Statements} represents the informations on the statements.
       @samp{Nb_statements} is the number of statements in the program, 
       i.e. the number of @samp{Statement} items in the @samp{Statement_list}.
       @samp{Statement} represents the informations on a given statement.
       To each statement is associated a domain
       (the statement iteration domain: @samp{Iteration_domain}) and three
       zeroes that represents future options.
       @samp{Naming} sets the iterator names. If the naming option
       @samp{Option} is 1, the iterator names
       will be read on the next line. There must be exactly as many names as
       nesting level in the deepest iteration domain. If the naming option
       @samp{Option} is 0, iterator names are automatically generated.
       The iterator name of the outermost loop will be @samp{i}, and the
       iterator name of the loop at level @math{n+1} directly follows the 
       iterator name of the loop at level @math{n} in ASCII code. 
@item  @samp{Scatterings} represents the informations on scattering functions.
       @samp{Nb_functions} is the number of functions (it must be
       equal to the number of statements or 0 if there is no scattering
       function). The functions themselves are represented through
       @samp{Scattering_list}.
       @samp{Naming} sets the scattering dimension names. If the naming option
       @samp{Option} is 1, the scattering dimension names will be read on the
       next line.
       There must be exactly as many names as scattering dimensions. If the
       naming option @samp{Option} is 0, scattering dimension names are automatically
       generated. The name of the @math{n^{th}} scattering dimension
       will be @samp{cn}.
@end itemize

@menu
* Domain Representation::
* Scattering Representation::
@end menu

@node Domain Representation
@subsection Domain Representation
As shown by the grammar, the input file describes the various informations
thanks to characters, integers and domains. Each domain is defined by a set of
constraints in the PolyLib format (@pxref{Wil93}). They have the
following syntax:
@enumerate
@item some optional comment lines beginning with @samp{#},
@item the row and column numbers, possibly followed by comments,
@item the constraint rows, each row corresponds to a constraint the
      domain have to satisfy. Each row must be on a single line and is possibly
      followed by comments. The constraint is an equality @math{p(x) = 0} if the
      first element is 0, an inequality  @math{p(x) \geq 0} if the first element
      is 1. The next elements are the unknown coefficients, followed by
      the parameter coefficients. The last element is the constant factor.
@end enumerate
For instance, assuming that @samp{i}, @samp{j} and @samp{k} are iterators and
@samp{m} and @samp{n} are parameters, the domain defined by the following
constraints :

@tex
$$
\hbox{$ \cases{ -i     + m &$\geq 0$\cr
                    -j + n &$\geq 0$\cr
                 i + j - k &$\geq 0$}$}
$$
@end tex

@ifnottex
@example
@group
   -i + m >= 0
   -j + n >= 0
i + j - k >= 0
@end group
@end example
@end ifnottex

@noindent can be written in the input file as follows :

@example
@group
# This is the domain
3 7                      # 3 lines and 7 columns
# eq/in i  j  k  m  n  1 
    1  -1  0  0  1  0  0 #    -i + m >= 0
    1   0 -1  0  0  1  0 #    -j + n >= 0
    1   1  1 -1  0  0  0 # i + j - k >= 0
@end group
@end example

Each iteration domain @samp{Iteration_domain} of a given statement
is a union of polyhedra
@samp{Domain_union}. A union is defined by its number of elements
@samp{Nb_domains} and the elements themselves @samp{Domain_list}.
For instance, let us consider the following pseudo-code:

@example
@group
for (i=1;i<=n;i++) @{
  if ((i >= m) || (i <= 2*m))
    S1 ;
  for (j=i+1;j<=m;j++)
    S2 ;
@} 
@end group
@end example

@noindent The iteration domain of @samp{S1} can be divided into two
polyhedra and written in the input file as follows:

@example
@group
2 # Number of polyhedra in the union
# First domain
3 5                # 3 lines and 5 columns
# eq/in i  m  n  1 
    1   1  0  0 -1 #  i >= 1
    1  -1  0  1  0 #  i <= n
    1   1 -1  0  0 #  i >= m
# Second domain
3 5                # 3 lines and 5 columns
# eq/in i  m  n  1 
    1   1  0  0 -1 #  i >= 1
    1  -1  0  1  0 #  i <= n
    1  -1  2  0  0 #  i <= 2*m
@end group
@end example

@node Scattering Representation
@subsection Scattering Function Representation
Scattering functions are depicted in the input file thanks a representation
very close to the domain one.
An integer gives the number of functions @samp{Nb_functions} and each function
is represented by a domain. Each line of the domain corresponds to an equality
defining a dimension of the function. Note that at present
(CLooG @value{VERSION})
@strong{all functions must have the same scattering dimension number}. If a
user wants to set scattering functions with different dimensionality, he has
to complete the smaller one with zeroes to reach the maximum dimensionality.
For instance, let us consider the following code and
scheduling functions:

@example
@group
for (i=1;i<=n;i++) @{
  if ((i >= m) || (i <= 2*m))
    S1 ;
  for (j=i+1;j<=m;j++)
    S2 ;
@} 
@end group
@end example

@tex
$$
\hbox{$ \cases{ \theta _{S1}(i)      &$=  (i,0)^T$\cr
                \theta _{S2}(i,j)^T  &$=  (n,i+j)^T$}$}
$$
@end tex

@ifnottex
@example
@group
T_S1(i)     = (i,0)^T
T_S2(i,j)^T = (n,i+j)^T
@end group
@end example
@end ifnottex


@noindent This scheduling can be written in the input file as follows:

@example
@group
2 # Number of scattering functions
# First function
2 7                          # 2 lines and 7 columns
# eq/in c1 c2  i  m  n  1 
    0    1  0 -1  0  0  0    #  c1 = i
    0    0  1  0  0  0  0    #  c2 = 0
# Second function
2 8                          # 2 lines and 8 columns
# eq/in c1 c2  i  j  m  n  1 
    0    1  0  0  0  0 -1  0 #  c1 = n
    0    0  1 -1 -1  0  0  0 #  c2 = i+j
@end group
@end example
The complete input file for the user who wants to generate the code for this
example with the preceding scheduling would be
(this file is provided in the CLooG distribution
as @code{test/manual_scattering.cloog}:

@example
# ---------------------- CONTEXT ----------------------
c # language is C

# Context (no constraints on two parameters)
1 4                   # 1 lines and 4 columns
# eq/in m  n  1
    1   0  0  0       # 0 >= 0, always true

1 # We want to set manually the parameter names
m n                   # parameter names

# --------------------- STATEMENTS --------------------
2 # Number of statements

2 # First statement: two domains
# First domain
3 5                   # 3 lines and 5 columns
# eq/in i  m  n  1
    1   1  0  0 -1    # i >= 1
    1  -1  0  1  0    # i <= n
    1   1 -1  0  0    # i >= m
# Second domain
3 5                   # 3 lines and 5 columns
# eq/in i  m  n  1 
    1   1  0  0 -1    # i >= 1
    1  -1  0  1  0    # i <= n
    1  -1  2  0  0    # i <= 2*m
0  0  0               # for future options
 
1 # Second statement: one domain
4 6                   # 4 lines and 6 columns
# eq/in i  j  m  n  1 
    1   1  0  0  0 -1 # i >= 1
    1  -1  0  0  1  0 # i <= n
    1  -1  1  0  0 -1 # j >= i+1
    1   0 -1  1  0  0 # j <= m
0  0  0               # for future options

1 # We want to set manually the iterator names
i j                   # iterator names

# --------------------- SCATTERING --------------------
2 # Scattering functions
# First function
2 7                   # 2 lines and 7 columns
# eq/in p1 p2  i  m  n  1 
    0    1  0 -1  0  0  0    # p1 = i
    0    0  1  0  0  0  0    # p2 = 0
# Second function
2 8                   # 2 lines and 8 columns
# eq/in p1 p2  i  j  m  n  1 
    0    1  0  0  0  0 -1  0 # p1 = n
    0    0  1 -1 -1  0  0  0 # p2 = i+j

1 # We want to set manually the scattering dimension names
p1 p2                 # scattering dimension names
@end example


@c %/*************************************************************************
@c % *                             Calling CLooG                             *
@c % *************************************************************************/
@node Calling CLooG
@section Calling CLooG
CLooG is called by the following command:
@example
       cloog [ options | file ]
@end example
The default behavior of CLooG is to read the input informations from a file and
to print the generated code or pseudo-code on the standard output.
CLooG's behavior and the output code shape is under the user control thanks
to many options which are detailed a further section (@pxref{CLooG Options}).
@code{file} is the input file. @code{stdin} is a special value: when used,
input is standard input. For instance, we can call CLooG to treat the
input file @code{basic.cloog} with default options by typing:
@code{cloog basic.cloog} or @code{more basic.cloog | cloog stdin}.

@c %/*************************************************************************
@c % *                             CLooG Options                             *
@c % *************************************************************************/
@node CLooG Options
@section CLooG Options

@menu
* Last Depth to Optimize Control::
* First Depth to Optimize Control::
* Simplify Convex Hull::
* Once Time Loop Elimination::
* Equality Spreading::
* First Level for Spreading::
* Statement Block::
* Loop Strides::
* Compilable Code::
* Output::
* Help::
* Version ::
* Quiet ::
@end menu

@node Last Depth to Optimize Control
@subsection Last Depth to Optimize Control @code{-l <depth>}

@code{-l <depth>}: this option sets the last loop depth to be optimized in
control. The higher this depth, the less control overhead.
For instance, with some input file, a user can generate
different pseudo-codes with different @code{depth} values as shown below.
@example
@group
/* Generated using a given input file and @strong{option -l 1} */
for (i=0;i<=M;i++) @{
  S1 ;
  for (j=0;j<=N;j++) @{
    S2 ;
  @}
  for (j=0;j<=N;j++) @{
    S3 ;
  @}
  S4 ;
@}
@end group
@end example
@example
@group
/* Generated using the same input file but @strong{option -l 2} */
for (i=0;i<=M;i++) @{
  S1 ;
  for (j=0;j<=N;j++) @{
    S2 ;
    S3 ;
  @}
  S4 ;
@}
@end group
@end example
     In this example we can see that this option can change the operation
     execution order between statements. Let us remind that CLooG does not
     make any speculation on dependences between statements
     (@pxref{Scattering}). Thus if nothing (i.e. scattering functions)
     forbids this, CLooG considers the above codes to be equivalent.
     If there is no scattering functions, the minimum value for @code{depth}
     is 1 (in the case of 0, the user doesn't really need a loop generator !),
     and the number of scattering dimensions otherwise (CLooG will warn the
     user if he doesn't respect such constraint).
     The maximum value for depth is -1 (infinity).
     Default value is infinity.

@node First Depth to Optimize Control
@subsection First Depth to Optimize Control @code{-f <depth>}

     @code{-f <depth>}: this option sets the first loop depth to be optimized
     in control. The lower this depth, the less control overhead (and the longer
     the generated code). For instance, with some input file, a user
     can generate different pseudo-codes with different @code{depth} values
     as shown below.
     The minimum value for @code{depth} is 1, and the
     maximum value is -1 (infinity).
     Default value is 1.
@example
@group
/* Generated using a given input file and @strong{option -f 3} */
for (i=1;i<=N;i++) @{
  for (j=1;j<=M;j++) @{
    S1 ;
    if (j >= 10) @{
      S2 ;
    @}
  @}
@}
@end group
@end example
@example
@group
/* Generated using the same input file but @strong{option -f 2} */
for (i=1;i<=N;i++) @{
  for (j=1;j<=9;j++) @{
    S1 ;
  @}
  for (j=10;j<=M;j++) @{
    S1 ;
    S2 ;
  @}
@}
@end group
@end example

@node Simplify Convex Hull
@subsection  Simplify Convex Hull @code{-sh <boolean>}

     @code{-sh <boolean>}: this option enables (@code{boolean=1})
     or forbids (@code{boolean=0}) a simplification step
     that may simplify some constraints.
     This option works only for generated code without
     code duplication (it means, you have to tune @code{-f} and
     @code{-l} options first to generate only a loop nest with internal
     guards). For instance, with the input file @code{test/union.cloog}, a user
     can generate different pseudo-codes  as shown below.
     Default value is 0.
@example
@group
/* Generated using test/union.cloog and @strong{option -f -1 -l 2 -override} */
for (i=0;i<=11;i++) @{
  for (j=max(0,5*i-50);j<=min(15,5*i+10);j++) @{
    if ((i <= 10) && (j <= 10)) @{
      S1 ;
    @}
    if ((i >= 1) && (j >= 5)) @{
      S2 ;
    @}
  @}
@}
@end group
@end example
@example
@group
/* Generated using the same input file but @strong{option -sh 1 -f -1 -l 2 -override} */
for (i=0;i<=11;i++) @{
  for (j=0;j<=15;j++) @{
    if ((i <= 10) && (j <= 10)) @{
      S1 ;
    @}
    if ((i >= 1) && (j >= 5)) @{
      S2 ;
    @}
  @}
@}
@end group
@end example

@node Once Time Loop Elimination
@subsection Once Time Loop Elimination @code{-otl <boolean>}

     @code{-otl <boolean>}: this option allows (@code{boolean=1}) or
     forbids (@code{boolean=0}) the simplification of loops running
     once. Default value is 1.
@example
@group
/* Generated using a given input file and @strong{option -otl 0} */
for (j=i+1;j<=i+1;j++) @{
  S1 ;
@}
@end group
@end example
@example
@group
/* Generated using the same input file but @strong{option -otl 1} */
j = i+1 ;
S1 ;
@end group
@end example


@node Equality Spreading 
@subsection Equality Spreading @code{-esp <boolean>}

     @code{-esp <boolean>}: this option allows (@code{boolean=1}) or
     forbids (@code{boolean=0}) values spreading when there
     are equalities. Default value is 1.
@example
@group
/* Generated using a given input file and @strong{option -esp 0} */
i = M+2 ;
j = N ;
for (k=i;k<=j+M;k++) @{
  S1 ;
@}
@end group
@end example
@example
@group
/* Generated using the same input file but @strong{option -esp 1} */
for (k=M+2;k<=N+M;k++) @{
  S1(i = M+2, j = N) ;
@}
@end group
@end example


@node First Level for Spreading 
@subsection First Level for Spreading @code{-fsp <level>}

     @code{-fsp <level>}: it can be useful to set a
     first level to begin equality spreading. Particularly when using
     scattering functions, the user may want to see the scattering dimension
     values instead of spreading or hiding them. If user has set a
     spreading, @code{level} is
     the first level to start it. Default value is 1.
@example
@group
/* Generated using a given input file and @strong{option -fsp 1} */
for (j=0;j<=N+M;j++) @{
  S1(i = N) ;
@}
for (j=0;j<=N+M;j++) @{
  S1(i = M) ;
@}
@end group
@end example
@example
@group
/* Generated using the same input file but @strong{option -fsp 2} */
c1 = N ;
for (j=0;j<=c1+M;j++) @{
  S1(i = c1) ;
@}
c1 = M ;
for (j=0;j<=N+c1;j++) @{
  S1(i = c1) ;
@}
@end group
@end example


@node Statement Block  
@subsection Statement Block @code{-block <boolean>}

     @code{-block <boolean>}: this option allows (@code{boolean=1}) to
     create a statement block for each new iterator, even if there is only
     an equality. This can be useful in order to parse the generated
     pseudo-code. When @code{boolean} is set to 0 or when the generation
     language is FORTRAN, this feature is disabled. Default value is 0.
@example
@group
/* Generated using a given input file and @strong{option -block 0} */
i = M+2 ;
j = N ;
S1 ;
@end group
@end example
@example
@group
/* Generated using the same input file but @strong{option -block 1} */
@{ i = M+2 ;
  @{ j = N ;
    S1 ;
  @}
@}
@end group
@end example


@node Loop Strides 
@subsection Loop Strides @code{-strides <boolean>}

     @code{-strides <boolean>}: this options allows (@code{boolean=1}) to
     handle non-unit strides for loop increments. This can remove a lot of
     guards and make the generated code more efficient. Default value is 0.
@example
@group
/* Generated using a given input file and @strong{option -strides 0} */
for (i=1;i<=n;i++) @{
  if (i%2 == 0) @{
    S1(j = i/2) ;
  @}
  if (i%4 == 0) @{
    S2(j = i/4) ;
  @}
@}
@end group
@end example
@example
@group
/* Generated using the same input file but @strong{option -strides 1} */
for (i=2;i<=n;i+=2) @{
  S1(j = i/2) ;
  if (i%4 == 0) @{
    S2(j = i/4) ;
  @}
@}
@end group
@end example

@node Compilable Code
@subsection Compilable Code @code{-compilable <value>}

     @code{-compilable <value>}: this options allows (@code{value} is not 0)
     to generate a compilable code where all parameters have the integral value
     @code{value}. This option creates a macro for each statement. Since
     CLooG do not know anything about the statement sources, it fills the
     macros with a basic increment that computes the total number of
     scanned integral points. The user may change easily the macros according
     to his own needs. This option is possible only if the generated code is
     in C. Default value is 0.
@example
@group
/* Generated using a given input file and @strong{option -compilable 0} */
for (i=0;i<=n;i++) @{
  for (j=0;j<=n;j++) @{
    S1 ;
    S2 ;
  @}
  S3 ;
@}
@end group
@end example
@example
/* Generated using the same input file but @strong{option -compilable 10} */
/* DON'T FORGET TO USE -lm OPTION TO COMPILE. */

/* Useful headers. */
#include <stdio.h>
#include <stdlib.h>
#include <math.h>

/* Parameter value. */
#define PARVAL 10

/* Statement macros (please set). */
#define S1(i,j) @{total++;@}
#define S2(i,j) @{total++;@}
#define S3(i)   @{total++;@}

int main() @{
  /* Original iterators. */
  int i, j ;
  /* Parameters. */
  int n=PARVAL, total=0 ;

  for (i=0;i<=n;i++) @{
    for (j=0;j<=n;j++) @{
      S1(i,j) ;
      S2(i,j) ;
    @}
    S3(i) ;
  @}

  printf("Number of integral points: %d.\n",total) ;
  return 0 ;
@}
@end example

@node Callable Code
@subsection Callable Code @code{-callable <boolean>}

     @code{-callable <boolean>}: if @code{boolean=1}, then a @code{test}
     function will be generated that has the parameters as arguments.
     Similarly to the @code{-compilable} option,
     a macro for each statement is generated.  The generated definitions of
     these macros are as used during the correctness testing, but they
     can easily be changed by the user to suit her own needs.
     This option is only available if the target language is C.
     The default value is 0.

@example
/* Generated from double.cloog with @strong{option -callable 0} */
for (i=0;i<=M;i++) @{
  S1 ;
  for (j=0;j<=N;j++) @{
    S2 ;
    S3 ;
  @}
  S4 ;
@}
@end example
@example
/* Generated from double.cloog with @strong{option -callable 1} */
extern void hash(int);

/* Useful macros. */
#define floord(n,d) (((n)<0) ? ((n)-(d)+1)/(d) : (n)/(d))
#define ceild(n,d)  (((n)<0) ? (n)/(d) : ((n)+(d)+1)/(d))
#define max(x,y)    ((x) > (y) ? (x) : (y))
#define min(x,y)    ((x) < (y) ? (x) : (y))

#define S1(i) @{ hash(1); hash(i); @}
#define S2(i,j) @{ hash(2); hash(i); hash(j); @}
#define S3(i,j) @{ hash(3); hash(i); hash(j); @}
#define S4(i) @{ hash(4); hash(i); @}

void test(int M, int N)
@{
  /* Original iterators. */
  int i, j;
  for (i=0;i<=M;i++) @{
    S1(i) ;
    for (j=0;j<=N;j++) @{
      S2(i,j) ;
      S3(i,j) ;
    @}
    S4(i) ;
  @}
@}
@end example

@node Output
@subsection Output @code{-o <output>}

     @code{-o <output>}: this option sets the output file. @code{stdout} is a
     special value: when used, output is standard output.
     Default value is @code{stdout}.

@node Help
@subsection Help @code{--help} or @code{-h}

     @code{--help} or @code{-h}: this option ask CLooG to print a short help.

@node Version
@subsection Version @code{--version} or @code{-v}

     @code{--version} or @code{-v}: this option ask CLooG to print some version
     informations.

@node Quiet
@subsection Quiet @code{--quiet} or @code{-q}

     @code{--quiet} or @code{-q}: this option tells CLooG not to print
     any informational messages.


@c %/*************************************************************************
@c % *                           A Full Example                              *
@c % *************************************************************************/
@node Full Example
@section A Full Example

Let us consider the allocation problem of a Gaussian elimination, i.e. we want
to distribute the various statement instances of the compute kernel onto
different processors. The original code is the following:
@example
@group
for (i=1;j<=N-1;i++) @{
  for (j=i+1;j<=N;j++) @{
    c[i][j] = a[j][i]/a[i][i] ;    /* S1 */
    for (k=i+1;k<=N;k++) @{
      a[j][k] -= c[i][j]*a[i][k] ; /* S2 */
    @}
  @}
@}
@end group
@end example

@noindent The best affine allocation functions can be found by any good automatic
parallelizer like LooPo (@pxref{Gri04}):

@tex
$$
\hbox{$ \cases{ \theta _{S1}(i,j)^T    &$=  (i)$\cr
                \theta _{S2}(i,j,k)^T  &$=  (k)$}$}
$$
@end tex

@ifnottex
@example
@group
T_S1(i,j)^T   = (i)
T_S2(i,j,k)^T = (k)
@end group
@end example
@end ifnottex

@noindent To ensure that on each processor, the set of statement instances is
executed according to the original ordering, we add as minor scattering
dimensions the original scheduling (@pxref{Scattering}):

@tex
$$
\hbox{$ \cases{ \theta _{S1}(i,j)^T    &$=  (i,0,i,0,j,0)^T$\cr
                \theta _{S2}(i,j,k)^T  &$=  (k,0,i,0,j,1,k,0)^T$}$}
$$
@end tex

@ifnottex
@example
@group
T_S1(i,j)^T   = (i,0,i,0,j,0)^T
T_S2(i,j,k)^T = (k,0,i,0,j,1,k,0)^T
@end group
@end example
@end ifnottex

@noindent To ensure that the scattering functions have the same dimensionality, we
complete the first function with zeroes
(this is a CLooG @value{VERSION} and previous versions requirement,
it should be removed in a future version, don't worry it's absolutely legal !):

@tex
$$
\hbox{$ \cases{ \theta _{S1}(i,j)^T    &$=  (i,0,i,0,j,0,0,0)^T$\cr
                \theta _{S2}(i,j,k)^T  &$=  (k,0,i,0,j,1,k,0)^T$}$}
$$
@end tex

@ifnottex
@example
@group
T_S1(i,j)^T   = (i,0,i,0,j,0,0,0)^T
T_S2(i,j,k)^T = (k,0,i,0,j,1,k,0)^T
@end group
@end example
@end ifnottex

@noindent The input file corresponding to this code generation problem
could be (this file is provided in the CLooG distribution
as @code{test/manual_gauss.cloog}:

@example
# ---------------------- CONTEXT ----------------------
c # language is C

# Context (no constraints on one parameter)
1 3                     # 1 line and 3 columns    
# eq/in n  1
    1   0  0            # 0 >= 0, always true

1 # We want to set manually the parameter name
n                       # parameter name

# --------------------- STATEMENTS --------------------
2 # Number of statements

1 # First statement: one domain
4 5                     # 4 lines and 3 columns
# eq/in i  j  n  1
    1   1  0  0 -1      # i >= 1
    1  -1  0  1 -1      # i <= n-1
    1  -1  1  0 -1      # j >= i+1
    1   0 -1  1  0      # j <= n
0  0  0                 # for future options
 
1
# Second statement: one domain
6 6                     # 6 lines and 3 columns
# eq/in i  j  k  n  1
    1   1  0  0  0 -1   # i >= 1
    1  -1  0  0  1 -1   # i <= n-1
    1  -1  1  0  0 -1   # j >= i+1
    1   0 -1  0  1  0   # j <= n
    1  -1  0  1  0 -1   # k >= i+1
    1   0  0 -1  1  0   # k <= n
0  0  0                 # for future options

0 # We let CLooG set the iterator names

# --------------------- SCATTERING --------------------
2 # Scattering functions
# First function
8 13                    # 3 lines and 3 columns
# eq/in p1 p2 p3 p4 p5 p6 p7 p8  i  j  n  1
    0    1  0  0  0  0  0  0  0 -1  0  0  0     # p1 = i
    0    0  1  0  0  0  0  0  0  0  0  0  0     # p2 = 0
    0    0  0  1  0  0  0  0  0 -1  0  0  0     # p3 = i
    0    0  0  0  1  0  0  0  0  0  0  0  0     # p4 = 0
    0    0  0  0  0  1  0  0  0  0 -1  0  0     # p5 = j
    0    0  0  0  0  0  1  0  0  0  0  0  0     # p6 = 0
    0    0  0  0  0  0  0  1  0  0  0  0  0     # p7 = 0
    0    0  0  0  0  0  0  0  1  0  0  0  0     # p8 = 0
# Second function
8 14                    # 3 lines and 3 columns
# eq/in p1 p2 p3 p4 p5 p6 p7 p8  i  j  k  n  1
    0    1  0  0  0  0  0  0  0  0  0 -1  0  0  # p1 = k
    0    0  1  0  0  0  0  0  0  0  0  0  0  0  # p2 = 0
    0    0  0  1  0  0  0  0  0 -1  0  0  0  0  # p3 = i
    0    0  0  0  1  0  0  0  0  0  0  0  0  0  # p4 = 0
    0    0  0  0  0  1  0  0  0  0 -1  0  0  0  # p5 = j
    0    0  0  0  0  0  1  0  0  0  0  0  0 -1  # p6 = 1
    0    0  0  0  0  0  0  1  0  0  0 -1  0  0  # p7 = k
    0    0  0  0  0  0  0  0  1  0  0  0  0  0  # p8 = 0

1 # We want to set manually the scattering dimension names
p1 p2 p3 p4 p5 p6 p7 p8 # scattering dimension names
@end example

Calling CLooG, with for instance the command line
@code{cloog -fsp 2 gauss.cloog} for a better view
of the allocation (the processor number is given by @code{p1}),
will result on the following target code that actually implements
the transformation. A minor processing on the dimension @code{p1}
to implement, e.g., MPI calls, which is not shown here may
result in dramatic speedups !

@example
if (n >= 2) @{
  p1 = 1 ;
  for (p5=2;p5<=n;p5++) @{
    S1(i = 1,j = p5) ;
  @}
@}
for (p1=2;p1<=n-1;p1++) @{
  for (p3=1;p3<=p1-1;p3++) @{
    for (p5=p3+1;p5<=n;p5++) @{
      S2(i = p3,j = p5,k = p1) ;
    @}
  @}
  for (p5=p1+1;p5<=n;p5++) @{
    S1(i = p1,j = p5) ;
  @}
@}
if (n >= 2) @{
  p1 = n ;
  for (p3=1;p3<=n-1;p3++) @{
    for (p5=p3+1;p5<=n;p5++) @{
      S2(i = p3,j = p5,k = n) ;
    @}
  @}
@}
@end example


@c %/*************************************************************************
@c % *                           A Full Example                              *
@c % *************************************************************************/
@node CLooG Library
@chapter Using the CLooG Library
The CLooG Library was implemented to allow the user to call CLooG
directly from his programs, without file accesses or system calls. The
user only needs to link his programs with C libraries. The CLooG
library mainly provides one function (@code{cloog_clast_create_from_input})
which takes as input the problem
description with some options, and returns the data structure corresponding
to the generated code (a @code{struct clast_stmt} structure)
which is more or less an abstract syntax tree.
The user can work with this data structure and/or use
our pretty printing function to write the final code in either C or FORTRAN.
Some other functions are provided for convenience reasons.
These functions as well as the data structures are described in this section.

@menu
* CLooG Data Structures::
* CLooG Output::
* Retrieving version information::
* Example of Library Utilization::
@end menu


@node CLooG Data Structures
@section CLooG Data Structures Description
In this section, we describe the data structures used by the loop
generator to represent and to process a code generation problem.

@menu
* CloogState::
* CloogMatrix::
* CloogDomain::
* CloogScattering::
* CloogUnionDomain::
* CloogStatement::
* CloogOptions::
* CloogInput::
@end menu


@node CloogState
@subsection CloogState
@example
@group
CloogState *cloog_state_malloc(void);
void cloog_state_free(CloogState *state);
@end group
@end example

@noindent The @code{CloogState} structure is (implicitly) needed to perform
any CLooG operation.  It should be created using @code{cloog_state_malloc}
before any other CLooG objects are created and destroyed using
@code{cloog_state_free} after all objects have been freed.
It is allowed to use more than one @code{CloogState} structure at
the same time, but an object created within the state of a one
@code{CloogState} structure is not allowed to interact with an object
created within the state of an other @code{CloogState} structure.


@node CloogMatrix
@subsection CloogMatrix

@noindent The @code{CloogMatrix} structure is equivalent to the PolyLib
@code{Matrix} data structure (@pxref{Wil93}). This structure is devoted to
represent a set of constraints.

@example
@group
struct cloogmatrix
@{ unsigned NbRows ;    /* Number of rows. */
  unsigned NbColumns ; /* Number of columns. */
  cloog_int_t **p;     /* Array of pointers to the matrix rows. */
  cloog_int_t *p_Init; /* Matrix rows contiguously in memory. */
@};
typedef struct cloogmatrix CloogMatrix;

CloogMatrix *cloog_matrix_alloc(unsigned NbRows, unsigned NbColumns);
void cloog_matrix_print(FILE *foo, CloogMatrix *m);
void cloog_matrix_free(CloogMatrix *matrix);
@end group
@end example

@noindent The whole matrix is stored in memory row after row at the
@code{p_Init} address. @code{p} is an array of pointers where
@code{p[i]} points to the first element of the @math{i^{th}} row.
@code{NbRows} and @code{NbColumns} are respectively the number of
rows and columns of the matrix. 
Each row corresponds to a constraint. The first element of each row is an
equality/inequality tag. The
constraint is an equality @math{p(x) = 0} if the first element is 0, but it is
an inequality @math{p(x) \geq 0} if the first element is 1.
The next elements are the coefficients of the unknowns,
followed by the coefficients of the parameters, and finally the constant term.
For instance, the following three constraints:

@tex
$$
\hbox{$ \cases{ -i + m       &$= 0$\cr
                -j + n       &$\geq 0$\cr
                 j + i - k   &$\geq 0$}$}
$$
@end tex

@ifnottex
@example
@group
    -i + m  = 0
    -j + n >= 0
 i + j - k >= 0
@end group
@end example
@end ifnottex

@noindent would be represented by the following rows:

@example
@group
# eq/in  i   j   k   m   n   cst
    0    0  -1   0   1   0    0 
    1   -1   0   0   0   1    0 
    1    1   1  -1   0   0    0 
@end group
@end example

@noindent To be able to provide different precision version (CLooG
supports 32 bits, 64 bits and arbitrary precision through the GMP library),
the @code{cloog_int_t} type depends on the configuration options (it may be
@code{long int} for 32 bits version, @code{long long int} for 64 bits version,
and @code{mpz_t} for multiple precision version).

@node CloogDomain
@subsection CloogDomain
@example
@group
CloogDomain *cloog_domain_union_read(CloogState *state,
                                     FILE *input, int nb_parameters);
CloogDomain *cloog_domain_from_cloog_matrix(CloogState *state,
                                    CloogMatrix *matrix, int nb_par);
void cloog_domain_free(CloogDomain *domain);
@end group
@end example

@noindent @code{CloogDomain} is an opaque type representing a polyhedral
domain (a union of polyhedra).
A @code{CloogDomain} can be read
from a file using @code{cloog_domain_union_read} or
converted from a @code{CloogMatrix}.
The input format for @code{cloog_domain_union_read}
is that of @ref{Domain Representation}.
The function @code{cloog_domain_from_cloog_matrix} takes a @code{CloogState}, a
@code{CloogMatrix} and @code{int} as input and returns a pointer to a
@code{CloogDomain}. @code{matrix} describes the domain and @code{nb_par} is the
number of parameters in this domain. The input data structures are neither
modified nor freed.
The @code{CloogDomain} can be freed using @code{cloog_domain_free}.
There are also some backend dependent functions for creating
@code{CloogDomain}s.

@menu
* CloogDomain/PolyLib::
* CloogDomain/isl::
@end menu

@node CloogDomain/PolyLib
@subsubsection PolyLib

@example
#include <cloog/polylib/cloog.h>
CloogDomain *cloog_domain_from_polylib_polyhedron(CloogState *state,
                                        Polyhedron *, int nb_par);
@end example
@noindent
The function @code{cloog_domain_from_polylib_polyhedron} takes a PolyLib
@code{Polyhedron} as input and returns a pointer to a @code{CloogDomain}.
The @code{nb_par} parameter indicates the number of parameters
in the domain.  The input data structure if neither modified nor freed.

@node CloogDomain/isl
@subsubsection isl

@example
#include <cloog/isl/cloog.h>
CloogDomain *cloog_domain_from_isl_set(struct isl_set *set);
__isl_give isl_set *isl_set_from_cloog_domain(CloogDomain *domain);
@end example
@noindent
The function @code{cloog_domain_from_isl_set} takes a
@code{struct isl_set} as input and returns a pointer to a @code{CloogDomain}.
The function consumes a reference to the given @code{struct isl_set}.
Similarly, @code{isl_set_from_cloog_domain} consumes a reference
to a @code{CloogDomain} and returns an @code{isl_set}.


@node CloogScattering
@subsection CloogScattering
@example
@group
CloogScattering *cloog_domain_read_scattering(CloogDomain *domain,
                                              FILE *foo);
CloogScattering *cloog_scattering_from_cloog_matrix(CloogState *state,
                         CloogMatrix *matrix, int nb_scat, int nb_par);
void cloog_scattering_free(CloogScattering *);
@end group
@end example

@noindent
The @code{CloogScattering} type represents a scattering function.
A @code{CloogScattering} for a given @code{CloogDomain} can be read
from a file using @code{cloog_scattering_read} or converted
from a @code{CloogMatrix} using @code{cloog_scattering_from_cloog_matrix}.
The function @code{cloog_scattering_from_cloog_matrix} takes a
@code{CloogState}, a @code{CloogMatrix} and two @code{int}s as input and
returns a
pointer to a @code{CloogScattering}.
@code{matrix} describes the scattering, while @code{nb_scat} and
@code{nb_par} are the number of scattering dimensions and
the number of parameters, respectively. The input data structures are
neither modified nor freed.
A @code{CloogScattering} can be freed using @code{cloog_scattering_free}.
There are also some backend dependent functions for creating
@code{CloogScattering}s.

@menu
* CloogScattering/PolyLib::
* CloogScattering/isl::
@end menu

@node CloogScattering/PolyLib
@subsubsection PolyLib

@example
#include <cloog/polylib/cloog.h>
CloogScattering *cloog_scattering_from_polylib_polyhedron(
        CloogState *state, Polyhedron *polyhedron, int nb_par);
@end example
@noindent
The function @code{cloog_scattering_from_polylib_polyhedron} takes a PolyLib
@code{Polyhedron} as input and returns a pointer to a @code{CloogScattering}.
The @code{nb_par} parameter indicates the number of parameters
in the domain.  The input data structure if neither modified nor freed.

@node CloogScattering/isl
@subsubsection isl

@example
#include <cloog/isl/cloog.h>
CloogScattering *cloog_scattering_from_isl_map(struct isl_map *map);
@end example
@noindent
The function @code{cloog_scattering_from_isl_map} takes a
@code{struct isl_map} as input and returns a pointer to a @code{CloogScattering}.
The output dimensions of the @code{struct isl_map} correspond to the
scattering dimensions, while the input dimensions correspond to the
domain dimensions.
The function consumes a reference to the given @code{struct isl_map}.


@node CloogUnionDomain
@subsection CloogUnionDomain
@example
@group
enum cloog_dim_type @{ CLOOG_PARAM, CLOOG_ITER, CLOOG_SCAT @};

CloogUnionDomain *cloog_union_domain_alloc(int nb_par);
CloogUnionDomain *cloog_union_domain_add_domain(CloogUnionDomain *ud,
        const char *name, CloogDomain *domain,
        CloogScattering *scattering, void *usr);
CloogUnionDomain *cloog_union_domain_set_name(CloogUnionDomain *ud,
        enum cloog_dim_type type, int index, const char *name);
void cloog_union_domain_free(CloogUnionDomain *ud);
@end group
@end example

@noindent A @code{CloogUnionDomain} structure represents a union
of scattered named domains.  A @code{CloogUnionDomain} is
initialized by a call to @code{cloog_union_domain_alloc},
after which domains can be added using @code{cloog_union_domain_add_domain}.

@code{cloog_union_domain_alloc} takes the number of parameters as input.
@code{cloog_union_domain_add_domain} takes a previously created
@code{CloogUnionDomain} as input along with an optional name,
a domain, an optional scattering function and a user pointer.
The name may be @code{NULL} and is duplicated if it is not.
If no name is specified, then the statements will be named according
to the order in which they were added.
@code{domain} and @code{scattering} are taken over
by the @code{CloogUnionDomain}.  @code{scattering} may be @code{NULL},
but it must be consistently @code{NULL} or not over all calls
to @code{cloog_union_domain_add_domain}.
@code{cloog_union_domain_set_name} can be used to set the names
of parameters, iterators and scattering dimensions.
The names of iterators and scattering dimensions can only be set
after all domains have been added.

There is also a backend dependent function for creating
@code{CloogUnionDomain}s.

@menu
* CloogUnionDomain/isl::
@end menu

@node CloogUnionDomain/isl
@subsubsection isl

@example
#include <cloog/isl/cloog.h>
CloogUnionDomain *cloog_union_domain_from_isl_union_map(
        __isl_take isl_union_map *umap);
CloogUnionDomain *cloog_union_domain_from_isl_union_set(
	__isl_take isl_union_set *uset);
@end example
@noindent
The function @code{cloog_union_domain_from_isl_union_map} takes a
@code{isl_union_map} as input and returns a pointer
to a @code{CloogUnionDomain}.
The input is a mapping from different
spaces (different tuple names and possibly different dimensions)
to a common space.  The iteration domains are set to the domains
in each space.  The statement names are set to the names of the
spaces.  The parameter names of the result are set to those of
the input, but the iterator and scattering dimension names are
left unspecified.
The function consumes a reference to the given @code{isl_union_map}.
The function @code{cloog_union_domain_from_isl_union_set} is similar,
but takes unscattered domains as input.


@node CloogStatement
@subsection CloogStatement
@example
@group
struct cloogstatement
@{ int number ;                  /* The statement unique number. */
  char *name;                   /* Name of the statement. */
  void * usr ;                  /* Pointer for user's convenience. */
  struct cloogstatement * next ;/* Next element of the linked list. */
@} ;
typedef struct cloogstatement CloogStatement ;

CloogStatement *cloog_statement_malloc(CloogState *state);
void cloog_statement_print(FILE *, CloogStatement *);
void cloog_statement_free(CloogStatement *);
@end group
@end example

@noindent The @code{CloogStatement} structure represents a @code{NULL}
terminated linked
list of statements. In CLooG, a statement is only defined by its unique
number (@code{number}). The user can use the pointer @code{usr} for his
own convenience to link his own statement representation to the
corresponding @code{CloogStatement} structure. The whole management of the
@code{usr} pointer is under the responsibility of the user, in particular,
CLooG never tries to print, to allocate or to free a memory block pointed
by @code{usr}. 



@node CloogOptions
@subsection CloogOptions
@example
@group
struct cloogoptions
@{ int l ;                     /* -l option.          */
  int f ;                     /* -f option.          */
  int strides ;               /* -strides option.    */
  int sh ;                    /* -sh option.         */
  int esp ;                   /* -esp option.        */
  int fsp ;                   /* -fsp option.        */
  int otl ;                   /* -otl option.        */
  int block ;                 /* -block option.      */
  int cpp ;                   /* -cpp option.        */
  int compilable ;            /* -compilable option. */
  int language;               /* LANGUAGE_C or LANGUAGE_FORTRAN */
  int save_domains;           /* Save unsimplified copy of domain. */
@} ;
typedef struct cloogoptions CloogOptions ;

CloogOptions *cloog_options_malloc(CloogState *state);
void cloog_options_print(FILE *foo, CloogOptions *options);
void cloog_options_free(CloogOptions *options);
@end group
@end example

@noindent The @code{CloogOptions} structure contains all the possible options to
rule CLooG's behaviour (@pxref{Calling CLooG}).
As a reminder, the default values are:
@itemize @bullet
@item @math{l = -1} (optimize control until the innermost loops),
@item @math{f = 1} (optimize control from the outermost loops),
@item @math{strides = 0} (use only unit strides),
@item @math{sh = 0} (do not simplify convex hulls),
@item @math{esp = 1} (do not spread complex equalities),
@item @math{fsp = 1} (start to spread from the first iterators),
@item @math{otl = 1} (simplify loops running only once).
@item @math{block = 0} (do not make statement blocks when not necessary).
@item @math{cpp = 0} (do not generate a compilable part of code using preprocessor).
@item @math{compilable = 0} (do not generate a compilable code).
@end itemize 

The @code{save_domains} option is only useful for users of the CLooG
library.  This option defaults to 0, but when it is set, the @code{domain}
field of each @code{clast_user_stmt} will be set to the set of values for the
scattering dimensions for which this instance of the user statement is executed.
The @code{domain} field of each @code{clast_for} contains the set of values for
the scattering dimensions for which an instance of a user statement is executed
inside the @code{clast_for}. It is only available if the @code{clast_for}
enumerates a scattering dimension.

@node CloogInput
@subsection CloogInput
@example
@group
CloogInput *cloog_input_read(FILE *file, CloogOptions *options);
CloogInput *cloog_input_alloc(CloogDomain *context,
                                CloogUnionDomain *ud);
void cloog_input_free(CloogInput *input);

void cloog_input_dump_cloog(FILE *, CloogInput *, CloogOptions *);
@end group
@end example

@noindent A @code{CloogInput} structure represents the input to CLooG.
It is essentially a @code{CloogUnionDomain} along with a context
@code{CloogDomain}.  A @code{CloogInput} can be created from
a @code{CloogDomain} and a @code{CloogUnionDomains} using
@code{cloog_input_alloc}, or it can be read from a CLooG input
file using @code{cloog_input_read}.  The latter also modifies
the @code{language} field of the @code{CloogOptions} structure.
The constructed @code{CloogInput} can be used as input
to a @code{cloog_clast_create_from_input} call.

A @code{CloogInput} data structure and a @code{CloogOptions} contain
the same information as a .cloog file. This function dumps the .cloog
description of the given data structures into a file.

@node Dump CLooG Input File Function
@subsection Dump CLooG Input File Function
@example
@end example

@node CLooG Output
@section CLooG Output

@noindent
Given a description of the input,
an AST corresponding to the @code{CloogInput} can be constructed
using @code{cloog_clast_create_from_input} and destroyed using
@code{free_clast_stmt}.
@example
struct clast_stmt *cloog_clast_create_from_input(CloogInput *input,
                                      CloogOptions *options);
void free_clast_stmt(struct clast_stmt *s);
@end example
@noindent
@code{clast_stmt} represents a linked list of ``statements''.
@example
struct clast_stmt @{
    const struct clast_stmt_op    *op;
    struct clast_stmt	*next;
@};
@end example
@noindent
The entries in the list are not of type @code{clast_stmt} itself,
but of some larger type.  The following statement types are defined
by CLooG.

@example
struct clast_root @{
    struct clast_stmt   stmt;
    CloogNames *        names;
@};
struct clast_root *new_clast_root(CloogNames *names);

struct clast_assignment @{
    struct clast_stmt   stmt;
    const char *        LHS;
    struct clast_expr * RHS;
@};
struct clast_assignment *new_clast_assignment(const char *lhs,
                                              struct clast_expr *rhs);

struct clast_block @{
    struct clast_stmt   stmt;
    struct clast_stmt * body;
@};
struct clast_block *new_clast_block(void);

struct clast_user_stmt @{
    struct clast_stmt   stmt;
    CloogDomain *	domain;
    CloogStatement *    statement;
    struct clast_stmt * substitutions;
@};
struct clast_user_stmt *new_clast_user_stmt(CloogDomain *domain,
    CloogStatement *stmt, struct clast_stmt *subs);

struct clast_for @{
    struct clast_stmt   stmt;
    CloogDomain *       domain;
    const char *        iterator;
    struct clast_expr * LB;
    struct clast_expr * UB;
    cloog_int_t         stride;
    struct clast_stmt * body;
@};
struct clast_for *new_clast_for(CloogDomain *domain, const char *it,
                                struct clast_expr *LB, struct clast_expr *UB,
                                cloog_int_t stride);

struct clast_guard @{
    struct clast_stmt   stmt;
    struct clast_stmt * then;
    int                 n;
    struct clast_equation       eq[1];
@};
struct clast_guard *new_clast_guard(int n);
@end example
@noindent
The @code{clast_stmt} returned by @code{cloog_clast_create}
is a @code{clast_root}.
It contains a placeholder for all the variable names that appear
in the AST and a (list of) nested statement(s).

@noindent
A @code{clast_assignment} assigns the value given by
the @code{clast_expr} @code{RHS} to a variable named @code{LHS}.

@noindent
A @code{clast_block} groups a list of statements into one statement.
These statements are only generated if the @code{block} option is set,
@pxref{Statement Block} and @ref{CloogOptions}.

@noindent
A @code{clast_user_stmt} represents a call to a statement specified
by the user, @pxref{CloogStatement}.
@code{substitutions} is a list of @code{clast_assignment} statements
assigning an expression in terms of the scattering dimensions to
each of the original iterators in the original order.
The @code{LHS}s of these assignments are left blank (@code{NULL}).
The @code{domain} is set to @code{NULL} if the @code{save_domains} option
is not set.  Otherwise, it is set to the set
of values for the scattering dimensions
for which this instance of the user statement is executed.
Note that unless the @code{noscalars} option has been set, the
constant scattering dimensions may have been removed from this set.

@noindent
A @code{clast_for} represents a for loop, iterating @code{body} for each
value of @code{iterator} between @code{LB} and @code{UB} in steps
of size @code{stride}.
The @code{domain} is set to @code{NULL} if the @code{save_domains} option is not
set.  Otherwise, it is set to the set of values for the scattering dimensions
for which a user statement is executed inside this @code{clast_for}.  Note that
unless the @code{noscalars} option has been set, the constant scattering
dimensions may have been removed from this set.

@noindent
A @code{clast_guard} represents the guarded execution of the @code{then}
(list of) statement(s) by a conjunction of @code{n} (in)equalities.
Each (in)equality is represented by a @code{clast_equation}.
@example
struct clast_equation @{
    struct clast_expr *	LHS;
    struct clast_expr *	RHS;
    int			sign;
@};
@end example
@noindent
The condition expressed by a @code{clast_equation} is
@code{LHS <= RHS}, @code{LHS == RHS} or @code{LHS >= RHS}
depending on whether @code{sign} is less than zero, equal
to zero, or greater than zero.

The dynamic type of a @code{clast_stmt} can be determined
using the macro @code{CLAST_STMT_IS_A(stmt,type)},
where @code{stmt} is a pointer to a @code{clast_stmt}
and @code{type} is one of @code{stmt_root}, @code{stmt_ass},
@code{stmt_user}, @code{stmt_block}, @code{stmt_for} or
@code{stmt_guard}.
Users are allowed to define their own statement types by
assigning the @code{op} field of the statements a pointer
to a @code{clast_stmt_op} structure.
@example
struct clast_stmt_op @{
    void (*free)(struct clast_stmt *);
@};
@end example
@noindent
The @code{free} field of this structure should point
to a function that frees the user defined statement.

@noindent
A @code{clast_expr} can be an identifier, a term,
a binary expression or a reduction.
@example
enum clast_expr_type @{
    clast_expr_name,
    clast_expr_term,
    clast_expr_bin,
    clast_expr_red
@};
struct clast_expr @{
    enum clast_expr_type type;
@};
void free_clast_expr(struct clast_expr *e);
@end example

@noindent
Identifiers are of subtype @code{clast_name}.
@example
struct clast_name @{
    struct clast_expr	expr;
    const char *	name;
@};
struct clast_name *new_clast_name(const char *name);
void free_clast_name(struct clast_name *t);
@end example
@noindent
The character string pointed to by @code{name} is
assumed to be part of the @code{CloogNames} structure
in the root of the clast as is therefore not copied.

@noindent
Terms are of type @code{clast_term}.
@example
struct clast_term @{
    struct clast_expr   expr;
    cloog_int_t         val;
    struct clast_expr  *var;
@};
struct clast_term *new_clast_term(cloog_int_t c, struct clast_expr *v);
void free_clast_term(struct clast_term *t);
@end example
@noindent
If @code{var} is set to @code{NULL}, then the term represents
the integer value @code{val}.  Otherwise, it represents
the term @code{val * var}.
@code{new_clast_term} simply copies the @code{v} pointer
without copying the underlying @code{clast_expr}.
@code{free_clast_term}, on the other hand, recursively frees
@code{var}.

@noindent
Binary expressions are of type @code{clast_bin_type} and
represent either the floor of a division (fdiv),
the ceil of a division (cdiv), an exact division or
the remainder of an fdiv.
@example
enum clast_bin_type @{ clast_bin_fdiv, clast_bin_cdiv, 
                      clast_bin_div, clast_bin_mod @};
struct clast_binary @{
    struct clast_expr   expr;
    enum clast_bin_type type;
    struct clast_expr*  LHS;
    cloog_int_t         RHS;
@};
struct clast_binary *new_clast_binary(enum clast_bin_type t, 
                          struct clast_expr *lhs, cloog_int_t rhs);
void free_clast_binary(struct clast_binary *b);
@end example

@noindent
Reductions are of type @code{clast_reduction} and
can represent either the sum, the minimum or the maximum
of its elements.
@example
enum clast_red_type @{ clast_red_sum, clast_red_min, clast_red_max @};
struct clast_reduction @{
    struct clast_expr   expr;
    enum clast_red_type type;
    int                 n;
    struct clast_expr*  elts[1];
@};
struct clast_reduction *new_clast_reduction(enum clast_red_type t,
                                            int n);
void free_clast_reduction(struct clast_reduction *r);
@end example

@node Retrieving version information
@section Retrieving version information
CLooG provides static and dynamic version checks to assist on
including a compatible version of the library.
A static version check at compile time can be achieved by
querying the version constants defined in @code{version.h}:

@itemize @bullet
@item @code{CLOOG_VERSION_MAJOR}
@item @code{CLOOG_VERSION_MINOR}
@item @code{CLOOG_VERSION_REVISION}
@end itemize

This way it is possible to ensure the included headers are of the
correct version. It is still possible that the installed CLooG
library version differs from the installed headers.
In order to avoid this, a dynamic version check is provided with
the functions:

@example
@group
int cloog_version_major(void);
int cloog_version_minor(void);
int cloog_version_revision(void);
@end group
@end example

By using both the static and the dynamic version check, it is possible
to match CLooG's header version with the library's version.

@node Example of Library Utilization
@section Example of Library Utilization
Here is a basic example showing how it is possible to use the CLooG library,
assuming that a standard installation has been done.
The following C program reads a CLooG input file on the standard input,
then prints the solution on the standard output.
Options are preselected to the default values of the CLooG software.
This example is provided in the @code{example} directory of the
CLooG distribution.
@example
/* example.c */
# include <stdio.h>
# include <cloog/cloog.h>

int main()
@{
  CloogState *state;
  CloogInput *input;
  CloogOptions * options ;
  struct clast_stmt *root;
  
  /* Setting options and reading program informations. */
  state = cloog_state_malloc();
  options = cloog_options_malloc(state);
  input = cloog_input_read(stdin, options);

  /* Generating and printing the code. */
  root = cloog_clast_create_from_input(input, options);
  clast_pprint(stdout, root, 0, options);

  cloog_clast_free(root);
  cloog_options_free(options) ;
  cloog_state_free(state);
  return 0;
@}
@end example

@noindent The compilation command could be:
@example
gcc example.c -lcloog -o example
@end example
@noindent A calling command with the input file test.cloog could be:
@example
more test.cloog | ./example
@end example


@c %  ******************************** HACKING *********************************
@c @node Hacking
@c @chapter Hacking CLooG

@c @menu
@c * Program organization::
@c * Special Options::
@c * CLooG Coding Standards::
@c @end menu

@c @node Program organization
@c @section Program organization

@c @node Special Options
@c @section Special Options

@c @node CLooG Coding Standards
@c @section CLooG Coding Standards


@c %  ****************************** INSTALLING ********************************
@node Installing
@chapter Installing CLooG

@menu
* License::
* Requirements::
* Basic Installation::
* Optional Features::
* Uninstallation::
@end menu

@node License
@section License
First of all, it would be very kind to refer the following paper in any
publication that result from the use of the CLooG software or its library,
@pxref{Bas04} (a bibtex entry is provided behind the title page of this
manual, along with copyright notice, and in the CLooG home
@code{http://www.CLooG.org}.

This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
Lesser General Public License for more details.
@code{http://www.gnu.org/licenses/lgpl-2.1.html}

Note, though, that if you link CLooG against a GPL library such
as the PolyLib backend, then the combination becomes GPL too.
In particular, a CLooG library based on the PolyLib backend
is GPL version 2 only.
Since the isl backend is LGPL, linking against it does not affect
the license of CLooG.


@node Requirements
@section Requirements

CLooG can be used with one of two possible backends,
one using isl and one using PolyLib.
The isl library is included in the CLooG distribution,
while the PolyLib library needs to be obtained separately.
On the other hand, isl requires GMP, while PolyLib can be
compiled with or without the use of GMP.
The user therefore needs to install at least one of
PolyLib or GMP.

@menu
* PolyLib::
* GMP Library::
@end menu


@node PolyLib
@subsection PolyLib (optional)
To successfully install CLooG with the PolyLib backend,
the user first needs to install PolyLib
version 5.22.1 or above (default 64 bits version is satisfying
as well as 32 bits or GMP multiple precision version).
Polylib can be downloaded freely
at @code{http://icps.u-strasbg.fr/PolyLib/} or
@code{http://www.irisa.fr/polylib/}. Once downloaded and unpacked
(e.g. using the @samp{tar -zxvf polylib-5.22.3.tar.gz} command),
the user can compile
it by typing the following commands on the PolyLib's root directory:

@itemize @bullet
@item @code{./configure}
@item @code{make}
@item And as root: @code{make install}
@end itemize

Alternatively, the latest development version can be obtained from the
git repository:
@itemize @bullet
@item @code{git clone git://repo.or.cz/polylib.git}
@item @code{cd polylib}
@item @code{./autogen.sh}
@item @code{./configure}
@item @code{make}
@item And as root: @code{make install}
@end itemize

The PolyLib default installation is @code{/usr/local}. This directory may
not be inside your library path. To fix the problem, the user should set
@example
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/lib
@end example
@noindent if your shell is, e.g., bash or
@example
setenv LD_LIBRARY_PATH $LD_LIBRARY_PATH:/usr/local/lib
@end example
@noindent if your shell is, e.g., tcsh. Add the line to your .bashrc or .tcshrc (or
whatever convenient file) to make this change permanent. Another solution
is to ask PolyLib to install in the standard path by using the prefix
option of the configure script:
@samp{./configure --prefix=/usr}.

CLooG makes intensive calls to polyhedral operations, and PolyLib
functions do the job. Polylib is a free library written in C for the
manipulation of polyhedra. The library is operating on objects like
vectors, matrices, lattices, polyhedra, Z-polyhedra, unions of
polyhedra and a lot of other intermediary structures. It provides
functions for all the important operations on these structures. 

@node GMP Library
@subsection GMP Library (optional)

To be able to deal with insanely large coefficient, the user will need to
install the GNU Multiple Precision Library (GMP for short) version 4.1.4
or above. It can be freely downloaded from @code{http://www.swox.com/gmp}.
Note that the isl backend currently requires GMP.
The user can compile GMP by typing the following commands on the GMP root
directory:

@itemize @bullet
@item @code{./configure}
@item @code{make}
@item And as root: @code{make install}
@end itemize

The GMP default installation is @code{/usr/local}, the same method to
fix a library path problem applies as with PolyLib (@pxref{PolyLib}).

If you want to use the PolyLib backend, then
PolyLib has to be built using the GMP library by specifying the option
@samp{--with-libgmp=PATH_TO_GMP} to the PolyLib configure script
(where @code{PATH_TO_GMP} is @code{/usr/local} if you did not change the GMP
installation directory). Then you have to set the convenient CLooG configure
script options to build the GMP version (@pxref{Optional Features}).


@node Basic Installation
@section CLooG Basic Installation

Once downloaded and unpacked
(e.g. using the @samp{tar -zxvf cloog-@value{VERSION}.tar.gz} command),
you can compile CLooG by typing the following commands on the CLooG's root
directory:

@itemize @bullet
@item @code{./configure}
@item @code{make}
@item And as root: @code{make install}
@end itemize

Alternatively, the latest development version can be obtained from the
git repository:
@itemize @bullet
@item @code{git clone git://repo.or.cz/cloog.git}
@item @code{cd cloog}
@item @code{./get_submodules.sh}
@item @code{./autogen.sh}
@item @code{./configure}
@item @code{make}
@item And as root: @code{make install}
@end itemize

Depending on which backend you want to use and where they
are located, you may need to pass some
options to the configure script, @pxref{Optional Features}.

The program binaries and object files can be removed from the
source code directory by typing @code{make clean}. To also remove the
files that the @code{configure} script created (so you can compile the
package for a different kind of computer) type @code{make distclean}.

Both the CLooG software and library have been successfully compiled
on the following systems:
@itemize @bullet
@item PC's under Linux, with the @code{gcc} compiler,
@item PC's under Windows (Cygwin), with the @code{gcc} compiler,
@item Sparc and UltraSparc Stations, with the @code{gcc} compiler.
@end itemize

@node Optional Features 
@section Optional Features  
The @code{configure} shell script attempts to guess correct values for
various system-dependent variables and user options used during compilation.
It uses those values to create the @code{Makefile}. Various user options
are provided by the CLooG's configure script. They are summarized in the
following list and may be printed by typing @code{./configure --help} in the
CLooG top-level directory.

@itemize @bullet
@item By default, the installation directory is @code{/usr/local}:
@code{make install} will install the package's files in
@code{/usr/local/bin}, @code{/usr/local/lib} and @code{/usr/local/include}.
The user can specify an installation prefix other than @code{/usr/local} by
giving @code{configure} the option @code{--prefix=PATH}.

@item By default, the isl backend will use the version of isl
that is @code{bundled} together with CLooG.
Using the @code{--with-isl} option of @code{configure}
the user can specify that @code{no} isl,
a previously installed (@code{system}) isl or a @code{build} isl
should be used.
In the latter case, the user should also specify the build location
using @code{--with-isl-builddir=PATH}.
In case of an installed isl,
the installation location can be specified using the
@code{--with-isl-prefix=PATH} and
@code{--with-isl-exec-prefix=PATH} options of @code{configure}.

@item By default, the PolyLib backend will use an installed
(@code{system}) PolyLib, if any.
The installation location can be specified using the
@code{--with-polylib-prefix=PATH} and
@code{--with-polylib-exec-prefix=PATH} options of @code{configure}.
Using the @code{--with-polylib} option of @code{configure}
the user can specify that @code{no} PolyLib or a @code{build} PolyLib
should be used.
In the latter case, the user should also specify the build location
using @code{--with-polylib-builddir=PATH}.

@item By default, the PolyLib backend of CLooG is built
in 64bits version if such version of the
PolyLib is found by @code{configure}. If the only existing version of the
PolyLib is the 32bits or if the user give to @code{configure} the option
@code{--with-bits=32}, the 32bits version of CLooG will be compiled. In the
same way, the option @code{--with-bits=gmp} have to be used to build
the multiple precision version.

@item By default, @code{configure} will look for the GMP library
(necessary to build the multiple precision version) in standard
locations. If necessary, the user can specify the GMP path by giving
@code{configure} the option @code{--with-gmp-prefix=PATH} and/or
@code{--with-gmp-exec-prefix=PATH}.
@end itemize

@node Uninstallation 
@section Uninstallation  
The user can easily remove the CLooG software and library from his system
by typing (as root if necessary) from the CLooG top-level directory
@code{make uninstall}.

@c %  **************************** DOCUMENTATION ******************************
@node Documentation
@chapter Documentation
The CLooG distribution provides several documentation sources. First, the
source code itself is as documented as possible. The code comments use a
Doxygen-compatible presentation (something similar to what JavaDoc does for
JAVA). The user may install Doxygen
(see @code{http://www.stack.nl/~dimitri/doxygen}) to automatically
generate a technical documentation by typing @code{make doc} or
@code{doxygen ./autoconf/Doxyfile} at the CLooG top-level directory after
running the configure script (@pxref{Installing}). Doxygen will generate
documentation sources (in HTML, LaTeX and man) in the @code{doc/source}
directory of the CLooG distribution.

The Texinfo sources of the present document are also provided in the @code{doc}
directory. You can build it in either DVI format (by typing
@code{texi2dvi cloog.texi}) or PDF format
(by typing @code{texi2pdf cloog.texi}) or HTML format
(by typing @code{makeinfo --html cloog.texi}, using @code{--no-split}
option to generate a single HTML file) or info format
(by typing @code{makeinfo cloog.texi}).

@c %  ****************************** REFERENCES ********************************
@node References
@chapter References

@itemize
@item
@anchor{Bas03a}[Bas03a] C. Bastoul, P. Feautrier. Improving data locality
by chunking. CC'12 International Conference on Compiler Construction,
LNCS 2622, pages 320-335, Warsaw, april 2003. 

@item
@anchor{Bas03b}[Bas03b] C. Bastoul. Efficient code generation for automatic
parallelization and optimization. ISPDC'03 IEEE International Symposium on
Parallel and Distributed Computing, pages 23-30, Ljubljana, october 2003. 

@item
@anchor{Bas04}[Bas04] C. Bastoul. Code Generation in the Polyhedral Model
Is Easier Than You Think. PACT'13 IEEE International Conference on Parallel
Architecture and Compilation Techniques, pages 7-16, Juan-les-Pins,
september 2004.

@item
@anchor{Fea92}[Fea92] P. Feautrier Some efficient solutions to the affine
scheduling problem, part II: multidimensional time.
International Journal of Parallel Programming, 21(6):389--420, December 1992.

@item
@anchor{Gri04}[Gri04] M. Griebl. Automatic parallelization of loop programs
for distributed memory architectures. Habilitation Thesis. Facult@"at f@"ur
Mathematik und Informatik, Universit@"at Passau, 2004.
@emph{http://www.infosun.fmi.uni-passau.de/cl/loopo/}

@item
@anchor{Qui00}[Qui00] F. Quiller@'e, S. Rajopadhye, and D. Wilde.
Generation of efficient nested loops from polyhedra.
International Journal of Parallel Programming, 28(5):469-498,
october 2000.

@item
@anchor{Wil93}[Wil93] Doran K. Wilde.
A library for doing polyhedral operations.
Technical Report 785, IRISA, Rennes, France, 1993.

@end itemize




@c % /*************************************************************************
@c %  *                       PART VI: END OF THE DOCUMENT                    *
@c %  *************************************************************************/
@c @unnumbered Index
     
@c @printindex cp
     
@bye