summaryrefslogtreecommitdiff
path: root/target-i386/kvm.c
blob: 2412ae43407d9c8f91a6fc881442143b04815606 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
/*
 * QEMU KVM support
 *
 * Copyright (C) 2006-2008 Qumranet Technologies
 * Copyright IBM, Corp. 2008
 *
 * Authors:
 *  Anthony Liguori   <aliguori@us.ibm.com>
 *
 * This work is licensed under the terms of the GNU GPL, version 2 or later.
 * See the COPYING file in the top-level directory.
 *
 */

#include <sys/types.h>
#include <sys/ioctl.h>
#include <sys/mman.h>

#include <linux/kvm.h>

#include "qemu-common.h"
#include "sysemu.h"
#include "kvm.h"
#include "cpu.h"

//#define DEBUG_KVM

#ifdef DEBUG_KVM
#define dprintf(fmt, ...) \
    do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
#else
#define dprintf(fmt, ...) \
    do { } while (0)
#endif

int kvm_arch_init_vcpu(CPUState *env)
{
    struct {
        struct kvm_cpuid cpuid;
        struct kvm_cpuid_entry entries[100];
    } __attribute__((packed)) cpuid_data;
    uint32_t limit, i, cpuid_i;
    uint32_t eax, ebx, ecx, edx;

    cpuid_i = 0;

    cpu_x86_cpuid(env, 0, &eax, &ebx, &ecx, &edx);
    limit = eax;

    for (i = 0; i <= limit; i++) {
        struct kvm_cpuid_entry *c = &cpuid_data.entries[cpuid_i++];

        cpu_x86_cpuid(env, i, &eax, &ebx, &ecx, &edx);
        c->function = i;
        c->eax = eax;
        c->ebx = ebx;
        c->ecx = ecx;
        c->edx = edx;
    }

    cpu_x86_cpuid(env, 0x80000000, &eax, &ebx, &ecx, &edx);
    limit = eax;

    for (i = 0x80000000; i <= limit; i++) {
        struct kvm_cpuid_entry *c = &cpuid_data.entries[cpuid_i++];

        cpu_x86_cpuid(env, i, &eax, &ebx, &ecx, &edx);
        c->function = i;
        c->eax = eax;
        c->ebx = ebx;
        c->ecx = ecx;
        c->edx = edx;
    }

    cpuid_data.cpuid.nent = cpuid_i;

    return kvm_vcpu_ioctl(env, KVM_SET_CPUID, &cpuid_data);
}

static int kvm_has_msr_star(CPUState *env)
{
    static int has_msr_star;
    int ret;

    /* first time */
    if (has_msr_star == 0) {        
        struct kvm_msr_list msr_list, *kvm_msr_list;

        has_msr_star = -1;

        /* Obtain MSR list from KVM.  These are the MSRs that we must
         * save/restore */
        msr_list.nmsrs = 0;
        ret = kvm_ioctl(env->kvm_state, KVM_GET_MSR_INDEX_LIST, &msr_list);
        if (ret < 0)
            return 0;

        kvm_msr_list = qemu_mallocz(sizeof(msr_list) +
                                    msr_list.nmsrs * sizeof(msr_list.indices[0]));
        if (kvm_msr_list == NULL)
            return 0;

        kvm_msr_list->nmsrs = msr_list.nmsrs;
        ret = kvm_ioctl(env->kvm_state, KVM_GET_MSR_INDEX_LIST, kvm_msr_list);
        if (ret >= 0) {
            int i;

            for (i = 0; i < kvm_msr_list->nmsrs; i++) {
                if (kvm_msr_list->indices[i] == MSR_STAR) {
                    has_msr_star = 1;
                    break;
                }
            }
        }

        free(kvm_msr_list);
    }

    if (has_msr_star == 1)
        return 1;
    return 0;
}

int kvm_arch_init(KVMState *s, int smp_cpus)
{
    int ret;

    /* create vm86 tss.  KVM uses vm86 mode to emulate 16-bit code
     * directly.  In order to use vm86 mode, a TSS is needed.  Since this
     * must be part of guest physical memory, we need to allocate it.  Older
     * versions of KVM just assumed that it would be at the end of physical
     * memory but that doesn't work with more than 4GB of memory.  We simply
     * refuse to work with those older versions of KVM. */
    ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, KVM_CAP_SET_TSS_ADDR);
    if (ret <= 0) {
        fprintf(stderr, "kvm does not support KVM_CAP_SET_TSS_ADDR\n");
        return ret;
    }

    /* this address is 3 pages before the bios, and the bios should present
     * as unavaible memory.  FIXME, need to ensure the e820 map deals with
     * this?
     */
    return kvm_vm_ioctl(s, KVM_SET_TSS_ADDR, 0xfffbd000);
}
                    
static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
{
    lhs->selector = rhs->selector;
    lhs->base = rhs->base;
    lhs->limit = rhs->limit;
    lhs->type = 3;
    lhs->present = 1;
    lhs->dpl = 3;
    lhs->db = 0;
    lhs->s = 1;
    lhs->l = 0;
    lhs->g = 0;
    lhs->avl = 0;
    lhs->unusable = 0;
}

static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
{
    unsigned flags = rhs->flags;
    lhs->selector = rhs->selector;
    lhs->base = rhs->base;
    lhs->limit = rhs->limit;
    lhs->type = (flags >> DESC_TYPE_SHIFT) & 15;
    lhs->present = (flags & DESC_P_MASK) != 0;
    lhs->dpl = rhs->selector & 3;
    lhs->db = (flags >> DESC_B_SHIFT) & 1;
    lhs->s = (flags & DESC_S_MASK) != 0;
    lhs->l = (flags >> DESC_L_SHIFT) & 1;
    lhs->g = (flags & DESC_G_MASK) != 0;
    lhs->avl = (flags & DESC_AVL_MASK) != 0;
    lhs->unusable = 0;
}

static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs)
{
    lhs->selector = rhs->selector;
    lhs->base = rhs->base;
    lhs->limit = rhs->limit;
    lhs->flags =
	(rhs->type << DESC_TYPE_SHIFT)
	| (rhs->present * DESC_P_MASK)
	| (rhs->dpl << DESC_DPL_SHIFT)
	| (rhs->db << DESC_B_SHIFT)
	| (rhs->s * DESC_S_MASK)
	| (rhs->l << DESC_L_SHIFT)
	| (rhs->g * DESC_G_MASK)
	| (rhs->avl * DESC_AVL_MASK);
}

static void kvm_getput_reg(__u64 *kvm_reg, target_ulong *qemu_reg, int set)
{
    if (set)
        *kvm_reg = *qemu_reg;
    else
        *qemu_reg = *kvm_reg;
}

static int kvm_getput_regs(CPUState *env, int set)
{
    struct kvm_regs regs;
    int ret = 0;

    if (!set) {
        ret = kvm_vcpu_ioctl(env, KVM_GET_REGS, &regs);
        if (ret < 0)
            return ret;
    }

    kvm_getput_reg(&regs.rax, &env->regs[R_EAX], set);
    kvm_getput_reg(&regs.rbx, &env->regs[R_EBX], set);
    kvm_getput_reg(&regs.rcx, &env->regs[R_ECX], set);
    kvm_getput_reg(&regs.rdx, &env->regs[R_EDX], set);
    kvm_getput_reg(&regs.rsi, &env->regs[R_ESI], set);
    kvm_getput_reg(&regs.rdi, &env->regs[R_EDI], set);
    kvm_getput_reg(&regs.rsp, &env->regs[R_ESP], set);
    kvm_getput_reg(&regs.rbp, &env->regs[R_EBP], set);
#ifdef TARGET_X86_64
    kvm_getput_reg(&regs.r8, &env->regs[8], set);
    kvm_getput_reg(&regs.r9, &env->regs[9], set);
    kvm_getput_reg(&regs.r10, &env->regs[10], set);
    kvm_getput_reg(&regs.r11, &env->regs[11], set);
    kvm_getput_reg(&regs.r12, &env->regs[12], set);
    kvm_getput_reg(&regs.r13, &env->regs[13], set);
    kvm_getput_reg(&regs.r14, &env->regs[14], set);
    kvm_getput_reg(&regs.r15, &env->regs[15], set);
#endif

    kvm_getput_reg(&regs.rflags, &env->eflags, set);
    kvm_getput_reg(&regs.rip, &env->eip, set);

    if (set)
        ret = kvm_vcpu_ioctl(env, KVM_SET_REGS, &regs);

    return ret;
}

static int kvm_put_fpu(CPUState *env)
{
    struct kvm_fpu fpu;
    int i;

    memset(&fpu, 0, sizeof fpu);
    fpu.fsw = env->fpus & ~(7 << 11);
    fpu.fsw |= (env->fpstt & 7) << 11;
    fpu.fcw = env->fpuc;
    for (i = 0; i < 8; ++i)
	fpu.ftwx |= (!env->fptags[i]) << i;
    memcpy(fpu.fpr, env->fpregs, sizeof env->fpregs);
    memcpy(fpu.xmm, env->xmm_regs, sizeof env->xmm_regs);
    fpu.mxcsr = env->mxcsr;

    return kvm_vcpu_ioctl(env, KVM_SET_FPU, &fpu);
}

static int kvm_put_sregs(CPUState *env)
{
    struct kvm_sregs sregs;

    memcpy(sregs.interrupt_bitmap,
           env->interrupt_bitmap,
           sizeof(sregs.interrupt_bitmap));

    if ((env->eflags & VM_MASK)) {
	    set_v8086_seg(&sregs.cs, &env->segs[R_CS]);
	    set_v8086_seg(&sregs.ds, &env->segs[R_DS]);
	    set_v8086_seg(&sregs.es, &env->segs[R_ES]);
	    set_v8086_seg(&sregs.fs, &env->segs[R_FS]);
	    set_v8086_seg(&sregs.gs, &env->segs[R_GS]);
	    set_v8086_seg(&sregs.ss, &env->segs[R_SS]);
    } else {
	    set_seg(&sregs.cs, &env->segs[R_CS]);
	    set_seg(&sregs.ds, &env->segs[R_DS]);
	    set_seg(&sregs.es, &env->segs[R_ES]);
	    set_seg(&sregs.fs, &env->segs[R_FS]);
	    set_seg(&sregs.gs, &env->segs[R_GS]);
	    set_seg(&sregs.ss, &env->segs[R_SS]);

	    if (env->cr[0] & CR0_PE_MASK) {
		/* force ss cpl to cs cpl */
		sregs.ss.selector = (sregs.ss.selector & ~3) |
			(sregs.cs.selector & 3);
		sregs.ss.dpl = sregs.ss.selector & 3;
	    }
    }

    set_seg(&sregs.tr, &env->tr);
    set_seg(&sregs.ldt, &env->ldt);

    sregs.idt.limit = env->idt.limit;
    sregs.idt.base = env->idt.base;
    sregs.gdt.limit = env->gdt.limit;
    sregs.gdt.base = env->gdt.base;

    sregs.cr0 = env->cr[0];
    sregs.cr2 = env->cr[2];
    sregs.cr3 = env->cr[3];
    sregs.cr4 = env->cr[4];

    sregs.cr8 = cpu_get_apic_tpr(env);
    sregs.apic_base = cpu_get_apic_base(env);

    sregs.efer = env->efer;

    return kvm_vcpu_ioctl(env, KVM_SET_SREGS, &sregs);
}

static void kvm_msr_entry_set(struct kvm_msr_entry *entry,
                              uint32_t index, uint64_t value)
{
    entry->index = index;
    entry->data = value;
}

static int kvm_put_msrs(CPUState *env)
{
    struct {
        struct kvm_msrs info;
        struct kvm_msr_entry entries[100];
    } msr_data;
    struct kvm_msr_entry *msrs = msr_data.entries;
    int n = 0;

    kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_CS, env->sysenter_cs);
    kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_ESP, env->sysenter_esp);
    kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_EIP, env->sysenter_eip);
    if (kvm_has_msr_star(env))
	kvm_msr_entry_set(&msrs[n++], MSR_STAR, env->star);
    kvm_msr_entry_set(&msrs[n++], MSR_IA32_TSC, env->tsc);
#ifdef TARGET_X86_64
    /* FIXME if lm capable */
    kvm_msr_entry_set(&msrs[n++], MSR_CSTAR, env->cstar);
    kvm_msr_entry_set(&msrs[n++], MSR_KERNELGSBASE, env->kernelgsbase);
    kvm_msr_entry_set(&msrs[n++], MSR_FMASK, env->fmask);
    kvm_msr_entry_set(&msrs[n++], MSR_LSTAR, env->lstar);
#endif
    msr_data.info.nmsrs = n;

    return kvm_vcpu_ioctl(env, KVM_SET_MSRS, &msr_data);

}


static int kvm_get_fpu(CPUState *env)
{
    struct kvm_fpu fpu;
    int i, ret;

    ret = kvm_vcpu_ioctl(env, KVM_GET_FPU, &fpu);
    if (ret < 0)
        return ret;

    env->fpstt = (fpu.fsw >> 11) & 7;
    env->fpus = fpu.fsw;
    env->fpuc = fpu.fcw;
    for (i = 0; i < 8; ++i)
	env->fptags[i] = !((fpu.ftwx >> i) & 1);
    memcpy(env->fpregs, fpu.fpr, sizeof env->fpregs);
    memcpy(env->xmm_regs, fpu.xmm, sizeof env->xmm_regs);
    env->mxcsr = fpu.mxcsr;

    return 0;
}

static int kvm_get_sregs(CPUState *env)
{
    struct kvm_sregs sregs;
    uint32_t hflags;
    int ret;

    ret = kvm_vcpu_ioctl(env, KVM_GET_SREGS, &sregs);
    if (ret < 0)
        return ret;

    memcpy(env->interrupt_bitmap, 
           sregs.interrupt_bitmap,
           sizeof(sregs.interrupt_bitmap));

    get_seg(&env->segs[R_CS], &sregs.cs);
    get_seg(&env->segs[R_DS], &sregs.ds);
    get_seg(&env->segs[R_ES], &sregs.es);
    get_seg(&env->segs[R_FS], &sregs.fs);
    get_seg(&env->segs[R_GS], &sregs.gs);
    get_seg(&env->segs[R_SS], &sregs.ss);

    get_seg(&env->tr, &sregs.tr);
    get_seg(&env->ldt, &sregs.ldt);

    env->idt.limit = sregs.idt.limit;
    env->idt.base = sregs.idt.base;
    env->gdt.limit = sregs.gdt.limit;
    env->gdt.base = sregs.gdt.base;

    env->cr[0] = sregs.cr0;
    env->cr[2] = sregs.cr2;
    env->cr[3] = sregs.cr3;
    env->cr[4] = sregs.cr4;

    cpu_set_apic_base(env, sregs.apic_base);

    env->efer = sregs.efer;
    //cpu_set_apic_tpr(env, sregs.cr8);

#define HFLAG_COPY_MASK ~( \
			HF_CPL_MASK | HF_PE_MASK | HF_MP_MASK | HF_EM_MASK | \
			HF_TS_MASK | HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK | \
			HF_OSFXSR_MASK | HF_LMA_MASK | HF_CS32_MASK | \
			HF_SS32_MASK | HF_CS64_MASK | HF_ADDSEG_MASK)



    hflags = (env->segs[R_CS].flags >> DESC_DPL_SHIFT) & HF_CPL_MASK;
    hflags |= (env->cr[0] & CR0_PE_MASK) << (HF_PE_SHIFT - CR0_PE_SHIFT);
    hflags |= (env->cr[0] << (HF_MP_SHIFT - CR0_MP_SHIFT)) &
	    (HF_MP_MASK | HF_EM_MASK | HF_TS_MASK);
    hflags |= (env->eflags & (HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK));
    hflags |= (env->cr[4] & CR4_OSFXSR_MASK) <<
	    (HF_OSFXSR_SHIFT - CR4_OSFXSR_SHIFT);

    if (env->efer & MSR_EFER_LMA) {
        hflags |= HF_LMA_MASK;
    }

    if ((hflags & HF_LMA_MASK) && (env->segs[R_CS].flags & DESC_L_MASK)) {
        hflags |= HF_CS32_MASK | HF_SS32_MASK | HF_CS64_MASK;
    } else {
        hflags |= (env->segs[R_CS].flags & DESC_B_MASK) >>
		(DESC_B_SHIFT - HF_CS32_SHIFT);
        hflags |= (env->segs[R_SS].flags & DESC_B_MASK) >>
		(DESC_B_SHIFT - HF_SS32_SHIFT);
        if (!(env->cr[0] & CR0_PE_MASK) ||
                   (env->eflags & VM_MASK) ||
                   !(hflags & HF_CS32_MASK)) {
                hflags |= HF_ADDSEG_MASK;
            } else {
                hflags |= ((env->segs[R_DS].base |
                                env->segs[R_ES].base |
                                env->segs[R_SS].base) != 0) <<
                    HF_ADDSEG_SHIFT;
            }
    }
    env->hflags = (env->hflags & HFLAG_COPY_MASK) | hflags;
    env->cc_src = env->eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
    env->df = 1 - (2 * ((env->eflags >> 10) & 1));
    env->cc_op = CC_OP_EFLAGS;
    env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);

    return 0;
}

static int kvm_get_msrs(CPUState *env)
{
    struct {
        struct kvm_msrs info;
        struct kvm_msr_entry entries[100];
    } msr_data;
    struct kvm_msr_entry *msrs = msr_data.entries;
    int ret, i, n;

    n = 0;
    msrs[n++].index = MSR_IA32_SYSENTER_CS;
    msrs[n++].index = MSR_IA32_SYSENTER_ESP;
    msrs[n++].index = MSR_IA32_SYSENTER_EIP;
    if (kvm_has_msr_star(env))
	msrs[n++].index = MSR_STAR;
    msrs[n++].index = MSR_IA32_TSC;
#ifdef TARGET_X86_64
    /* FIXME lm_capable_kernel */
    msrs[n++].index = MSR_CSTAR;
    msrs[n++].index = MSR_KERNELGSBASE;
    msrs[n++].index = MSR_FMASK;
    msrs[n++].index = MSR_LSTAR;
#endif
    msr_data.info.nmsrs = n;
    ret = kvm_vcpu_ioctl(env, KVM_GET_MSRS, &msr_data);
    if (ret < 0)
        return ret;

    for (i = 0; i < ret; i++) {
        switch (msrs[i].index) {
        case MSR_IA32_SYSENTER_CS:
            env->sysenter_cs = msrs[i].data;
            break;
        case MSR_IA32_SYSENTER_ESP:
            env->sysenter_esp = msrs[i].data;
            break;
        case MSR_IA32_SYSENTER_EIP:
            env->sysenter_eip = msrs[i].data;
            break;
        case MSR_STAR:
            env->star = msrs[i].data;
            break;
#ifdef TARGET_X86_64
        case MSR_CSTAR:
            env->cstar = msrs[i].data;
            break;
        case MSR_KERNELGSBASE:
            env->kernelgsbase = msrs[i].data;
            break;
        case MSR_FMASK:
            env->fmask = msrs[i].data;
            break;
        case MSR_LSTAR:
            env->lstar = msrs[i].data;
            break;
#endif
        case MSR_IA32_TSC:
            env->tsc = msrs[i].data;
            break;
        }
    }

    return 0;
}

int kvm_arch_put_registers(CPUState *env)
{
    int ret;

    ret = kvm_getput_regs(env, 1);
    if (ret < 0)
        return ret;

    ret = kvm_put_fpu(env);
    if (ret < 0)
        return ret;

    ret = kvm_put_sregs(env);
    if (ret < 0)
        return ret;

    ret = kvm_put_msrs(env);
    if (ret < 0)
        return ret;

    return 0;
}

int kvm_arch_get_registers(CPUState *env)
{
    int ret;

    ret = kvm_getput_regs(env, 0);
    if (ret < 0)
        return ret;

    ret = kvm_get_fpu(env);
    if (ret < 0)
        return ret;

    ret = kvm_get_sregs(env);
    if (ret < 0)
        return ret;

    ret = kvm_get_msrs(env);
    if (ret < 0)
        return ret;

    return 0;
}

int kvm_arch_pre_run(CPUState *env, struct kvm_run *run)
{
    /* Try to inject an interrupt if the guest can accept it */
    if (run->ready_for_interrupt_injection &&
        (env->interrupt_request & CPU_INTERRUPT_HARD) &&
        (env->eflags & IF_MASK)) {
        int irq;

        env->interrupt_request &= ~CPU_INTERRUPT_HARD;
        irq = cpu_get_pic_interrupt(env);
        if (irq >= 0) {
            struct kvm_interrupt intr;
            intr.irq = irq;
            /* FIXME: errors */
            dprintf("injected interrupt %d\n", irq);
            kvm_vcpu_ioctl(env, KVM_INTERRUPT, &intr);
        }
    }

    /* If we have an interrupt but the guest is not ready to receive an
     * interrupt, request an interrupt window exit.  This will
     * cause a return to userspace as soon as the guest is ready to
     * receive interrupts. */
    if ((env->interrupt_request & CPU_INTERRUPT_HARD))
        run->request_interrupt_window = 1;
    else
        run->request_interrupt_window = 0;

    dprintf("setting tpr\n");
    run->cr8 = cpu_get_apic_tpr(env);

    return 0;
}

int kvm_arch_post_run(CPUState *env, struct kvm_run *run)
{
    if (run->if_flag)
        env->eflags |= IF_MASK;
    else
        env->eflags &= ~IF_MASK;
    
    cpu_set_apic_tpr(env, run->cr8);
    cpu_set_apic_base(env, run->apic_base);

    return 0;
}

static int kvm_handle_halt(CPUState *env)
{
    if (!((env->interrupt_request & CPU_INTERRUPT_HARD) &&
          (env->eflags & IF_MASK)) &&
        !(env->interrupt_request & CPU_INTERRUPT_NMI)) {
        env->halted = 1;
        env->exception_index = EXCP_HLT;
        return 0;
    }

    return 1;
}

int kvm_arch_handle_exit(CPUState *env, struct kvm_run *run)
{
    int ret = 0;

    switch (run->exit_reason) {
    case KVM_EXIT_HLT:
        dprintf("handle_hlt\n");
        ret = kvm_handle_halt(env);
        break;
    }

    return ret;
}