summaryrefslogtreecommitdiff
path: root/hw/eccmemctl.c
blob: 07f5ef76ff245bba0574d6fe5b78ceb899373539 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
/*
 * QEMU Sparc Sun4m ECC memory controller emulation
 *
 * Copyright (c) 2007 Robert Reif
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
 */
#include "hw.h"
#include "sun4m.h"
#include "sysemu.h"

//#define DEBUG_ECC

#ifdef DEBUG_ECC
#define DPRINTF(fmt, ...)                                       \
    do { printf("ECC: " fmt , ## __VA_ARGS__); } while (0)
#else
#define DPRINTF(fmt, ...)
#endif

/* There are 3 versions of this chip used in SMP sun4m systems:
 * MCC (version 0, implementation 0) SS-600MP
 * EMC (version 0, implementation 1) SS-10
 * SMC (version 0, implementation 2) SS-10SX and SS-20
 */

#define ECC_MCC        0x00000000
#define ECC_EMC        0x10000000
#define ECC_SMC        0x20000000

/* Register indexes */
#define ECC_MER        0               /* Memory Enable Register */
#define ECC_MDR        1               /* Memory Delay Register */
#define ECC_MFSR       2               /* Memory Fault Status Register */
#define ECC_VCR        3               /* Video Configuration Register */
#define ECC_MFAR0      4               /* Memory Fault Address Register 0 */
#define ECC_MFAR1      5               /* Memory Fault Address Register 1 */
#define ECC_DR         6               /* Diagnostic Register */
#define ECC_ECR0       7               /* Event Count Register 0 */
#define ECC_ECR1       8               /* Event Count Register 1 */

/* ECC fault control register */
#define ECC_MER_EE     0x00000001      /* Enable ECC checking */
#define ECC_MER_EI     0x00000002      /* Enable Interrupts on
                                          correctable errors */
#define ECC_MER_MRR0   0x00000004      /* SIMM 0 */
#define ECC_MER_MRR1   0x00000008      /* SIMM 1 */
#define ECC_MER_MRR2   0x00000010      /* SIMM 2 */
#define ECC_MER_MRR3   0x00000020      /* SIMM 3 */
#define ECC_MER_MRR4   0x00000040      /* SIMM 4 */
#define ECC_MER_MRR5   0x00000080      /* SIMM 5 */
#define ECC_MER_MRR6   0x00000100      /* SIMM 6 */
#define ECC_MER_MRR7   0x00000200      /* SIMM 7 */
#define ECC_MER_REU    0x00000100      /* Memory Refresh Enable (600MP) */
#define ECC_MER_MRR    0x000003fc      /* MRR mask */
#define ECC_MER_A      0x00000400      /* Memory controller addr map select */
#define ECC_MER_DCI    0x00000800      /* Disables Coherent Invalidate ACK */
#define ECC_MER_VER    0x0f000000      /* Version */
#define ECC_MER_IMPL   0xf0000000      /* Implementation */
#define ECC_MER_MASK_0 0x00000103      /* Version 0 (MCC) mask */
#define ECC_MER_MASK_1 0x00000bff      /* Version 1 (EMC) mask */
#define ECC_MER_MASK_2 0x00000bff      /* Version 2 (SMC) mask */

/* ECC memory delay register */
#define ECC_MDR_RRI    0x000003ff      /* Refresh Request Interval */
#define ECC_MDR_MI     0x00001c00      /* MIH Delay */
#define ECC_MDR_CI     0x0000e000      /* Coherent Invalidate Delay */
#define ECC_MDR_MDL    0x001f0000      /* MBus Master arbitration delay */
#define ECC_MDR_MDH    0x03e00000      /* MBus Master arbitration delay */
#define ECC_MDR_GAD    0x7c000000      /* Graphics Arbitration Delay */
#define ECC_MDR_RSC    0x80000000      /* Refresh load control */
#define ECC_MDR_MASK   0x7fffffff

/* ECC fault status register */
#define ECC_MFSR_CE    0x00000001      /* Correctable error */
#define ECC_MFSR_BS    0x00000002      /* C2 graphics bad slot access */
#define ECC_MFSR_TO    0x00000004      /* Timeout on write */
#define ECC_MFSR_UE    0x00000008      /* Uncorrectable error */
#define ECC_MFSR_DW    0x000000f0      /* Index of double word in block */
#define ECC_MFSR_SYND  0x0000ff00      /* Syndrome for correctable error */
#define ECC_MFSR_ME    0x00010000      /* Multiple errors */
#define ECC_MFSR_C2ERR 0x00020000      /* C2 graphics error */

/* ECC fault address register 0 */
#define ECC_MFAR0_PADDR 0x0000000f     /* PA[32-35] */
#define ECC_MFAR0_TYPE  0x000000f0     /* Transaction type */
#define ECC_MFAR0_SIZE  0x00000700     /* Transaction size */
#define ECC_MFAR0_CACHE 0x00000800     /* Mapped cacheable */
#define ECC_MFAR0_LOCK  0x00001000     /* Error occurred in atomic cycle */
#define ECC_MFAR0_BMODE 0x00002000     /* Boot mode */
#define ECC_MFAR0_VADDR 0x003fc000     /* VA[12-19] (superset bits) */
#define ECC_MFAR0_S     0x08000000     /* Supervisor mode */
#define ECC_MFARO_MID   0xf0000000     /* Module ID */

/* ECC diagnostic register */
#define ECC_DR_CBX     0x00000001
#define ECC_DR_CB0     0x00000002
#define ECC_DR_CB1     0x00000004
#define ECC_DR_CB2     0x00000008
#define ECC_DR_CB4     0x00000010
#define ECC_DR_CB8     0x00000020
#define ECC_DR_CB16    0x00000040
#define ECC_DR_CB32    0x00000080
#define ECC_DR_DMODE   0x00000c00

#define ECC_NREGS      9
#define ECC_SIZE       (ECC_NREGS * sizeof(uint32_t))

#define ECC_DIAG_SIZE  4
#define ECC_DIAG_MASK  (ECC_DIAG_SIZE - 1)

typedef struct ECCState {
    qemu_irq irq;
    uint32_t regs[ECC_NREGS];
    uint8_t diag[ECC_DIAG_SIZE];
    uint32_t version;
} ECCState;

static void ecc_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
{
    ECCState *s = opaque;

    switch (addr >> 2) {
    case ECC_MER:
        if (s->version == ECC_MCC)
            s->regs[ECC_MER] = (val & ECC_MER_MASK_0);
        else if (s->version == ECC_EMC)
            s->regs[ECC_MER] = s->version | (val & ECC_MER_MASK_1);
        else if (s->version == ECC_SMC)
            s->regs[ECC_MER] = s->version | (val & ECC_MER_MASK_2);
        DPRINTF("Write memory enable %08x\n", val);
        break;
    case ECC_MDR:
        s->regs[ECC_MDR] =  val & ECC_MDR_MASK;
        DPRINTF("Write memory delay %08x\n", val);
        break;
    case ECC_MFSR:
        s->regs[ECC_MFSR] =  val;
        qemu_irq_lower(s->irq);
        DPRINTF("Write memory fault status %08x\n", val);
        break;
    case ECC_VCR:
        s->regs[ECC_VCR] =  val;
        DPRINTF("Write slot configuration %08x\n", val);
        break;
    case ECC_DR:
        s->regs[ECC_DR] =  val;
        DPRINTF("Write diagnostic %08x\n", val);
        break;
    case ECC_ECR0:
        s->regs[ECC_ECR0] =  val;
        DPRINTF("Write event count 1 %08x\n", val);
        break;
    case ECC_ECR1:
        s->regs[ECC_ECR0] =  val;
        DPRINTF("Write event count 2 %08x\n", val);
        break;
    }
}

static uint32_t ecc_mem_readl(void *opaque, target_phys_addr_t addr)
{
    ECCState *s = opaque;
    uint32_t ret = 0;

    switch (addr >> 2) {
    case ECC_MER:
        ret = s->regs[ECC_MER];
        DPRINTF("Read memory enable %08x\n", ret);
        break;
    case ECC_MDR:
        ret = s->regs[ECC_MDR];
        DPRINTF("Read memory delay %08x\n", ret);
        break;
    case ECC_MFSR:
        ret = s->regs[ECC_MFSR];
        DPRINTF("Read memory fault status %08x\n", ret);
        break;
    case ECC_VCR:
        ret = s->regs[ECC_VCR];
        DPRINTF("Read slot configuration %08x\n", ret);
        break;
    case ECC_MFAR0:
        ret = s->regs[ECC_MFAR0];
        DPRINTF("Read memory fault address 0 %08x\n", ret);
        break;
    case ECC_MFAR1:
        ret = s->regs[ECC_MFAR1];
        DPRINTF("Read memory fault address 1 %08x\n", ret);
        break;
    case ECC_DR:
        ret = s->regs[ECC_DR];
        DPRINTF("Read diagnostic %08x\n", ret);
        break;
    case ECC_ECR0:
        ret = s->regs[ECC_ECR0];
        DPRINTF("Read event count 1 %08x\n", ret);
        break;
    case ECC_ECR1:
        ret = s->regs[ECC_ECR0];
        DPRINTF("Read event count 2 %08x\n", ret);
        break;
    }
    return ret;
}

static CPUReadMemoryFunc *ecc_mem_read[3] = {
    NULL,
    NULL,
    ecc_mem_readl,
};

static CPUWriteMemoryFunc *ecc_mem_write[3] = {
    NULL,
    NULL,
    ecc_mem_writel,
};

static void ecc_diag_mem_writeb(void *opaque, target_phys_addr_t addr,
                                uint32_t val)
{
    ECCState *s = opaque;

    DPRINTF("Write diagnostic[%d] = %02x\n", (int)addr, val);
    s->diag[addr & ECC_DIAG_MASK] = val;
}

static uint32_t ecc_diag_mem_readb(void *opaque, target_phys_addr_t addr)
{
    ECCState *s = opaque;
    uint32_t ret = s->diag[(int)addr];

    DPRINTF("Read diagnostic[%d] = %02x\n", (int)addr, ret);
    return ret;
}

static CPUReadMemoryFunc *ecc_diag_mem_read[3] = {
    ecc_diag_mem_readb,
    NULL,
    NULL,
};

static CPUWriteMemoryFunc *ecc_diag_mem_write[3] = {
    ecc_diag_mem_writeb,
    NULL,
    NULL,
};

static int ecc_load(QEMUFile *f, void *opaque, int version_id)
{
    ECCState *s = opaque;
    int i;

    if (version_id != 3)
        return -EINVAL;

    for (i = 0; i < ECC_NREGS; i++)
        qemu_get_be32s(f, &s->regs[i]);

    for (i = 0; i < ECC_DIAG_SIZE; i++)
        qemu_get_8s(f, &s->diag[i]);

    qemu_get_be32s(f, &s->version);

    return 0;
}

static void ecc_save(QEMUFile *f, void *opaque)
{
    ECCState *s = opaque;
    int i;

    for (i = 0; i < ECC_NREGS; i++)
        qemu_put_be32s(f, &s->regs[i]);

    for (i = 0; i < ECC_DIAG_SIZE; i++)
        qemu_put_8s(f, &s->diag[i]);

    qemu_put_be32s(f, &s->version);
}

static void ecc_reset(void *opaque)
{
    ECCState *s = opaque;

    if (s->version == ECC_MCC)
        s->regs[ECC_MER] &= ECC_MER_REU;
    else
        s->regs[ECC_MER] &= (ECC_MER_VER | ECC_MER_IMPL | ECC_MER_MRR |
                             ECC_MER_DCI);
    s->regs[ECC_MDR] = 0x20;
    s->regs[ECC_MFSR] = 0;
    s->regs[ECC_VCR] = 0;
    s->regs[ECC_MFAR0] = 0x07c00000;
    s->regs[ECC_MFAR1] = 0;
    s->regs[ECC_DR] = 0;
    s->regs[ECC_ECR0] = 0;
    s->regs[ECC_ECR1] = 0;
}

void * ecc_init(target_phys_addr_t base, qemu_irq irq, uint32_t version)
{
    int ecc_io_memory;
    ECCState *s;

    s = qemu_mallocz(sizeof(ECCState));

    s->version = version;
    s->regs[0] = version;
    s->irq = irq;

    ecc_io_memory = cpu_register_io_memory(0, ecc_mem_read, ecc_mem_write, s);
    cpu_register_physical_memory(base, ECC_SIZE, ecc_io_memory);
    if (version == ECC_MCC) { // SS-600MP only
        ecc_io_memory = cpu_register_io_memory(0, ecc_diag_mem_read,
                                               ecc_diag_mem_write, s);
        cpu_register_physical_memory(base + 0x1000, ECC_DIAG_SIZE,
                                     ecc_io_memory);
    }
    register_savevm("ECC", base, 3, ecc_save, ecc_load, s);
    qemu_register_reset(ecc_reset, s);
    ecc_reset(s);
    return s;
}