1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
|
// Copyright 2007 The RE2 Authors. All Rights Reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
/*
* A simple mutex wrapper, supporting locks and read-write locks.
* You should assume the locks are *not* re-entrant.
*/
#ifndef RE2_UTIL_MUTEX_H_
#define RE2_UTIL_MUTEX_H_
#include <stdlib.h>
namespace re2 {
#define HAVE_PTHREAD 1
#define HAVE_RWLOCK 1
#if defined(NO_THREADS)
typedef int MutexType; // to keep a lock-count
#elif defined(HAVE_PTHREAD) && defined(HAVE_RWLOCK)
// Needed for pthread_rwlock_*. If it causes problems, you could take it
// out, but then you'd have to unset HAVE_RWLOCK (at least on linux -- it
// *does* cause problems for FreeBSD, or MacOSX, but isn't needed
// for locking there.)
# ifdef __linux__
# undef _XOPEN_SOURCE
# define _XOPEN_SOURCE 500 // may be needed to get the rwlock calls
# endif
# include <pthread.h>
typedef pthread_rwlock_t MutexType;
#elif defined(HAVE_PTHREAD)
# include <pthread.h>
typedef pthread_mutex_t MutexType;
#elif defined(WIN32)
# define WIN32_LEAN_AND_MEAN // We only need minimal includes
# ifdef GMUTEX_TRYLOCK
// We need Windows NT or later for TryEnterCriticalSection(). If you
// don't need that functionality, you can remove these _WIN32_WINNT
// lines, and change TryLock() to assert(0) or something.
# ifndef _WIN32_WINNT
# define _WIN32_WINNT 0x0400
# endif
# endif
# include <windows.h>
typedef CRITICAL_SECTION MutexType;
#else
# error Need to implement mutex.h for your architecture, or #define NO_THREADS
#endif
class Mutex {
public:
// Create a Mutex that is not held by anybody.
inline Mutex();
// Destructor
inline ~Mutex();
inline void Lock(); // Block if needed until free then acquire exclusively
inline void Unlock(); // Release a lock acquired via Lock()
inline bool TryLock(); // If free, Lock() and return true, else return false
// Note that on systems that don't support read-write locks, these may
// be implemented as synonyms to Lock() and Unlock(). So you can use
// these for efficiency, but don't use them anyplace where being able
// to do shared reads is necessary to avoid deadlock.
inline void ReaderLock(); // Block until free or shared then acquire a share
inline void ReaderUnlock(); // Release a read share of this Mutex
inline void WriterLock() { Lock(); } // Acquire an exclusive lock
inline void WriterUnlock() { Unlock(); } // Release a lock from WriterLock()
inline void AssertHeld() { }
private:
MutexType mutex_;
// Catch the error of writing Mutex when intending MutexLock.
Mutex(Mutex *ignored);
// Disallow "evil" constructors
Mutex(const Mutex&);
void operator=(const Mutex&);
};
// Now the implementation of Mutex for various systems
#if defined(NO_THREADS)
// When we don't have threads, we can be either reading or writing,
// but not both. We can have lots of readers at once (in no-threads
// mode, that's most likely to happen in recursive function calls),
// but only one writer. We represent this by having mutex_ be -1 when
// writing and a number > 0 when reading (and 0 when no lock is held).
//
// In debug mode, we assert these invariants, while in non-debug mode
// we do nothing, for efficiency. That's why everything is in an
// assert.
#include <assert.h>
Mutex::Mutex() : mutex_(0) { }
Mutex::~Mutex() { assert(mutex_ == 0); }
void Mutex::Lock() { assert(--mutex_ == -1); }
void Mutex::Unlock() { assert(mutex_++ == -1); }
bool Mutex::TryLock() { if (mutex_) return false; Lock(); return true; }
void Mutex::ReaderLock() { assert(++mutex_ > 0); }
void Mutex::ReaderUnlock() { assert(mutex_-- > 0); }
#elif defined(HAVE_PTHREAD) && defined(HAVE_RWLOCK)
#define SAFE_PTHREAD(fncall) do { if ((fncall) != 0) abort(); } while (0)
Mutex::Mutex() { SAFE_PTHREAD(pthread_rwlock_init(&mutex_, NULL)); }
Mutex::~Mutex() { SAFE_PTHREAD(pthread_rwlock_destroy(&mutex_)); }
void Mutex::Lock() { SAFE_PTHREAD(pthread_rwlock_wrlock(&mutex_)); }
void Mutex::Unlock() { SAFE_PTHREAD(pthread_rwlock_unlock(&mutex_)); }
bool Mutex::TryLock() { return pthread_rwlock_trywrlock(&mutex_) == 0; }
void Mutex::ReaderLock() { SAFE_PTHREAD(pthread_rwlock_rdlock(&mutex_)); }
void Mutex::ReaderUnlock() { SAFE_PTHREAD(pthread_rwlock_unlock(&mutex_)); }
#undef SAFE_PTHREAD
#elif defined(HAVE_PTHREAD)
#define SAFE_PTHREAD(fncall) do { if ((fncall) != 0) abort(); } while (0)
Mutex::Mutex() { SAFE_PTHREAD(pthread_mutex_init(&mutex_, NULL)); }
Mutex::~Mutex() { SAFE_PTHREAD(pthread_mutex_destroy(&mutex_)); }
void Mutex::Lock() { SAFE_PTHREAD(pthread_mutex_lock(&mutex_)); }
void Mutex::Unlock() { SAFE_PTHREAD(pthread_mutex_unlock(&mutex_)); }
bool Mutex::TryLock() { return pthread_mutex_trylock(&mutex_) == 0; }
void Mutex::ReaderLock() { Lock(); } // we don't have read-write locks
void Mutex::ReaderUnlock() { Unlock(); }
#undef SAFE_PTHREAD
#elif defined(WIN32)
Mutex::Mutex() { InitializeCriticalSection(&mutex_); }
Mutex::~Mutex() { DeleteCriticalSection(&mutex_); }
void Mutex::Lock() { EnterCriticalSection(&mutex_); }
void Mutex::Unlock() { LeaveCriticalSection(&mutex_); }
bool Mutex::TryLock() { return TryEnterCriticalSection(&mutex_) != 0; }
void Mutex::ReaderLock() { Lock(); } // we don't have read-write locks
void Mutex::ReaderUnlock() { Unlock(); }
#endif
// --------------------------------------------------------------------------
// Some helper classes
// MutexLock(mu) acquires mu when constructed and releases it when destroyed.
class MutexLock {
public:
explicit MutexLock(Mutex *mu) : mu_(mu) { mu_->Lock(); }
~MutexLock() { mu_->Unlock(); }
private:
Mutex * const mu_;
// Disallow "evil" constructors
MutexLock(const MutexLock&);
void operator=(const MutexLock&);
};
// ReaderMutexLock and WriterMutexLock do the same, for rwlocks
class ReaderMutexLock {
public:
explicit ReaderMutexLock(Mutex *mu) : mu_(mu) { mu_->ReaderLock(); }
~ReaderMutexLock() { mu_->ReaderUnlock(); }
private:
Mutex * const mu_;
// Disallow "evil" constructors
ReaderMutexLock(const ReaderMutexLock&);
void operator=(const ReaderMutexLock&);
};
class WriterMutexLock {
public:
explicit WriterMutexLock(Mutex *mu) : mu_(mu) { mu_->WriterLock(); }
~WriterMutexLock() { mu_->WriterUnlock(); }
private:
Mutex * const mu_;
// Disallow "evil" constructors
WriterMutexLock(const WriterMutexLock&);
void operator=(const WriterMutexLock&);
};
// Catch bug where variable name is omitted, e.g. MutexLock (&mu);
#define MutexLock(x) COMPILE_ASSERT(0, mutex_lock_decl_missing_var_name)
#define ReaderMutexLock(x) COMPILE_ASSERT(0, rmutex_lock_decl_missing_var_name)
#define WriterMutexLock(x) COMPILE_ASSERT(0, wmutex_lock_decl_missing_var_name)
// Provide safe way to declare and use global, linker-initialized mutex. Sigh.
#ifdef HAVE_PTHREAD
#define GLOBAL_MUTEX(name) \
static pthread_mutex_t (name) = PTHREAD_MUTEX_INITIALIZER
#define GLOBAL_MUTEX_LOCK(name) \
pthread_mutex_lock(&(name))
#define GLOBAL_MUTEX_UNLOCK(name) \
pthread_mutex_unlock(&(name))
#else
#define GLOBAL_MUTEX(name) \
static Mutex name
#define GLOBAL_MUTEX_LOCK(name) \
name.Lock()
#define GLOBAL_MUTEX_UNLOCK(name) \
name.Unlock()
#endif
} // namespace re2
#endif /* #define RE2_UTIL_MUTEX_H_ */
|