1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
|
// 16bit code to access floppy drives.
//
// Copyright (C) 2008,2009 Kevin O'Connor <kevin@koconnor.net>
// Copyright (C) 2002 MandrakeSoft S.A.
//
// This file may be distributed under the terms of the GNU LGPLv3 license.
#include "biosvar.h" // SET_BDA
#include "block.h" // struct drive_s
#include "bregs.h" // struct bregs
#include "config.h" // CONFIG_FLOPPY
#include "malloc.h" // malloc_fseg
#include "output.h" // dprintf
#include "pci.h" // pci_to_bdf
#include "pci_ids.h" // PCI_CLASS_BRIDGE_ISA
#include "pic.h" // pic_eoi1
#include "romfile.h" // romfile_loadint
#include "rtc.h" // rtc_read
#include "stacks.h" // yield
#include "std/disk.h" // DISK_RET_SUCCESS
#include "string.h" // memset
#include "util.h" // timer_calc
#define PORT_FD_BASE 0x03f0
#define PORT_FD_DOR 0x03f2
#define PORT_FD_STATUS 0x03f4
#define PORT_FD_DATA 0x03f5
#define PORT_FD_DIR 0x03f7
#define FLOPPY_SIZE_CODE 0x02 // 512 byte sectors
#define FLOPPY_DATALEN 0xff // Not used - because size code is 0x02
#define FLOPPY_MOTOR_TICKS 37 // ~2 seconds
#define FLOPPY_FILLBYTE 0xf6
#define FLOPPY_GAPLEN 0x1B
#define FLOPPY_FORMAT_GAPLEN 0x6c
#define FLOPPY_PIO_TIMEOUT 1000
// New diskette parameter table adding 3 parameters from IBM
// Since no provisions are made for multiple drive types, most
// values in this table are ignored. I set parameters for 1.44M
// floppy here
struct floppy_ext_dbt_s diskette_param_table2 VARFSEG = {
.dbt = {
.specify1 = 0xAF, // step rate 12ms, head unload 240ms
.specify2 = 0x02, // head load time 4ms, DMA used
.shutoff_ticks = FLOPPY_MOTOR_TICKS, // ~2 seconds
.bps_code = FLOPPY_SIZE_CODE,
.sectors = 18,
.interblock_len = FLOPPY_GAPLEN,
.data_len = FLOPPY_DATALEN,
.gap_len = FLOPPY_FORMAT_GAPLEN,
.fill_byte = FLOPPY_FILLBYTE,
.settle_time = 0x0F, // 15ms
.startup_time = 0x08, // 1 second
},
.max_track = 79, // maximum track
.data_rate = 0, // data transfer rate
.drive_type = 4, // drive type in cmos
};
struct floppy_dbt_s diskette_param_table VAR16FIXED(0xefc7);
struct floppyinfo_s {
struct chs_s chs;
u8 floppy_size;
u8 data_rate;
};
#define FLOPPY_SIZE_525 0x01
#define FLOPPY_SIZE_350 0x02
#define FLOPPY_RATE_500K 0x00
#define FLOPPY_RATE_300K 0x01
#define FLOPPY_RATE_250K 0x02
#define FLOPPY_RATE_1M 0x03
struct floppyinfo_s FloppyInfo[] VARFSEG = {
// Unknown
{ {0, 0, 0}, 0x00, 0x00},
// 1 - 360KB, 5.25" - 2 heads, 40 tracks, 9 sectors
{ {2, 40, 9}, FLOPPY_SIZE_525, FLOPPY_RATE_300K},
// 2 - 1.2MB, 5.25" - 2 heads, 80 tracks, 15 sectors
{ {2, 80, 15}, FLOPPY_SIZE_525, FLOPPY_RATE_500K},
// 3 - 720KB, 3.5" - 2 heads, 80 tracks, 9 sectors
{ {2, 80, 9}, FLOPPY_SIZE_350, FLOPPY_RATE_250K},
// 4 - 1.44MB, 3.5" - 2 heads, 80 tracks, 18 sectors
{ {2, 80, 18}, FLOPPY_SIZE_350, FLOPPY_RATE_500K},
// 5 - 2.88MB, 3.5" - 2 heads, 80 tracks, 36 sectors
{ {2, 80, 36}, FLOPPY_SIZE_350, FLOPPY_RATE_1M},
// 6 - 160k, 5.25" - 1 heads, 40 tracks, 8 sectors
{ {1, 40, 8}, FLOPPY_SIZE_525, FLOPPY_RATE_250K},
// 7 - 180k, 5.25" - 1 heads, 40 tracks, 9 sectors
{ {1, 40, 9}, FLOPPY_SIZE_525, FLOPPY_RATE_300K},
// 8 - 320k, 5.25" - 2 heads, 40 tracks, 8 sectors
{ {2, 40, 8}, FLOPPY_SIZE_525, FLOPPY_RATE_250K},
};
struct drive_s *
init_floppy(int floppyid, int ftype)
{
if (ftype <= 0 || ftype >= ARRAY_SIZE(FloppyInfo)) {
dprintf(1, "Bad floppy type %d\n", ftype);
return NULL;
}
struct drive_s *drive = malloc_fseg(sizeof(*drive));
if (!drive) {
warn_noalloc();
return NULL;
}
memset(drive, 0, sizeof(*drive));
drive->cntl_id = floppyid;
drive->type = DTYPE_FLOPPY;
drive->blksize = DISK_SECTOR_SIZE;
drive->floppy_type = ftype;
drive->sectors = (u64)-1;
memcpy(&drive->lchs, &FloppyInfo[ftype].chs
, sizeof(FloppyInfo[ftype].chs));
return drive;
}
static void
addFloppy(int floppyid, int ftype)
{
struct drive_s *drive = init_floppy(floppyid, ftype);
if (!drive)
return;
char *desc = znprintf(MAXDESCSIZE, "Floppy [drive %c]", 'A' + floppyid);
struct pci_device *pci = pci_find_class(PCI_CLASS_BRIDGE_ISA); /* isa-to-pci bridge */
int prio = bootprio_find_fdc_device(pci, PORT_FD_BASE, floppyid);
boot_add_floppy(drive, desc, prio);
}
void
floppy_setup(void)
{
memcpy(&diskette_param_table, &diskette_param_table2
, sizeof(diskette_param_table));
SET_IVT(0x1E, SEGOFF(SEG_BIOS
, (u32)&diskette_param_table2 - BUILD_BIOS_ADDR));
if (! CONFIG_FLOPPY)
return;
dprintf(3, "init floppy drives\n");
if (CONFIG_QEMU) {
u8 type = rtc_read(CMOS_FLOPPY_DRIVE_TYPE);
if (type & 0xf0)
addFloppy(0, type >> 4);
if (type & 0x0f)
addFloppy(1, type & 0x0f);
} else {
u8 type = romfile_loadint("etc/floppy0", 0);
if (type)
addFloppy(0, type);
type = romfile_loadint("etc/floppy1", 0);
if (type)
addFloppy(1, type);
}
enable_hwirq(6, FUNC16(entry_0e));
}
// Find a floppy type that matches a given image size.
int
find_floppy_type(u32 size)
{
int i;
for (i=1; i<ARRAY_SIZE(FloppyInfo); i++) {
struct chs_s *c = &FloppyInfo[i].chs;
if (c->cylinder * c->head * c->sector * DISK_SECTOR_SIZE == size)
return i;
}
return -1;
}
/****************************************************************
* Low-level floppy IO
****************************************************************/
u8 FloppyDOR VARLOW;
static inline void
floppy_dor_write(u8 val)
{
outb(val, PORT_FD_DOR);
SET_LOW(FloppyDOR, val);
}
static void
floppy_disable_controller(void)
{
dprintf(2, "Floppy_disable_controller\n");
floppy_dor_write(0x00);
}
static int
floppy_wait_irq(void)
{
u8 frs = GET_BDA(floppy_recalibration_status);
SET_BDA(floppy_recalibration_status, frs & ~FRS_IRQ);
for (;;) {
if (!GET_BDA(floppy_motor_counter)) {
warn_timeout();
floppy_disable_controller();
return DISK_RET_ETIMEOUT;
}
frs = GET_BDA(floppy_recalibration_status);
if (frs & FRS_IRQ)
break;
// Could use yield_toirq() here, but that causes issues on
// bochs, so use yield() instead.
yield();
}
SET_BDA(floppy_recalibration_status, frs & ~FRS_IRQ);
return DISK_RET_SUCCESS;
}
// Floppy commands
#define FCF_WAITIRQ 0x10000
#define FC_CHECKIRQ (0x08 | (0<<8) | (2<<12))
#define FC_SEEK (0x0f | (2<<8) | (0<<12) | FCF_WAITIRQ)
#define FC_RECALIBRATE (0x07 | (1<<8) | (0<<12) | FCF_WAITIRQ)
#define FC_READID (0x4a | (1<<8) | (7<<12) | FCF_WAITIRQ)
#define FC_READ (0xe6 | (8<<8) | (7<<12) | FCF_WAITIRQ)
#define FC_WRITE (0xc5 | (8<<8) | (7<<12) | FCF_WAITIRQ)
#define FC_FORMAT (0x4d | (5<<8) | (7<<12) | FCF_WAITIRQ)
// Send the specified command and it's parameters to the floppy controller.
static int
floppy_pio(int command, u8 *param)
{
dprintf(9, "Floppy pio command %x\n", command);
// Send command and parameters to controller.
u32 end = timer_calc(FLOPPY_PIO_TIMEOUT);
int send = (command >> 8) & 0xf;
int i = 0;
for (;;) {
u8 sts = inb(PORT_FD_STATUS);
if (!(sts & 0x80)) {
if (timer_check(end)) {
warn_timeout();
floppy_disable_controller();
return DISK_RET_ETIMEOUT;
}
continue;
}
if (sts & 0x40) {
floppy_disable_controller();
return DISK_RET_ECONTROLLER;
}
if (i == 0)
outb(command & 0xff, PORT_FD_DATA);
else
outb(param[i-1], PORT_FD_DATA);
if (i++ >= send)
break;
}
// Wait for command to complete.
if (command & FCF_WAITIRQ) {
int ret = floppy_wait_irq();
if (ret)
return ret;
}
// Read response from controller.
end = timer_calc(FLOPPY_PIO_TIMEOUT);
int receive = (command >> 12) & 0xf;
i = 0;
for (;;) {
u8 sts = inb(PORT_FD_STATUS);
if (!(sts & 0x80)) {
if (timer_check(end)) {
warn_timeout();
floppy_disable_controller();
return DISK_RET_ETIMEOUT;
}
continue;
}
if (i >= receive) {
if (sts & 0x40) {
floppy_disable_controller();
return DISK_RET_ECONTROLLER;
}
break;
}
if (!(sts & 0x40)) {
floppy_disable_controller();
return DISK_RET_ECONTROLLER;
}
param[i++] = inb(PORT_FD_DATA);
}
return DISK_RET_SUCCESS;
}
static int
floppy_enable_controller(void)
{
dprintf(2, "Floppy_enable_controller\n");
SET_BDA(floppy_motor_counter, FLOPPY_MOTOR_TICKS);
floppy_dor_write(0x00);
floppy_dor_write(0x0c);
int ret = floppy_wait_irq();
if (ret)
return ret;
u8 param[2];
return floppy_pio(FC_CHECKIRQ, param);
}
// Activate a drive and send a command to it.
static int
floppy_drive_pio(u8 floppyid, int command, u8 *param)
{
// Enable controller if it isn't running.
if (!(GET_LOW(FloppyDOR) & 0x04)) {
int ret = floppy_enable_controller();
if (ret)
return ret;
}
// reset the disk motor timeout value of INT 08
SET_BDA(floppy_motor_counter, FLOPPY_MOTOR_TICKS);
// Turn on motor of selected drive, DMA & int enabled, normal operation
floppy_dor_write((floppyid ? 0x20 : 0x10) | 0x0c | floppyid);
// Send command.
int ret = floppy_pio(command, param);
if (ret)
return ret;
// Check IRQ command is needed after irq commands with no results
if ((command & FCF_WAITIRQ) && ((command >> 12) & 0xf) == 0)
return floppy_pio(FC_CHECKIRQ, param);
return DISK_RET_SUCCESS;
}
/****************************************************************
* Floppy media sense and seeking
****************************************************************/
static int
floppy_drive_recal(u8 floppyid)
{
dprintf(2, "Floppy_drive_recal %d\n", floppyid);
// send Recalibrate command to controller
u8 param[2];
param[0] = floppyid;
int ret = floppy_drive_pio(floppyid, FC_RECALIBRATE, param);
if (ret)
return ret;
u8 frs = GET_BDA(floppy_recalibration_status);
SET_BDA(floppy_recalibration_status, frs | (1<<floppyid));
SET_BDA(floppy_track[floppyid], 0);
return DISK_RET_SUCCESS;
}
static int
floppy_drive_readid(u8 floppyid, u8 data_rate, u8 head)
{
// Set data rate.
outb(data_rate, PORT_FD_DIR);
// send Read Sector Id command
u8 param[7];
param[0] = (head << 2) | floppyid; // HD DR1 DR2
int ret = floppy_drive_pio(floppyid, FC_READID, param);
if (ret)
return ret;
if (param[0] & 0xc0)
return -1;
return 0;
}
static int
floppy_media_sense(struct drive_s *drive_gf)
{
u8 ftype = GET_GLOBALFLAT(drive_gf->floppy_type), stype = ftype;
u8 floppyid = GET_GLOBALFLAT(drive_gf->cntl_id);
u8 data_rate = GET_GLOBAL(FloppyInfo[stype].data_rate);
int ret = floppy_drive_readid(floppyid, data_rate, 0);
if (ret) {
// Attempt media sense.
for (stype=1; ; stype++) {
if (stype >= ARRAY_SIZE(FloppyInfo))
return DISK_RET_EMEDIA;
if (stype==ftype
|| (GET_GLOBAL(FloppyInfo[stype].floppy_size)
!= GET_GLOBAL(FloppyInfo[ftype].floppy_size))
|| (GET_GLOBAL(FloppyInfo[stype].chs.head)
> GET_GLOBAL(FloppyInfo[ftype].chs.head))
|| (GET_GLOBAL(FloppyInfo[stype].chs.cylinder)
> GET_GLOBAL(FloppyInfo[ftype].chs.cylinder))
|| (GET_GLOBAL(FloppyInfo[stype].chs.sector)
> GET_GLOBAL(FloppyInfo[ftype].chs.sector)))
continue;
data_rate = GET_GLOBAL(FloppyInfo[stype].data_rate);
ret = floppy_drive_readid(floppyid, data_rate, 0);
if (!ret)
break;
}
}
dprintf(2, "Floppy_media_sense on drive %d found rate %d\n"
, floppyid, data_rate);
u8 old_data_rate = GET_BDA(floppy_media_state[floppyid]) >> 6;
SET_BDA(floppy_last_data_rate, (old_data_rate<<2) | (data_rate<<6));
u8 media = (stype == 1 ? 0x04 : (stype == 2 ? 0x05 : 0x07));
u8 fms = (data_rate<<6) | FMS_MEDIA_DRIVE_ESTABLISHED | media;
if (GET_GLOBAL(FloppyInfo[stype].chs.cylinder)
< GET_GLOBAL(FloppyInfo[ftype].chs.cylinder))
fms |= FMS_DOUBLE_STEPPING;
SET_BDA(floppy_media_state[floppyid], fms);
return DISK_RET_SUCCESS;
}
// Prepare a floppy for a data transfer.
static int
floppy_prep(struct drive_s *drive_gf, u8 cylinder)
{
u8 floppyid = GET_GLOBALFLAT(drive_gf->cntl_id);
if (!(GET_BDA(floppy_recalibration_status) & (1<<floppyid)) ||
!(GET_BDA(floppy_media_state[floppyid]) & FMS_MEDIA_DRIVE_ESTABLISHED)) {
// Recalibrate drive.
int ret = floppy_drive_recal(floppyid);
if (ret)
return ret;
// Sense media.
ret = floppy_media_sense(drive_gf);
if (ret)
return ret;
}
// Seek to cylinder if needed.
u8 lastcyl = GET_BDA(floppy_track[floppyid]);
if (cylinder != lastcyl) {
u8 param[2];
param[0] = floppyid;
param[1] = cylinder;
int ret = floppy_drive_pio(floppyid, FC_SEEK, param);
if (ret)
return ret;
SET_BDA(floppy_track[floppyid], cylinder);
}
return DISK_RET_SUCCESS;
}
/****************************************************************
* Floppy DMA transfer
****************************************************************/
// Perform a floppy transfer command (setup DMA and issue PIO).
static int
floppy_dma_cmd(struct disk_op_s *op, int count, int command, u8 *param)
{
// Setup DMA controller
int isWrite = command != FC_READ;
int ret = dma_floppy((u32)op->buf_fl, count, isWrite);
if (ret)
return DISK_RET_EBOUNDARY;
// Invoke floppy controller
u8 floppyid = GET_GLOBALFLAT(op->drive_gf->cntl_id);
ret = floppy_drive_pio(floppyid, command, param);
if (ret)
return ret;
// Populate floppy_return_status in BDA
int i;
for (i=0; i<7; i++)
SET_BDA(floppy_return_status[i], param[i]);
if (param[0] & 0xc0) {
if (param[1] & 0x02)
return DISK_RET_EWRITEPROTECT;
dprintf(1, "floppy error: %02x %02x %02x %02x %02x %02x %02x\n"
, param[0], param[1], param[2], param[3]
, param[4], param[5], param[6]);
return DISK_RET_ECONTROLLER;
}
return DISK_RET_SUCCESS;
}
/****************************************************************
* Floppy handlers
****************************************************************/
static struct chs_s
lba2chs(struct disk_op_s *op)
{
struct chs_s res = { };
u32 tmp = op->lba;
u16 nls = GET_GLOBALFLAT(op->drive_gf->lchs.sector);
res.sector = (tmp % nls) + 1;
tmp /= nls;
u16 nlh = GET_GLOBALFLAT(op->drive_gf->lchs.head);
res.head = tmp % nlh;
tmp /= nlh;
res.cylinder = tmp;
return res;
}
// diskette controller reset
static int
floppy_reset(struct disk_op_s *op)
{
SET_BDA(floppy_recalibration_status, 0);
SET_BDA(floppy_media_state[0], 0);
SET_BDA(floppy_media_state[1], 0);
SET_BDA(floppy_track[0], 0);
SET_BDA(floppy_track[1], 0);
SET_BDA(floppy_last_data_rate, 0);
floppy_disable_controller();
return floppy_enable_controller();
}
// Read Diskette Sectors
static int
floppy_read(struct disk_op_s *op)
{
struct chs_s chs = lba2chs(op);
int res = floppy_prep(op->drive_gf, chs.cylinder);
if (res)
goto fail;
// send read-normal-data command to controller
u8 floppyid = GET_GLOBALFLAT(op->drive_gf->cntl_id);
u8 param[8];
param[0] = (chs.head << 2) | floppyid; // HD DR1 DR2
param[1] = chs.cylinder;
param[2] = chs.head;
param[3] = chs.sector;
param[4] = FLOPPY_SIZE_CODE;
param[5] = chs.sector + op->count - 1; // last sector to read on track
param[6] = FLOPPY_GAPLEN;
param[7] = FLOPPY_DATALEN;
res = floppy_dma_cmd(op, op->count * DISK_SECTOR_SIZE, FC_READ, param);
if (res)
goto fail;
return DISK_RET_SUCCESS;
fail:
op->count = 0; // no sectors read
return res;
}
// Write Diskette Sectors
static int
floppy_write(struct disk_op_s *op)
{
struct chs_s chs = lba2chs(op);
int res = floppy_prep(op->drive_gf, chs.cylinder);
if (res)
goto fail;
// send write-normal-data command to controller
u8 floppyid = GET_GLOBALFLAT(op->drive_gf->cntl_id);
u8 param[8];
param[0] = (chs.head << 2) | floppyid; // HD DR1 DR2
param[1] = chs.cylinder;
param[2] = chs.head;
param[3] = chs.sector;
param[4] = FLOPPY_SIZE_CODE;
param[5] = chs.sector + op->count - 1; // last sector to write on track
param[6] = FLOPPY_GAPLEN;
param[7] = FLOPPY_DATALEN;
res = floppy_dma_cmd(op, op->count * DISK_SECTOR_SIZE, FC_WRITE, param);
if (res)
goto fail;
return DISK_RET_SUCCESS;
fail:
op->count = 0; // no sectors read
return res;
}
// Verify Diskette Sectors
static int
floppy_verify(struct disk_op_s *op)
{
struct chs_s chs = lba2chs(op);
int res = floppy_prep(op->drive_gf, chs.cylinder);
if (res)
goto fail;
// This command isn't implemented - just return success.
return DISK_RET_SUCCESS;
fail:
op->count = 0; // no sectors read
return res;
}
// format diskette track
static int
floppy_format(struct disk_op_s *op)
{
struct chs_s chs = lba2chs(op);
int res = floppy_prep(op->drive_gf, chs.cylinder);
if (res)
return res;
// send format-track command to controller
u8 floppyid = GET_GLOBALFLAT(op->drive_gf->cntl_id);
u8 param[7];
param[0] = (chs.head << 2) | floppyid; // HD DR1 DR2
param[1] = FLOPPY_SIZE_CODE;
param[2] = op->count; // number of sectors per track
param[3] = FLOPPY_FORMAT_GAPLEN;
param[4] = FLOPPY_FILLBYTE;
return floppy_dma_cmd(op, op->count * 4, FC_FORMAT, param);
}
int
process_floppy_op(struct disk_op_s *op)
{
if (!CONFIG_FLOPPY)
return 0;
switch (op->command) {
case CMD_RESET:
return floppy_reset(op);
case CMD_READ:
return floppy_read(op);
case CMD_WRITE:
return floppy_write(op);
case CMD_VERIFY:
return floppy_verify(op);
case CMD_FORMAT:
return floppy_format(op);
default:
op->count = 0;
return DISK_RET_EPARAM;
}
}
/****************************************************************
* HW irqs
****************************************************************/
// INT 0Eh Diskette Hardware ISR Entry Point
void VISIBLE16
handle_0e(void)
{
if (! CONFIG_FLOPPY)
return;
debug_isr(DEBUG_ISR_0e);
// diskette interrupt has occurred
u8 frs = GET_BDA(floppy_recalibration_status);
SET_BDA(floppy_recalibration_status, frs | FRS_IRQ);
pic_eoi1();
}
// Called from int08 handler.
void
floppy_tick(void)
{
if (! CONFIG_FLOPPY)
return;
// time to turn off drive(s)?
u8 fcount = GET_BDA(floppy_motor_counter);
if (fcount) {
fcount--;
SET_BDA(floppy_motor_counter, fcount);
if (fcount == 0)
// turn motor(s) off
floppy_dor_write(GET_LOW(FloppyDOR) & ~0xf0);
}
}
|