1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
|
/* SPDX-License-Identifier: LGPL-2.1+ */
#include <fcntl.h>
#include <fnmatch.h>
#include "sd-messages.h"
#include "alloc-util.h"
#include "blockdev-util.h"
#include "bpf-devices.h"
#include "bpf-firewall.h"
#include "btrfs-util.h"
#include "bus-error.h"
#include "cgroup-util.h"
#include "cgroup.h"
#include "fd-util.h"
#include "fileio.h"
#include "fs-util.h"
#include "nulstr-util.h"
#include "parse-util.h"
#include "path-util.h"
#include "process-util.h"
#include "procfs-util.h"
#include "special.h"
#include "stat-util.h"
#include "stdio-util.h"
#include "string-table.h"
#include "string-util.h"
#include "virt.h"
#define CGROUP_CPU_QUOTA_DEFAULT_PERIOD_USEC ((usec_t) 100 * USEC_PER_MSEC)
/* Returns the log level to use when cgroup attribute writes fail. When an attribute is missing or we have access
* problems we downgrade to LOG_DEBUG. This is supposed to be nice to container managers and kernels which want to mask
* out specific attributes from us. */
#define LOG_LEVEL_CGROUP_WRITE(r) (IN_SET(abs(r), ENOENT, EROFS, EACCES, EPERM) ? LOG_DEBUG : LOG_WARNING)
bool manager_owns_host_root_cgroup(Manager *m) {
assert(m);
/* Returns true if we are managing the root cgroup. Note that it isn't sufficient to just check whether the
* group root path equals "/" since that will also be the case if CLONE_NEWCGROUP is in the mix. Since there's
* appears to be no nice way to detect whether we are in a CLONE_NEWCGROUP namespace we instead just check if
* we run in any kind of container virtualization. */
if (MANAGER_IS_USER(m))
return false;
if (detect_container() > 0)
return false;
return empty_or_root(m->cgroup_root);
}
bool unit_has_host_root_cgroup(Unit *u) {
assert(u);
/* Returns whether this unit manages the root cgroup. This will return true if this unit is the root slice and
* the manager manages the root cgroup. */
if (!manager_owns_host_root_cgroup(u->manager))
return false;
return unit_has_name(u, SPECIAL_ROOT_SLICE);
}
static int set_attribute_and_warn(Unit *u, const char *controller, const char *attribute, const char *value) {
int r;
r = cg_set_attribute(controller, u->cgroup_path, attribute, value);
if (r < 0)
log_unit_full(u, LOG_LEVEL_CGROUP_WRITE(r), r, "Failed to set '%s' attribute on '%s' to '%.*s': %m",
strna(attribute), isempty(u->cgroup_path) ? "/" : u->cgroup_path, (int) strcspn(value, NEWLINE), value);
return r;
}
static void cgroup_compat_warn(void) {
static bool cgroup_compat_warned = false;
if (cgroup_compat_warned)
return;
log_warning("cgroup compatibility translation between legacy and unified hierarchy settings activated. "
"See cgroup-compat debug messages for details.");
cgroup_compat_warned = true;
}
#define log_cgroup_compat(unit, fmt, ...) do { \
cgroup_compat_warn(); \
log_unit_debug(unit, "cgroup-compat: " fmt, ##__VA_ARGS__); \
} while (false)
void cgroup_context_init(CGroupContext *c) {
assert(c);
/* Initialize everything to the kernel defaults. */
*c = (CGroupContext) {
.cpu_weight = CGROUP_WEIGHT_INVALID,
.startup_cpu_weight = CGROUP_WEIGHT_INVALID,
.cpu_quota_per_sec_usec = USEC_INFINITY,
.cpu_quota_period_usec = USEC_INFINITY,
.cpu_shares = CGROUP_CPU_SHARES_INVALID,
.startup_cpu_shares = CGROUP_CPU_SHARES_INVALID,
.memory_high = CGROUP_LIMIT_MAX,
.memory_max = CGROUP_LIMIT_MAX,
.memory_swap_max = CGROUP_LIMIT_MAX,
.memory_limit = CGROUP_LIMIT_MAX,
.io_weight = CGROUP_WEIGHT_INVALID,
.startup_io_weight = CGROUP_WEIGHT_INVALID,
.blockio_weight = CGROUP_BLKIO_WEIGHT_INVALID,
.startup_blockio_weight = CGROUP_BLKIO_WEIGHT_INVALID,
.tasks_max = CGROUP_LIMIT_MAX,
};
}
void cgroup_context_free_device_allow(CGroupContext *c, CGroupDeviceAllow *a) {
assert(c);
assert(a);
LIST_REMOVE(device_allow, c->device_allow, a);
free(a->path);
free(a);
}
void cgroup_context_free_io_device_weight(CGroupContext *c, CGroupIODeviceWeight *w) {
assert(c);
assert(w);
LIST_REMOVE(device_weights, c->io_device_weights, w);
free(w->path);
free(w);
}
void cgroup_context_free_io_device_latency(CGroupContext *c, CGroupIODeviceLatency *l) {
assert(c);
assert(l);
LIST_REMOVE(device_latencies, c->io_device_latencies, l);
free(l->path);
free(l);
}
void cgroup_context_free_io_device_limit(CGroupContext *c, CGroupIODeviceLimit *l) {
assert(c);
assert(l);
LIST_REMOVE(device_limits, c->io_device_limits, l);
free(l->path);
free(l);
}
void cgroup_context_free_blockio_device_weight(CGroupContext *c, CGroupBlockIODeviceWeight *w) {
assert(c);
assert(w);
LIST_REMOVE(device_weights, c->blockio_device_weights, w);
free(w->path);
free(w);
}
void cgroup_context_free_blockio_device_bandwidth(CGroupContext *c, CGroupBlockIODeviceBandwidth *b) {
assert(c);
assert(b);
LIST_REMOVE(device_bandwidths, c->blockio_device_bandwidths, b);
free(b->path);
free(b);
}
void cgroup_context_done(CGroupContext *c) {
assert(c);
while (c->io_device_weights)
cgroup_context_free_io_device_weight(c, c->io_device_weights);
while (c->io_device_latencies)
cgroup_context_free_io_device_latency(c, c->io_device_latencies);
while (c->io_device_limits)
cgroup_context_free_io_device_limit(c, c->io_device_limits);
while (c->blockio_device_weights)
cgroup_context_free_blockio_device_weight(c, c->blockio_device_weights);
while (c->blockio_device_bandwidths)
cgroup_context_free_blockio_device_bandwidth(c, c->blockio_device_bandwidths);
while (c->device_allow)
cgroup_context_free_device_allow(c, c->device_allow);
c->ip_address_allow = ip_address_access_free_all(c->ip_address_allow);
c->ip_address_deny = ip_address_access_free_all(c->ip_address_deny);
c->ip_filters_ingress = strv_free(c->ip_filters_ingress);
c->ip_filters_egress = strv_free(c->ip_filters_egress);
}
void cgroup_context_dump(CGroupContext *c, FILE* f, const char *prefix) {
_cleanup_free_ char *disable_controllers_str = NULL;
CGroupIODeviceLimit *il;
CGroupIODeviceWeight *iw;
CGroupIODeviceLatency *l;
CGroupBlockIODeviceBandwidth *b;
CGroupBlockIODeviceWeight *w;
CGroupDeviceAllow *a;
IPAddressAccessItem *iaai;
char **path;
char u[FORMAT_TIMESPAN_MAX];
char v[FORMAT_TIMESPAN_MAX];
assert(c);
assert(f);
prefix = strempty(prefix);
(void) cg_mask_to_string(c->disable_controllers, &disable_controllers_str);
fprintf(f,
"%sCPUAccounting=%s\n"
"%sIOAccounting=%s\n"
"%sBlockIOAccounting=%s\n"
"%sMemoryAccounting=%s\n"
"%sTasksAccounting=%s\n"
"%sIPAccounting=%s\n"
"%sCPUWeight=%" PRIu64 "\n"
"%sStartupCPUWeight=%" PRIu64 "\n"
"%sCPUShares=%" PRIu64 "\n"
"%sStartupCPUShares=%" PRIu64 "\n"
"%sCPUQuotaPerSecSec=%s\n"
"%sCPUQuotaPeriodSec=%s\n"
"%sIOWeight=%" PRIu64 "\n"
"%sStartupIOWeight=%" PRIu64 "\n"
"%sBlockIOWeight=%" PRIu64 "\n"
"%sStartupBlockIOWeight=%" PRIu64 "\n"
"%sDefaultMemoryMin=%" PRIu64 "\n"
"%sDefaultMemoryLow=%" PRIu64 "\n"
"%sMemoryMin=%" PRIu64 "\n"
"%sMemoryLow=%" PRIu64 "\n"
"%sMemoryHigh=%" PRIu64 "\n"
"%sMemoryMax=%" PRIu64 "\n"
"%sMemorySwapMax=%" PRIu64 "\n"
"%sMemoryLimit=%" PRIu64 "\n"
"%sTasksMax=%" PRIu64 "\n"
"%sDevicePolicy=%s\n"
"%sDisableControllers=%s\n"
"%sDelegate=%s\n",
prefix, yes_no(c->cpu_accounting),
prefix, yes_no(c->io_accounting),
prefix, yes_no(c->blockio_accounting),
prefix, yes_no(c->memory_accounting),
prefix, yes_no(c->tasks_accounting),
prefix, yes_no(c->ip_accounting),
prefix, c->cpu_weight,
prefix, c->startup_cpu_weight,
prefix, c->cpu_shares,
prefix, c->startup_cpu_shares,
prefix, format_timespan(u, sizeof(u), c->cpu_quota_per_sec_usec, 1),
prefix, format_timespan(v, sizeof(v), c->cpu_quota_period_usec, 1),
prefix, c->io_weight,
prefix, c->startup_io_weight,
prefix, c->blockio_weight,
prefix, c->startup_blockio_weight,
prefix, c->default_memory_min,
prefix, c->default_memory_low,
prefix, c->memory_min,
prefix, c->memory_low,
prefix, c->memory_high,
prefix, c->memory_max,
prefix, c->memory_swap_max,
prefix, c->memory_limit,
prefix, c->tasks_max,
prefix, cgroup_device_policy_to_string(c->device_policy),
prefix, strempty(disable_controllers_str),
prefix, yes_no(c->delegate));
if (c->delegate) {
_cleanup_free_ char *t = NULL;
(void) cg_mask_to_string(c->delegate_controllers, &t);
fprintf(f, "%sDelegateControllers=%s\n",
prefix,
strempty(t));
}
LIST_FOREACH(device_allow, a, c->device_allow)
fprintf(f,
"%sDeviceAllow=%s %s%s%s\n",
prefix,
a->path,
a->r ? "r" : "", a->w ? "w" : "", a->m ? "m" : "");
LIST_FOREACH(device_weights, iw, c->io_device_weights)
fprintf(f,
"%sIODeviceWeight=%s %" PRIu64 "\n",
prefix,
iw->path,
iw->weight);
LIST_FOREACH(device_latencies, l, c->io_device_latencies)
fprintf(f,
"%sIODeviceLatencyTargetSec=%s %s\n",
prefix,
l->path,
format_timespan(u, sizeof(u), l->target_usec, 1));
LIST_FOREACH(device_limits, il, c->io_device_limits) {
char buf[FORMAT_BYTES_MAX];
CGroupIOLimitType type;
for (type = 0; type < _CGROUP_IO_LIMIT_TYPE_MAX; type++)
if (il->limits[type] != cgroup_io_limit_defaults[type])
fprintf(f,
"%s%s=%s %s\n",
prefix,
cgroup_io_limit_type_to_string(type),
il->path,
format_bytes(buf, sizeof(buf), il->limits[type]));
}
LIST_FOREACH(device_weights, w, c->blockio_device_weights)
fprintf(f,
"%sBlockIODeviceWeight=%s %" PRIu64,
prefix,
w->path,
w->weight);
LIST_FOREACH(device_bandwidths, b, c->blockio_device_bandwidths) {
char buf[FORMAT_BYTES_MAX];
if (b->rbps != CGROUP_LIMIT_MAX)
fprintf(f,
"%sBlockIOReadBandwidth=%s %s\n",
prefix,
b->path,
format_bytes(buf, sizeof(buf), b->rbps));
if (b->wbps != CGROUP_LIMIT_MAX)
fprintf(f,
"%sBlockIOWriteBandwidth=%s %s\n",
prefix,
b->path,
format_bytes(buf, sizeof(buf), b->wbps));
}
LIST_FOREACH(items, iaai, c->ip_address_allow) {
_cleanup_free_ char *k = NULL;
(void) in_addr_to_string(iaai->family, &iaai->address, &k);
fprintf(f, "%sIPAddressAllow=%s/%u\n", prefix, strnull(k), iaai->prefixlen);
}
LIST_FOREACH(items, iaai, c->ip_address_deny) {
_cleanup_free_ char *k = NULL;
(void) in_addr_to_string(iaai->family, &iaai->address, &k);
fprintf(f, "%sIPAddressDeny=%s/%u\n", prefix, strnull(k), iaai->prefixlen);
}
STRV_FOREACH(path, c->ip_filters_ingress)
fprintf(f, "%sIPIngressFilterPath=%s\n", prefix, *path);
STRV_FOREACH(path, c->ip_filters_egress)
fprintf(f, "%sIPEgressFilterPath=%s\n", prefix, *path);
}
int cgroup_add_device_allow(CGroupContext *c, const char *dev, const char *mode) {
_cleanup_free_ CGroupDeviceAllow *a = NULL;
_cleanup_free_ char *d = NULL;
assert(c);
assert(dev);
assert(isempty(mode) || in_charset(mode, "rwm"));
a = new(CGroupDeviceAllow, 1);
if (!a)
return -ENOMEM;
d = strdup(dev);
if (!d)
return -ENOMEM;
*a = (CGroupDeviceAllow) {
.path = TAKE_PTR(d),
.r = isempty(mode) || strchr(mode, 'r'),
.w = isempty(mode) || strchr(mode, 'w'),
.m = isempty(mode) || strchr(mode, 'm'),
};
LIST_PREPEND(device_allow, c->device_allow, a);
TAKE_PTR(a);
return 0;
}
#define UNIT_DEFINE_ANCESTOR_MEMORY_LOOKUP(entry) \
uint64_t unit_get_ancestor_##entry(Unit *u) { \
CGroupContext *c; \
\
/* 1. Is entry set in this unit? If so, use that. \
* 2. Is the default for this entry set in any \
* ancestor? If so, use that. \
* 3. Otherwise, return CGROUP_LIMIT_MIN. */ \
\
assert(u); \
\
c = unit_get_cgroup_context(u); \
if (c && c->entry##_set) \
return c->entry; \
\
while ((u = UNIT_DEREF(u->slice))) { \
c = unit_get_cgroup_context(u); \
if (c && c->default_##entry##_set) \
return c->default_##entry; \
} \
\
/* We've reached the root, but nobody had default for \
* this entry set, so set it to the kernel default. */ \
return CGROUP_LIMIT_MIN; \
}
UNIT_DEFINE_ANCESTOR_MEMORY_LOOKUP(memory_low);
UNIT_DEFINE_ANCESTOR_MEMORY_LOOKUP(memory_min);
static void cgroup_xattr_apply(Unit *u) {
char ids[SD_ID128_STRING_MAX];
int r;
assert(u);
if (!MANAGER_IS_SYSTEM(u->manager))
return;
if (sd_id128_is_null(u->invocation_id))
return;
r = cg_set_xattr(SYSTEMD_CGROUP_CONTROLLER, u->cgroup_path,
"trusted.invocation_id",
sd_id128_to_string(u->invocation_id, ids), 32,
0);
if (r < 0)
log_unit_debug_errno(u, r, "Failed to set invocation ID on control group %s, ignoring: %m", u->cgroup_path);
}
static int lookup_block_device(const char *p, dev_t *ret) {
dev_t rdev, dev = 0;
mode_t mode;
int r;
assert(p);
assert(ret);
r = device_path_parse_major_minor(p, &mode, &rdev);
if (r == -ENODEV) { /* not a parsable device node, need to go to disk */
struct stat st;
if (stat(p, &st) < 0)
return log_warning_errno(errno, "Couldn't stat device '%s': %m", p);
rdev = (dev_t)st.st_rdev;
dev = (dev_t)st.st_dev;
mode = st.st_mode;
} else if (r < 0)
return log_warning_errno(r, "Failed to parse major/minor from path '%s': %m", p);
if (S_ISCHR(mode)) {
log_warning("Device node '%s' is a character device, but block device needed.", p);
return -ENOTBLK;
} else if (S_ISBLK(mode))
*ret = rdev;
else if (major(dev) != 0)
*ret = dev; /* If this is not a device node then use the block device this file is stored on */
else {
/* If this is btrfs, getting the backing block device is a bit harder */
r = btrfs_get_block_device(p, ret);
if (r < 0 && r != -ENOTTY)
return log_warning_errno(r, "Failed to determine block device backing btrfs file system '%s': %m", p);
if (r == -ENOTTY) {
log_warning("'%s' is not a block device node, and file system block device cannot be determined or is not local.", p);
return -ENODEV;
}
}
/* If this is a LUKS device, try to get the originating block device */
(void) block_get_originating(*ret, ret);
/* If this is a partition, try to get the originating block device */
(void) block_get_whole_disk(*ret, ret);
return 0;
}
static int whitelist_device(BPFProgram *prog, const char *path, const char *node, const char *acc) {
dev_t rdev;
mode_t mode;
int r;
assert(path);
assert(acc);
/* Some special handling for /dev/block/%u:%u, /dev/char/%u:%u, /run/systemd/inaccessible/chr and
* /run/systemd/inaccessible/blk paths. Instead of stat()ing these we parse out the major/minor directly. This
* means clients can use these path without the device node actually around */
r = device_path_parse_major_minor(node, &mode, &rdev);
if (r < 0) {
if (r != -ENODEV)
return log_warning_errno(r, "Couldn't parse major/minor from device path '%s': %m", node);
struct stat st;
if (stat(node, &st) < 0)
return log_warning_errno(errno, "Couldn't stat device %s: %m", node);
if (!S_ISCHR(st.st_mode) && !S_ISBLK(st.st_mode)) {
log_warning("%s is not a device.", node);
return -ENODEV;
}
rdev = (dev_t) st.st_rdev;
mode = st.st_mode;
}
if (cg_all_unified() > 0) {
if (!prog)
return 0;
return cgroup_bpf_whitelist_device(prog, S_ISCHR(mode) ? BPF_DEVCG_DEV_CHAR : BPF_DEVCG_DEV_BLOCK,
major(rdev), minor(rdev), acc);
} else {
char buf[2+DECIMAL_STR_MAX(dev_t)*2+2+4];
sprintf(buf,
"%c %u:%u %s",
S_ISCHR(mode) ? 'c' : 'b',
major(rdev), minor(rdev),
acc);
/* Changing the devices list of a populated cgroup might result in EINVAL, hence ignore EINVAL here. */
r = cg_set_attribute("devices", path, "devices.allow", buf);
if (r < 0)
return log_full_errno(IN_SET(r, -ENOENT, -EROFS, -EINVAL, -EACCES, -EPERM) ? LOG_DEBUG : LOG_WARNING,
r, "Failed to set devices.allow on %s: %m", path);
return 0;
}
}
static int whitelist_major(BPFProgram *prog, const char *path, const char *name, char type, const char *acc) {
_cleanup_fclose_ FILE *f = NULL;
char buf[2+DECIMAL_STR_MAX(unsigned)+3+4];
bool good = false;
unsigned maj;
int r;
assert(path);
assert(acc);
assert(IN_SET(type, 'b', 'c'));
if (streq(name, "*")) {
/* If the name is a wildcard, then apply this list to all devices of this type */
if (cg_all_unified() > 0) {
if (!prog)
return 0;
(void) cgroup_bpf_whitelist_class(prog, type == 'c' ? BPF_DEVCG_DEV_CHAR : BPF_DEVCG_DEV_BLOCK, acc);
} else {
xsprintf(buf, "%c *:* %s", type, acc);
r = cg_set_attribute("devices", path, "devices.allow", buf);
if (r < 0)
log_full_errno(IN_SET(r, -ENOENT, -EROFS, -EINVAL, -EACCES) ? LOG_DEBUG : LOG_WARNING, r,
"Failed to set devices.allow on %s: %m", path);
return 0;
}
}
if (safe_atou(name, &maj) >= 0 && DEVICE_MAJOR_VALID(maj)) {
/* The name is numeric and suitable as major. In that case, let's take is major, and create the entry
* directly */
if (cg_all_unified() > 0) {
if (!prog)
return 0;
(void) cgroup_bpf_whitelist_major(prog,
type == 'c' ? BPF_DEVCG_DEV_CHAR : BPF_DEVCG_DEV_BLOCK,
maj, acc);
} else {
xsprintf(buf, "%c %u:* %s", type, maj, acc);
r = cg_set_attribute("devices", path, "devices.allow", buf);
if (r < 0)
log_full_errno(IN_SET(r, -ENOENT, -EROFS, -EINVAL, -EACCES) ? LOG_DEBUG : LOG_WARNING, r,
"Failed to set devices.allow on %s: %m", path);
}
return 0;
}
f = fopen("/proc/devices", "re");
if (!f)
return log_warning_errno(errno, "Cannot open /proc/devices to resolve %s (%c): %m", name, type);
for (;;) {
_cleanup_free_ char *line = NULL;
char *w, *p;
r = read_line(f, LONG_LINE_MAX, &line);
if (r < 0)
return log_warning_errno(r, "Failed to read /proc/devices: %m");
if (r == 0)
break;
if (type == 'c' && streq(line, "Character devices:")) {
good = true;
continue;
}
if (type == 'b' && streq(line, "Block devices:")) {
good = true;
continue;
}
if (isempty(line)) {
good = false;
continue;
}
if (!good)
continue;
p = strstrip(line);
w = strpbrk(p, WHITESPACE);
if (!w)
continue;
*w = 0;
r = safe_atou(p, &maj);
if (r < 0)
continue;
if (maj <= 0)
continue;
w++;
w += strspn(w, WHITESPACE);
if (fnmatch(name, w, 0) != 0)
continue;
if (cg_all_unified() > 0) {
if (!prog)
continue;
(void) cgroup_bpf_whitelist_major(prog,
type == 'c' ? BPF_DEVCG_DEV_CHAR : BPF_DEVCG_DEV_BLOCK,
maj, acc);
} else {
sprintf(buf,
"%c %u:* %s",
type,
maj,
acc);
/* Changing the devices list of a populated cgroup might result in EINVAL, hence ignore EINVAL
* here. */
r = cg_set_attribute("devices", path, "devices.allow", buf);
if (r < 0)
log_full_errno(IN_SET(r, -ENOENT, -EROFS, -EINVAL, -EACCES, -EPERM) ? LOG_DEBUG : LOG_WARNING,
r, "Failed to set devices.allow on %s: %m", path);
}
}
return 0;
}
static bool cgroup_context_has_cpu_weight(CGroupContext *c) {
return c->cpu_weight != CGROUP_WEIGHT_INVALID ||
c->startup_cpu_weight != CGROUP_WEIGHT_INVALID;
}
static bool cgroup_context_has_cpu_shares(CGroupContext *c) {
return c->cpu_shares != CGROUP_CPU_SHARES_INVALID ||
c->startup_cpu_shares != CGROUP_CPU_SHARES_INVALID;
}
static uint64_t cgroup_context_cpu_weight(CGroupContext *c, ManagerState state) {
if (IN_SET(state, MANAGER_STARTING, MANAGER_INITIALIZING) &&
c->startup_cpu_weight != CGROUP_WEIGHT_INVALID)
return c->startup_cpu_weight;
else if (c->cpu_weight != CGROUP_WEIGHT_INVALID)
return c->cpu_weight;
else
return CGROUP_WEIGHT_DEFAULT;
}
static uint64_t cgroup_context_cpu_shares(CGroupContext *c, ManagerState state) {
if (IN_SET(state, MANAGER_STARTING, MANAGER_INITIALIZING) &&
c->startup_cpu_shares != CGROUP_CPU_SHARES_INVALID)
return c->startup_cpu_shares;
else if (c->cpu_shares != CGROUP_CPU_SHARES_INVALID)
return c->cpu_shares;
else
return CGROUP_CPU_SHARES_DEFAULT;
}
usec_t cgroup_cpu_adjust_period(usec_t period, usec_t quota, usec_t resolution, usec_t max_period) {
/* kernel uses a minimum resolution of 1ms, so both period and (quota * period)
* need to be higher than that boundary. quota is specified in USecPerSec.
* Additionally, period must be at most max_period. */
assert(quota > 0);
return MIN(MAX3(period, resolution, resolution * USEC_PER_SEC / quota), max_period);
}
static usec_t cgroup_cpu_adjust_period_and_log(Unit *u, usec_t period, usec_t quota) {
usec_t new_period;
if (quota == USEC_INFINITY)
/* Always use default period for infinity quota. */
return CGROUP_CPU_QUOTA_DEFAULT_PERIOD_USEC;
if (period == USEC_INFINITY)
/* Default period was requested. */
period = CGROUP_CPU_QUOTA_DEFAULT_PERIOD_USEC;
/* Clamp to interval [1ms, 1s] */
new_period = cgroup_cpu_adjust_period(period, quota, USEC_PER_MSEC, USEC_PER_SEC);
if (new_period != period) {
char v[FORMAT_TIMESPAN_MAX];
log_unit_full(u, u->warned_clamping_cpu_quota_period ? LOG_DEBUG : LOG_WARNING, 0,
"Clamping CPU interval for cpu.max: period is now %s",
format_timespan(v, sizeof(v), new_period, 1));
u->warned_clamping_cpu_quota_period = true;
}
return new_period;
}
static void cgroup_apply_unified_cpu_weight(Unit *u, uint64_t weight) {
char buf[DECIMAL_STR_MAX(uint64_t) + 2];
xsprintf(buf, "%" PRIu64 "\n", weight);
(void) set_attribute_and_warn(u, "cpu", "cpu.weight", buf);
}
static void cgroup_apply_unified_cpu_quota(Unit *u, usec_t quota, usec_t period) {
char buf[(DECIMAL_STR_MAX(usec_t) + 1) * 2 + 1];
period = cgroup_cpu_adjust_period_and_log(u, period, quota);
if (quota != USEC_INFINITY)
xsprintf(buf, USEC_FMT " " USEC_FMT "\n",
MAX(quota * period / USEC_PER_SEC, USEC_PER_MSEC), period);
else
xsprintf(buf, "max " USEC_FMT "\n", period);
(void) set_attribute_and_warn(u, "cpu", "cpu.max", buf);
}
static void cgroup_apply_legacy_cpu_shares(Unit *u, uint64_t shares) {
char buf[DECIMAL_STR_MAX(uint64_t) + 2];
xsprintf(buf, "%" PRIu64 "\n", shares);
(void) set_attribute_and_warn(u, "cpu", "cpu.shares", buf);
}
static void cgroup_apply_legacy_cpu_quota(Unit *u, usec_t quota, usec_t period) {
char buf[DECIMAL_STR_MAX(usec_t) + 2];
period = cgroup_cpu_adjust_period_and_log(u, period, quota);
xsprintf(buf, USEC_FMT "\n", period);
(void) set_attribute_and_warn(u, "cpu", "cpu.cfs_period_us", buf);
if (quota != USEC_INFINITY) {
xsprintf(buf, USEC_FMT "\n", MAX(quota * period / USEC_PER_SEC, USEC_PER_MSEC));
(void) set_attribute_and_warn(u, "cpu", "cpu.cfs_quota_us", buf);
} else
(void) set_attribute_and_warn(u, "cpu", "cpu.cfs_quota_us", "-1\n");
}
static uint64_t cgroup_cpu_shares_to_weight(uint64_t shares) {
return CLAMP(shares * CGROUP_WEIGHT_DEFAULT / CGROUP_CPU_SHARES_DEFAULT,
CGROUP_WEIGHT_MIN, CGROUP_WEIGHT_MAX);
}
static uint64_t cgroup_cpu_weight_to_shares(uint64_t weight) {
return CLAMP(weight * CGROUP_CPU_SHARES_DEFAULT / CGROUP_WEIGHT_DEFAULT,
CGROUP_CPU_SHARES_MIN, CGROUP_CPU_SHARES_MAX);
}
static bool cgroup_context_has_io_config(CGroupContext *c) {
return c->io_accounting ||
c->io_weight != CGROUP_WEIGHT_INVALID ||
c->startup_io_weight != CGROUP_WEIGHT_INVALID ||
c->io_device_weights ||
c->io_device_latencies ||
c->io_device_limits;
}
static bool cgroup_context_has_blockio_config(CGroupContext *c) {
return c->blockio_accounting ||
c->blockio_weight != CGROUP_BLKIO_WEIGHT_INVALID ||
c->startup_blockio_weight != CGROUP_BLKIO_WEIGHT_INVALID ||
c->blockio_device_weights ||
c->blockio_device_bandwidths;
}
static uint64_t cgroup_context_io_weight(CGroupContext *c, ManagerState state) {
if (IN_SET(state, MANAGER_STARTING, MANAGER_INITIALIZING) &&
c->startup_io_weight != CGROUP_WEIGHT_INVALID)
return c->startup_io_weight;
else if (c->io_weight != CGROUP_WEIGHT_INVALID)
return c->io_weight;
else
return CGROUP_WEIGHT_DEFAULT;
}
static uint64_t cgroup_context_blkio_weight(CGroupContext *c, ManagerState state) {
if (IN_SET(state, MANAGER_STARTING, MANAGER_INITIALIZING) &&
c->startup_blockio_weight != CGROUP_BLKIO_WEIGHT_INVALID)
return c->startup_blockio_weight;
else if (c->blockio_weight != CGROUP_BLKIO_WEIGHT_INVALID)
return c->blockio_weight;
else
return CGROUP_BLKIO_WEIGHT_DEFAULT;
}
static uint64_t cgroup_weight_blkio_to_io(uint64_t blkio_weight) {
return CLAMP(blkio_weight * CGROUP_WEIGHT_DEFAULT / CGROUP_BLKIO_WEIGHT_DEFAULT,
CGROUP_WEIGHT_MIN, CGROUP_WEIGHT_MAX);
}
static uint64_t cgroup_weight_io_to_blkio(uint64_t io_weight) {
return CLAMP(io_weight * CGROUP_BLKIO_WEIGHT_DEFAULT / CGROUP_WEIGHT_DEFAULT,
CGROUP_BLKIO_WEIGHT_MIN, CGROUP_BLKIO_WEIGHT_MAX);
}
static void cgroup_apply_io_device_weight(Unit *u, const char *dev_path, uint64_t io_weight) {
char buf[DECIMAL_STR_MAX(dev_t)*2+2+DECIMAL_STR_MAX(uint64_t)+1];
dev_t dev;
int r;
r = lookup_block_device(dev_path, &dev);
if (r < 0)
return;
xsprintf(buf, "%u:%u %" PRIu64 "\n", major(dev), minor(dev), io_weight);
(void) set_attribute_and_warn(u, "io", "io.weight", buf);
}
static void cgroup_apply_blkio_device_weight(Unit *u, const char *dev_path, uint64_t blkio_weight) {
char buf[DECIMAL_STR_MAX(dev_t)*2+2+DECIMAL_STR_MAX(uint64_t)+1];
dev_t dev;
int r;
r = lookup_block_device(dev_path, &dev);
if (r < 0)
return;
xsprintf(buf, "%u:%u %" PRIu64 "\n", major(dev), minor(dev), blkio_weight);
(void) set_attribute_and_warn(u, "blkio", "blkio.weight_device", buf);
}
static void cgroup_apply_io_device_latency(Unit *u, const char *dev_path, usec_t target) {
char buf[DECIMAL_STR_MAX(dev_t)*2+2+7+DECIMAL_STR_MAX(uint64_t)+1];
dev_t dev;
int r;
r = lookup_block_device(dev_path, &dev);
if (r < 0)
return;
if (target != USEC_INFINITY)
xsprintf(buf, "%u:%u target=%" PRIu64 "\n", major(dev), minor(dev), target);
else
xsprintf(buf, "%u:%u target=max\n", major(dev), minor(dev));
(void) set_attribute_and_warn(u, "io", "io.latency", buf);
}
static void cgroup_apply_io_device_limit(Unit *u, const char *dev_path, uint64_t *limits) {
char limit_bufs[_CGROUP_IO_LIMIT_TYPE_MAX][DECIMAL_STR_MAX(uint64_t)];
char buf[DECIMAL_STR_MAX(dev_t)*2+2+(6+DECIMAL_STR_MAX(uint64_t)+1)*4];
CGroupIOLimitType type;
dev_t dev;
int r;
r = lookup_block_device(dev_path, &dev);
if (r < 0)
return;
for (type = 0; type < _CGROUP_IO_LIMIT_TYPE_MAX; type++)
if (limits[type] != cgroup_io_limit_defaults[type])
xsprintf(limit_bufs[type], "%" PRIu64, limits[type]);
else
xsprintf(limit_bufs[type], "%s", limits[type] == CGROUP_LIMIT_MAX ? "max" : "0");
xsprintf(buf, "%u:%u rbps=%s wbps=%s riops=%s wiops=%s\n", major(dev), minor(dev),
limit_bufs[CGROUP_IO_RBPS_MAX], limit_bufs[CGROUP_IO_WBPS_MAX],
limit_bufs[CGROUP_IO_RIOPS_MAX], limit_bufs[CGROUP_IO_WIOPS_MAX]);
(void) set_attribute_and_warn(u, "io", "io.max", buf);
}
static void cgroup_apply_blkio_device_limit(Unit *u, const char *dev_path, uint64_t rbps, uint64_t wbps) {
char buf[DECIMAL_STR_MAX(dev_t)*2+2+DECIMAL_STR_MAX(uint64_t)+1];
dev_t dev;
int r;
r = lookup_block_device(dev_path, &dev);
if (r < 0)
return;
sprintf(buf, "%u:%u %" PRIu64 "\n", major(dev), minor(dev), rbps);
(void) set_attribute_and_warn(u, "blkio", "blkio.throttle.read_bps_device", buf);
sprintf(buf, "%u:%u %" PRIu64 "\n", major(dev), minor(dev), wbps);
(void) set_attribute_and_warn(u, "blkio", "blkio.throttle.write_bps_device", buf);
}
static bool unit_has_unified_memory_config(Unit *u) {
CGroupContext *c;
assert(u);
c = unit_get_cgroup_context(u);
assert(c);
return c->memory_min > 0 || unit_get_ancestor_memory_low(u) > 0 ||
c->memory_high != CGROUP_LIMIT_MAX || c->memory_max != CGROUP_LIMIT_MAX ||
c->memory_swap_max != CGROUP_LIMIT_MAX;
}
static void cgroup_apply_unified_memory_limit(Unit *u, const char *file, uint64_t v) {
char buf[DECIMAL_STR_MAX(uint64_t) + 1] = "max\n";
if (v != CGROUP_LIMIT_MAX)
xsprintf(buf, "%" PRIu64 "\n", v);
(void) set_attribute_and_warn(u, "memory", file, buf);
}
static void cgroup_apply_firewall(Unit *u) {
assert(u);
/* Best-effort: let's apply IP firewalling and/or accounting if that's enabled */
if (bpf_firewall_compile(u) < 0)
return;
(void) bpf_firewall_load_custom(u);
(void) bpf_firewall_install(u);
}
static void cgroup_context_apply(
Unit *u,
CGroupMask apply_mask,
ManagerState state) {
const char *path;
CGroupContext *c;
bool is_host_root, is_local_root;
int r;
assert(u);
/* Nothing to do? Exit early! */
if (apply_mask == 0)
return;
/* Some cgroup attributes are not supported on the host root cgroup, hence silently ignore them here. And other
* attributes should only be managed for cgroups further down the tree. */
is_local_root = unit_has_name(u, SPECIAL_ROOT_SLICE);
is_host_root = unit_has_host_root_cgroup(u);
assert_se(c = unit_get_cgroup_context(u));
assert_se(path = u->cgroup_path);
if (is_local_root) /* Make sure we don't try to display messages with an empty path. */
path = "/";
/* We generally ignore errors caused by read-only mounted cgroup trees (assuming we are running in a container
* then), and missing cgroups, i.e. EROFS and ENOENT. */
/* In fully unified mode these attributes don't exist on the host cgroup root. On legacy the weights exist, but
* setting the weight makes very little sense on the host root cgroup, as there are no other cgroups at this
* level. The quota exists there too, but any attempt to write to it is refused with EINVAL. Inside of
* containers we want to leave control of these to the container manager (and if cgroup v2 delegation is used
* we couldn't even write to them if we wanted to). */
if ((apply_mask & CGROUP_MASK_CPU) && !is_local_root) {
if (cg_all_unified() > 0) {
uint64_t weight;
if (cgroup_context_has_cpu_weight(c))
weight = cgroup_context_cpu_weight(c, state);
else if (cgroup_context_has_cpu_shares(c)) {
uint64_t shares;
shares = cgroup_context_cpu_shares(c, state);
weight = cgroup_cpu_shares_to_weight(shares);
log_cgroup_compat(u, "Applying [Startup]CPUShares=%" PRIu64 " as [Startup]CPUWeight=%" PRIu64 " on %s",
shares, weight, path);
} else
weight = CGROUP_WEIGHT_DEFAULT;
cgroup_apply_unified_cpu_weight(u, weight);
cgroup_apply_unified_cpu_quota(u, c->cpu_quota_per_sec_usec, c->cpu_quota_period_usec);
} else {
uint64_t shares;
if (cgroup_context_has_cpu_weight(c)) {
uint64_t weight;
weight = cgroup_context_cpu_weight(c, state);
shares = cgroup_cpu_weight_to_shares(weight);
log_cgroup_compat(u, "Applying [Startup]CPUWeight=%" PRIu64 " as [Startup]CPUShares=%" PRIu64 " on %s",
weight, shares, path);
} else if (cgroup_context_has_cpu_shares(c))
shares = cgroup_context_cpu_shares(c, state);
else
shares = CGROUP_CPU_SHARES_DEFAULT;
cgroup_apply_legacy_cpu_shares(u, shares);
cgroup_apply_legacy_cpu_quota(u, c->cpu_quota_per_sec_usec, c->cpu_quota_period_usec);
}
}
/* The 'io' controller attributes are not exported on the host's root cgroup (being a pure cgroup v2
* controller), and in case of containers we want to leave control of these attributes to the container manager
* (and we couldn't access that stuff anyway, even if we tried if proper delegation is used). */
if ((apply_mask & CGROUP_MASK_IO) && !is_local_root) {
char buf[8+DECIMAL_STR_MAX(uint64_t)+1];
bool has_io, has_blockio;
uint64_t weight;
has_io = cgroup_context_has_io_config(c);
has_blockio = cgroup_context_has_blockio_config(c);
if (has_io)
weight = cgroup_context_io_weight(c, state);
else if (has_blockio) {
uint64_t blkio_weight;
blkio_weight = cgroup_context_blkio_weight(c, state);
weight = cgroup_weight_blkio_to_io(blkio_weight);
log_cgroup_compat(u, "Applying [Startup]BlockIOWeight=%" PRIu64 " as [Startup]IOWeight=%" PRIu64,
blkio_weight, weight);
} else
weight = CGROUP_WEIGHT_DEFAULT;
xsprintf(buf, "default %" PRIu64 "\n", weight);
(void) set_attribute_and_warn(u, "io", "io.weight", buf);
if (has_io) {
CGroupIODeviceLatency *latency;
CGroupIODeviceLimit *limit;
CGroupIODeviceWeight *w;
LIST_FOREACH(device_weights, w, c->io_device_weights)
cgroup_apply_io_device_weight(u, w->path, w->weight);
LIST_FOREACH(device_limits, limit, c->io_device_limits)
cgroup_apply_io_device_limit(u, limit->path, limit->limits);
LIST_FOREACH(device_latencies, latency, c->io_device_latencies)
cgroup_apply_io_device_latency(u, latency->path, latency->target_usec);
} else if (has_blockio) {
CGroupBlockIODeviceWeight *w;
CGroupBlockIODeviceBandwidth *b;
LIST_FOREACH(device_weights, w, c->blockio_device_weights) {
weight = cgroup_weight_blkio_to_io(w->weight);
log_cgroup_compat(u, "Applying BlockIODeviceWeight=%" PRIu64 " as IODeviceWeight=%" PRIu64 " for %s",
w->weight, weight, w->path);
cgroup_apply_io_device_weight(u, w->path, weight);
}
LIST_FOREACH(device_bandwidths, b, c->blockio_device_bandwidths) {
uint64_t limits[_CGROUP_IO_LIMIT_TYPE_MAX];
CGroupIOLimitType type;
for (type = 0; type < _CGROUP_IO_LIMIT_TYPE_MAX; type++)
limits[type] = cgroup_io_limit_defaults[type];
limits[CGROUP_IO_RBPS_MAX] = b->rbps;
limits[CGROUP_IO_WBPS_MAX] = b->wbps;
log_cgroup_compat(u, "Applying BlockIO{Read|Write}Bandwidth=%" PRIu64 " %" PRIu64 " as IO{Read|Write}BandwidthMax= for %s",
b->rbps, b->wbps, b->path);
cgroup_apply_io_device_limit(u, b->path, limits);
}
}
}
if (apply_mask & CGROUP_MASK_BLKIO) {
bool has_io, has_blockio;
has_io = cgroup_context_has_io_config(c);
has_blockio = cgroup_context_has_blockio_config(c);
/* Applying a 'weight' never makes sense for the host root cgroup, and for containers this should be
* left to our container manager, too. */
if (!is_local_root) {
char buf[DECIMAL_STR_MAX(uint64_t)+1];
uint64_t weight;
if (has_io) {
uint64_t io_weight;
io_weight = cgroup_context_io_weight(c, state);
weight = cgroup_weight_io_to_blkio(cgroup_context_io_weight(c, state));
log_cgroup_compat(u, "Applying [Startup]IOWeight=%" PRIu64 " as [Startup]BlockIOWeight=%" PRIu64,
io_weight, weight);
} else if (has_blockio)
weight = cgroup_context_blkio_weight(c, state);
else
weight = CGROUP_BLKIO_WEIGHT_DEFAULT;
xsprintf(buf, "%" PRIu64 "\n", weight);
(void) set_attribute_and_warn(u, "blkio", "blkio.weight", buf);
if (has_io) {
CGroupIODeviceWeight *w;
LIST_FOREACH(device_weights, w, c->io_device_weights) {
weight = cgroup_weight_io_to_blkio(w->weight);
log_cgroup_compat(u, "Applying IODeviceWeight=%" PRIu64 " as BlockIODeviceWeight=%" PRIu64 " for %s",
w->weight, weight, w->path);
cgroup_apply_blkio_device_weight(u, w->path, weight);
}
} else if (has_blockio) {
CGroupBlockIODeviceWeight *w;
LIST_FOREACH(device_weights, w, c->blockio_device_weights)
cgroup_apply_blkio_device_weight(u, w->path, w->weight);
}
}
/* The bandwidth limits are something that make sense to be applied to the host's root but not container
* roots, as there we want the container manager to handle it */
if (is_host_root || !is_local_root) {
if (has_io) {
CGroupIODeviceLimit *l;
LIST_FOREACH(device_limits, l, c->io_device_limits) {
log_cgroup_compat(u, "Applying IO{Read|Write}Bandwidth=%" PRIu64 " %" PRIu64 " as BlockIO{Read|Write}BandwidthMax= for %s",
l->limits[CGROUP_IO_RBPS_MAX], l->limits[CGROUP_IO_WBPS_MAX], l->path);
cgroup_apply_blkio_device_limit(u, l->path, l->limits[CGROUP_IO_RBPS_MAX], l->limits[CGROUP_IO_WBPS_MAX]);
}
} else if (has_blockio) {
CGroupBlockIODeviceBandwidth *b;
LIST_FOREACH(device_bandwidths, b, c->blockio_device_bandwidths)
cgroup_apply_blkio_device_limit(u, b->path, b->rbps, b->wbps);
}
}
}
/* In unified mode 'memory' attributes do not exist on the root cgroup. In legacy mode 'memory.limit_in_bytes'
* exists on the root cgroup, but any writes to it are refused with EINVAL. And if we run in a container we
* want to leave control to the container manager (and if proper cgroup v2 delegation is used we couldn't even
* write to this if we wanted to.) */
if ((apply_mask & CGROUP_MASK_MEMORY) && !is_local_root) {
if (cg_all_unified() > 0) {
uint64_t max, swap_max = CGROUP_LIMIT_MAX;
if (unit_has_unified_memory_config(u)) {
max = c->memory_max;
swap_max = c->memory_swap_max;
} else {
max = c->memory_limit;
if (max != CGROUP_LIMIT_MAX)
log_cgroup_compat(u, "Applying MemoryLimit=%" PRIu64 " as MemoryMax=", max);
}
cgroup_apply_unified_memory_limit(u, "memory.min", c->memory_min);
cgroup_apply_unified_memory_limit(u, "memory.low", unit_get_ancestor_memory_low(u));
cgroup_apply_unified_memory_limit(u, "memory.high", c->memory_high);
cgroup_apply_unified_memory_limit(u, "memory.max", max);
cgroup_apply_unified_memory_limit(u, "memory.swap.max", swap_max);
(void) set_attribute_and_warn(u, "memory", "memory.oom.group", one_zero(c->memory_oom_group));
} else {
char buf[DECIMAL_STR_MAX(uint64_t) + 1];
uint64_t val;
if (unit_has_unified_memory_config(u)) {
val = c->memory_max;
log_cgroup_compat(u, "Applying MemoryMax=%" PRIi64 " as MemoryLimit=", val);
} else
val = c->memory_limit;
if (val == CGROUP_LIMIT_MAX)
strncpy(buf, "-1\n", sizeof(buf));
else
xsprintf(buf, "%" PRIu64 "\n", val);
(void) set_attribute_and_warn(u, "memory", "memory.limit_in_bytes", buf);
}
}
/* On cgroup v2 we can apply BPF everywhere. On cgroup v1 we apply it everywhere except for the root of
* containers, where we leave this to the manager */
if ((apply_mask & (CGROUP_MASK_DEVICES | CGROUP_MASK_BPF_DEVICES)) &&
(is_host_root || cg_all_unified() > 0 || !is_local_root)) {
_cleanup_(bpf_program_unrefp) BPFProgram *prog = NULL;
CGroupDeviceAllow *a;
if (cg_all_unified() > 0) {
r = cgroup_init_device_bpf(&prog, c->device_policy, c->device_allow);
if (r < 0)
log_unit_warning_errno(u, r, "Failed to initialize device control bpf program: %m");
} else {
/* Changing the devices list of a populated cgroup might result in EINVAL, hence ignore EINVAL
* here. */
if (c->device_allow || c->device_policy != CGROUP_AUTO)
r = cg_set_attribute("devices", path, "devices.deny", "a");
else
r = cg_set_attribute("devices", path, "devices.allow", "a");
if (r < 0)
log_unit_full(u, IN_SET(r, -ENOENT, -EROFS, -EINVAL, -EACCES, -EPERM) ? LOG_DEBUG : LOG_WARNING, r,
"Failed to reset devices.allow/devices.deny: %m");
}
if (c->device_policy == CGROUP_CLOSED ||
(c->device_policy == CGROUP_AUTO && c->device_allow)) {
static const char auto_devices[] =
"/dev/null\0" "rwm\0"
"/dev/zero\0" "rwm\0"
"/dev/full\0" "rwm\0"
"/dev/random\0" "rwm\0"
"/dev/urandom\0" "rwm\0"
"/dev/tty\0" "rwm\0"
"/dev/ptmx\0" "rwm\0"
/* Allow /run/systemd/inaccessible/{chr,blk} devices for mapping InaccessiblePaths */
"/run/systemd/inaccessible/chr\0" "rwm\0"
"/run/systemd/inaccessible/blk\0" "rwm\0";
const char *x, *y;
NULSTR_FOREACH_PAIR(x, y, auto_devices)
(void) whitelist_device(prog, path, x, y);
/* PTS (/dev/pts) devices may not be duplicated, but accessed */
(void) whitelist_major(prog, path, "pts", 'c', "rw");
}
LIST_FOREACH(device_allow, a, c->device_allow) {
char acc[4], *val;
unsigned k = 0;
if (a->r)
acc[k++] = 'r';
if (a->w)
acc[k++] = 'w';
if (a->m)
acc[k++] = 'm';
if (k == 0)
continue;
acc[k++] = 0;
if (path_startswith(a->path, "/dev/"))
(void) whitelist_device(prog, path, a->path, acc);
else if ((val = startswith(a->path, "block-")))
(void) whitelist_major(prog, path, val, 'b', acc);
else if ((val = startswith(a->path, "char-")))
(void) whitelist_major(prog, path, val, 'c', acc);
else
log_unit_debug(u, "Ignoring device '%s' while writing cgroup attribute.", a->path);
}
r = cgroup_apply_device_bpf(u, prog, c->device_policy, c->device_allow);
if (r < 0) {
static bool warned = false;
log_full_errno(warned ? LOG_DEBUG : LOG_WARNING, r,
"Unit %s configures device ACL, but the local system doesn't seem to support the BPF-based device controller.\n"
"Proceeding WITHOUT applying ACL (all devices will be accessible)!\n"
"(This warning is only shown for the first loaded unit using device ACL.)", u->id);
warned = true;
}
}
if (apply_mask & CGROUP_MASK_PIDS) {
if (is_host_root) {
/* So, the "pids" controller does not expose anything on the root cgroup, in order not to
* replicate knobs exposed elsewhere needlessly. We abstract this away here however, and when
* the knobs of the root cgroup are modified propagate this to the relevant sysctls. There's a
* non-obvious asymmetry however: unlike the cgroup properties we don't really want to take
* exclusive ownership of the sysctls, but we still want to honour things if the user sets
* limits. Hence we employ sort of a one-way strategy: when the user sets a bounded limit
* through us it counts. When the user afterwards unsets it again (i.e. sets it to unbounded)
* it also counts. But if the user never set a limit through us (i.e. we are the default of
* "unbounded") we leave things unmodified. For this we manage a global boolean that we turn on
* the first time we set a limit. Note that this boolean is flushed out on manager reload,
* which is desirable so that there's an official way to release control of the sysctl from
* systemd: set the limit to unbounded and reload. */
if (c->tasks_max != CGROUP_LIMIT_MAX) {
u->manager->sysctl_pid_max_changed = true;
r = procfs_tasks_set_limit(c->tasks_max);
} else if (u->manager->sysctl_pid_max_changed)
r = procfs_tasks_set_limit(TASKS_MAX);
else
r = 0;
if (r < 0)
log_unit_full(u, LOG_LEVEL_CGROUP_WRITE(r), r,
"Failed to write to tasks limit sysctls: %m");
}
/* The attribute itself is not available on the host root cgroup, and in the container case we want to
* leave it for the container manager. */
if (!is_local_root) {
if (c->tasks_max != CGROUP_LIMIT_MAX) {
char buf[DECIMAL_STR_MAX(uint64_t) + 2];
sprintf(buf, "%" PRIu64 "\n", c->tasks_max);
(void) set_attribute_and_warn(u, "pids", "pids.max", buf);
} else
(void) set_attribute_and_warn(u, "pids", "pids.max", "max\n");
}
}
if (apply_mask & CGROUP_MASK_BPF_FIREWALL)
cgroup_apply_firewall(u);
}
static bool unit_get_needs_bpf_firewall(Unit *u) {
CGroupContext *c;
Unit *p;
assert(u);
c = unit_get_cgroup_context(u);
if (!c)
return false;
if (c->ip_accounting ||
c->ip_address_allow ||
c->ip_address_deny ||
c->ip_filters_ingress ||
c->ip_filters_egress)
return true;
/* If any parent slice has an IP access list defined, it applies too */
for (p = UNIT_DEREF(u->slice); p; p = UNIT_DEREF(p->slice)) {
c = unit_get_cgroup_context(p);
if (!c)
return false;
if (c->ip_address_allow ||
c->ip_address_deny)
return true;
}
return false;
}
static CGroupMask unit_get_cgroup_mask(Unit *u) {
CGroupMask mask = 0;
CGroupContext *c;
assert(u);
c = unit_get_cgroup_context(u);
assert(c);
/* Figure out which controllers we need, based on the cgroup context object */
if (c->cpu_accounting)
mask |= get_cpu_accounting_mask();
if (cgroup_context_has_cpu_weight(c) ||
cgroup_context_has_cpu_shares(c) ||
c->cpu_quota_per_sec_usec != USEC_INFINITY)
mask |= CGROUP_MASK_CPU;
if (cgroup_context_has_io_config(c) || cgroup_context_has_blockio_config(c))
mask |= CGROUP_MASK_IO | CGROUP_MASK_BLKIO;
if (c->memory_accounting ||
c->memory_limit != CGROUP_LIMIT_MAX ||
unit_has_unified_memory_config(u))
mask |= CGROUP_MASK_MEMORY;
if (c->device_allow ||
c->device_policy != CGROUP_AUTO)
mask |= CGROUP_MASK_DEVICES | CGROUP_MASK_BPF_DEVICES;
if (c->tasks_accounting ||
c->tasks_max != CGROUP_LIMIT_MAX)
mask |= CGROUP_MASK_PIDS;
return CGROUP_MASK_EXTEND_JOINED(mask);
}
static CGroupMask unit_get_bpf_mask(Unit *u) {
CGroupMask mask = 0;
/* Figure out which controllers we need, based on the cgroup context, possibly taking into account children
* too. */
if (unit_get_needs_bpf_firewall(u))
mask |= CGROUP_MASK_BPF_FIREWALL;
return mask;
}
CGroupMask unit_get_own_mask(Unit *u) {
CGroupContext *c;
/* Returns the mask of controllers the unit needs for itself. If a unit is not properly loaded, return an empty
* mask, as we shouldn't reflect it in the cgroup hierarchy then. */
if (u->load_state != UNIT_LOADED)
return 0;
c = unit_get_cgroup_context(u);
if (!c)
return 0;
return (unit_get_cgroup_mask(u) | unit_get_bpf_mask(u) | unit_get_delegate_mask(u)) & ~unit_get_ancestor_disable_mask(u);
}
CGroupMask unit_get_delegate_mask(Unit *u) {
CGroupContext *c;
/* If delegation is turned on, then turn on selected controllers, unless we are on the legacy hierarchy and the
* process we fork into is known to drop privileges, and hence shouldn't get access to the controllers.
*
* Note that on the unified hierarchy it is safe to delegate controllers to unprivileged services. */
if (!unit_cgroup_delegate(u))
return 0;
if (cg_all_unified() <= 0) {
ExecContext *e;
e = unit_get_exec_context(u);
if (e && !exec_context_maintains_privileges(e))
return 0;
}
assert_se(c = unit_get_cgroup_context(u));
return CGROUP_MASK_EXTEND_JOINED(c->delegate_controllers);
}
CGroupMask unit_get_members_mask(Unit *u) {
assert(u);
/* Returns the mask of controllers all of the unit's children require, merged */
if (u->cgroup_members_mask_valid)
return u->cgroup_members_mask; /* Use cached value if possible */
u->cgroup_members_mask = 0;
if (u->type == UNIT_SLICE) {
void *v;
Unit *member;
Iterator i;
HASHMAP_FOREACH_KEY(v, member, u->dependencies[UNIT_BEFORE], i) {
if (UNIT_DEREF(member->slice) == u)
u->cgroup_members_mask |= unit_get_subtree_mask(member); /* note that this calls ourselves again, for the children */
}
}
u->cgroup_members_mask_valid = true;
return u->cgroup_members_mask;
}
CGroupMask unit_get_siblings_mask(Unit *u) {
assert(u);
/* Returns the mask of controllers all of the unit's siblings
* require, i.e. the members mask of the unit's parent slice
* if there is one. */
if (UNIT_ISSET(u->slice))
return unit_get_members_mask(UNIT_DEREF(u->slice));
return unit_get_subtree_mask(u); /* we are the top-level slice */
}
CGroupMask unit_get_disable_mask(Unit *u) {
CGroupContext *c;
c = unit_get_cgroup_context(u);
if (!c)
return 0;
return c->disable_controllers;
}
CGroupMask unit_get_ancestor_disable_mask(Unit *u) {
CGroupMask mask;
assert(u);
mask = unit_get_disable_mask(u);
/* Returns the mask of controllers which are marked as forcibly
* disabled in any ancestor unit or the unit in question. */
if (UNIT_ISSET(u->slice))
mask |= unit_get_ancestor_disable_mask(UNIT_DEREF(u->slice));
return mask;
}
CGroupMask unit_get_subtree_mask(Unit *u) {
/* Returns the mask of this subtree, meaning of the group
* itself and its children. */
return unit_get_own_mask(u) | unit_get_members_mask(u);
}
CGroupMask unit_get_target_mask(Unit *u) {
CGroupMask mask;
/* This returns the cgroup mask of all controllers to enable
* for a specific cgroup, i.e. everything it needs itself,
* plus all that its children need, plus all that its siblings
* need. This is primarily useful on the legacy cgroup
* hierarchy, where we need to duplicate each cgroup in each
* hierarchy that shall be enabled for it. */
mask = unit_get_own_mask(u) | unit_get_members_mask(u) | unit_get_siblings_mask(u);
if (mask & CGROUP_MASK_BPF_FIREWALL & ~u->manager->cgroup_supported)
emit_bpf_firewall_warning(u);
mask &= u->manager->cgroup_supported;
mask &= ~unit_get_ancestor_disable_mask(u);
return mask;
}
CGroupMask unit_get_enable_mask(Unit *u) {
CGroupMask mask;
/* This returns the cgroup mask of all controllers to enable
* for the children of a specific cgroup. This is primarily
* useful for the unified cgroup hierarchy, where each cgroup
* controls which controllers are enabled for its children. */
mask = unit_get_members_mask(u);
mask &= u->manager->cgroup_supported;
mask &= ~unit_get_ancestor_disable_mask(u);
return mask;
}
void unit_invalidate_cgroup_members_masks(Unit *u) {
assert(u);
/* Recurse invalidate the member masks cache all the way up the tree */
u->cgroup_members_mask_valid = false;
if (UNIT_ISSET(u->slice))
unit_invalidate_cgroup_members_masks(UNIT_DEREF(u->slice));
}
const char *unit_get_realized_cgroup_path(Unit *u, CGroupMask mask) {
/* Returns the realized cgroup path of the specified unit where all specified controllers are available. */
while (u) {
if (u->cgroup_path &&
u->cgroup_realized &&
FLAGS_SET(u->cgroup_realized_mask, mask))
return u->cgroup_path;
u = UNIT_DEREF(u->slice);
}
return NULL;
}
static const char *migrate_callback(CGroupMask mask, void *userdata) {
return unit_get_realized_cgroup_path(userdata, mask);
}
char *unit_default_cgroup_path(const Unit *u) {
_cleanup_free_ char *escaped = NULL, *slice = NULL;
int r;
assert(u);
if (unit_has_name(u, SPECIAL_ROOT_SLICE))
return strdup(u->manager->cgroup_root);
if (UNIT_ISSET(u->slice) && !unit_has_name(UNIT_DEREF(u->slice), SPECIAL_ROOT_SLICE)) {
r = cg_slice_to_path(UNIT_DEREF(u->slice)->id, &slice);
if (r < 0)
return NULL;
}
escaped = cg_escape(u->id);
if (!escaped)
return NULL;
return path_join(empty_to_root(u->manager->cgroup_root), slice, escaped);
}
int unit_set_cgroup_path(Unit *u, const char *path) {
_cleanup_free_ char *p = NULL;
int r;
assert(u);
if (streq_ptr(u->cgroup_path, path))
return 0;
if (path) {
p = strdup(path);
if (!p)
return -ENOMEM;
}
if (p) {
r = hashmap_put(u->manager->cgroup_unit, p, u);
if (r < 0)
return r;
}
unit_release_cgroup(u);
u->cgroup_path = TAKE_PTR(p);
return 1;
}
int unit_watch_cgroup(Unit *u) {
_cleanup_free_ char *events = NULL;
int r;
assert(u);
/* Watches the "cgroups.events" attribute of this unit's cgroup for "empty" events, but only if
* cgroupv2 is available. */
if (!u->cgroup_path)
return 0;
if (u->cgroup_control_inotify_wd >= 0)
return 0;
/* Only applies to the unified hierarchy */
r = cg_unified_controller(SYSTEMD_CGROUP_CONTROLLER);
if (r < 0)
return log_error_errno(r, "Failed to determine whether the name=systemd hierarchy is unified: %m");
if (r == 0)
return 0;
/* No point in watch the top-level slice, it's never going to run empty. */
if (unit_has_name(u, SPECIAL_ROOT_SLICE))
return 0;
r = hashmap_ensure_allocated(&u->manager->cgroup_control_inotify_wd_unit, &trivial_hash_ops);
if (r < 0)
return log_oom();
r = cg_get_path(SYSTEMD_CGROUP_CONTROLLER, u->cgroup_path, "cgroup.events", &events);
if (r < 0)
return log_oom();
u->cgroup_control_inotify_wd = inotify_add_watch(u->manager->cgroup_inotify_fd, events, IN_MODIFY);
if (u->cgroup_control_inotify_wd < 0) {
if (errno == ENOENT) /* If the directory is already gone we don't need to track it, so this
* is not an error */
return 0;
return log_unit_error_errno(u, errno, "Failed to add control inotify watch descriptor for control group %s: %m", u->cgroup_path);
}
r = hashmap_put(u->manager->cgroup_control_inotify_wd_unit, INT_TO_PTR(u->cgroup_control_inotify_wd), u);
if (r < 0)
return log_unit_error_errno(u, r, "Failed to add control inotify watch descriptor to hash map: %m");
return 0;
}
int unit_watch_cgroup_memory(Unit *u) {
_cleanup_free_ char *events = NULL;
CGroupContext *c;
int r;
assert(u);
/* Watches the "memory.events" attribute of this unit's cgroup for "oom_kill" events, but only if
* cgroupv2 is available. */
if (!u->cgroup_path)
return 0;
c = unit_get_cgroup_context(u);
if (!c)
return 0;
/* The "memory.events" attribute is only available if the memory controller is on. Let's hence tie
* this to memory accounting, in a way watching for OOM kills is a form of memory accounting after
* all. */
if (!c->memory_accounting)
return 0;
/* Don't watch inner nodes, as the kernel doesn't report oom_kill events recursively currently, and
* we also don't want to generate a log message for each parent cgroup of a process. */
if (u->type == UNIT_SLICE)
return 0;
if (u->cgroup_memory_inotify_wd >= 0)
return 0;
/* Only applies to the unified hierarchy */
r = cg_all_unified();
if (r < 0)
return log_error_errno(r, "Failed to determine whether the memory controller is unified: %m");
if (r == 0)
return 0;
r = hashmap_ensure_allocated(&u->manager->cgroup_memory_inotify_wd_unit, &trivial_hash_ops);
if (r < 0)
return log_oom();
r = cg_get_path(SYSTEMD_CGROUP_CONTROLLER, u->cgroup_path, "memory.events", &events);
if (r < 0)
return log_oom();
u->cgroup_memory_inotify_wd = inotify_add_watch(u->manager->cgroup_inotify_fd, events, IN_MODIFY);
if (u->cgroup_memory_inotify_wd < 0) {
if (errno == ENOENT) /* If the directory is already gone we don't need to track it, so this
* is not an error */
return 0;
return log_unit_error_errno(u, errno, "Failed to add memory inotify watch descriptor for control group %s: %m", u->cgroup_path);
}
r = hashmap_put(u->manager->cgroup_memory_inotify_wd_unit, INT_TO_PTR(u->cgroup_memory_inotify_wd), u);
if (r < 0)
return log_unit_error_errno(u, r, "Failed to add memory inotify watch descriptor to hash map: %m");
return 0;
}
int unit_pick_cgroup_path(Unit *u) {
_cleanup_free_ char *path = NULL;
int r;
assert(u);
if (u->cgroup_path)
return 0;
if (!UNIT_HAS_CGROUP_CONTEXT(u))
return -EINVAL;
path = unit_default_cgroup_path(u);
if (!path)
return log_oom();
r = unit_set_cgroup_path(u, path);
if (r == -EEXIST)
return log_unit_error_errno(u, r, "Control group %s exists already.", path);
if (r < 0)
return log_unit_error_errno(u, r, "Failed to set unit's control group path to %s: %m", path);
return 0;
}
static int unit_create_cgroup(
Unit *u,
CGroupMask target_mask,
CGroupMask enable_mask,
ManagerState state) {
bool created;
int r;
assert(u);
if (!UNIT_HAS_CGROUP_CONTEXT(u))
return 0;
/* Figure out our cgroup path */
r = unit_pick_cgroup_path(u);
if (r < 0)
return r;
/* First, create our own group */
r = cg_create_everywhere(u->manager->cgroup_supported, target_mask, u->cgroup_path);
if (r < 0)
return log_unit_error_errno(u, r, "Failed to create cgroup %s: %m", u->cgroup_path);
created = r;
/* Start watching it */
(void) unit_watch_cgroup(u);
(void) unit_watch_cgroup_memory(u);
/* Preserve enabled controllers in delegated units, adjust others. */
if (created || !u->cgroup_realized || !unit_cgroup_delegate(u)) {
CGroupMask result_mask = 0;
/* Enable all controllers we need */
r = cg_enable_everywhere(u->manager->cgroup_supported, enable_mask, u->cgroup_path, &result_mask);
if (r < 0)
log_unit_warning_errno(u, r, "Failed to enable/disable controllers on cgroup %s, ignoring: %m", u->cgroup_path);
/* If we just turned off a controller, this might release the controller for our parent too, let's
* enqueue the parent for re-realization in that case again. */
if (UNIT_ISSET(u->slice)) {
CGroupMask turned_off;
turned_off = (u->cgroup_realized ? u->cgroup_enabled_mask & ~result_mask : 0);
if (turned_off != 0) {
Unit *parent;
/* Force the parent to propagate the enable mask to the kernel again, by invalidating
* the controller we just turned off. */
for (parent = UNIT_DEREF(u->slice); parent; parent = UNIT_DEREF(parent->slice))
unit_invalidate_cgroup(parent, turned_off);
}
}
/* Remember what's actually enabled now */
u->cgroup_enabled_mask = result_mask;
}
/* Keep track that this is now realized */
u->cgroup_realized = true;
u->cgroup_realized_mask = target_mask;
if (u->type != UNIT_SLICE && !unit_cgroup_delegate(u)) {
/* Then, possibly move things over, but not if
* subgroups may contain processes, which is the case
* for slice and delegation units. */
r = cg_migrate_everywhere(u->manager->cgroup_supported, u->cgroup_path, u->cgroup_path, migrate_callback, u);
if (r < 0)
log_unit_warning_errno(u, r, "Failed to migrate cgroup from to %s, ignoring: %m", u->cgroup_path);
}
/* Set attributes */
cgroup_context_apply(u, target_mask, state);
cgroup_xattr_apply(u);
return 0;
}
static int unit_attach_pid_to_cgroup_via_bus(Unit *u, pid_t pid, const char *suffix_path) {
_cleanup_(sd_bus_error_free) sd_bus_error error = SD_BUS_ERROR_NULL;
char *pp;
int r;
assert(u);
if (MANAGER_IS_SYSTEM(u->manager))
return -EINVAL;
if (!u->manager->system_bus)
return -EIO;
if (!u->cgroup_path)
return -EINVAL;
/* Determine this unit's cgroup path relative to our cgroup root */
pp = path_startswith(u->cgroup_path, u->manager->cgroup_root);
if (!pp)
return -EINVAL;
pp = strjoina("/", pp, suffix_path);
path_simplify(pp, false);
r = sd_bus_call_method(u->manager->system_bus,
"org.freedesktop.systemd1",
"/org/freedesktop/systemd1",
"org.freedesktop.systemd1.Manager",
"AttachProcessesToUnit",
&error, NULL,
"ssau",
NULL /* empty unit name means client's unit, i.e. us */, pp, 1, (uint32_t) pid);
if (r < 0)
return log_unit_debug_errno(u, r, "Failed to attach unit process " PID_FMT " via the bus: %s", pid, bus_error_message(&error, r));
return 0;
}
int unit_attach_pids_to_cgroup(Unit *u, Set *pids, const char *suffix_path) {
CGroupMask delegated_mask;
const char *p;
Iterator i;
void *pidp;
int r, q;
assert(u);
if (!UNIT_HAS_CGROUP_CONTEXT(u))
return -EINVAL;
if (set_isempty(pids))
return 0;
/* Load any custom firewall BPF programs here once to test if they are existing and actually loadable.
* Fail here early since later errors in the call chain unit_realize_cgroup to cgroup_context_apply are ignored. */
r = bpf_firewall_load_custom(u);
if (r < 0)
return r;
r = unit_realize_cgroup(u);
if (r < 0)
return r;
if (isempty(suffix_path))
p = u->cgroup_path;
else
p = prefix_roota(u->cgroup_path, suffix_path);
delegated_mask = unit_get_delegate_mask(u);
r = 0;
SET_FOREACH(pidp, pids, i) {
pid_t pid = PTR_TO_PID(pidp);
CGroupController c;
/* First, attach the PID to the main cgroup hierarchy */
q = cg_attach(SYSTEMD_CGROUP_CONTROLLER, p, pid);
if (q < 0) {
log_unit_debug_errno(u, q, "Couldn't move process " PID_FMT " to requested cgroup '%s': %m", pid, p);
if (MANAGER_IS_USER(u->manager) && IN_SET(q, -EPERM, -EACCES)) {
int z;
/* If we are in a user instance, and we can't move the process ourselves due to
* permission problems, let's ask the system instance about it instead. Since it's more
* privileged it might be able to move the process across the leaves of a subtree who's
* top node is not owned by us. */
z = unit_attach_pid_to_cgroup_via_bus(u, pid, suffix_path);
if (z < 0)
log_unit_debug_errno(u, z, "Couldn't move process " PID_FMT " to requested cgroup '%s' via the system bus either: %m", pid, p);
else
continue; /* When the bus thing worked via the bus we are fully done for this PID. */
}
if (r >= 0)
r = q; /* Remember first error */
continue;
}
q = cg_all_unified();
if (q < 0)
return q;
if (q > 0)
continue;
/* In the legacy hierarchy, attach the process to the request cgroup if possible, and if not to the
* innermost realized one */
for (c = 0; c < _CGROUP_CONTROLLER_MAX; c++) {
CGroupMask bit = CGROUP_CONTROLLER_TO_MASK(c);
const char *realized;
if (!(u->manager->cgroup_supported & bit))
continue;
/* If this controller is delegated and realized, honour the caller's request for the cgroup suffix. */
if (delegated_mask & u->cgroup_realized_mask & bit) {
q = cg_attach(cgroup_controller_to_string(c), p, pid);
if (q >= 0)
continue; /* Success! */
log_unit_debug_errno(u, q, "Failed to attach PID " PID_FMT " to requested cgroup %s in controller %s, falling back to unit's cgroup: %m",
pid, p, cgroup_controller_to_string(c));
}
/* So this controller is either not delegate or realized, or something else weird happened. In
* that case let's attach the PID at least to the closest cgroup up the tree that is
* realized. */
realized = unit_get_realized_cgroup_path(u, bit);
if (!realized)
continue; /* Not even realized in the root slice? Then let's not bother */
q = cg_attach(cgroup_controller_to_string(c), realized, pid);
if (q < 0)
log_unit_debug_errno(u, q, "Failed to attach PID " PID_FMT " to realized cgroup %s in controller %s, ignoring: %m",
pid, realized, cgroup_controller_to_string(c));
}
}
return r;
}
static bool unit_has_mask_realized(
Unit *u,
CGroupMask target_mask,
CGroupMask enable_mask) {
assert(u);
/* Returns true if this unit is fully realized. We check four things:
*
* 1. Whether the cgroup was created at all
* 2. Whether the cgroup was created in all the hierarchies we need it to be created in (in case of cgroup v1)
* 3. Whether the cgroup has all the right controllers enabled (in case of cgroup v2)
* 4. Whether the invalidation mask is currently zero
*
* If you wonder why we mask the target realization and enable mask with CGROUP_MASK_V1/CGROUP_MASK_V2: note
* that there are three sets of bitmasks: CGROUP_MASK_V1 (for real cgroup v1 controllers), CGROUP_MASK_V2 (for
* real cgroup v2 controllers) and CGROUP_MASK_BPF (for BPF-based pseudo-controllers). Now, cgroup_realized_mask
* is only matters for cgroup v1 controllers, and cgroup_enabled_mask only used for cgroup v2, and if they
* differ in the others, we don't really care. (After all, the cgroup_enabled_mask tracks with controllers are
* enabled through cgroup.subtree_control, and since the BPF pseudo-controllers don't show up there, they
* simply don't matter. */
return u->cgroup_realized &&
((u->cgroup_realized_mask ^ target_mask) & CGROUP_MASK_V1) == 0 &&
((u->cgroup_enabled_mask ^ enable_mask) & CGROUP_MASK_V2) == 0 &&
u->cgroup_invalidated_mask == 0;
}
static bool unit_has_mask_disables_realized(
Unit *u,
CGroupMask target_mask,
CGroupMask enable_mask) {
assert(u);
/* Returns true if all controllers which should be disabled are indeed disabled.
*
* Unlike unit_has_mask_realized, we don't care what was enabled, only that anything we want to remove is
* already removed. */
return !u->cgroup_realized ||
(FLAGS_SET(u->cgroup_realized_mask, target_mask & CGROUP_MASK_V1) &&
FLAGS_SET(u->cgroup_enabled_mask, enable_mask & CGROUP_MASK_V2));
}
static bool unit_has_mask_enables_realized(
Unit *u,
CGroupMask target_mask,
CGroupMask enable_mask) {
assert(u);
/* Returns true if all controllers which should be enabled are indeed enabled.
*
* Unlike unit_has_mask_realized, we don't care about the controllers that are not present, only that anything
* we want to add is already added. */
return u->cgroup_realized &&
((u->cgroup_realized_mask | target_mask) & CGROUP_MASK_V1) == (u->cgroup_realized_mask & CGROUP_MASK_V1) &&
((u->cgroup_enabled_mask | enable_mask) & CGROUP_MASK_V2) == (u->cgroup_enabled_mask & CGROUP_MASK_V2);
}
void unit_add_to_cgroup_realize_queue(Unit *u) {
assert(u);
if (u->in_cgroup_realize_queue)
return;
LIST_PREPEND(cgroup_realize_queue, u->manager->cgroup_realize_queue, u);
u->in_cgroup_realize_queue = true;
}
static void unit_remove_from_cgroup_realize_queue(Unit *u) {
assert(u);
if (!u->in_cgroup_realize_queue)
return;
LIST_REMOVE(cgroup_realize_queue, u->manager->cgroup_realize_queue, u);
u->in_cgroup_realize_queue = false;
}
/* Controllers can only be enabled breadth-first, from the root of the
* hierarchy downwards to the unit in question. */
static int unit_realize_cgroup_now_enable(Unit *u, ManagerState state) {
CGroupMask target_mask, enable_mask, new_target_mask, new_enable_mask;
int r;
assert(u);
/* First go deal with this unit's parent, or we won't be able to enable
* any new controllers at this layer. */
if (UNIT_ISSET(u->slice)) {
r = unit_realize_cgroup_now_enable(UNIT_DEREF(u->slice), state);
if (r < 0)
return r;
}
target_mask = unit_get_target_mask(u);
enable_mask = unit_get_enable_mask(u);
/* We can only enable in this direction, don't try to disable anything.
*/
if (unit_has_mask_enables_realized(u, target_mask, enable_mask))
return 0;
new_target_mask = u->cgroup_realized_mask | target_mask;
new_enable_mask = u->cgroup_enabled_mask | enable_mask;
return unit_create_cgroup(u, new_target_mask, new_enable_mask, state);
}
/* Controllers can only be disabled depth-first, from the leaves of the
* hierarchy upwards to the unit in question. */
static int unit_realize_cgroup_now_disable(Unit *u, ManagerState state) {
Iterator i;
Unit *m;
void *v;
assert(u);
if (u->type != UNIT_SLICE)
return 0;
HASHMAP_FOREACH_KEY(v, m, u->dependencies[UNIT_BEFORE], i) {
CGroupMask target_mask, enable_mask, new_target_mask, new_enable_mask;
int r;
if (UNIT_DEREF(m->slice) != u)
continue;
/* The cgroup for this unit might not actually be fully
* realised yet, in which case it isn't holding any controllers
* open anyway. */
if (!m->cgroup_path)
continue;
/* We must disable those below us first in order to release the
* controller. */
if (m->type == UNIT_SLICE)
(void) unit_realize_cgroup_now_disable(m, state);
target_mask = unit_get_target_mask(m);
enable_mask = unit_get_enable_mask(m);
/* We can only disable in this direction, don't try to enable
* anything. */
if (unit_has_mask_disables_realized(m, target_mask, enable_mask))
continue;
new_target_mask = m->cgroup_realized_mask & target_mask;
new_enable_mask = m->cgroup_enabled_mask & enable_mask;
r = unit_create_cgroup(m, new_target_mask, new_enable_mask, state);
if (r < 0)
return r;
}
return 0;
}
/* Check if necessary controllers and attributes for a unit are in place.
*
* - If so, do nothing.
* - If not, create paths, move processes over, and set attributes.
*
* Controllers can only be *enabled* in a breadth-first way, and *disabled* in
* a depth-first way. As such the process looks like this:
*
* Suppose we have a cgroup hierarchy which looks like this:
*
* root
* / \
* / \
* / \
* a b
* / \ / \
* / \ / \
* c d e f
* / \ / \ / \ / \
* h i j k l m n o
*
* 1. We want to realise cgroup "d" now.
* 2. cgroup "a" has DisableControllers=cpu in the associated unit.
* 3. cgroup "k" just started requesting the memory controller.
*
* To make this work we must do the following in order:
*
* 1. Disable CPU controller in k, j
* 2. Disable CPU controller in d
* 3. Enable memory controller in root
* 4. Enable memory controller in a
* 5. Enable memory controller in d
* 6. Enable memory controller in k
*
* Notice that we need to touch j in one direction, but not the other. We also
* don't go beyond d when disabling -- it's up to "a" to get realized if it
* wants to disable further. The basic rules are therefore:
*
* - If you're disabling something, you need to realise all of the cgroups from
* your recursive descendants to the root. This starts from the leaves.
* - If you're enabling something, you need to realise from the root cgroup
* downwards, but you don't need to iterate your recursive descendants.
*
* Returns 0 on success and < 0 on failure. */
static int unit_realize_cgroup_now(Unit *u, ManagerState state) {
CGroupMask target_mask, enable_mask;
int r;
assert(u);
unit_remove_from_cgroup_realize_queue(u);
target_mask = unit_get_target_mask(u);
enable_mask = unit_get_enable_mask(u);
if (unit_has_mask_realized(u, target_mask, enable_mask))
return 0;
/* Disable controllers below us, if there are any */
r = unit_realize_cgroup_now_disable(u, state);
if (r < 0)
return r;
/* Enable controllers above us, if there are any */
if (UNIT_ISSET(u->slice)) {
r = unit_realize_cgroup_now_enable(UNIT_DEREF(u->slice), state);
if (r < 0)
return r;
}
/* Now actually deal with the cgroup we were trying to realise and set attributes */
r = unit_create_cgroup(u, target_mask, enable_mask, state);
if (r < 0)
return r;
/* Now, reset the invalidation mask */
u->cgroup_invalidated_mask = 0;
return 0;
}
unsigned manager_dispatch_cgroup_realize_queue(Manager *m) {
ManagerState state;
unsigned n = 0;
Unit *i;
int r;
assert(m);
state = manager_state(m);
while ((i = m->cgroup_realize_queue)) {
assert(i->in_cgroup_realize_queue);
if (UNIT_IS_INACTIVE_OR_FAILED(unit_active_state(i))) {
/* Maybe things changed, and the unit is not actually active anymore? */
unit_remove_from_cgroup_realize_queue(i);
continue;
}
r = unit_realize_cgroup_now(i, state);
if (r < 0)
log_warning_errno(r, "Failed to realize cgroups for queued unit %s, ignoring: %m", i->id);
n++;
}
return n;
}
static void unit_add_siblings_to_cgroup_realize_queue(Unit *u) {
Unit *slice;
/* This adds the siblings of the specified unit and the
* siblings of all parent units to the cgroup queue. (But
* neither the specified unit itself nor the parents.) */
while ((slice = UNIT_DEREF(u->slice))) {
Iterator i;
Unit *m;
void *v;
HASHMAP_FOREACH_KEY(v, m, u->dependencies[UNIT_BEFORE], i) {
/* Skip units that have a dependency on the slice
* but aren't actually in it. */
if (UNIT_DEREF(m->slice) != slice)
continue;
/* No point in doing cgroup application for units
* without active processes. */
if (UNIT_IS_INACTIVE_OR_FAILED(unit_active_state(m)))
continue;
/* If the unit doesn't need any new controllers
* and has current ones realized, it doesn't need
* any changes. */
if (unit_has_mask_realized(m,
unit_get_target_mask(m),
unit_get_enable_mask(m)))
continue;
unit_add_to_cgroup_realize_queue(m);
}
u = slice;
}
}
int unit_realize_cgroup(Unit *u) {
assert(u);
if (!UNIT_HAS_CGROUP_CONTEXT(u))
return 0;
/* So, here's the deal: when realizing the cgroups for this
* unit, we need to first create all parents, but there's more
* actually: for the weight-based controllers we also need to
* make sure that all our siblings (i.e. units that are in the
* same slice as we are) have cgroups, too. Otherwise, things
* would become very uneven as each of their processes would
* get as much resources as all our group together. This call
* will synchronously create the parent cgroups, but will
* defer work on the siblings to the next event loop
* iteration. */
/* Add all sibling slices to the cgroup queue. */
unit_add_siblings_to_cgroup_realize_queue(u);
/* And realize this one now (and apply the values) */
return unit_realize_cgroup_now(u, manager_state(u->manager));
}
void unit_release_cgroup(Unit *u) {
assert(u);
/* Forgets all cgroup details for this cgroup — but does *not* destroy the cgroup. This is hence OK to call
* when we close down everything for reexecution, where we really want to leave the cgroup in place. */
if (u->cgroup_path) {
(void) hashmap_remove(u->manager->cgroup_unit, u->cgroup_path);
u->cgroup_path = mfree(u->cgroup_path);
}
if (u->cgroup_control_inotify_wd >= 0) {
if (inotify_rm_watch(u->manager->cgroup_inotify_fd, u->cgroup_control_inotify_wd) < 0)
log_unit_debug_errno(u, errno, "Failed to remove cgroup control inotify watch %i for %s, ignoring: %m", u->cgroup_control_inotify_wd, u->id);
(void) hashmap_remove(u->manager->cgroup_control_inotify_wd_unit, INT_TO_PTR(u->cgroup_control_inotify_wd));
u->cgroup_control_inotify_wd = -1;
}
if (u->cgroup_memory_inotify_wd >= 0) {
if (inotify_rm_watch(u->manager->cgroup_inotify_fd, u->cgroup_memory_inotify_wd) < 0)
log_unit_debug_errno(u, errno, "Failed to remove cgroup memory inotify watch %i for %s, ignoring: %m", u->cgroup_memory_inotify_wd, u->id);
(void) hashmap_remove(u->manager->cgroup_memory_inotify_wd_unit, INT_TO_PTR(u->cgroup_memory_inotify_wd));
u->cgroup_memory_inotify_wd = -1;
}
}
void unit_prune_cgroup(Unit *u) {
int r;
bool is_root_slice;
assert(u);
/* Removes the cgroup, if empty and possible, and stops watching it. */
if (!u->cgroup_path)
return;
(void) unit_get_cpu_usage(u, NULL); /* Cache the last CPU usage value before we destroy the cgroup */
is_root_slice = unit_has_name(u, SPECIAL_ROOT_SLICE);
r = cg_trim_everywhere(u->manager->cgroup_supported, u->cgroup_path, !is_root_slice);
if (r < 0)
/* One reason we could have failed here is, that the cgroup still contains a process.
* However, if the cgroup becomes removable at a later time, it might be removed when
* the containing slice is stopped. So even if we failed now, this unit shouldn't assume
* that the cgroup is still realized the next time it is started. Do not return early
* on error, continue cleanup. */
log_unit_full(u, r == -EBUSY ? LOG_DEBUG : LOG_WARNING, r, "Failed to destroy cgroup %s, ignoring: %m", u->cgroup_path);
if (is_root_slice)
return;
unit_release_cgroup(u);
u->cgroup_realized = false;
u->cgroup_realized_mask = 0;
u->cgroup_enabled_mask = 0;
u->bpf_device_control_installed = bpf_program_unref(u->bpf_device_control_installed);
}
int unit_search_main_pid(Unit *u, pid_t *ret) {
_cleanup_fclose_ FILE *f = NULL;
pid_t pid = 0, npid;
int r;
assert(u);
assert(ret);
if (!u->cgroup_path)
return -ENXIO;
r = cg_enumerate_processes(SYSTEMD_CGROUP_CONTROLLER, u->cgroup_path, &f);
if (r < 0)
return r;
while (cg_read_pid(f, &npid) > 0) {
if (npid == pid)
continue;
if (pid_is_my_child(npid) == 0)
continue;
if (pid != 0)
/* Dang, there's more than one daemonized PID
in this group, so we don't know what process
is the main process. */
return -ENODATA;
pid = npid;
}
*ret = pid;
return 0;
}
static int unit_watch_pids_in_path(Unit *u, const char *path) {
_cleanup_closedir_ DIR *d = NULL;
_cleanup_fclose_ FILE *f = NULL;
int ret = 0, r;
assert(u);
assert(path);
r = cg_enumerate_processes(SYSTEMD_CGROUP_CONTROLLER, path, &f);
if (r < 0)
ret = r;
else {
pid_t pid;
while ((r = cg_read_pid(f, &pid)) > 0) {
r = unit_watch_pid(u, pid, false);
if (r < 0 && ret >= 0)
ret = r;
}
if (r < 0 && ret >= 0)
ret = r;
}
r = cg_enumerate_subgroups(SYSTEMD_CGROUP_CONTROLLER, path, &d);
if (r < 0) {
if (ret >= 0)
ret = r;
} else {
char *fn;
while ((r = cg_read_subgroup(d, &fn)) > 0) {
_cleanup_free_ char *p = NULL;
p = path_join(empty_to_root(path), fn);
free(fn);
if (!p)
return -ENOMEM;
r = unit_watch_pids_in_path(u, p);
if (r < 0 && ret >= 0)
ret = r;
}
if (r < 0 && ret >= 0)
ret = r;
}
return ret;
}
int unit_synthesize_cgroup_empty_event(Unit *u) {
int r;
assert(u);
/* Enqueue a synthetic cgroup empty event if this unit doesn't watch any PIDs anymore. This is compatibility
* support for non-unified systems where notifications aren't reliable, and hence need to take whatever we can
* get as notification source as soon as we stopped having any useful PIDs to watch for. */
if (!u->cgroup_path)
return -ENOENT;
r = cg_unified_controller(SYSTEMD_CGROUP_CONTROLLER);
if (r < 0)
return r;
if (r > 0) /* On unified we have reliable notifications, and don't need this */
return 0;
if (!set_isempty(u->pids))
return 0;
unit_add_to_cgroup_empty_queue(u);
return 0;
}
int unit_watch_all_pids(Unit *u) {
int r;
assert(u);
/* Adds all PIDs from our cgroup to the set of PIDs we
* watch. This is a fallback logic for cases where we do not
* get reliable cgroup empty notifications: we try to use
* SIGCHLD as replacement. */
if (!u->cgroup_path)
return -ENOENT;
r = cg_unified_controller(SYSTEMD_CGROUP_CONTROLLER);
if (r < 0)
return r;
if (r > 0) /* On unified we can use proper notifications */
return 0;
return unit_watch_pids_in_path(u, u->cgroup_path);
}
static int on_cgroup_empty_event(sd_event_source *s, void *userdata) {
Manager *m = userdata;
Unit *u;
int r;
assert(s);
assert(m);
u = m->cgroup_empty_queue;
if (!u)
return 0;
assert(u->in_cgroup_empty_queue);
u->in_cgroup_empty_queue = false;
LIST_REMOVE(cgroup_empty_queue, m->cgroup_empty_queue, u);
if (m->cgroup_empty_queue) {
/* More stuff queued, let's make sure we remain enabled */
r = sd_event_source_set_enabled(s, SD_EVENT_ONESHOT);
if (r < 0)
log_debug_errno(r, "Failed to reenable cgroup empty event source, ignoring: %m");
}
unit_add_to_gc_queue(u);
if (UNIT_VTABLE(u)->notify_cgroup_empty)
UNIT_VTABLE(u)->notify_cgroup_empty(u);
return 0;
}
void unit_add_to_cgroup_empty_queue(Unit *u) {
int r;
assert(u);
/* Note that there are four different ways how cgroup empty events reach us:
*
* 1. On the unified hierarchy we get an inotify event on the cgroup
*
* 2. On the legacy hierarchy, when running in system mode, we get a datagram on the cgroup agent socket
*
* 3. On the legacy hierarchy, when running in user mode, we get a D-Bus signal on the system bus
*
* 4. On the legacy hierarchy, in service units we start watching all processes of the cgroup for SIGCHLD as
* soon as we get one SIGCHLD, to deal with unreliable cgroup notifications.
*
* Regardless which way we got the notification, we'll verify it here, and then add it to a separate
* queue. This queue will be dispatched at a lower priority than the SIGCHLD handler, so that we always use
* SIGCHLD if we can get it first, and only use the cgroup empty notifications if there's no SIGCHLD pending
* (which might happen if the cgroup doesn't contain processes that are our own child, which is typically the
* case for scope units). */
if (u->in_cgroup_empty_queue)
return;
/* Let's verify that the cgroup is really empty */
if (!u->cgroup_path)
return;
r = cg_is_empty_recursive(SYSTEMD_CGROUP_CONTROLLER, u->cgroup_path);
if (r < 0) {
log_unit_debug_errno(u, r, "Failed to determine whether cgroup %s is empty: %m", u->cgroup_path);
return;
}
if (r == 0)
return;
LIST_PREPEND(cgroup_empty_queue, u->manager->cgroup_empty_queue, u);
u->in_cgroup_empty_queue = true;
/* Trigger the defer event */
r = sd_event_source_set_enabled(u->manager->cgroup_empty_event_source, SD_EVENT_ONESHOT);
if (r < 0)
log_debug_errno(r, "Failed to enable cgroup empty event source: %m");
}
int unit_check_oom(Unit *u) {
_cleanup_free_ char *oom_kill = NULL;
bool increased;
uint64_t c;
int r;
if (!u->cgroup_path)
return 0;
r = cg_get_keyed_attribute("memory", u->cgroup_path, "memory.events", STRV_MAKE("oom_kill"), &oom_kill);
if (r < 0)
return log_unit_debug_errno(u, r, "Failed to read oom_kill field of memory.events cgroup attribute: %m");
r = safe_atou64(oom_kill, &c);
if (r < 0)
return log_unit_debug_errno(u, r, "Failed to parse oom_kill field: %m");
increased = c > u->oom_kill_last;
u->oom_kill_last = c;
if (!increased)
return 0;
log_struct(LOG_NOTICE,
"MESSAGE_ID=" SD_MESSAGE_UNIT_OUT_OF_MEMORY_STR,
LOG_UNIT_ID(u),
LOG_UNIT_INVOCATION_ID(u),
LOG_UNIT_MESSAGE(u, "A process of this unit has been killed by the OOM killer."));
if (UNIT_VTABLE(u)->notify_cgroup_oom)
UNIT_VTABLE(u)->notify_cgroup_oom(u);
return 1;
}
static int on_cgroup_oom_event(sd_event_source *s, void *userdata) {
Manager *m = userdata;
Unit *u;
int r;
assert(s);
assert(m);
u = m->cgroup_oom_queue;
if (!u)
return 0;
assert(u->in_cgroup_oom_queue);
u->in_cgroup_oom_queue = false;
LIST_REMOVE(cgroup_oom_queue, m->cgroup_oom_queue, u);
if (m->cgroup_oom_queue) {
/* More stuff queued, let's make sure we remain enabled */
r = sd_event_source_set_enabled(s, SD_EVENT_ONESHOT);
if (r < 0)
log_debug_errno(r, "Failed to reenable cgroup oom event source, ignoring: %m");
}
(void) unit_check_oom(u);
return 0;
}
static void unit_add_to_cgroup_oom_queue(Unit *u) {
int r;
assert(u);
if (u->in_cgroup_oom_queue)
return;
if (!u->cgroup_path)
return;
LIST_PREPEND(cgroup_oom_queue, u->manager->cgroup_oom_queue, u);
u->in_cgroup_oom_queue = true;
/* Trigger the defer event */
if (!u->manager->cgroup_oom_event_source) {
_cleanup_(sd_event_source_unrefp) sd_event_source *s = NULL;
r = sd_event_add_defer(u->manager->event, &s, on_cgroup_oom_event, u->manager);
if (r < 0) {
log_error_errno(r, "Failed to create cgroup oom event source: %m");
return;
}
r = sd_event_source_set_priority(s, SD_EVENT_PRIORITY_NORMAL-8);
if (r < 0) {
log_error_errno(r, "Failed to set priority of cgroup oom event source: %m");
return;
}
(void) sd_event_source_set_description(s, "cgroup-oom");
u->manager->cgroup_oom_event_source = TAKE_PTR(s);
}
r = sd_event_source_set_enabled(u->manager->cgroup_oom_event_source, SD_EVENT_ONESHOT);
if (r < 0)
log_error_errno(r, "Failed to enable cgroup oom event source: %m");
}
static int on_cgroup_inotify_event(sd_event_source *s, int fd, uint32_t revents, void *userdata) {
Manager *m = userdata;
assert(s);
assert(fd >= 0);
assert(m);
for (;;) {
union inotify_event_buffer buffer;
struct inotify_event *e;
ssize_t l;
l = read(fd, &buffer, sizeof(buffer));
if (l < 0) {
if (IN_SET(errno, EINTR, EAGAIN))
return 0;
return log_error_errno(errno, "Failed to read control group inotify events: %m");
}
FOREACH_INOTIFY_EVENT(e, buffer, l) {
Unit *u;
if (e->wd < 0)
/* Queue overflow has no watch descriptor */
continue;
if (e->mask & IN_IGNORED)
/* The watch was just removed */
continue;
/* Note that inotify might deliver events for a watch even after it was removed,
* because it was queued before the removal. Let's ignore this here safely. */
u = hashmap_get(m->cgroup_control_inotify_wd_unit, INT_TO_PTR(e->wd));
if (u)
unit_add_to_cgroup_empty_queue(u);
u = hashmap_get(m->cgroup_memory_inotify_wd_unit, INT_TO_PTR(e->wd));
if (u)
unit_add_to_cgroup_oom_queue(u);
}
}
}
static int cg_bpf_mask_supported(CGroupMask *ret) {
CGroupMask mask = 0;
int r;
/* BPF-based firewall */
r = bpf_firewall_supported();
if (r > 0)
mask |= CGROUP_MASK_BPF_FIREWALL;
/* BPF-based device access control */
r = bpf_devices_supported();
if (r > 0)
mask |= CGROUP_MASK_BPF_DEVICES;
*ret = mask;
return 0;
}
int manager_setup_cgroup(Manager *m) {
_cleanup_free_ char *path = NULL;
const char *scope_path;
CGroupController c;
int r, all_unified;
CGroupMask mask;
char *e;
assert(m);
/* 1. Determine hierarchy */
m->cgroup_root = mfree(m->cgroup_root);
r = cg_pid_get_path(SYSTEMD_CGROUP_CONTROLLER, 0, &m->cgroup_root);
if (r < 0)
return log_error_errno(r, "Cannot determine cgroup we are running in: %m");
/* Chop off the init scope, if we are already located in it */
e = endswith(m->cgroup_root, "/" SPECIAL_INIT_SCOPE);
/* LEGACY: Also chop off the system slice if we are in
* it. This is to support live upgrades from older systemd
* versions where PID 1 was moved there. Also see
* cg_get_root_path(). */
if (!e && MANAGER_IS_SYSTEM(m)) {
e = endswith(m->cgroup_root, "/" SPECIAL_SYSTEM_SLICE);
if (!e)
e = endswith(m->cgroup_root, "/system"); /* even more legacy */
}
if (e)
*e = 0;
/* And make sure to store away the root value without trailing slash, even for the root dir, so that we can
* easily prepend it everywhere. */
delete_trailing_chars(m->cgroup_root, "/");
/* 2. Show data */
r = cg_get_path(SYSTEMD_CGROUP_CONTROLLER, m->cgroup_root, NULL, &path);
if (r < 0)
return log_error_errno(r, "Cannot find cgroup mount point: %m");
r = cg_unified_flush();
if (r < 0)
return log_error_errno(r, "Couldn't determine if we are running in the unified hierarchy: %m");
all_unified = cg_all_unified();
if (all_unified < 0)
return log_error_errno(all_unified, "Couldn't determine whether we are in all unified mode: %m");
if (all_unified > 0)
log_debug("Unified cgroup hierarchy is located at %s.", path);
else {
r = cg_unified_controller(SYSTEMD_CGROUP_CONTROLLER);
if (r < 0)
return log_error_errno(r, "Failed to determine whether systemd's own controller is in unified mode: %m");
if (r > 0)
log_debug("Unified cgroup hierarchy is located at %s. Controllers are on legacy hierarchies.", path);
else
log_debug("Using cgroup controller " SYSTEMD_CGROUP_CONTROLLER_LEGACY ". File system hierarchy is at %s.", path);
}
/* 3. Allocate cgroup empty defer event source */
m->cgroup_empty_event_source = sd_event_source_unref(m->cgroup_empty_event_source);
r = sd_event_add_defer(m->event, &m->cgroup_empty_event_source, on_cgroup_empty_event, m);
if (r < 0)
return log_error_errno(r, "Failed to create cgroup empty event source: %m");
/* Schedule cgroup empty checks early, but after having processed service notification messages or
* SIGCHLD signals, so that a cgroup running empty is always just the last safety net of
* notification, and we collected the metadata the notification and SIGCHLD stuff offers first. */
r = sd_event_source_set_priority(m->cgroup_empty_event_source, SD_EVENT_PRIORITY_NORMAL-5);
if (r < 0)
return log_error_errno(r, "Failed to set priority of cgroup empty event source: %m");
r = sd_event_source_set_enabled(m->cgroup_empty_event_source, SD_EVENT_OFF);
if (r < 0)
return log_error_errno(r, "Failed to disable cgroup empty event source: %m");
(void) sd_event_source_set_description(m->cgroup_empty_event_source, "cgroup-empty");
/* 4. Install notifier inotify object, or agent */
if (cg_unified_controller(SYSTEMD_CGROUP_CONTROLLER) > 0) {
/* In the unified hierarchy we can get cgroup empty notifications via inotify. */
m->cgroup_inotify_event_source = sd_event_source_unref(m->cgroup_inotify_event_source);
safe_close(m->cgroup_inotify_fd);
m->cgroup_inotify_fd = inotify_init1(IN_NONBLOCK|IN_CLOEXEC);
if (m->cgroup_inotify_fd < 0)
return log_error_errno(errno, "Failed to create control group inotify object: %m");
r = sd_event_add_io(m->event, &m->cgroup_inotify_event_source, m->cgroup_inotify_fd, EPOLLIN, on_cgroup_inotify_event, m);
if (r < 0)
return log_error_errno(r, "Failed to watch control group inotify object: %m");
/* Process cgroup empty notifications early. Note that when this event is dispatched it'll
* just add the unit to a cgroup empty queue, hence let's run earlier than that. Also see
* handling of cgroup agent notifications, for the classic cgroup hierarchy support. */
r = sd_event_source_set_priority(m->cgroup_inotify_event_source, SD_EVENT_PRIORITY_NORMAL-9);
if (r < 0)
return log_error_errno(r, "Failed to set priority of inotify event source: %m");
(void) sd_event_source_set_description(m->cgroup_inotify_event_source, "cgroup-inotify");
} else if (MANAGER_IS_SYSTEM(m) && manager_owns_host_root_cgroup(m) && !MANAGER_IS_TEST_RUN(m)) {
/* On the legacy hierarchy we only get notifications via cgroup agents. (Which isn't really reliable,
* since it does not generate events when control groups with children run empty. */
r = cg_install_release_agent(SYSTEMD_CGROUP_CONTROLLER, SYSTEMD_CGROUP_AGENT_PATH);
if (r < 0)
log_warning_errno(r, "Failed to install release agent, ignoring: %m");
else if (r > 0)
log_debug("Installed release agent.");
else if (r == 0)
log_debug("Release agent already installed.");
}
/* 5. Make sure we are in the special "init.scope" unit in the root slice. */
scope_path = strjoina(m->cgroup_root, "/" SPECIAL_INIT_SCOPE);
r = cg_create_and_attach(SYSTEMD_CGROUP_CONTROLLER, scope_path, 0);
if (r >= 0) {
/* Also, move all other userspace processes remaining in the root cgroup into that scope. */
r = cg_migrate(SYSTEMD_CGROUP_CONTROLLER, m->cgroup_root, SYSTEMD_CGROUP_CONTROLLER, scope_path, 0);
if (r < 0)
log_warning_errno(r, "Couldn't move remaining userspace processes, ignoring: %m");
/* 6. And pin it, so that it cannot be unmounted */
safe_close(m->pin_cgroupfs_fd);
m->pin_cgroupfs_fd = open(path, O_RDONLY|O_CLOEXEC|O_DIRECTORY|O_NOCTTY|O_NONBLOCK);
if (m->pin_cgroupfs_fd < 0)
return log_error_errno(errno, "Failed to open pin file: %m");
} else if (!MANAGER_IS_TEST_RUN(m))
return log_error_errno(r, "Failed to create %s control group: %m", scope_path);
/* 7. Always enable hierarchical support if it exists... */
if (!all_unified && !MANAGER_IS_TEST_RUN(m))
(void) cg_set_attribute("memory", "/", "memory.use_hierarchy", "1");
/* 8. Figure out which controllers are supported */
r = cg_mask_supported(&m->cgroup_supported);
if (r < 0)
return log_error_errno(r, "Failed to determine supported controllers: %m");
/* 9. Figure out which bpf-based pseudo-controllers are supported */
r = cg_bpf_mask_supported(&mask);
if (r < 0)
return log_error_errno(r, "Failed to determine supported bpf-based pseudo-controllers: %m");
m->cgroup_supported |= mask;
/* 10. Log which controllers are supported */
for (c = 0; c < _CGROUP_CONTROLLER_MAX; c++)
log_debug("Controller '%s' supported: %s", cgroup_controller_to_string(c), yes_no(m->cgroup_supported & CGROUP_CONTROLLER_TO_MASK(c)));
return 0;
}
void manager_shutdown_cgroup(Manager *m, bool delete) {
assert(m);
/* We can't really delete the group, since we are in it. But
* let's trim it. */
if (delete && m->cgroup_root && m->test_run_flags != MANAGER_TEST_RUN_MINIMAL)
(void) cg_trim(SYSTEMD_CGROUP_CONTROLLER, m->cgroup_root, false);
m->cgroup_empty_event_source = sd_event_source_unref(m->cgroup_empty_event_source);
m->cgroup_control_inotify_wd_unit = hashmap_free(m->cgroup_control_inotify_wd_unit);
m->cgroup_memory_inotify_wd_unit = hashmap_free(m->cgroup_memory_inotify_wd_unit);
m->cgroup_inotify_event_source = sd_event_source_unref(m->cgroup_inotify_event_source);
m->cgroup_inotify_fd = safe_close(m->cgroup_inotify_fd);
m->pin_cgroupfs_fd = safe_close(m->pin_cgroupfs_fd);
m->cgroup_root = mfree(m->cgroup_root);
}
Unit* manager_get_unit_by_cgroup(Manager *m, const char *cgroup) {
char *p;
Unit *u;
assert(m);
assert(cgroup);
u = hashmap_get(m->cgroup_unit, cgroup);
if (u)
return u;
p = strdupa(cgroup);
for (;;) {
char *e;
e = strrchr(p, '/');
if (!e || e == p)
return hashmap_get(m->cgroup_unit, SPECIAL_ROOT_SLICE);
*e = 0;
u = hashmap_get(m->cgroup_unit, p);
if (u)
return u;
}
}
Unit *manager_get_unit_by_pid_cgroup(Manager *m, pid_t pid) {
_cleanup_free_ char *cgroup = NULL;
assert(m);
if (!pid_is_valid(pid))
return NULL;
if (cg_pid_get_path(SYSTEMD_CGROUP_CONTROLLER, pid, &cgroup) < 0)
return NULL;
return manager_get_unit_by_cgroup(m, cgroup);
}
Unit *manager_get_unit_by_pid(Manager *m, pid_t pid) {
Unit *u, **array;
assert(m);
/* Note that a process might be owned by multiple units, we return only one here, which is good enough for most
* cases, though not strictly correct. We prefer the one reported by cgroup membership, as that's the most
* relevant one as children of the process will be assigned to that one, too, before all else. */
if (!pid_is_valid(pid))
return NULL;
if (pid == getpid_cached())
return hashmap_get(m->units, SPECIAL_INIT_SCOPE);
u = manager_get_unit_by_pid_cgroup(m, pid);
if (u)
return u;
u = hashmap_get(m->watch_pids, PID_TO_PTR(pid));
if (u)
return u;
array = hashmap_get(m->watch_pids, PID_TO_PTR(-pid));
if (array)
return array[0];
return NULL;
}
int manager_notify_cgroup_empty(Manager *m, const char *cgroup) {
Unit *u;
assert(m);
assert(cgroup);
/* Called on the legacy hierarchy whenever we get an explicit cgroup notification from the cgroup agent process
* or from the --system instance */
log_debug("Got cgroup empty notification for: %s", cgroup);
u = manager_get_unit_by_cgroup(m, cgroup);
if (!u)
return 0;
unit_add_to_cgroup_empty_queue(u);
return 1;
}
int unit_get_memory_current(Unit *u, uint64_t *ret) {
_cleanup_free_ char *v = NULL;
int r;
assert(u);
assert(ret);
if (!UNIT_CGROUP_BOOL(u, memory_accounting))
return -ENODATA;
if (!u->cgroup_path)
return -ENODATA;
/* The root cgroup doesn't expose this information, let's get it from /proc instead */
if (unit_has_host_root_cgroup(u))
return procfs_memory_get_used(ret);
if ((u->cgroup_realized_mask & CGROUP_MASK_MEMORY) == 0)
return -ENODATA;
r = cg_all_unified();
if (r < 0)
return r;
if (r > 0)
r = cg_get_attribute("memory", u->cgroup_path, "memory.current", &v);
else
r = cg_get_attribute("memory", u->cgroup_path, "memory.usage_in_bytes", &v);
if (r == -ENOENT)
return -ENODATA;
if (r < 0)
return r;
return safe_atou64(v, ret);
}
int unit_get_tasks_current(Unit *u, uint64_t *ret) {
_cleanup_free_ char *v = NULL;
int r;
assert(u);
assert(ret);
if (!UNIT_CGROUP_BOOL(u, tasks_accounting))
return -ENODATA;
if (!u->cgroup_path)
return -ENODATA;
/* The root cgroup doesn't expose this information, let's get it from /proc instead */
if (unit_has_host_root_cgroup(u))
return procfs_tasks_get_current(ret);
if ((u->cgroup_realized_mask & CGROUP_MASK_PIDS) == 0)
return -ENODATA;
r = cg_get_attribute("pids", u->cgroup_path, "pids.current", &v);
if (r == -ENOENT)
return -ENODATA;
if (r < 0)
return r;
return safe_atou64(v, ret);
}
static int unit_get_cpu_usage_raw(Unit *u, nsec_t *ret) {
_cleanup_free_ char *v = NULL;
uint64_t ns;
int r;
assert(u);
assert(ret);
if (!u->cgroup_path)
return -ENODATA;
/* The root cgroup doesn't expose this information, let's get it from /proc instead */
if (unit_has_host_root_cgroup(u))
return procfs_cpu_get_usage(ret);
/* Requisite controllers for CPU accounting are not enabled */
if ((get_cpu_accounting_mask() & ~u->cgroup_realized_mask) != 0)
return -ENODATA;
r = cg_all_unified();
if (r < 0)
return r;
if (r > 0) {
_cleanup_free_ char *val = NULL;
uint64_t us;
r = cg_get_keyed_attribute("cpu", u->cgroup_path, "cpu.stat", STRV_MAKE("usage_usec"), &val);
if (IN_SET(r, -ENOENT, -ENXIO))
return -ENODATA;
if (r < 0)
return r;
r = safe_atou64(val, &us);
if (r < 0)
return r;
ns = us * NSEC_PER_USEC;
} else {
r = cg_get_attribute("cpuacct", u->cgroup_path, "cpuacct.usage", &v);
if (r == -ENOENT)
return -ENODATA;
if (r < 0)
return r;
r = safe_atou64(v, &ns);
if (r < 0)
return r;
}
*ret = ns;
return 0;
}
int unit_get_cpu_usage(Unit *u, nsec_t *ret) {
nsec_t ns;
int r;
assert(u);
/* Retrieve the current CPU usage counter. This will subtract the CPU counter taken when the unit was
* started. If the cgroup has been removed already, returns the last cached value. To cache the value, simply
* call this function with a NULL return value. */
if (!UNIT_CGROUP_BOOL(u, cpu_accounting))
return -ENODATA;
r = unit_get_cpu_usage_raw(u, &ns);
if (r == -ENODATA && u->cpu_usage_last != NSEC_INFINITY) {
/* If we can't get the CPU usage anymore (because the cgroup was already removed, for example), use our
* cached value. */
if (ret)
*ret = u->cpu_usage_last;
return 0;
}
if (r < 0)
return r;
if (ns > u->cpu_usage_base)
ns -= u->cpu_usage_base;
else
ns = 0;
u->cpu_usage_last = ns;
if (ret)
*ret = ns;
return 0;
}
int unit_get_ip_accounting(
Unit *u,
CGroupIPAccountingMetric metric,
uint64_t *ret) {
uint64_t value;
int fd, r;
assert(u);
assert(metric >= 0);
assert(metric < _CGROUP_IP_ACCOUNTING_METRIC_MAX);
assert(ret);
if (!UNIT_CGROUP_BOOL(u, ip_accounting))
return -ENODATA;
fd = IN_SET(metric, CGROUP_IP_INGRESS_BYTES, CGROUP_IP_INGRESS_PACKETS) ?
u->ip_accounting_ingress_map_fd :
u->ip_accounting_egress_map_fd;
if (fd < 0)
return -ENODATA;
if (IN_SET(metric, CGROUP_IP_INGRESS_BYTES, CGROUP_IP_EGRESS_BYTES))
r = bpf_firewall_read_accounting(fd, &value, NULL);
else
r = bpf_firewall_read_accounting(fd, NULL, &value);
if (r < 0)
return r;
/* Add in additional metrics from a previous runtime. Note that when reexecing/reloading the daemon we compile
* all BPF programs and maps anew, but serialize the old counters. When deserializing we store them in the
* ip_accounting_extra[] field, and add them in here transparently. */
*ret = value + u->ip_accounting_extra[metric];
return r;
}
static int unit_get_io_accounting_raw(Unit *u, uint64_t ret[static _CGROUP_IO_ACCOUNTING_METRIC_MAX]) {
static const char *const field_names[_CGROUP_IO_ACCOUNTING_METRIC_MAX] = {
[CGROUP_IO_READ_BYTES] = "rbytes=",
[CGROUP_IO_WRITE_BYTES] = "wbytes=",
[CGROUP_IO_READ_OPERATIONS] = "rios=",
[CGROUP_IO_WRITE_OPERATIONS] = "wios=",
};
uint64_t acc[_CGROUP_IO_ACCOUNTING_METRIC_MAX] = {};
_cleanup_free_ char *path = NULL;
_cleanup_fclose_ FILE *f = NULL;
int r;
assert(u);
if (!u->cgroup_path)
return -ENODATA;
if (unit_has_host_root_cgroup(u))
return -ENODATA; /* TODO: return useful data for the top-level cgroup */
r = cg_all_unified();
if (r < 0)
return r;
if (r == 0) /* TODO: support cgroupv1 */
return -ENODATA;
if (!FLAGS_SET(u->cgroup_realized_mask, CGROUP_MASK_IO))
return -ENODATA;
r = cg_get_path("io", u->cgroup_path, "io.stat", &path);
if (r < 0)
return r;
f = fopen(path, "re");
if (!f)
return -errno;
for (;;) {
_cleanup_free_ char *line = NULL;
const char *p;
r = read_line(f, LONG_LINE_MAX, &line);
if (r < 0)
return r;
if (r == 0)
break;
p = line;
p += strcspn(p, WHITESPACE); /* Skip over device major/minor */
p += strspn(p, WHITESPACE); /* Skip over following whitespace */
for (;;) {
_cleanup_free_ char *word = NULL;
r = extract_first_word(&p, &word, NULL, EXTRACT_RETAIN_ESCAPE);
if (r < 0)
return r;
if (r == 0)
break;
for (CGroupIOAccountingMetric i = 0; i < _CGROUP_IO_ACCOUNTING_METRIC_MAX; i++) {
const char *x;
x = startswith(word, field_names[i]);
if (x) {
uint64_t w;
r = safe_atou64(x, &w);
if (r < 0)
return r;
/* Sum up the stats of all devices */
acc[i] += w;
break;
}
}
}
}
memcpy(ret, acc, sizeof(acc));
return 0;
}
int unit_get_io_accounting(
Unit *u,
CGroupIOAccountingMetric metric,
bool allow_cache,
uint64_t *ret) {
uint64_t raw[_CGROUP_IO_ACCOUNTING_METRIC_MAX];
int r;
/* Retrieve an IO account parameter. This will subtract the counter when the unit was started. */
if (!UNIT_CGROUP_BOOL(u, io_accounting))
return -ENODATA;
if (allow_cache && u->io_accounting_last[metric] != UINT64_MAX)
goto done;
r = unit_get_io_accounting_raw(u, raw);
if (r == -ENODATA && u->io_accounting_last[metric] != UINT64_MAX)
goto done;
if (r < 0)
return r;
for (CGroupIOAccountingMetric i = 0; i < _CGROUP_IO_ACCOUNTING_METRIC_MAX; i++) {
/* Saturated subtraction */
if (raw[i] > u->io_accounting_base[i])
u->io_accounting_last[i] = raw[i] - u->io_accounting_base[i];
else
u->io_accounting_last[i] = 0;
}
done:
if (ret)
*ret = u->io_accounting_last[metric];
return 0;
}
int unit_reset_cpu_accounting(Unit *u) {
int r;
assert(u);
u->cpu_usage_last = NSEC_INFINITY;
r = unit_get_cpu_usage_raw(u, &u->cpu_usage_base);
if (r < 0) {
u->cpu_usage_base = 0;
return r;
}
return 0;
}
int unit_reset_ip_accounting(Unit *u) {
int r = 0, q = 0;
assert(u);
if (u->ip_accounting_ingress_map_fd >= 0)
r = bpf_firewall_reset_accounting(u->ip_accounting_ingress_map_fd);
if (u->ip_accounting_egress_map_fd >= 0)
q = bpf_firewall_reset_accounting(u->ip_accounting_egress_map_fd);
zero(u->ip_accounting_extra);
return r < 0 ? r : q;
}
int unit_reset_io_accounting(Unit *u) {
int r;
assert(u);
for (CGroupIOAccountingMetric i = 0; i < _CGROUP_IO_ACCOUNTING_METRIC_MAX; i++)
u->io_accounting_last[i] = UINT64_MAX;
r = unit_get_io_accounting_raw(u, u->io_accounting_base);
if (r < 0) {
zero(u->io_accounting_base);
return r;
}
return 0;
}
int unit_reset_accounting(Unit *u) {
int r, q, v;
assert(u);
r = unit_reset_cpu_accounting(u);
q = unit_reset_io_accounting(u);
v = unit_reset_ip_accounting(u);
return r < 0 ? r : q < 0 ? q : v;
}
void unit_invalidate_cgroup(Unit *u, CGroupMask m) {
assert(u);
if (!UNIT_HAS_CGROUP_CONTEXT(u))
return;
if (m == 0)
return;
/* always invalidate compat pairs together */
if (m & (CGROUP_MASK_IO | CGROUP_MASK_BLKIO))
m |= CGROUP_MASK_IO | CGROUP_MASK_BLKIO;
if (m & (CGROUP_MASK_CPU | CGROUP_MASK_CPUACCT))
m |= CGROUP_MASK_CPU | CGROUP_MASK_CPUACCT;
if (FLAGS_SET(u->cgroup_invalidated_mask, m)) /* NOP? */
return;
u->cgroup_invalidated_mask |= m;
unit_add_to_cgroup_realize_queue(u);
}
void unit_invalidate_cgroup_bpf(Unit *u) {
assert(u);
if (!UNIT_HAS_CGROUP_CONTEXT(u))
return;
if (u->cgroup_invalidated_mask & CGROUP_MASK_BPF_FIREWALL) /* NOP? */
return;
u->cgroup_invalidated_mask |= CGROUP_MASK_BPF_FIREWALL;
unit_add_to_cgroup_realize_queue(u);
/* If we are a slice unit, we also need to put compile a new BPF program for all our children, as the IP access
* list of our children includes our own. */
if (u->type == UNIT_SLICE) {
Unit *member;
Iterator i;
void *v;
HASHMAP_FOREACH_KEY(v, member, u->dependencies[UNIT_BEFORE], i) {
if (UNIT_DEREF(member->slice) == u)
unit_invalidate_cgroup_bpf(member);
}
}
}
bool unit_cgroup_delegate(Unit *u) {
CGroupContext *c;
assert(u);
if (!UNIT_VTABLE(u)->can_delegate)
return false;
c = unit_get_cgroup_context(u);
if (!c)
return false;
return c->delegate;
}
void manager_invalidate_startup_units(Manager *m) {
Iterator i;
Unit *u;
assert(m);
SET_FOREACH(u, m->startup_units, i)
unit_invalidate_cgroup(u, CGROUP_MASK_CPU|CGROUP_MASK_IO|CGROUP_MASK_BLKIO);
}
static int unit_get_nice(Unit *u) {
ExecContext *ec;
ec = unit_get_exec_context(u);
return ec ? ec->nice : 0;
}
static uint64_t unit_get_cpu_weight(Unit *u) {
ManagerState state = manager_state(u->manager);
CGroupContext *cc;
cc = unit_get_cgroup_context(u);
return cc ? cgroup_context_cpu_weight(cc, state) : CGROUP_WEIGHT_DEFAULT;
}
int compare_job_priority(const void *a, const void *b) {
const Job *x = a, *y = b;
int nice_x, nice_y;
uint64_t weight_x, weight_y;
int ret;
if ((ret = CMP(x->unit->type, y->unit->type)) != 0)
return -ret;
weight_x = unit_get_cpu_weight(x->unit);
weight_y = unit_get_cpu_weight(y->unit);
if ((ret = CMP(weight_x, weight_y)) != 0)
return -ret;
nice_x = unit_get_nice(x->unit);
nice_y = unit_get_nice(y->unit);
if ((ret = CMP(nice_x, nice_y)) != 0)
return ret;
return strcmp(x->unit->id, y->unit->id);
}
static const char* const cgroup_device_policy_table[_CGROUP_DEVICE_POLICY_MAX] = {
[CGROUP_AUTO] = "auto",
[CGROUP_CLOSED] = "closed",
[CGROUP_STRICT] = "strict",
};
DEFINE_STRING_TABLE_LOOKUP(cgroup_device_policy, CGroupDevicePolicy);
|