summaryrefslogtreecommitdiff
path: root/target-ppc/mem_helper.c
blob: 6548715831b7d3a6d9dea2580eb1c86004ba0f6c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
/*
 *  PowerPC memory access emulation helpers for QEMU.
 *
 *  Copyright (c) 2003-2007 Jocelyn Mayer
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
 */
#include "qemu/osdep.h"
#include "cpu.h"
#include "exec/exec-all.h"
#include "qemu/host-utils.h"
#include "exec/helper-proto.h"

#include "helper_regs.h"
#include "exec/exec-all.h"
#include "exec/cpu_ldst.h"

//#define DEBUG_OP

static inline bool needs_byteswap(const CPUPPCState *env)
{
#if defined(TARGET_WORDS_BIGENDIAN)
  return msr_le;
#else
  return !msr_le;
#endif
}

/*****************************************************************************/
/* Memory load and stores */

static inline target_ulong addr_add(CPUPPCState *env, target_ulong addr,
                                    target_long arg)
{
#if defined(TARGET_PPC64)
    if (!msr_is_64bit(env, env->msr)) {
        return (uint32_t)(addr + arg);
    } else
#endif
    {
        return addr + arg;
    }
}

void helper_lmw(CPUPPCState *env, target_ulong addr, uint32_t reg)
{
    for (; reg < 32; reg++) {
        if (needs_byteswap(env)) {
            env->gpr[reg] = bswap32(cpu_ldl_data_ra(env, addr, GETPC()));
        } else {
            env->gpr[reg] = cpu_ldl_data_ra(env, addr, GETPC());
        }
        addr = addr_add(env, addr, 4);
    }
}

void helper_stmw(CPUPPCState *env, target_ulong addr, uint32_t reg)
{
    for (; reg < 32; reg++) {
        if (needs_byteswap(env)) {
            cpu_stl_data_ra(env, addr, bswap32((uint32_t)env->gpr[reg]),
                                                   GETPC());
        } else {
            cpu_stl_data_ra(env, addr, (uint32_t)env->gpr[reg], GETPC());
        }
        addr = addr_add(env, addr, 4);
    }
}

static void do_lsw(CPUPPCState *env, target_ulong addr, uint32_t nb,
                   uint32_t reg, uintptr_t raddr)
{
    int sh;

    for (; nb > 3; nb -= 4) {
        env->gpr[reg] = cpu_ldl_data_ra(env, addr, raddr);
        reg = (reg + 1) % 32;
        addr = addr_add(env, addr, 4);
    }
    if (unlikely(nb > 0)) {
        env->gpr[reg] = 0;
        for (sh = 24; nb > 0; nb--, sh -= 8) {
            env->gpr[reg] |= cpu_ldub_data_ra(env, addr, raddr) << sh;
            addr = addr_add(env, addr, 1);
        }
    }
}

void helper_lsw(CPUPPCState *env, target_ulong addr, uint32_t nb, uint32_t reg)
{
    do_lsw(env, addr, nb, reg, GETPC());
}

/* PPC32 specification says we must generate an exception if
 * rA is in the range of registers to be loaded.
 * In an other hand, IBM says this is valid, but rA won't be loaded.
 * For now, I'll follow the spec...
 */
void helper_lswx(CPUPPCState *env, target_ulong addr, uint32_t reg,
                 uint32_t ra, uint32_t rb)
{
    if (likely(xer_bc != 0)) {
        int num_used_regs = (xer_bc + 3) / 4;
        if (unlikely((ra != 0 && lsw_reg_in_range(reg, num_used_regs, ra)) ||
                     lsw_reg_in_range(reg, num_used_regs, rb))) {
            raise_exception_err_ra(env, POWERPC_EXCP_PROGRAM,
                                   POWERPC_EXCP_INVAL |
                                   POWERPC_EXCP_INVAL_LSWX, GETPC());
        } else {
            do_lsw(env, addr, xer_bc, reg, GETPC());
        }
    }
}

void helper_stsw(CPUPPCState *env, target_ulong addr, uint32_t nb,
                 uint32_t reg)
{
    int sh;

    for (; nb > 3; nb -= 4) {
        cpu_stl_data_ra(env, addr, env->gpr[reg], GETPC());
        reg = (reg + 1) % 32;
        addr = addr_add(env, addr, 4);
    }
    if (unlikely(nb > 0)) {
        for (sh = 24; nb > 0; nb--, sh -= 8) {
            cpu_stb_data_ra(env, addr, (env->gpr[reg] >> sh) & 0xFF, GETPC());
            addr = addr_add(env, addr, 1);
        }
    }
}

void helper_dcbz(CPUPPCState *env, target_ulong addr, uint32_t opcode)
{
    target_ulong mask, dcbz_size = env->dcache_line_size;
    uint32_t i;
    void *haddr;

#if defined(TARGET_PPC64)
    /* Check for dcbz vs dcbzl on 970 */
    if (env->excp_model == POWERPC_EXCP_970 &&
        !(opcode & 0x00200000) && ((env->spr[SPR_970_HID5] >> 7) & 0x3) == 1) {
        dcbz_size = 32;
    }
#endif

    /* Align address */
    mask = ~(dcbz_size - 1);
    addr &= mask;

    /* Check reservation */
    if ((env->reserve_addr & mask) == (addr & mask))  {
        env->reserve_addr = (target_ulong)-1ULL;
    }

    /* Try fast path translate */
    haddr = tlb_vaddr_to_host(env, addr, MMU_DATA_STORE, env->dmmu_idx);
    if (haddr) {
        memset(haddr, 0, dcbz_size);
    } else {
        /* Slow path */
        for (i = 0; i < dcbz_size; i += 8) {
            cpu_stq_data_ra(env, addr + i, 0, GETPC());
        }
    }
}

void helper_icbi(CPUPPCState *env, target_ulong addr)
{
    addr &= ~(env->dcache_line_size - 1);
    /* Invalidate one cache line :
     * PowerPC specification says this is to be treated like a load
     * (not a fetch) by the MMU. To be sure it will be so,
     * do the load "by hand".
     */
    cpu_ldl_data_ra(env, addr, GETPC());
}

/* XXX: to be tested */
target_ulong helper_lscbx(CPUPPCState *env, target_ulong addr, uint32_t reg,
                          uint32_t ra, uint32_t rb)
{
    int i, c, d;

    d = 24;
    for (i = 0; i < xer_bc; i++) {
        c = cpu_ldub_data_ra(env, addr, GETPC());
        addr = addr_add(env, addr, 1);
        /* ra (if not 0) and rb are never modified */
        if (likely(reg != rb && (ra == 0 || reg != ra))) {
            env->gpr[reg] = (env->gpr[reg] & ~(0xFF << d)) | (c << d);
        }
        if (unlikely(c == xer_cmp)) {
            break;
        }
        if (likely(d != 0)) {
            d -= 8;
        } else {
            d = 24;
            reg++;
            reg = reg & 0x1F;
        }
    }
    return i;
}

/*****************************************************************************/
/* Altivec extension helpers */
#if defined(HOST_WORDS_BIGENDIAN)
#define HI_IDX 0
#define LO_IDX 1
#else
#define HI_IDX 1
#define LO_IDX 0
#endif

/* We use msr_le to determine index ordering in a vector.  However,
   byteswapping is not simply controlled by msr_le.  We also need to take
   into account endianness of the target.  This is done for the little-endian
   PPC64 user-mode target. */

#define LVE(name, access, swap, element)                        \
    void helper_##name(CPUPPCState *env, ppc_avr_t *r,          \
                       target_ulong addr)                       \
    {                                                           \
        size_t n_elems = ARRAY_SIZE(r->element);                \
        int adjust = HI_IDX*(n_elems - 1);                      \
        int sh = sizeof(r->element[0]) >> 1;                    \
        int index = (addr & 0xf) >> sh;                         \
        if (msr_le) {                                           \
            index = n_elems - index - 1;                        \
        }                                                       \
                                                                \
        if (needs_byteswap(env)) {                              \
            r->element[LO_IDX ? index : (adjust - index)] =     \
                swap(access(env, addr, GETPC()));               \
        } else {                                                \
            r->element[LO_IDX ? index : (adjust - index)] =     \
                access(env, addr, GETPC());                     \
        }                                                       \
    }
#define I(x) (x)
LVE(lvebx, cpu_ldub_data_ra, I, u8)
LVE(lvehx, cpu_lduw_data_ra, bswap16, u16)
LVE(lvewx, cpu_ldl_data_ra, bswap32, u32)
#undef I
#undef LVE

#define STVE(name, access, swap, element)                               \
    void helper_##name(CPUPPCState *env, ppc_avr_t *r,                  \
                       target_ulong addr)                               \
    {                                                                   \
        size_t n_elems = ARRAY_SIZE(r->element);                        \
        int adjust = HI_IDX * (n_elems - 1);                            \
        int sh = sizeof(r->element[0]) >> 1;                            \
        int index = (addr & 0xf) >> sh;                                 \
        if (msr_le) {                                                   \
            index = n_elems - index - 1;                                \
        }                                                               \
                                                                        \
        if (needs_byteswap(env)) {                                      \
            access(env, addr, swap(r->element[LO_IDX ? index :          \
                                              (adjust - index)]),       \
                        GETPC());                                       \
        } else {                                                        \
            access(env, addr, r->element[LO_IDX ? index :               \
                                         (adjust - index)], GETPC());   \
        }                                                               \
    }
#define I(x) (x)
STVE(stvebx, cpu_stb_data_ra, I, u8)
STVE(stvehx, cpu_stw_data_ra, bswap16, u16)
STVE(stvewx, cpu_stl_data_ra, bswap32, u32)
#undef I
#undef LVE

#undef HI_IDX
#undef LO_IDX

void helper_tbegin(CPUPPCState *env)
{
    /* As a degenerate implementation, always fail tbegin.  The reason
     * given is "Nesting overflow".  The "persistent" bit is set,
     * providing a hint to the error handler to not retry.  The TFIAR
     * captures the address of the failure, which is this tbegin
     * instruction.  Instruction execution will continue with the
     * next instruction in memory, which is precisely what we want.
     */

    env->spr[SPR_TEXASR] =
        (1ULL << TEXASR_FAILURE_PERSISTENT) |
        (1ULL << TEXASR_NESTING_OVERFLOW) |
        (msr_hv << TEXASR_PRIVILEGE_HV) |
        (msr_pr << TEXASR_PRIVILEGE_PR) |
        (1ULL << TEXASR_FAILURE_SUMMARY) |
        (1ULL << TEXASR_TFIAR_EXACT);
    env->spr[SPR_TFIAR] = env->nip | (msr_hv << 1) | msr_pr;
    env->spr[SPR_TFHAR] = env->nip + 4;
    env->crf[0] = 0xB; /* 0b1010 = transaction failure */
}