summaryrefslogtreecommitdiff
path: root/cloog-core/test/vivien2.good.c
diff options
context:
space:
mode:
Diffstat (limited to 'cloog-core/test/vivien2.good.c')
-rw-r--r--cloog-core/test/vivien2.good.c656
1 files changed, 656 insertions, 0 deletions
diff --git a/cloog-core/test/vivien2.good.c b/cloog-core/test/vivien2.good.c
new file mode 100644
index 0000000..32f1fff
--- /dev/null
+++ b/cloog-core/test/vivien2.good.c
@@ -0,0 +1,656 @@
+/* Generated from ../../../git/cloog/test/vivien2.cloog by CLooG 0.14.0-76-gef19709 gmp bits in 0.58s. */
+extern void hash(int);
+
+/* Useful macros. */
+#define floord(n,d) (((n)<0) ? -((-(n)+(d)-1)/(d)) : (n)/(d))
+#define ceild(n,d) (((n)<0) ? -((-(n))/(d)) : ((n)+(d)-1)/(d))
+#define max(x,y) ((x) > (y) ? (x) : (y))
+#define min(x,y) ((x) < (y) ? (x) : (y))
+
+#define S1(i) { hash(1); hash(i); }
+#define S2(i,j) { hash(2); hash(i); hash(j); }
+#define S3(i) { hash(3); hash(i); }
+#define S4(i,j) { hash(4); hash(i); hash(j); }
+#define S5(i,j,k) { hash(5); hash(i); hash(j); hash(k); }
+#define S6(i,j) { hash(6); hash(i); hash(j); }
+
+void test(int n)
+{
+ /* Scattering iterators. */
+ int p1, p2, p3;
+ /* Original iterators. */
+ int i, j, k;
+ for (p1=-54*n+4;p1<=4;p1++) {
+ if (p1%2 == 0) {
+ i = (p1-2)/2 ;
+ S1((p1-2)/2) ;
+ }
+ }
+ S3(1) ;
+ S4(1,2) ;
+ S1(2) ;
+ S6(1,2) ;
+ for (p1=7;p1<=9;p1++) {
+ for (p2=ceild(-p1+2,4);p2<=-1;p2++) {
+ if (p1%2 == 0) {
+ j = (p1+2*p2)/2 ;
+ S4(-p2,(p1+2*p2)/2) ;
+ }
+ }
+ if ((p1+3)%4 == 0) {
+ i = (p1-1)/4 ;
+ S3((p1-1)/4) ;
+ }
+ if (p1%2 == 0) {
+ i = (p1-2)/2 ;
+ S1((p1-2)/2) ;
+ }
+ if (p1%2 == 0) {
+ j = (p1-2)/2 ;
+ S6(1,(p1-2)/2) ;
+ }
+ if ((p1+1)%2 == 0) {
+ i = (p1-3)/2 ;
+ S2((p1-3)/2,1) ;
+ }
+ }
+ S4(2,3) ;
+ S4(1,4) ;
+ S5(2,3,1) ;
+ S6(2,3) ;
+ S1(4) ;
+ S6(1,4) ;
+ for (p1=11;p1<=12;p1++) {
+ p2 = floord(-p1+5,4) ;
+ if (p1%2 == 0) {
+ j = (p1+2*p2)/2 ;
+ S4(-p2,(p1+2*p2)/2) ;
+ }
+ for (p2=ceild(-p1+6,4);p2<=-1;p2++) {
+ if (p1%2 == 0) {
+ j = (p1+2*p2)/2 ;
+ S4(-p2,(p1+2*p2)/2) ;
+ }
+ for (p3=1;p3<=-p2;p3++) {
+ i = -p2+1 ;
+ if (p1%2 == 0) {
+ j = (p1+2*p2-2)/2 ;
+ S5(-p2+1,(p1+2*p2-2)/2,p3) ;
+ }
+ }
+ }
+ if (p1%2 == 0) {
+ j = (p1-4)/2 ;
+ S6(2,(p1-4)/2) ;
+ }
+ if (p1%2 == 0) {
+ i = (p1-2)/2 ;
+ S1((p1-2)/2) ;
+ }
+ if (p1%2 == 0) {
+ j = (p1-2)/2 ;
+ S6(1,(p1-2)/2) ;
+ }
+ if ((p1+1)%2 == 0) {
+ i = (p1-3)/2 ;
+ S2((p1-3)/2,1) ;
+ }
+ for (p2=2;p2<=floord(p1-3,4);p2++) {
+ if ((p1+1)%2 == 0) {
+ i = (p1-2*p2-1)/2 ;
+ S2((p1-2*p2-1)/2,p2) ;
+ }
+ }
+ }
+ S3(3) ;
+ S2(5,1) ;
+ S2(4,2) ;
+ for (p1=14;p1<=2*n+2;p1++) {
+ p2 = floord(-p1+5,4) ;
+ if (p1%2 == 0) {
+ j = (p1+2*p2)/2 ;
+ S4(-p2,(p1+2*p2)/2) ;
+ }
+ p2 = floord(-p1+9,4) ;
+ if (p1%2 == 0) {
+ j = (p1+2*p2)/2 ;
+ S4(-p2,(p1+2*p2)/2) ;
+ }
+ for (p3=1;p3<=-p2;p3++) {
+ i = -p2+1 ;
+ if (p1%2 == 0) {
+ j = (p1+2*p2-2)/2 ;
+ S5(-p2+1,(p1+2*p2-2)/2,p3) ;
+ }
+ }
+ for (p2=ceild(-p1+10,4);p2<=-1;p2++) {
+ if (p1%2 == 0) {
+ j = (p1+2*p2)/2 ;
+ S4(-p2,(p1+2*p2)/2) ;
+ }
+ i = -p2+2 ;
+ if (p1%2 == 0) {
+ j = (p1+2*p2-4)/2 ;
+ S6(-p2+2,(p1+2*p2-4)/2) ;
+ }
+ for (p3=1;p3<=-p2;p3++) {
+ i = -p2+1 ;
+ if (p1%2 == 0) {
+ j = (p1+2*p2-2)/2 ;
+ S5(-p2+1,(p1+2*p2-2)/2,p3) ;
+ }
+ }
+ }
+ if (p1%2 == 0) {
+ j = (p1-4)/2 ;
+ S6(2,(p1-4)/2) ;
+ }
+ if ((p1+3)%4 == 0) {
+ i = (p1-1)/4 ;
+ S3((p1-1)/4) ;
+ }
+ if (p1%2 == 0) {
+ i = (p1-2)/2 ;
+ S1((p1-2)/2) ;
+ }
+ if (p1%2 == 0) {
+ j = (p1-2)/2 ;
+ S6(1,(p1-2)/2) ;
+ }
+ if ((p1+1)%2 == 0) {
+ i = (p1-3)/2 ;
+ S2((p1-3)/2,1) ;
+ }
+ for (p2=2;p2<=floord(p1-3,4);p2++) {
+ if ((p1+1)%2 == 0) {
+ i = (p1-2*p2-1)/2 ;
+ S2((p1-2*p2-1)/2,p2) ;
+ }
+ }
+ }
+ p1 = 2*n+3 ;
+ if ((n+1)%2 == 0) {
+ i = (n+1)/2 ;
+ S3((n+1)/2) ;
+ }
+ S2(n,1) ;
+ for (p2=2;p2<=floord(n,2);p2++) {
+ i = -p2+n+1 ;
+ S2(-p2+n+1,p2) ;
+ }
+ p1 = 2*n+4 ;
+ for (p2=ceild(-n-1,2);p2<=floord(-2*n+1,4);p2++) {
+ j = p2+n+2 ;
+ S4(-p2,p2+n+2) ;
+ }
+ for (p2=ceild(-n+1,2);p2<=floord(-2*n+5,4);p2++) {
+ j = p2+n+2 ;
+ S4(-p2,p2+n+2) ;
+ for (p3=1;p3<=-p2;p3++) {
+ i = -p2+1 ;
+ j = p2+n+1 ;
+ S5(-p2+1,p2+n+1,p3) ;
+ }
+ }
+ for (p2=ceild(-n+3,2);p2<=-2;p2++) {
+ j = p2+n+2 ;
+ S4(-p2,p2+n+2) ;
+ i = -p2+2 ;
+ j = p2+n ;
+ S6(-p2+2,p2+n) ;
+ for (p3=1;p3<=-p2;p3++) {
+ i = -p2+1 ;
+ j = p2+n+1 ;
+ S5(-p2+1,p2+n+1,p3) ;
+ }
+ }
+ j = n-1 ;
+ S6(3,n-1) ;
+ S5(2,n,1) ;
+ S6(2,n) ;
+ i = n+1 ;
+ S1(n+1) ;
+ for (p1=2*n+5;p1<=min(4*n-10,2*n+58);p1++) {
+ p2 = floord(-p1+5,4) ;
+ if (p1%2 == 0) {
+ j = (p1+2*p2)/2 ;
+ S4(-p2,(p1+2*p2)/2) ;
+ }
+ p2 = floord(-p1+9,4) ;
+ if (p1%2 == 0) {
+ j = (p1+2*p2)/2 ;
+ S4(-p2,(p1+2*p2)/2) ;
+ }
+ for (p3=1;p3<=-p2;p3++) {
+ i = -p2+1 ;
+ if (p1%2 == 0) {
+ j = (p1+2*p2-2)/2 ;
+ S5(-p2+1,(p1+2*p2-2)/2,p3) ;
+ }
+ }
+ for (p2=ceild(-p1+10,4);p2<=floord(-p1+2*n,2);p2++) {
+ if (p1%2 == 0) {
+ j = (p1+2*p2)/2 ;
+ S4(-p2,(p1+2*p2)/2) ;
+ }
+ i = -p2+2 ;
+ if (p1%2 == 0) {
+ j = (p1+2*p2-4)/2 ;
+ S6(-p2+2,(p1+2*p2-4)/2) ;
+ }
+ for (p3=1;p3<=-p2;p3++) {
+ i = -p2+1 ;
+ if (p1%2 == 0) {
+ j = (p1+2*p2-2)/2 ;
+ S5(-p2+1,(p1+2*p2-2)/2,p3) ;
+ }
+ }
+ }
+ p2 = floord(-p1+2*n+2,2) ;
+ i = -p2+2 ;
+ if (p1%2 == 0) {
+ j = (p1+2*p2-4)/2 ;
+ S6(-p2+2,(p1+2*p2-4)/2) ;
+ }
+ for (p3=1;p3<=-p2;p3++) {
+ i = -p2+1 ;
+ if (p1%2 == 0) {
+ j = (p1+2*p2-2)/2 ;
+ S5(-p2+1,(p1+2*p2-2)/2,p3) ;
+ }
+ }
+ for (p2=ceild(-p1+2*n+3,2);p2<=min(floord(-p1+2*n+4,2),-1);p2++) {
+ i = -p2+2 ;
+ if (p1%2 == 0) {
+ j = (p1+2*p2-4)/2 ;
+ S6(-p2+2,(p1+2*p2-4)/2) ;
+ }
+ }
+ if ((p1+3)%4 == 0) {
+ i = (p1-1)/4 ;
+ S3((p1-1)/4) ;
+ }
+ if (p1%2 == 0) {
+ i = (p1-2)/2 ;
+ S1((p1-2)/2) ;
+ }
+ for (p2=ceild(p1-2*n-1,2);p2<=floord(p1-3,4);p2++) {
+ if ((p1+1)%2 == 0) {
+ i = (p1-2*p2-1)/2 ;
+ S2((p1-2*p2-1)/2,p2) ;
+ }
+ }
+ }
+ for (p1=4*n-9;p1<=min(4*n-8,2*n+58);p1++) {
+ p2 = floord(-p1+5,4) ;
+ if (p1%2 == 0) {
+ j = (p1+2*p2)/2 ;
+ S4(-p2,(p1+2*p2)/2) ;
+ }
+ for (p2=ceild(-p1+6,4);p2<=floord(-p1+2*n,2);p2++) {
+ if (p1%2 == 0) {
+ j = (p1+2*p2)/2 ;
+ S4(-p2,(p1+2*p2)/2) ;
+ }
+ for (p3=1;p3<=-p2;p3++) {
+ i = -p2+1 ;
+ if (p1%2 == 0) {
+ j = (p1+2*p2-2)/2 ;
+ S5(-p2+1,(p1+2*p2-2)/2,p3) ;
+ }
+ }
+ }
+ p2 = floord(-p1+2*n+2,2) ;
+ i = -p2+2 ;
+ if (p1%2 == 0) {
+ j = (p1+2*p2-4)/2 ;
+ S6(-p2+2,(p1+2*p2-4)/2) ;
+ }
+ for (p3=1;p3<=-p2;p3++) {
+ i = -p2+1 ;
+ if (p1%2 == 0) {
+ j = (p1+2*p2-2)/2 ;
+ S5(-p2+1,(p1+2*p2-2)/2,p3) ;
+ }
+ }
+ p2 = floord(-p1+2*n+4,2) ;
+ i = -p2+2 ;
+ if (p1%2 == 0) {
+ j = (p1+2*p2-4)/2 ;
+ S6(-p2+2,(p1+2*p2-4)/2) ;
+ }
+ if ((p1+3)%4 == 0) {
+ i = (p1-1)/4 ;
+ S3((p1-1)/4) ;
+ }
+ if (p1%2 == 0) {
+ i = (p1-2)/2 ;
+ S1((p1-2)/2) ;
+ }
+ for (p2=ceild(p1-2*n-1,2);p2<=floord(p1-3,4);p2++) {
+ if ((p1+1)%2 == 0) {
+ i = (p1-2*p2-1)/2 ;
+ S2((p1-2*p2-1)/2,p2) ;
+ }
+ }
+ }
+ for (p1=4*n-7;p1<=min(4*n-6,2*n+58);p1++) {
+ p2 = floord(-p1+5,4) ;
+ if (p1%2 == 0) {
+ j = (p1+2*p2)/2 ;
+ S4(-p2,(p1+2*p2)/2) ;
+ }
+ for (p2=ceild(-p1+6,4);p2<=floord(-p1+2*n,2);p2++) {
+ if (p1%2 == 0) {
+ j = (p1+2*p2)/2 ;
+ S4(-p2,(p1+2*p2)/2) ;
+ }
+ for (p3=1;p3<=-p2;p3++) {
+ i = -p2+1 ;
+ if (p1%2 == 0) {
+ j = (p1+2*p2-2)/2 ;
+ S5(-p2+1,(p1+2*p2-2)/2,p3) ;
+ }
+ }
+ }
+ for (p2=ceild(-p1+2*n+1,2);p2<=floord(-p1+9,4);p2++) {
+ for (p3=1;p3<=-p2;p3++) {
+ i = -p2+1 ;
+ if (p1%2 == 0) {
+ j = (p1+2*p2-2)/2 ;
+ S5(-p2+1,(p1+2*p2-2)/2,p3) ;
+ }
+ }
+ }
+ for (p2=ceild(-p1+10,4);p2<=floord(-p1+2*n+2,2);p2++) {
+ i = -p2+2 ;
+ if (p1%2 == 0) {
+ j = (p1+2*p2-4)/2 ;
+ S6(-p2+2,(p1+2*p2-4)/2) ;
+ }
+ for (p3=1;p3<=-p2;p3++) {
+ i = -p2+1 ;
+ if (p1%2 == 0) {
+ j = (p1+2*p2-2)/2 ;
+ S5(-p2+1,(p1+2*p2-2)/2,p3) ;
+ }
+ }
+ }
+ p2 = floord(-p1+2*n+4,2) ;
+ i = -p2+2 ;
+ if (p1%2 == 0) {
+ j = (p1+2*p2-4)/2 ;
+ S6(-p2+2,(p1+2*p2-4)/2) ;
+ }
+ if ((p1+3)%4 == 0) {
+ i = (p1-1)/4 ;
+ S3((p1-1)/4) ;
+ }
+ if (p1%2 == 0) {
+ i = (p1-2)/2 ;
+ S1((p1-2)/2) ;
+ }
+ for (p2=ceild(p1-2*n-1,2);p2<=floord(p1-3,4);p2++) {
+ if ((p1+1)%2 == 0) {
+ i = (p1-2*p2-1)/2 ;
+ S2((p1-2*p2-1)/2,p2) ;
+ }
+ }
+ }
+ for (p1=4*n-5;p1<=2*n+58;p1++) {
+ for (p2=ceild(-p1+2,4);p2<=floord(-p1+2*n,2);p2++) {
+ if (p1%2 == 0) {
+ j = (p1+2*p2)/2 ;
+ S4(-p2,(p1+2*p2)/2) ;
+ }
+ }
+ for (p2=max(ceild(-p1+2*n+1,2),ceild(-p1+6,4));p2<=floord(-p1+2*n+2,2);p2++) {
+ for (p3=1;p3<=-p2;p3++) {
+ i = -p2+1 ;
+ if (p1%2 == 0) {
+ j = (p1+2*p2-2)/2 ;
+ S5(-p2+1,(p1+2*p2-2)/2,p3) ;
+ }
+ }
+ }
+ for (p2=max(ceild(-p1+2*n+3,2),ceild(-p1+10,4));p2<=floord(-p1+2*n+4,2);p2++) {
+ i = -p2+2 ;
+ if (p1%2 == 0) {
+ j = (p1+2*p2-4)/2 ;
+ S6(-p2+2,(p1+2*p2-4)/2) ;
+ }
+ }
+ if ((p1+3)%4 == 0) {
+ i = (p1-1)/4 ;
+ S3((p1-1)/4) ;
+ }
+ if (p1%2 == 0) {
+ i = (p1-2)/2 ;
+ S1((p1-2)/2) ;
+ }
+ for (p2=ceild(p1-2*n-1,2);p2<=floord(p1-3,4);p2++) {
+ if ((p1+1)%2 == 0) {
+ i = (p1-2*p2-1)/2 ;
+ S2((p1-2*p2-1)/2,p2) ;
+ }
+ }
+ }
+ for (p1=2*n+59;p1<=4*n-10;p1++) {
+ p2 = floord(-p1+5,4) ;
+ if (p1%2 == 0) {
+ j = (p1+2*p2)/2 ;
+ S4(-p2,(p1+2*p2)/2) ;
+ }
+ p2 = floord(-p1+9,4) ;
+ if (p1%2 == 0) {
+ j = (p1+2*p2)/2 ;
+ S4(-p2,(p1+2*p2)/2) ;
+ }
+ for (p3=1;p3<=-p2;p3++) {
+ i = -p2+1 ;
+ if (p1%2 == 0) {
+ j = (p1+2*p2-2)/2 ;
+ S5(-p2+1,(p1+2*p2-2)/2,p3) ;
+ }
+ }
+ for (p2=ceild(-p1+10,4);p2<=floord(-p1+2*n,2);p2++) {
+ if (p1%2 == 0) {
+ j = (p1+2*p2)/2 ;
+ S4(-p2,(p1+2*p2)/2) ;
+ }
+ i = -p2+2 ;
+ if (p1%2 == 0) {
+ j = (p1+2*p2-4)/2 ;
+ S6(-p2+2,(p1+2*p2-4)/2) ;
+ }
+ for (p3=1;p3<=-p2;p3++) {
+ i = -p2+1 ;
+ if (p1%2 == 0) {
+ j = (p1+2*p2-2)/2 ;
+ S5(-p2+1,(p1+2*p2-2)/2,p3) ;
+ }
+ }
+ }
+ p2 = floord(-p1+2*n+2,2) ;
+ i = -p2+2 ;
+ if (p1%2 == 0) {
+ j = (p1+2*p2-4)/2 ;
+ S6(-p2+2,(p1+2*p2-4)/2) ;
+ }
+ for (p3=1;p3<=-p2;p3++) {
+ i = -p2+1 ;
+ if (p1%2 == 0) {
+ j = (p1+2*p2-2)/2 ;
+ S5(-p2+1,(p1+2*p2-2)/2,p3) ;
+ }
+ }
+ p2 = floord(-p1+2*n+4,2) ;
+ i = -p2+2 ;
+ if (p1%2 == 0) {
+ j = (p1+2*p2-4)/2 ;
+ S6(-p2+2,(p1+2*p2-4)/2) ;
+ }
+ if ((p1+3)%4 == 0) {
+ i = (p1-1)/4 ;
+ S3((p1-1)/4) ;
+ }
+ for (p2=ceild(p1-2*n-1,2);p2<=floord(p1-3,4);p2++) {
+ if ((p1+1)%2 == 0) {
+ i = (p1-2*p2-1)/2 ;
+ S2((p1-2*p2-1)/2,p2) ;
+ }
+ }
+ }
+ for (p1=max(4*n-9,2*n+59);p1<=4*n-8;p1++) {
+ p2 = floord(-p1+5,4) ;
+ if (p1%2 == 0) {
+ j = (p1+2*p2)/2 ;
+ S4(-p2,(p1+2*p2)/2) ;
+ }
+ for (p2=ceild(-p1+6,4);p2<=floord(-p1+2*n,2);p2++) {
+ if (p1%2 == 0) {
+ j = (p1+2*p2)/2 ;
+ S4(-p2,(p1+2*p2)/2) ;
+ }
+ for (p3=1;p3<=-p2;p3++) {
+ i = -p2+1 ;
+ if (p1%2 == 0) {
+ j = (p1+2*p2-2)/2 ;
+ S5(-p2+1,(p1+2*p2-2)/2,p3) ;
+ }
+ }
+ }
+ p2 = floord(-p1+2*n+2,2) ;
+ i = -p2+2 ;
+ if (p1%2 == 0) {
+ j = (p1+2*p2-4)/2 ;
+ S6(-p2+2,(p1+2*p2-4)/2) ;
+ }
+ for (p3=1;p3<=-p2;p3++) {
+ i = -p2+1 ;
+ if (p1%2 == 0) {
+ j = (p1+2*p2-2)/2 ;
+ S5(-p2+1,(p1+2*p2-2)/2,p3) ;
+ }
+ }
+ p2 = floord(-p1+2*n+4,2) ;
+ i = -p2+2 ;
+ if (p1%2 == 0) {
+ j = (p1+2*p2-4)/2 ;
+ S6(-p2+2,(p1+2*p2-4)/2) ;
+ }
+ if ((p1+3)%4 == 0) {
+ i = (p1-1)/4 ;
+ S3((p1-1)/4) ;
+ }
+ for (p2=ceild(p1-2*n-1,2);p2<=floord(p1-3,4);p2++) {
+ if ((p1+1)%2 == 0) {
+ i = (p1-2*p2-1)/2 ;
+ S2((p1-2*p2-1)/2,p2) ;
+ }
+ }
+ }
+ for (p1=max(4*n-7,2*n+59);p1<=4*n-6;p1++) {
+ p2 = floord(-p1+5,4) ;
+ if (p1%2 == 0) {
+ j = (p1+2*p2)/2 ;
+ S4(-p2,(p1+2*p2)/2) ;
+ }
+ for (p2=ceild(-p1+6,4);p2<=floord(-p1+2*n,2);p2++) {
+ if (p1%2 == 0) {
+ j = (p1+2*p2)/2 ;
+ S4(-p2,(p1+2*p2)/2) ;
+ }
+ for (p3=1;p3<=-p2;p3++) {
+ i = -p2+1 ;
+ if (p1%2 == 0) {
+ j = (p1+2*p2-2)/2 ;
+ S5(-p2+1,(p1+2*p2-2)/2,p3) ;
+ }
+ }
+ }
+ for (p2=ceild(-p1+2*n+1,2);p2<=floord(-p1+9,4);p2++) {
+ for (p3=1;p3<=-p2;p3++) {
+ i = -p2+1 ;
+ if (p1%2 == 0) {
+ j = (p1+2*p2-2)/2 ;
+ S5(-p2+1,(p1+2*p2-2)/2,p3) ;
+ }
+ }
+ }
+ for (p2=ceild(-p1+10,4);p2<=floord(-p1+2*n+2,2);p2++) {
+ i = -p2+2 ;
+ if (p1%2 == 0) {
+ j = (p1+2*p2-4)/2 ;
+ S6(-p2+2,(p1+2*p2-4)/2) ;
+ }
+ for (p3=1;p3<=-p2;p3++) {
+ i = -p2+1 ;
+ if (p1%2 == 0) {
+ j = (p1+2*p2-2)/2 ;
+ S5(-p2+1,(p1+2*p2-2)/2,p3) ;
+ }
+ }
+ }
+ p2 = floord(-p1+2*n+4,2) ;
+ i = -p2+2 ;
+ if (p1%2 == 0) {
+ j = (p1+2*p2-4)/2 ;
+ S6(-p2+2,(p1+2*p2-4)/2) ;
+ }
+ if ((p1+3)%4 == 0) {
+ i = (p1-1)/4 ;
+ S3((p1-1)/4) ;
+ }
+ for (p2=ceild(p1-2*n-1,2);p2<=floord(p1-3,4);p2++) {
+ if ((p1+1)%2 == 0) {
+ i = (p1-2*p2-1)/2 ;
+ S2((p1-2*p2-1)/2,p2) ;
+ }
+ }
+ }
+ for (p1=max(4*n-5,2*n+59);p1<=4*n-2;p1++) {
+ for (p2=ceild(-p1+2,4);p2<=floord(-p1+2*n,2);p2++) {
+ if (p1%2 == 0) {
+ j = (p1+2*p2)/2 ;
+ S4(-p2,(p1+2*p2)/2) ;
+ }
+ }
+ for (p2=max(ceild(-p1+2*n+1,2),ceild(-p1+6,4));p2<=floord(-p1+2*n+2,2);p2++) {
+ for (p3=1;p3<=-p2;p3++) {
+ i = -p2+1 ;
+ if (p1%2 == 0) {
+ j = (p1+2*p2-2)/2 ;
+ S5(-p2+1,(p1+2*p2-2)/2,p3) ;
+ }
+ }
+ }
+ for (p2=max(ceild(-p1+10,4),ceild(-p1+2*n+3,2));p2<=floord(-p1+2*n+4,2);p2++) {
+ i = -p2+2 ;
+ if (p1%2 == 0) {
+ j = (p1+2*p2-4)/2 ;
+ S6(-p2+2,(p1+2*p2-4)/2) ;
+ }
+ }
+ if ((p1+3)%4 == 0) {
+ i = (p1-1)/4 ;
+ S3((p1-1)/4) ;
+ }
+ for (p2=ceild(p1-2*n-1,2);p2<=floord(p1-3,4);p2++) {
+ if ((p1+1)%2 == 0) {
+ i = (p1-2*p2-1)/2 ;
+ S2((p1-2*p2-1)/2,p2) ;
+ }
+ }
+ }
+ p1 = 4*n-1 ;
+ p2 = n-1 ;
+ j = n-1 ;
+ S2(n,n-1) ;
+ for (p1=4*n;p1<=4*n+1;p1++) {
+ if ((p1+3)%4 == 0) {
+ i = (p1-1)/4 ;
+ S3((p1-1)/4) ;
+ }
+ }
+}