diff options
Diffstat (limited to 'test/published/Web/web6.cloog')
-rw-r--r-- | test/published/Web/web6.cloog | 269 |
1 files changed, 269 insertions, 0 deletions
diff --git a/test/published/Web/web6.cloog b/test/published/Web/web6.cloog new file mode 100644 index 0000000..bd33077 --- /dev/null +++ b/test/published/Web/web6.cloog @@ -0,0 +1,269 @@ +# CLooG example file #6. +# Please read the first and second examples which are fully documented to +# understand the different parts of the input file. +# +################################################################################ +# do i=1,n The problem here is to generate the # +# | do j =1,i-1 transformation of a real-life Cholesau # +# | | if (j.EQ.1) then kernel according to the allocation # +#S1| | | s1(i,j)=a(i,j)s4(j,i)**2 functions given by a good automatic # +# | | else parallelizer (e.g. PAF or LooPo). For # +#S2| | | s1(i,j)=s1(i,j-1)-s4(j,i)**2 each statement the new schedule is: # +# | if (i .EQ. 1) then T_S1(i,j) =(i+j-1,i,0,j,0,0,0) # +#S3| | s2(i)=sqrt(a(i,i)) T_S2(i,j) =(i, i,0,j,1,0,0 # +# | else T_S3(i) =(i-1, i,1,0,0,0,0 # +#S4| | s2(i)=sqrt (s1(i,i-1)) T_S4(i) =(0, i,2,0,0,0,0) # +# | do k=i+1,n T_S5(i,j,k)=(j+k-1,i,3,j,0,k,0) # +# | | do l=1,i-1 T_S6(i,j,k)=(k, i,3,j,0,k,1) # +# | | | if (l .EQ. 1) then T_S7(i,j) =(i+j, i,3,j,1,0,0) # +#S5| | | | s3(i,k,l)=a(k,i)-(s4(l,k)*s4(l,i)) T_S8(i,j) =(j, i,3,j,2,0,0) # +# | | | else # +#S6| | | | s3(i,k,l)=s3(i,k,l-1)-(s4(l,k)*s4(l,i)) # +# | | if (i .EQ.1) then In the generated code, every instances # +#S7| | | s4(i,k)=a(k,i)/s2(i) with the same p value are executed on # +# | | else processor number p (an allocation pb). # +#S8| | | s4(i,k)=s3(i,k,i-1)/s2(i) For a better view, use -fsp 2 option. # +################################################################################ +# +#------------------------------------CONTEXT------------------------------------ + +# 1. language: FORTRAN +f + +# 2. Parameters {n | n>=10} +1 3 +# n 1 +1 1 -10 # n>=10 + +# 3. We set manually the parameter name: n +1 +n + +#-----------------------------------POLYHEDRA----------------------------------- + +# 4. Number of polyhedra: +8 + +# Polyhedron #1 +1 +# {i, j | 1<=i<=n; 1<=j<=i-1; j=1} +5 5 +# i j n 1 +1 1 0 0 -1 # 1<=i +1 -1 0 1 0 # i<=n +1 0 1 0 -1 # 1<=j +1 1 -1 0 -1 # j<=i-1 +0 0 1 0 -1 # j=1 +0 0 0 # 3 zeroes ! + +# Polyhedron #2 +2 +# {i, j | 1<=i<=n; 1<=j<=i-1; j!=1} +5 5 +# i j n 1 +1 1 0 0 -1 # 1<=i +1 -1 0 1 0 # i<=n +1 0 1 0 -1 # 1<=j +1 1 -1 0 -1 # j<=i-1 +1 0 1 0 -2 # j>=2 +5 5 +# i j n 1 +1 1 0 0 -1 # 1<=i +1 -1 0 1 0 # i<=n +1 0 1 0 -1 # 1<=j +1 1 -1 0 -1 # j<=i-1 +1 0 -1 0 0 # j<=0 +0 0 0 # 3 zeroes ! + +# Polyhedron #3 +1 +# {i | 1<=i<=n; i=1} +3 4 +# i n 1 +1 1 0 -1 # 1<=i +1 -1 1 0 # i<=n +0 1 0 -1 # i=1 +0 0 0 # 3 zeroes ! + +# Polyhedron #4 +2 +# {i | 1<=i<=n; i!=1} +3 4 +# i n 1 +1 1 0 -1 # 1<=i +1 -1 1 0 # i<=n +1 1 0 -2 # i>=2 +3 4 +# i n 1 +1 1 0 -1 # 1<=i +1 -1 1 0 # i<=n +1 -1 0 0 # i<=0 +0 0 0 # 3 zeroes ! + +# Polyhedron #5 +1 +# {i, j | 1<=i<=n; i+1<=j<=n; 1<=k<=i-1; k=1} +7 6 +# i j k n 1 +1 1 0 0 0 -1 # 1<=i +1 -1 0 0 1 0 # i<=n +1 -1 1 0 0 -1 # i+1<=j +1 0 -1 0 1 0 # j<=n +1 0 0 1 0 -1 # 1<=k +1 1 0 -1 0 -1 # k<=i-1 +0 0 0 1 0 -1 # k=1 +0 0 0 # 3 zeroes ! + +# Polyhedron #6 +2 +# {i, j | 1<=i<=n; i+1<=j<=n; 1<=k<=i-1; k!=1} +7 6 +# i j k n 1 +1 1 0 0 0 -1 # 1<=i +1 -1 0 0 1 0 # i<=n +1 -1 1 0 0 -1 # i+1<=j +1 0 -1 0 1 0 # j<=n +1 0 0 1 0 -1 # 1<=k +1 1 0 -1 0 -1 # k<=i-1 +1 0 0 1 0 -2 # k>=2 +7 6 +# i j k n 1 +1 1 0 0 0 -1 # 1<=i +1 -1 0 0 1 0 # i<=n +1 -1 1 0 0 -1 # i+1<=j +1 0 -1 0 1 0 # j<=n +1 0 0 1 0 -1 # 1<=k +1 1 0 -1 0 -1 # k<=i-1 +1 0 0 -1 0 0 # k<=0 +0 0 0 # 3 zeroes ! + +# Polyhedron #7 +1 +# {i, j | 1<=i<=n; i+1<=j<=n; i=1} +5 5 +# i j n 1 +1 1 0 0 -1 # 1<=i +1 -1 0 1 0 # i<=n +1 -1 1 0 -1 # i+1<=j +1 0 -1 1 0 # j<=n +0 1 0 0 -1 # i=1 +0 0 0 # 3 zeroes ! + +# Polyhedron #8 +2 +# {i, j | 1<=i<=n; i+1<=j<=n; i!=1} +5 5 +# i j n 1 +1 1 0 0 -1 # 1<=i +1 -1 0 1 0 # i<=n +1 -1 1 0 -1 # i+1<=j +1 0 -1 1 0 # j<=n +1 1 0 0 -2 # i>=2 +5 5 +# i j n 1 +1 1 0 0 -1 # 1<=i +1 -1 0 1 0 # i<=n +1 -1 1 0 -1 # i+1<=j +1 0 -1 1 0 # j<=n +1 -1 0 0 0 # i<=0 +0 0 0 # 3 zeroes ! + +# 6. We let CLooG choose the iterator names +0 + +#----------------------------------SCATTERING----------------------------------- + +# 7. Scattering functions ALLOCATION + ORIGINAL SCHEDULING +8 + +# Scattering function for polyhedron #1: T_S1(i,j) =(i+j-1,i,0,j,0,0,0) +7 12 +# p c1 c2 c3 c4 c5 c6 i j n 1 +0 1 0 0 0 0 0 0 -1 -1 0 1 # ins1: i+j-1 +0 0 1 0 0 0 0 0 -1 0 0 0 # i +0 0 0 1 0 0 0 0 0 0 0 0 # 0 +0 0 0 0 1 0 0 0 0 -1 0 0 # j +0 0 0 0 0 1 0 0 0 0 0 0 # 0 +0 0 0 0 0 0 1 0 0 0 0 0 # 0 +0 0 0 0 0 0 0 1 0 0 0 0 # 0 + +# Scattering function for polyhedron #2: T_S2(i,j) =(i,i,0,j,1,0,0) +7 12 +# p c1 c2 c3 c4 c5 c6 i j n 1 +0 1 0 0 0 0 0 0 -1 0 0 0 # ins2: i +0 0 1 0 0 0 0 0 -1 0 0 0 # i +0 0 0 1 0 0 0 0 0 0 0 0 # 0 +0 0 0 0 1 0 0 0 0 -1 0 0 # j +0 0 0 0 0 1 0 0 0 0 0 -1 # 1 +0 0 0 0 0 0 1 0 0 0 0 0 # 0 +0 0 0 0 0 0 0 1 0 0 0 0 # 0 + +# Scattering function for polyhedron #3: T_S3(i) =(i-1,i,1,0,0,0,0) +7 11 +# p c1 c2 c3 c4 c5 c6 i n 1 +0 1 0 0 0 0 0 0 -1 0 1 # ins3: i-1 +0 0 1 0 0 0 0 0 -1 0 0 # i +0 0 0 1 0 0 0 0 0 0 -1 # 1 +0 0 0 0 1 0 0 0 0 0 0 # 0 +0 0 0 0 0 1 0 0 0 0 0 # 0 +0 0 0 0 0 0 1 0 0 0 0 # 0 +0 0 0 0 0 0 0 1 0 0 0 # 0 + +# Scattering function for polyhedron #4: T_S4(i) =(0,i,2,0,0,0,0) +7 11 +# p c1 c2 c3 c4 c5 c6 i n 1 +0 1 0 0 0 0 0 0 0 0 0 # ins4: 0 +0 0 1 0 0 0 0 0 -1 0 0 # i +0 0 0 1 0 0 0 0 0 0 -2 # 2 +0 0 0 0 1 0 0 0 0 0 0 # 0 +0 0 0 0 0 1 0 0 0 0 0 # 0 +0 0 0 0 0 0 1 0 0 0 0 # 0 +0 0 0 0 0 0 0 1 0 0 0 # 0 + +# Scattering function for polyhedron #5: T_S5(i,j,k)=(j+k-1,i,3,j,0,k,0) +7 13 +# p c1 c2 c3 c4 c5 c6 i j k n 1 +0 1 0 0 0 0 0 0 0 -1 -1 0 1 # ins 5: j+k-1 +0 0 1 0 0 0 0 0 -1 0 0 0 0 # i +0 0 0 1 0 0 0 0 0 0 0 0 -3 # 3 +0 0 0 0 1 0 0 0 0 -1 0 0 0 # j +0 0 0 0 0 1 0 0 0 0 0 0 0 # 0 +0 0 0 0 0 0 1 0 0 0 -1 0 0 # k +0 0 0 0 0 0 0 1 0 0 0 0 0 # 0 + +# Scattering function for polyhedron #6: T_S6(i,j,k)=(k,i,3,j,0,k,1) +7 13 +# p c1 c2 c3 c4 c5 c6 i j k n 1 +0 1 0 0 0 0 0 0 0 0 -1 0 0 # ins 6: k +0 0 1 0 0 0 0 0 -1 0 0 0 0 # i +0 0 0 1 0 0 0 0 0 0 0 0 -3 # 3 +0 0 0 0 1 0 0 0 0 -1 0 0 0 # j +0 0 0 0 0 1 0 0 0 0 0 0 0 # 0 +0 0 0 0 0 0 1 0 0 0 -1 0 0 # k +0 0 0 0 0 0 0 1 0 0 0 0 -1 # 1 + +# Scattering function for polyhedron #7: T_S7(i,j) =(i+j,i,3,j,1,0,0) +7 12 +# p c1 c2 c3 c4 c5 c6 i j n 1 +0 1 0 0 0 0 0 0 -1 -1 0 0 # ins 7: i+j +0 0 1 0 0 0 0 0 -1 0 0 0 # i +0 0 0 1 0 0 0 0 0 0 0 -3 # 3 +0 0 0 0 1 0 0 0 0 -1 0 0 # j +0 0 0 0 0 1 0 0 0 0 0 -1 # 1 +0 0 0 0 0 0 1 0 0 0 0 0 # 0 +0 0 0 0 0 0 0 1 0 0 0 0 # 0 + +# Scattering function for polyhedron #8: T_S8(i,j) =(j,i,3,j,2,0,0) +7 12 +# p c1 c2 c3 c4 c5 c6 i j n 1 +0 1 0 0 0 0 0 0 0 -1 0 0 # ins 8: j +0 0 1 0 0 0 0 0 -1 0 0 0 # i +0 0 0 1 0 0 0 0 0 0 0 -3 # 3 +0 0 0 0 1 0 0 0 0 -1 0 0 # j +0 0 0 0 0 1 0 0 0 0 0 -2 # 2 +0 0 0 0 0 0 1 0 0 0 0 0 # 0 +0 0 0 0 0 0 0 1 0 0 0 0 # 0 + +# We want to set manually the scattering dimension names. +1 +p c1 c2 c3 c4 c5 c6 |