summaryrefslogtreecommitdiff
path: root/target-arm
diff options
context:
space:
mode:
authorAnas Nashif <anas.nashif@intel.com>2012-11-06 07:50:24 -0800
committerAnas Nashif <anas.nashif@intel.com>2012-11-06 07:50:24 -0800
commit060629c6ef0b7e5c267d84c91600113264d33120 (patch)
tree18fcb144ac71b9c4d08ee5d1dc58e2b16c109a5a /target-arm
downloadqemu-060629c6ef0b7e5c267d84c91600113264d33120.tar.gz
qemu-060629c6ef0b7e5c267d84c91600113264d33120.tar.bz2
qemu-060629c6ef0b7e5c267d84c91600113264d33120.zip
Imported Upstream version 1.2.0upstream/1.2.0
Diffstat (limited to 'target-arm')
-rw-r--r--target-arm/Makefile.objs6
-rw-r--r--target-arm/arm-semi.c510
-rw-r--r--target-arm/cpu-qom.h113
-rw-r--r--target-arm/cpu.c805
-rw-r--r--target-arm/cpu.h756
-rw-r--r--target-arm/helper.c3480
-rw-r--r--target-arm/helper.h472
-rw-r--r--target-arm/iwmmxt_helper.c681
-rw-r--r--target-arm/machine.c237
-rw-r--r--target-arm/neon_helper.c2017
-rw-r--r--target-arm/op_addsub.h103
-rw-r--r--target-arm/op_helper.c466
-rw-r--r--target-arm/translate.c10025
13 files changed, 19671 insertions, 0 deletions
diff --git a/target-arm/Makefile.objs b/target-arm/Makefile.objs
new file mode 100644
index 000000000..f447c4fdf
--- /dev/null
+++ b/target-arm/Makefile.objs
@@ -0,0 +1,6 @@
+obj-y += arm-semi.o
+obj-$(CONFIG_SOFTMMU) += machine.o
+obj-y += translate.o op_helper.o helper.o cpu.o
+obj-y += neon_helper.o iwmmxt_helper.o
+
+$(obj)/op_helper.o: QEMU_CFLAGS += $(HELPER_CFLAGS)
diff --git a/target-arm/arm-semi.c b/target-arm/arm-semi.c
new file mode 100644
index 000000000..73bde584a
--- /dev/null
+++ b/target-arm/arm-semi.c
@@ -0,0 +1,510 @@
+/*
+ * Arm "Angel" semihosting syscalls
+ *
+ * Copyright (c) 2005, 2007 CodeSourcery.
+ * Written by Paul Brook.
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 2 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, see <http://www.gnu.org/licenses/>.
+ */
+
+#include <sys/types.h>
+#include <sys/stat.h>
+#include <fcntl.h>
+#include <unistd.h>
+#include <stdlib.h>
+#include <stdio.h>
+#include <time.h>
+
+#include "cpu.h"
+#ifdef CONFIG_USER_ONLY
+#include "qemu.h"
+
+#define ARM_ANGEL_HEAP_SIZE (128 * 1024 * 1024)
+#else
+#include "qemu-common.h"
+#include "gdbstub.h"
+#include "hw/arm-misc.h"
+#endif
+
+#define TARGET_SYS_OPEN 0x01
+#define TARGET_SYS_CLOSE 0x02
+#define TARGET_SYS_WRITEC 0x03
+#define TARGET_SYS_WRITE0 0x04
+#define TARGET_SYS_WRITE 0x05
+#define TARGET_SYS_READ 0x06
+#define TARGET_SYS_READC 0x07
+#define TARGET_SYS_ISTTY 0x09
+#define TARGET_SYS_SEEK 0x0a
+#define TARGET_SYS_FLEN 0x0c
+#define TARGET_SYS_TMPNAM 0x0d
+#define TARGET_SYS_REMOVE 0x0e
+#define TARGET_SYS_RENAME 0x0f
+#define TARGET_SYS_CLOCK 0x10
+#define TARGET_SYS_TIME 0x11
+#define TARGET_SYS_SYSTEM 0x12
+#define TARGET_SYS_ERRNO 0x13
+#define TARGET_SYS_GET_CMDLINE 0x15
+#define TARGET_SYS_HEAPINFO 0x16
+#define TARGET_SYS_EXIT 0x18
+
+#ifndef O_BINARY
+#define O_BINARY 0
+#endif
+
+#define GDB_O_RDONLY 0x000
+#define GDB_O_WRONLY 0x001
+#define GDB_O_RDWR 0x002
+#define GDB_O_APPEND 0x008
+#define GDB_O_CREAT 0x200
+#define GDB_O_TRUNC 0x400
+#define GDB_O_BINARY 0
+
+static int gdb_open_modeflags[12] = {
+ GDB_O_RDONLY,
+ GDB_O_RDONLY | GDB_O_BINARY,
+ GDB_O_RDWR,
+ GDB_O_RDWR | GDB_O_BINARY,
+ GDB_O_WRONLY | GDB_O_CREAT | GDB_O_TRUNC,
+ GDB_O_WRONLY | GDB_O_CREAT | GDB_O_TRUNC | GDB_O_BINARY,
+ GDB_O_RDWR | GDB_O_CREAT | GDB_O_TRUNC,
+ GDB_O_RDWR | GDB_O_CREAT | GDB_O_TRUNC | GDB_O_BINARY,
+ GDB_O_WRONLY | GDB_O_CREAT | GDB_O_APPEND,
+ GDB_O_WRONLY | GDB_O_CREAT | GDB_O_APPEND | GDB_O_BINARY,
+ GDB_O_RDWR | GDB_O_CREAT | GDB_O_APPEND,
+ GDB_O_RDWR | GDB_O_CREAT | GDB_O_APPEND | GDB_O_BINARY
+};
+
+static int open_modeflags[12] = {
+ O_RDONLY,
+ O_RDONLY | O_BINARY,
+ O_RDWR,
+ O_RDWR | O_BINARY,
+ O_WRONLY | O_CREAT | O_TRUNC,
+ O_WRONLY | O_CREAT | O_TRUNC | O_BINARY,
+ O_RDWR | O_CREAT | O_TRUNC,
+ O_RDWR | O_CREAT | O_TRUNC | O_BINARY,
+ O_WRONLY | O_CREAT | O_APPEND,
+ O_WRONLY | O_CREAT | O_APPEND | O_BINARY,
+ O_RDWR | O_CREAT | O_APPEND,
+ O_RDWR | O_CREAT | O_APPEND | O_BINARY
+};
+
+#ifdef CONFIG_USER_ONLY
+static inline uint32_t set_swi_errno(TaskState *ts, uint32_t code)
+{
+ if (code == (uint32_t)-1)
+ ts->swi_errno = errno;
+ return code;
+}
+#else
+static inline uint32_t set_swi_errno(CPUARMState *env, uint32_t code)
+{
+ return code;
+}
+
+#include "softmmu-semi.h"
+#endif
+
+static target_ulong arm_semi_syscall_len;
+
+#if !defined(CONFIG_USER_ONLY)
+static target_ulong syscall_err;
+#endif
+
+static void arm_semi_cb(CPUARMState *env, target_ulong ret, target_ulong err)
+{
+#ifdef CONFIG_USER_ONLY
+ TaskState *ts = env->opaque;
+#endif
+
+ if (ret == (target_ulong)-1) {
+#ifdef CONFIG_USER_ONLY
+ ts->swi_errno = err;
+#else
+ syscall_err = err;
+#endif
+ env->regs[0] = ret;
+ } else {
+ /* Fixup syscalls that use nonstardard return conventions. */
+ switch (env->regs[0]) {
+ case TARGET_SYS_WRITE:
+ case TARGET_SYS_READ:
+ env->regs[0] = arm_semi_syscall_len - ret;
+ break;
+ case TARGET_SYS_SEEK:
+ env->regs[0] = 0;
+ break;
+ default:
+ env->regs[0] = ret;
+ break;
+ }
+ }
+}
+
+static void arm_semi_flen_cb(CPUARMState *env, target_ulong ret, target_ulong err)
+{
+ /* The size is always stored in big-endian order, extract
+ the value. We assume the size always fit in 32 bits. */
+ uint32_t size;
+ cpu_memory_rw_debug(env, env->regs[13]-64+32, (uint8_t *)&size, 4, 0);
+ env->regs[0] = be32_to_cpu(size);
+#ifdef CONFIG_USER_ONLY
+ ((TaskState *)env->opaque)->swi_errno = err;
+#else
+ syscall_err = err;
+#endif
+}
+
+#define ARG(n) \
+({ \
+ target_ulong __arg; \
+ /* FIXME - handle get_user() failure */ \
+ get_user_ual(__arg, args + (n) * 4); \
+ __arg; \
+})
+#define SET_ARG(n, val) put_user_ual(val, args + (n) * 4)
+uint32_t do_arm_semihosting(CPUARMState *env)
+{
+ target_ulong args;
+ char * s;
+ int nr;
+ uint32_t ret;
+ uint32_t len;
+#ifdef CONFIG_USER_ONLY
+ TaskState *ts = env->opaque;
+#else
+ CPUARMState *ts = env;
+#endif
+
+ nr = env->regs[0];
+ args = env->regs[1];
+ switch (nr) {
+ case TARGET_SYS_OPEN:
+ if (!(s = lock_user_string(ARG(0))))
+ /* FIXME - should this error code be -TARGET_EFAULT ? */
+ return (uint32_t)-1;
+ if (ARG(1) >= 12) {
+ unlock_user(s, ARG(0), 0);
+ return (uint32_t)-1;
+ }
+ if (strcmp(s, ":tt") == 0) {
+ int result_fileno = ARG(1) < 4 ? STDIN_FILENO : STDOUT_FILENO;
+ unlock_user(s, ARG(0), 0);
+ return result_fileno;
+ }
+ if (use_gdb_syscalls()) {
+ gdb_do_syscall(arm_semi_cb, "open,%s,%x,1a4", ARG(0),
+ (int)ARG(2)+1, gdb_open_modeflags[ARG(1)]);
+ ret = env->regs[0];
+ } else {
+ ret = set_swi_errno(ts, open(s, open_modeflags[ARG(1)], 0644));
+ }
+ unlock_user(s, ARG(0), 0);
+ return ret;
+ case TARGET_SYS_CLOSE:
+ if (use_gdb_syscalls()) {
+ gdb_do_syscall(arm_semi_cb, "close,%x", ARG(0));
+ return env->regs[0];
+ } else {
+ return set_swi_errno(ts, close(ARG(0)));
+ }
+ case TARGET_SYS_WRITEC:
+ {
+ char c;
+
+ if (get_user_u8(c, args))
+ /* FIXME - should this error code be -TARGET_EFAULT ? */
+ return (uint32_t)-1;
+ /* Write to debug console. stderr is near enough. */
+ if (use_gdb_syscalls()) {
+ gdb_do_syscall(arm_semi_cb, "write,2,%x,1", args);
+ return env->regs[0];
+ } else {
+ return write(STDERR_FILENO, &c, 1);
+ }
+ }
+ case TARGET_SYS_WRITE0:
+ if (!(s = lock_user_string(args)))
+ /* FIXME - should this error code be -TARGET_EFAULT ? */
+ return (uint32_t)-1;
+ len = strlen(s);
+ if (use_gdb_syscalls()) {
+ gdb_do_syscall(arm_semi_cb, "write,2,%x,%x\n", args, len);
+ ret = env->regs[0];
+ } else {
+ ret = write(STDERR_FILENO, s, len);
+ }
+ unlock_user(s, args, 0);
+ return ret;
+ case TARGET_SYS_WRITE:
+ len = ARG(2);
+ if (use_gdb_syscalls()) {
+ arm_semi_syscall_len = len;
+ gdb_do_syscall(arm_semi_cb, "write,%x,%x,%x", ARG(0), ARG(1), len);
+ return env->regs[0];
+ } else {
+ if (!(s = lock_user(VERIFY_READ, ARG(1), len, 1)))
+ /* FIXME - should this error code be -TARGET_EFAULT ? */
+ return (uint32_t)-1;
+ ret = set_swi_errno(ts, write(ARG(0), s, len));
+ unlock_user(s, ARG(1), 0);
+ if (ret == (uint32_t)-1)
+ return -1;
+ return len - ret;
+ }
+ case TARGET_SYS_READ:
+ len = ARG(2);
+ if (use_gdb_syscalls()) {
+ arm_semi_syscall_len = len;
+ gdb_do_syscall(arm_semi_cb, "read,%x,%x,%x", ARG(0), ARG(1), len);
+ return env->regs[0];
+ } else {
+ if (!(s = lock_user(VERIFY_WRITE, ARG(1), len, 0)))
+ /* FIXME - should this error code be -TARGET_EFAULT ? */
+ return (uint32_t)-1;
+ do
+ ret = set_swi_errno(ts, read(ARG(0), s, len));
+ while (ret == -1 && errno == EINTR);
+ unlock_user(s, ARG(1), len);
+ if (ret == (uint32_t)-1)
+ return -1;
+ return len - ret;
+ }
+ case TARGET_SYS_READC:
+ /* XXX: Read from debug console. Not implemented. */
+ return 0;
+ case TARGET_SYS_ISTTY:
+ if (use_gdb_syscalls()) {
+ gdb_do_syscall(arm_semi_cb, "isatty,%x", ARG(0));
+ return env->regs[0];
+ } else {
+ return isatty(ARG(0));
+ }
+ case TARGET_SYS_SEEK:
+ if (use_gdb_syscalls()) {
+ gdb_do_syscall(arm_semi_cb, "lseek,%x,%x,0", ARG(0), ARG(1));
+ return env->regs[0];
+ } else {
+ ret = set_swi_errno(ts, lseek(ARG(0), ARG(1), SEEK_SET));
+ if (ret == (uint32_t)-1)
+ return -1;
+ return 0;
+ }
+ case TARGET_SYS_FLEN:
+ if (use_gdb_syscalls()) {
+ gdb_do_syscall(arm_semi_flen_cb, "fstat,%x,%x",
+ ARG(0), env->regs[13]-64);
+ return env->regs[0];
+ } else {
+ struct stat buf;
+ ret = set_swi_errno(ts, fstat(ARG(0), &buf));
+ if (ret == (uint32_t)-1)
+ return -1;
+ return buf.st_size;
+ }
+ case TARGET_SYS_TMPNAM:
+ /* XXX: Not implemented. */
+ return -1;
+ case TARGET_SYS_REMOVE:
+ if (use_gdb_syscalls()) {
+ gdb_do_syscall(arm_semi_cb, "unlink,%s", ARG(0), (int)ARG(1)+1);
+ ret = env->regs[0];
+ } else {
+ if (!(s = lock_user_string(ARG(0))))
+ /* FIXME - should this error code be -TARGET_EFAULT ? */
+ return (uint32_t)-1;
+ ret = set_swi_errno(ts, remove(s));
+ unlock_user(s, ARG(0), 0);
+ }
+ return ret;
+ case TARGET_SYS_RENAME:
+ if (use_gdb_syscalls()) {
+ gdb_do_syscall(arm_semi_cb, "rename,%s,%s",
+ ARG(0), (int)ARG(1)+1, ARG(2), (int)ARG(3)+1);
+ return env->regs[0];
+ } else {
+ char *s2;
+ s = lock_user_string(ARG(0));
+ s2 = lock_user_string(ARG(2));
+ if (!s || !s2)
+ /* FIXME - should this error code be -TARGET_EFAULT ? */
+ ret = (uint32_t)-1;
+ else
+ ret = set_swi_errno(ts, rename(s, s2));
+ if (s2)
+ unlock_user(s2, ARG(2), 0);
+ if (s)
+ unlock_user(s, ARG(0), 0);
+ return ret;
+ }
+ case TARGET_SYS_CLOCK:
+ return clock() / (CLOCKS_PER_SEC / 100);
+ case TARGET_SYS_TIME:
+ return set_swi_errno(ts, time(NULL));
+ case TARGET_SYS_SYSTEM:
+ if (use_gdb_syscalls()) {
+ gdb_do_syscall(arm_semi_cb, "system,%s", ARG(0), (int)ARG(1)+1);
+ return env->regs[0];
+ } else {
+ if (!(s = lock_user_string(ARG(0))))
+ /* FIXME - should this error code be -TARGET_EFAULT ? */
+ return (uint32_t)-1;
+ ret = set_swi_errno(ts, system(s));
+ unlock_user(s, ARG(0), 0);
+ return ret;
+ }
+ case TARGET_SYS_ERRNO:
+#ifdef CONFIG_USER_ONLY
+ return ts->swi_errno;
+#else
+ return syscall_err;
+#endif
+ case TARGET_SYS_GET_CMDLINE:
+ {
+ /* Build a command-line from the original argv.
+ *
+ * The inputs are:
+ * * ARG(0), pointer to a buffer of at least the size
+ * specified in ARG(1).
+ * * ARG(1), size of the buffer pointed to by ARG(0) in
+ * bytes.
+ *
+ * The outputs are:
+ * * ARG(0), pointer to null-terminated string of the
+ * command line.
+ * * ARG(1), length of the string pointed to by ARG(0).
+ */
+
+ char *output_buffer;
+ size_t input_size = ARG(1);
+ size_t output_size;
+ int status = 0;
+
+ /* Compute the size of the output string. */
+#if !defined(CONFIG_USER_ONLY)
+ output_size = strlen(ts->boot_info->kernel_filename)
+ + 1 /* Separating space. */
+ + strlen(ts->boot_info->kernel_cmdline)
+ + 1; /* Terminating null byte. */
+#else
+ unsigned int i;
+
+ output_size = ts->info->arg_end - ts->info->arg_start;
+ if (!output_size) {
+ /* We special-case the "empty command line" case (argc==0).
+ Just provide the terminating 0. */
+ output_size = 1;
+ }
+#endif
+
+ if (output_size > input_size) {
+ /* Not enough space to store command-line arguments. */
+ return -1;
+ }
+
+ /* Adjust the command-line length. */
+ SET_ARG(1, output_size - 1);
+
+ /* Lock the buffer on the ARM side. */
+ output_buffer = lock_user(VERIFY_WRITE, ARG(0), output_size, 0);
+ if (!output_buffer) {
+ return -1;
+ }
+
+ /* Copy the command-line arguments. */
+#if !defined(CONFIG_USER_ONLY)
+ pstrcpy(output_buffer, output_size, ts->boot_info->kernel_filename);
+ pstrcat(output_buffer, output_size, " ");
+ pstrcat(output_buffer, output_size, ts->boot_info->kernel_cmdline);
+#else
+ if (output_size == 1) {
+ /* Empty command-line. */
+ output_buffer[0] = '\0';
+ goto out;
+ }
+
+ if (copy_from_user(output_buffer, ts->info->arg_start,
+ output_size)) {
+ status = -1;
+ goto out;
+ }
+
+ /* Separate arguments by white spaces. */
+ for (i = 0; i < output_size - 1; i++) {
+ if (output_buffer[i] == 0) {
+ output_buffer[i] = ' ';
+ }
+ }
+ out:
+#endif
+ /* Unlock the buffer on the ARM side. */
+ unlock_user(output_buffer, ARG(0), output_size);
+
+ return status;
+ }
+ case TARGET_SYS_HEAPINFO:
+ {
+ uint32_t *ptr;
+ uint32_t limit;
+
+#ifdef CONFIG_USER_ONLY
+ /* Some C libraries assume the heap immediately follows .bss, so
+ allocate it using sbrk. */
+ if (!ts->heap_limit) {
+ abi_ulong ret;
+
+ ts->heap_base = do_brk(0);
+ limit = ts->heap_base + ARM_ANGEL_HEAP_SIZE;
+ /* Try a big heap, and reduce the size if that fails. */
+ for (;;) {
+ ret = do_brk(limit);
+ if (ret >= limit) {
+ break;
+ }
+ limit = (ts->heap_base >> 1) + (limit >> 1);
+ }
+ ts->heap_limit = limit;
+ }
+
+ if (!(ptr = lock_user(VERIFY_WRITE, ARG(0), 16, 0)))
+ /* FIXME - should this error code be -TARGET_EFAULT ? */
+ return (uint32_t)-1;
+ ptr[0] = tswap32(ts->heap_base);
+ ptr[1] = tswap32(ts->heap_limit);
+ ptr[2] = tswap32(ts->stack_base);
+ ptr[3] = tswap32(0); /* Stack limit. */
+ unlock_user(ptr, ARG(0), 16);
+#else
+ limit = ram_size;
+ if (!(ptr = lock_user(VERIFY_WRITE, ARG(0), 16, 0)))
+ /* FIXME - should this error code be -TARGET_EFAULT ? */
+ return (uint32_t)-1;
+ /* TODO: Make this use the limit of the loaded application. */
+ ptr[0] = tswap32(limit / 2);
+ ptr[1] = tswap32(limit);
+ ptr[2] = tswap32(limit); /* Stack base */
+ ptr[3] = tswap32(0); /* Stack limit. */
+ unlock_user(ptr, ARG(0), 16);
+#endif
+ return 0;
+ }
+ case TARGET_SYS_EXIT:
+ gdb_exit(env, 0);
+ exit(0);
+ default:
+ fprintf(stderr, "qemu: Unsupported SemiHosting SWI 0x%02x\n", nr);
+ cpu_dump_state(env, stderr, fprintf, 0);
+ abort();
+ }
+}
diff --git a/target-arm/cpu-qom.h b/target-arm/cpu-qom.h
new file mode 100644
index 000000000..beabf9a0a
--- /dev/null
+++ b/target-arm/cpu-qom.h
@@ -0,0 +1,113 @@
+/*
+ * QEMU ARM CPU
+ *
+ * Copyright (c) 2012 SUSE LINUX Products GmbH
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public License
+ * as published by the Free Software Foundation; either version 2
+ * of the License, or (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, see
+ * <http://www.gnu.org/licenses/gpl-2.0.html>
+ */
+#ifndef QEMU_ARM_CPU_QOM_H
+#define QEMU_ARM_CPU_QOM_H
+
+#include "qemu/cpu.h"
+
+#define TYPE_ARM_CPU "arm-cpu"
+
+#define ARM_CPU_CLASS(klass) \
+ OBJECT_CLASS_CHECK(ARMCPUClass, (klass), TYPE_ARM_CPU)
+#define ARM_CPU(obj) \
+ OBJECT_CHECK(ARMCPU, (obj), TYPE_ARM_CPU)
+#define ARM_CPU_GET_CLASS(obj) \
+ OBJECT_GET_CLASS(ARMCPUClass, (obj), TYPE_ARM_CPU)
+
+/**
+ * ARMCPUClass:
+ * @parent_reset: The parent class' reset handler.
+ *
+ * An ARM CPU model.
+ */
+typedef struct ARMCPUClass {
+ /*< private >*/
+ CPUClass parent_class;
+ /*< public >*/
+
+ void (*parent_reset)(CPUState *cpu);
+} ARMCPUClass;
+
+/**
+ * ARMCPU:
+ * @env: #CPUARMState
+ *
+ * An ARM CPU core.
+ */
+typedef struct ARMCPU {
+ /*< private >*/
+ CPUState parent_obj;
+ /*< public >*/
+
+ CPUARMState env;
+
+ /* Coprocessor information */
+ GHashTable *cp_regs;
+
+ /* The instance init functions for implementation-specific subclasses
+ * set these fields to specify the implementation-dependent values of
+ * various constant registers and reset values of non-constant
+ * registers.
+ * Some of these might become QOM properties eventually.
+ * Field names match the official register names as defined in the
+ * ARMv7AR ARM Architecture Reference Manual. A reset_ prefix
+ * is used for reset values of non-constant registers; no reset_
+ * prefix means a constant register.
+ */
+ uint32_t midr;
+ uint32_t reset_fpsid;
+ uint32_t mvfr0;
+ uint32_t mvfr1;
+ uint32_t ctr;
+ uint32_t reset_sctlr;
+ uint32_t id_pfr0;
+ uint32_t id_pfr1;
+ uint32_t id_dfr0;
+ uint32_t id_afr0;
+ uint32_t id_mmfr0;
+ uint32_t id_mmfr1;
+ uint32_t id_mmfr2;
+ uint32_t id_mmfr3;
+ uint32_t id_isar0;
+ uint32_t id_isar1;
+ uint32_t id_isar2;
+ uint32_t id_isar3;
+ uint32_t id_isar4;
+ uint32_t id_isar5;
+ uint32_t clidr;
+ /* The elements of this array are the CCSIDR values for each cache,
+ * in the order L1DCache, L1ICache, L2DCache, L2ICache, etc.
+ */
+ uint32_t ccsidr[16];
+ uint32_t reset_cbar;
+ uint32_t reset_auxcr;
+} ARMCPU;
+
+static inline ARMCPU *arm_env_get_cpu(CPUARMState *env)
+{
+ return ARM_CPU(container_of(env, ARMCPU, env));
+}
+
+#define ENV_GET_CPU(e) CPU(arm_env_get_cpu(e))
+
+void arm_cpu_realize(ARMCPU *cpu);
+void register_cp_regs_for_features(ARMCPU *cpu);
+
+#endif
diff --git a/target-arm/cpu.c b/target-arm/cpu.c
new file mode 100644
index 000000000..b00f5fa54
--- /dev/null
+++ b/target-arm/cpu.c
@@ -0,0 +1,805 @@
+/*
+ * QEMU ARM CPU
+ *
+ * Copyright (c) 2012 SUSE LINUX Products GmbH
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public License
+ * as published by the Free Software Foundation; either version 2
+ * of the License, or (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, see
+ * <http://www.gnu.org/licenses/gpl-2.0.html>
+ */
+
+#include "cpu.h"
+#include "qemu-common.h"
+#if !defined(CONFIG_USER_ONLY)
+#include "hw/loader.h"
+#endif
+#include "sysemu.h"
+
+static void cp_reg_reset(gpointer key, gpointer value, gpointer opaque)
+{
+ /* Reset a single ARMCPRegInfo register */
+ ARMCPRegInfo *ri = value;
+ ARMCPU *cpu = opaque;
+
+ if (ri->type & ARM_CP_SPECIAL) {
+ return;
+ }
+
+ if (ri->resetfn) {
+ ri->resetfn(&cpu->env, ri);
+ return;
+ }
+
+ /* A zero offset is never possible as it would be regs[0]
+ * so we use it to indicate that reset is being handled elsewhere.
+ * This is basically only used for fields in non-core coprocessors
+ * (like the pxa2xx ones).
+ */
+ if (!ri->fieldoffset) {
+ return;
+ }
+
+ if (ri->type & ARM_CP_64BIT) {
+ CPREG_FIELD64(&cpu->env, ri) = ri->resetvalue;
+ } else {
+ CPREG_FIELD32(&cpu->env, ri) = ri->resetvalue;
+ }
+}
+
+/* CPUClass::reset() */
+static void arm_cpu_reset(CPUState *s)
+{
+ ARMCPU *cpu = ARM_CPU(s);
+ ARMCPUClass *acc = ARM_CPU_GET_CLASS(cpu);
+ CPUARMState *env = &cpu->env;
+
+ if (qemu_loglevel_mask(CPU_LOG_RESET)) {
+ qemu_log("CPU Reset (CPU %d)\n", env->cpu_index);
+ log_cpu_state(env, 0);
+ }
+
+ acc->parent_reset(s);
+
+ memset(env, 0, offsetof(CPUARMState, breakpoints));
+ g_hash_table_foreach(cpu->cp_regs, cp_reg_reset, cpu);
+ env->vfp.xregs[ARM_VFP_FPSID] = cpu->reset_fpsid;
+ env->vfp.xregs[ARM_VFP_MVFR0] = cpu->mvfr0;
+ env->vfp.xregs[ARM_VFP_MVFR1] = cpu->mvfr1;
+
+ if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
+ env->iwmmxt.cregs[ARM_IWMMXT_wCID] = 0x69051000 | 'Q';
+ }
+
+#if defined(CONFIG_USER_ONLY)
+ env->uncached_cpsr = ARM_CPU_MODE_USR;
+ /* For user mode we must enable access to coprocessors */
+ env->vfp.xregs[ARM_VFP_FPEXC] = 1 << 30;
+ if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
+ env->cp15.c15_cpar = 3;
+ } else if (arm_feature(env, ARM_FEATURE_XSCALE)) {
+ env->cp15.c15_cpar = 1;
+ }
+#else
+ /* SVC mode with interrupts disabled. */
+ env->uncached_cpsr = ARM_CPU_MODE_SVC | CPSR_A | CPSR_F | CPSR_I;
+ /* On ARMv7-M the CPSR_I is the value of the PRIMASK register, and is
+ clear at reset. Initial SP and PC are loaded from ROM. */
+ if (IS_M(env)) {
+ uint32_t pc;
+ uint8_t *rom;
+ env->uncached_cpsr &= ~CPSR_I;
+ rom = rom_ptr(0);
+ if (rom) {
+ /* We should really use ldl_phys here, in case the guest
+ modified flash and reset itself. However images
+ loaded via -kernel have not been copied yet, so load the
+ values directly from there. */
+ env->regs[13] = ldl_p(rom);
+ pc = ldl_p(rom + 4);
+ env->thumb = pc & 1;
+ env->regs[15] = pc & ~1;
+ }
+ }
+ env->vfp.xregs[ARM_VFP_FPEXC] = 0;
+#endif
+ set_flush_to_zero(1, &env->vfp.standard_fp_status);
+ set_flush_inputs_to_zero(1, &env->vfp.standard_fp_status);
+ set_default_nan_mode(1, &env->vfp.standard_fp_status);
+ set_float_detect_tininess(float_tininess_before_rounding,
+ &env->vfp.fp_status);
+ set_float_detect_tininess(float_tininess_before_rounding,
+ &env->vfp.standard_fp_status);
+ tlb_flush(env, 1);
+ /* Reset is a state change for some CPUARMState fields which we
+ * bake assumptions about into translated code, so we need to
+ * tb_flush().
+ */
+ tb_flush(env);
+}
+
+static inline void set_feature(CPUARMState *env, int feature)
+{
+ env->features |= 1ULL << feature;
+}
+
+static void arm_cpu_initfn(Object *obj)
+{
+ ARMCPU *cpu = ARM_CPU(obj);
+
+ cpu_exec_init(&cpu->env);
+ cpu->cp_regs = g_hash_table_new_full(g_int_hash, g_int_equal,
+ g_free, g_free);
+}
+
+static void arm_cpu_finalizefn(Object *obj)
+{
+ ARMCPU *cpu = ARM_CPU(obj);
+ g_hash_table_destroy(cpu->cp_regs);
+}
+
+void arm_cpu_realize(ARMCPU *cpu)
+{
+ /* This function is called by cpu_arm_init() because it
+ * needs to do common actions based on feature bits, etc
+ * that have been set by the subclass init functions.
+ * When we have QOM realize support it should become
+ * a true realize function instead.
+ */
+ CPUARMState *env = &cpu->env;
+ /* Some features automatically imply others: */
+ if (arm_feature(env, ARM_FEATURE_V7)) {
+ set_feature(env, ARM_FEATURE_VAPA);
+ set_feature(env, ARM_FEATURE_THUMB2);
+ set_feature(env, ARM_FEATURE_MPIDR);
+ if (!arm_feature(env, ARM_FEATURE_M)) {
+ set_feature(env, ARM_FEATURE_V6K);
+ } else {
+ set_feature(env, ARM_FEATURE_V6);
+ }
+ }
+ if (arm_feature(env, ARM_FEATURE_V6K)) {
+ set_feature(env, ARM_FEATURE_V6);
+ set_feature(env, ARM_FEATURE_MVFR);
+ }
+ if (arm_feature(env, ARM_FEATURE_V6)) {
+ set_feature(env, ARM_FEATURE_V5);
+ if (!arm_feature(env, ARM_FEATURE_M)) {
+ set_feature(env, ARM_FEATURE_AUXCR);
+ }
+ }
+ if (arm_feature(env, ARM_FEATURE_V5)) {
+ set_feature(env, ARM_FEATURE_V4T);
+ }
+ if (arm_feature(env, ARM_FEATURE_M)) {
+ set_feature(env, ARM_FEATURE_THUMB_DIV);
+ }
+ if (arm_feature(env, ARM_FEATURE_ARM_DIV)) {
+ set_feature(env, ARM_FEATURE_THUMB_DIV);
+ }
+ if (arm_feature(env, ARM_FEATURE_VFP4)) {
+ set_feature(env, ARM_FEATURE_VFP3);
+ }
+ if (arm_feature(env, ARM_FEATURE_VFP3)) {
+ set_feature(env, ARM_FEATURE_VFP);
+ }
+ if (arm_feature(env, ARM_FEATURE_LPAE)) {
+ set_feature(env, ARM_FEATURE_PXN);
+ }
+
+ register_cp_regs_for_features(cpu);
+}
+
+/* CPU models */
+
+static void arm926_initfn(Object *obj)
+{
+ ARMCPU *cpu = ARM_CPU(obj);
+ set_feature(&cpu->env, ARM_FEATURE_V5);
+ set_feature(&cpu->env, ARM_FEATURE_VFP);
+ set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
+ set_feature(&cpu->env, ARM_FEATURE_CACHE_TEST_CLEAN);
+ cpu->midr = 0x41069265;
+ cpu->reset_fpsid = 0x41011090;
+ cpu->ctr = 0x1dd20d2;
+ cpu->reset_sctlr = 0x00090078;
+}
+
+static void arm946_initfn(Object *obj)
+{
+ ARMCPU *cpu = ARM_CPU(obj);
+ set_feature(&cpu->env, ARM_FEATURE_V5);
+ set_feature(&cpu->env, ARM_FEATURE_MPU);
+ set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
+ cpu->midr = 0x41059461;
+ cpu->ctr = 0x0f004006;
+ cpu->reset_sctlr = 0x00000078;
+}
+
+static void arm1026_initfn(Object *obj)
+{
+ ARMCPU *cpu = ARM_CPU(obj);
+ set_feature(&cpu->env, ARM_FEATURE_V5);
+ set_feature(&cpu->env, ARM_FEATURE_VFP);
+ set_feature(&cpu->env, ARM_FEATURE_AUXCR);
+ set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
+ set_feature(&cpu->env, ARM_FEATURE_CACHE_TEST_CLEAN);
+ cpu->midr = 0x4106a262;
+ cpu->reset_fpsid = 0x410110a0;
+ cpu->ctr = 0x1dd20d2;
+ cpu->reset_sctlr = 0x00090078;
+ cpu->reset_auxcr = 1;
+ {
+ /* The 1026 had an IFAR at c6,c0,0,1 rather than the ARMv6 c6,c0,0,2 */
+ ARMCPRegInfo ifar = {
+ .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1,
+ .access = PL1_RW,
+ .fieldoffset = offsetof(CPUARMState, cp15.c6_insn),
+ .resetvalue = 0
+ };
+ define_one_arm_cp_reg(cpu, &ifar);
+ }
+}
+
+static void arm1136_r2_initfn(Object *obj)
+{
+ ARMCPU *cpu = ARM_CPU(obj);
+ /* What qemu calls "arm1136_r2" is actually the 1136 r0p2, ie an
+ * older core than plain "arm1136". In particular this does not
+ * have the v6K features.
+ * These ID register values are correct for 1136 but may be wrong
+ * for 1136_r2 (in particular r0p2 does not actually implement most
+ * of the ID registers).
+ */
+ set_feature(&cpu->env, ARM_FEATURE_V6);
+ set_feature(&cpu->env, ARM_FEATURE_VFP);
+ set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
+ set_feature(&cpu->env, ARM_FEATURE_CACHE_DIRTY_REG);
+ set_feature(&cpu->env, ARM_FEATURE_CACHE_BLOCK_OPS);
+ cpu->midr = 0x4107b362;
+ cpu->reset_fpsid = 0x410120b4;
+ cpu->mvfr0 = 0x11111111;
+ cpu->mvfr1 = 0x00000000;
+ cpu->ctr = 0x1dd20d2;
+ cpu->reset_sctlr = 0x00050078;
+ cpu->id_pfr0 = 0x111;
+ cpu->id_pfr1 = 0x1;
+ cpu->id_dfr0 = 0x2;
+ cpu->id_afr0 = 0x3;
+ cpu->id_mmfr0 = 0x01130003;
+ cpu->id_mmfr1 = 0x10030302;
+ cpu->id_mmfr2 = 0x01222110;
+ cpu->id_isar0 = 0x00140011;
+ cpu->id_isar1 = 0x12002111;
+ cpu->id_isar2 = 0x11231111;
+ cpu->id_isar3 = 0x01102131;
+ cpu->id_isar4 = 0x141;
+ cpu->reset_auxcr = 7;
+}
+
+static void arm1136_initfn(Object *obj)
+{
+ ARMCPU *cpu = ARM_CPU(obj);
+ set_feature(&cpu->env, ARM_FEATURE_V6K);
+ set_feature(&cpu->env, ARM_FEATURE_V6);
+ set_feature(&cpu->env, ARM_FEATURE_VFP);
+ set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
+ set_feature(&cpu->env, ARM_FEATURE_CACHE_DIRTY_REG);
+ set_feature(&cpu->env, ARM_FEATURE_CACHE_BLOCK_OPS);
+ cpu->midr = 0x4117b363;
+ cpu->reset_fpsid = 0x410120b4;
+ cpu->mvfr0 = 0x11111111;
+ cpu->mvfr1 = 0x00000000;
+ cpu->ctr = 0x1dd20d2;
+ cpu->reset_sctlr = 0x00050078;
+ cpu->id_pfr0 = 0x111;
+ cpu->id_pfr1 = 0x1;
+ cpu->id_dfr0 = 0x2;
+ cpu->id_afr0 = 0x3;
+ cpu->id_mmfr0 = 0x01130003;
+ cpu->id_mmfr1 = 0x10030302;
+ cpu->id_mmfr2 = 0x01222110;
+ cpu->id_isar0 = 0x00140011;
+ cpu->id_isar1 = 0x12002111;
+ cpu->id_isar2 = 0x11231111;
+ cpu->id_isar3 = 0x01102131;
+ cpu->id_isar4 = 0x141;
+ cpu->reset_auxcr = 7;
+}
+
+static void arm1176_initfn(Object *obj)
+{
+ ARMCPU *cpu = ARM_CPU(obj);
+ set_feature(&cpu->env, ARM_FEATURE_V6K);
+ set_feature(&cpu->env, ARM_FEATURE_VFP);
+ set_feature(&cpu->env, ARM_FEATURE_VAPA);
+ set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
+ set_feature(&cpu->env, ARM_FEATURE_CACHE_DIRTY_REG);
+ set_feature(&cpu->env, ARM_FEATURE_CACHE_BLOCK_OPS);
+ cpu->midr = 0x410fb767;
+ cpu->reset_fpsid = 0x410120b5;
+ cpu->mvfr0 = 0x11111111;
+ cpu->mvfr1 = 0x00000000;
+ cpu->ctr = 0x1dd20d2;
+ cpu->reset_sctlr = 0x00050078;
+ cpu->id_pfr0 = 0x111;
+ cpu->id_pfr1 = 0x11;
+ cpu->id_dfr0 = 0x33;
+ cpu->id_afr0 = 0;
+ cpu->id_mmfr0 = 0x01130003;
+ cpu->id_mmfr1 = 0x10030302;
+ cpu->id_mmfr2 = 0x01222100;
+ cpu->id_isar0 = 0x0140011;
+ cpu->id_isar1 = 0x12002111;
+ cpu->id_isar2 = 0x11231121;
+ cpu->id_isar3 = 0x01102131;
+ cpu->id_isar4 = 0x01141;
+ cpu->reset_auxcr = 7;
+}
+
+static void arm11mpcore_initfn(Object *obj)
+{
+ ARMCPU *cpu = ARM_CPU(obj);
+ set_feature(&cpu->env, ARM_FEATURE_V6K);
+ set_feature(&cpu->env, ARM_FEATURE_VFP);
+ set_feature(&cpu->env, ARM_FEATURE_VAPA);
+ set_feature(&cpu->env, ARM_FEATURE_MPIDR);
+ set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
+ cpu->midr = 0x410fb022;
+ cpu->reset_fpsid = 0x410120b4;
+ cpu->mvfr0 = 0x11111111;
+ cpu->mvfr1 = 0x00000000;
+ cpu->ctr = 0x1d192992; /* 32K icache 32K dcache */
+ cpu->id_pfr0 = 0x111;
+ cpu->id_pfr1 = 0x1;
+ cpu->id_dfr0 = 0;
+ cpu->id_afr0 = 0x2;
+ cpu->id_mmfr0 = 0x01100103;
+ cpu->id_mmfr1 = 0x10020302;
+ cpu->id_mmfr2 = 0x01222000;
+ cpu->id_isar0 = 0x00100011;
+ cpu->id_isar1 = 0x12002111;
+ cpu->id_isar2 = 0x11221011;
+ cpu->id_isar3 = 0x01102131;
+ cpu->id_isar4 = 0x141;
+ cpu->reset_auxcr = 1;
+}
+
+static void cortex_m3_initfn(Object *obj)
+{
+ ARMCPU *cpu = ARM_CPU(obj);
+ set_feature(&cpu->env, ARM_FEATURE_V7);
+ set_feature(&cpu->env, ARM_FEATURE_M);
+ cpu->midr = 0x410fc231;
+}
+
+static const ARMCPRegInfo cortexa8_cp_reginfo[] = {
+ { .name = "L2LOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 0,
+ .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
+ { .name = "L2AUXCR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 2,
+ .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
+ REGINFO_SENTINEL
+};
+
+static void cortex_a8_initfn(Object *obj)
+{
+ ARMCPU *cpu = ARM_CPU(obj);
+ set_feature(&cpu->env, ARM_FEATURE_V7);
+ set_feature(&cpu->env, ARM_FEATURE_VFP3);
+ set_feature(&cpu->env, ARM_FEATURE_NEON);
+ set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
+ set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
+ cpu->midr = 0x410fc080;
+ cpu->reset_fpsid = 0x410330c0;
+ cpu->mvfr0 = 0x11110222;
+ cpu->mvfr1 = 0x00011100;
+ cpu->ctr = 0x82048004;
+ cpu->reset_sctlr = 0x00c50078;
+ cpu->id_pfr0 = 0x1031;
+ cpu->id_pfr1 = 0x11;
+ cpu->id_dfr0 = 0x400;
+ cpu->id_afr0 = 0;
+ cpu->id_mmfr0 = 0x31100003;
+ cpu->id_mmfr1 = 0x20000000;
+ cpu->id_mmfr2 = 0x01202000;
+ cpu->id_mmfr3 = 0x11;
+ cpu->id_isar0 = 0x00101111;
+ cpu->id_isar1 = 0x12112111;
+ cpu->id_isar2 = 0x21232031;
+ cpu->id_isar3 = 0x11112131;
+ cpu->id_isar4 = 0x00111142;
+ cpu->clidr = (1 << 27) | (2 << 24) | 3;
+ cpu->ccsidr[0] = 0xe007e01a; /* 16k L1 dcache. */
+ cpu->ccsidr[1] = 0x2007e01a; /* 16k L1 icache. */
+ cpu->ccsidr[2] = 0xf0000000; /* No L2 icache. */
+ cpu->reset_auxcr = 2;
+ define_arm_cp_regs(cpu, cortexa8_cp_reginfo);
+}
+
+static const ARMCPRegInfo cortexa9_cp_reginfo[] = {
+ /* power_control should be set to maximum latency. Again,
+ * default to 0 and set by private hook
+ */
+ { .name = "A9_PWRCTL", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
+ .access = PL1_RW, .resetvalue = 0,
+ .fieldoffset = offsetof(CPUARMState, cp15.c15_power_control) },
+ { .name = "A9_DIAG", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 1,
+ .access = PL1_RW, .resetvalue = 0,
+ .fieldoffset = offsetof(CPUARMState, cp15.c15_diagnostic) },
+ { .name = "A9_PWRDIAG", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 2,
+ .access = PL1_RW, .resetvalue = 0,
+ .fieldoffset = offsetof(CPUARMState, cp15.c15_power_diagnostic) },
+ { .name = "NEONBUSY", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
+ .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
+ /* TLB lockdown control */
+ { .name = "TLB_LOCKR", .cp = 15, .crn = 15, .crm = 4, .opc1 = 5, .opc2 = 2,
+ .access = PL1_W, .resetvalue = 0, .type = ARM_CP_NOP },
+ { .name = "TLB_LOCKW", .cp = 15, .crn = 15, .crm = 4, .opc1 = 5, .opc2 = 4,
+ .access = PL1_W, .resetvalue = 0, .type = ARM_CP_NOP },
+ { .name = "TLB_VA", .cp = 15, .crn = 15, .crm = 5, .opc1 = 5, .opc2 = 2,
+ .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
+ { .name = "TLB_PA", .cp = 15, .crn = 15, .crm = 6, .opc1 = 5, .opc2 = 2,
+ .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
+ { .name = "TLB_ATTR", .cp = 15, .crn = 15, .crm = 7, .opc1 = 5, .opc2 = 2,
+ .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
+ REGINFO_SENTINEL
+};
+
+static void cortex_a9_initfn(Object *obj)
+{
+ ARMCPU *cpu = ARM_CPU(obj);
+ set_feature(&cpu->env, ARM_FEATURE_V7);
+ set_feature(&cpu->env, ARM_FEATURE_VFP3);
+ set_feature(&cpu->env, ARM_FEATURE_VFP_FP16);
+ set_feature(&cpu->env, ARM_FEATURE_NEON);
+ set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
+ /* Note that A9 supports the MP extensions even for
+ * A9UP and single-core A9MP (which are both different
+ * and valid configurations; we don't model A9UP).
+ */
+ set_feature(&cpu->env, ARM_FEATURE_V7MP);
+ cpu->midr = 0x410fc090;
+ cpu->reset_fpsid = 0x41033090;
+ cpu->mvfr0 = 0x11110222;
+ cpu->mvfr1 = 0x01111111;
+ cpu->ctr = 0x80038003;
+ cpu->reset_sctlr = 0x00c50078;
+ cpu->id_pfr0 = 0x1031;
+ cpu->id_pfr1 = 0x11;
+ cpu->id_dfr0 = 0x000;
+ cpu->id_afr0 = 0;
+ cpu->id_mmfr0 = 0x00100103;
+ cpu->id_mmfr1 = 0x20000000;
+ cpu->id_mmfr2 = 0x01230000;
+ cpu->id_mmfr3 = 0x00002111;
+ cpu->id_isar0 = 0x00101111;
+ cpu->id_isar1 = 0x13112111;
+ cpu->id_isar2 = 0x21232041;
+ cpu->id_isar3 = 0x11112131;
+ cpu->id_isar4 = 0x00111142;
+ cpu->clidr = (1 << 27) | (1 << 24) | 3;
+ cpu->ccsidr[0] = 0xe00fe015; /* 16k L1 dcache. */
+ cpu->ccsidr[1] = 0x200fe015; /* 16k L1 icache. */
+ {
+ ARMCPRegInfo cbar = {
+ .name = "CBAR", .cp = 15, .crn = 15, .crm = 0, .opc1 = 4,
+ .opc2 = 0, .access = PL1_R|PL3_W, .resetvalue = cpu->reset_cbar,
+ .fieldoffset = offsetof(CPUARMState, cp15.c15_config_base_address)
+ };
+ define_one_arm_cp_reg(cpu, &cbar);
+ define_arm_cp_regs(cpu, cortexa9_cp_reginfo);
+ }
+}
+
+#ifndef CONFIG_USER_ONLY
+static int a15_l2ctlr_read(CPUARMState *env, const ARMCPRegInfo *ri,
+ uint64_t *value)
+{
+ /* Linux wants the number of processors from here.
+ * Might as well set the interrupt-controller bit too.
+ */
+ *value = ((smp_cpus - 1) << 24) | (1 << 23);
+ return 0;
+}
+#endif
+
+static const ARMCPRegInfo cortexa15_cp_reginfo[] = {
+#ifndef CONFIG_USER_ONLY
+ { .name = "L2CTLR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 2,
+ .access = PL1_RW, .resetvalue = 0, .readfn = a15_l2ctlr_read,
+ .writefn = arm_cp_write_ignore, },
+#endif
+ { .name = "L2ECTLR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 3,
+ .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
+ REGINFO_SENTINEL
+};
+
+static void cortex_a15_initfn(Object *obj)
+{
+ ARMCPU *cpu = ARM_CPU(obj);
+ set_feature(&cpu->env, ARM_FEATURE_V7);
+ set_feature(&cpu->env, ARM_FEATURE_VFP4);
+ set_feature(&cpu->env, ARM_FEATURE_VFP_FP16);
+ set_feature(&cpu->env, ARM_FEATURE_NEON);
+ set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
+ set_feature(&cpu->env, ARM_FEATURE_ARM_DIV);
+ set_feature(&cpu->env, ARM_FEATURE_V7MP);
+ set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
+ set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
+ set_feature(&cpu->env, ARM_FEATURE_LPAE);
+ cpu->midr = 0x412fc0f1;
+ cpu->reset_fpsid = 0x410430f0;
+ cpu->mvfr0 = 0x10110222;
+ cpu->mvfr1 = 0x11111111;
+ cpu->ctr = 0x8444c004;
+ cpu->reset_sctlr = 0x00c50078;
+ cpu->id_pfr0 = 0x00001131;
+ cpu->id_pfr1 = 0x00011011;
+ cpu->id_dfr0 = 0x02010555;
+ cpu->id_afr0 = 0x00000000;
+ cpu->id_mmfr0 = 0x10201105;
+ cpu->id_mmfr1 = 0x20000000;
+ cpu->id_mmfr2 = 0x01240000;
+ cpu->id_mmfr3 = 0x02102211;
+ cpu->id_isar0 = 0x02101110;
+ cpu->id_isar1 = 0x13112111;
+ cpu->id_isar2 = 0x21232041;
+ cpu->id_isar3 = 0x11112131;
+ cpu->id_isar4 = 0x10011142;
+ cpu->clidr = 0x0a200023;
+ cpu->ccsidr[0] = 0x701fe00a; /* 32K L1 dcache */
+ cpu->ccsidr[1] = 0x201fe00a; /* 32K L1 icache */
+ cpu->ccsidr[2] = 0x711fe07a; /* 4096K L2 unified cache */
+ define_arm_cp_regs(cpu, cortexa15_cp_reginfo);
+}
+
+static void ti925t_initfn(Object *obj)
+{
+ ARMCPU *cpu = ARM_CPU(obj);
+ set_feature(&cpu->env, ARM_FEATURE_V4T);
+ set_feature(&cpu->env, ARM_FEATURE_OMAPCP);
+ cpu->midr = ARM_CPUID_TI925T;
+ cpu->ctr = 0x5109149;
+ cpu->reset_sctlr = 0x00000070;
+}
+
+static void sa1100_initfn(Object *obj)
+{
+ ARMCPU *cpu = ARM_CPU(obj);
+ set_feature(&cpu->env, ARM_FEATURE_STRONGARM);
+ set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
+ cpu->midr = 0x4401A11B;
+ cpu->reset_sctlr = 0x00000070;
+}
+
+static void sa1110_initfn(Object *obj)
+{
+ ARMCPU *cpu = ARM_CPU(obj);
+ set_feature(&cpu->env, ARM_FEATURE_STRONGARM);
+ set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
+ cpu->midr = 0x6901B119;
+ cpu->reset_sctlr = 0x00000070;
+}
+
+static void pxa250_initfn(Object *obj)
+{
+ ARMCPU *cpu = ARM_CPU(obj);
+ set_feature(&cpu->env, ARM_FEATURE_V5);
+ set_feature(&cpu->env, ARM_FEATURE_XSCALE);
+ cpu->midr = 0x69052100;
+ cpu->ctr = 0xd172172;
+ cpu->reset_sctlr = 0x00000078;
+}
+
+static void pxa255_initfn(Object *obj)
+{
+ ARMCPU *cpu = ARM_CPU(obj);
+ set_feature(&cpu->env, ARM_FEATURE_V5);
+ set_feature(&cpu->env, ARM_FEATURE_XSCALE);
+ cpu->midr = 0x69052d00;
+ cpu->ctr = 0xd172172;
+ cpu->reset_sctlr = 0x00000078;
+}
+
+static void pxa260_initfn(Object *obj)
+{
+ ARMCPU *cpu = ARM_CPU(obj);
+ set_feature(&cpu->env, ARM_FEATURE_V5);
+ set_feature(&cpu->env, ARM_FEATURE_XSCALE);
+ cpu->midr = 0x69052903;
+ cpu->ctr = 0xd172172;
+ cpu->reset_sctlr = 0x00000078;
+}
+
+static void pxa261_initfn(Object *obj)
+{
+ ARMCPU *cpu = ARM_CPU(obj);
+ set_feature(&cpu->env, ARM_FEATURE_V5);
+ set_feature(&cpu->env, ARM_FEATURE_XSCALE);
+ cpu->midr = 0x69052d05;
+ cpu->ctr = 0xd172172;
+ cpu->reset_sctlr = 0x00000078;
+}
+
+static void pxa262_initfn(Object *obj)
+{
+ ARMCPU *cpu = ARM_CPU(obj);
+ set_feature(&cpu->env, ARM_FEATURE_V5);
+ set_feature(&cpu->env, ARM_FEATURE_XSCALE);
+ cpu->midr = 0x69052d06;
+ cpu->ctr = 0xd172172;
+ cpu->reset_sctlr = 0x00000078;
+}
+
+static void pxa270a0_initfn(Object *obj)
+{
+ ARMCPU *cpu = ARM_CPU(obj);
+ set_feature(&cpu->env, ARM_FEATURE_V5);
+ set_feature(&cpu->env, ARM_FEATURE_XSCALE);
+ set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
+ cpu->midr = 0x69054110;
+ cpu->ctr = 0xd172172;
+ cpu->reset_sctlr = 0x00000078;
+}
+
+static void pxa270a1_initfn(Object *obj)
+{
+ ARMCPU *cpu = ARM_CPU(obj);
+ set_feature(&cpu->env, ARM_FEATURE_V5);
+ set_feature(&cpu->env, ARM_FEATURE_XSCALE);
+ set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
+ cpu->midr = 0x69054111;
+ cpu->ctr = 0xd172172;
+ cpu->reset_sctlr = 0x00000078;
+}
+
+static void pxa270b0_initfn(Object *obj)
+{
+ ARMCPU *cpu = ARM_CPU(obj);
+ set_feature(&cpu->env, ARM_FEATURE_V5);
+ set_feature(&cpu->env, ARM_FEATURE_XSCALE);
+ set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
+ cpu->midr = 0x69054112;
+ cpu->ctr = 0xd172172;
+ cpu->reset_sctlr = 0x00000078;
+}
+
+static void pxa270b1_initfn(Object *obj)
+{
+ ARMCPU *cpu = ARM_CPU(obj);
+ set_feature(&cpu->env, ARM_FEATURE_V5);
+ set_feature(&cpu->env, ARM_FEATURE_XSCALE);
+ set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
+ cpu->midr = 0x69054113;
+ cpu->ctr = 0xd172172;
+ cpu->reset_sctlr = 0x00000078;
+}
+
+static void pxa270c0_initfn(Object *obj)
+{
+ ARMCPU *cpu = ARM_CPU(obj);
+ set_feature(&cpu->env, ARM_FEATURE_V5);
+ set_feature(&cpu->env, ARM_FEATURE_XSCALE);
+ set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
+ cpu->midr = 0x69054114;
+ cpu->ctr = 0xd172172;
+ cpu->reset_sctlr = 0x00000078;
+}
+
+static void pxa270c5_initfn(Object *obj)
+{
+ ARMCPU *cpu = ARM_CPU(obj);
+ set_feature(&cpu->env, ARM_FEATURE_V5);
+ set_feature(&cpu->env, ARM_FEATURE_XSCALE);
+ set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
+ cpu->midr = 0x69054117;
+ cpu->ctr = 0xd172172;
+ cpu->reset_sctlr = 0x00000078;
+}
+
+static void arm_any_initfn(Object *obj)
+{
+ ARMCPU *cpu = ARM_CPU(obj);
+ set_feature(&cpu->env, ARM_FEATURE_V7);
+ set_feature(&cpu->env, ARM_FEATURE_VFP4);
+ set_feature(&cpu->env, ARM_FEATURE_VFP_FP16);
+ set_feature(&cpu->env, ARM_FEATURE_NEON);
+ set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
+ set_feature(&cpu->env, ARM_FEATURE_ARM_DIV);
+ set_feature(&cpu->env, ARM_FEATURE_V7MP);
+ cpu->midr = 0xffffffff;
+}
+
+typedef struct ARMCPUInfo {
+ const char *name;
+ void (*initfn)(Object *obj);
+} ARMCPUInfo;
+
+static const ARMCPUInfo arm_cpus[] = {
+ { .name = "arm926", .initfn = arm926_initfn },
+ { .name = "arm946", .initfn = arm946_initfn },
+ { .name = "arm1026", .initfn = arm1026_initfn },
+ /* What QEMU calls "arm1136-r2" is actually the 1136 r0p2, i.e. an
+ * older core than plain "arm1136". In particular this does not
+ * have the v6K features.
+ */
+ { .name = "arm1136-r2", .initfn = arm1136_r2_initfn },
+ { .name = "arm1136", .initfn = arm1136_initfn },
+ { .name = "arm1176", .initfn = arm1176_initfn },
+ { .name = "arm11mpcore", .initfn = arm11mpcore_initfn },
+ { .name = "cortex-m3", .initfn = cortex_m3_initfn },
+ { .name = "cortex-a8", .initfn = cortex_a8_initfn },
+ { .name = "cortex-a9", .initfn = cortex_a9_initfn },
+ { .name = "cortex-a15", .initfn = cortex_a15_initfn },
+ { .name = "ti925t", .initfn = ti925t_initfn },
+ { .name = "sa1100", .initfn = sa1100_initfn },
+ { .name = "sa1110", .initfn = sa1110_initfn },
+ { .name = "pxa250", .initfn = pxa250_initfn },
+ { .name = "pxa255", .initfn = pxa255_initfn },
+ { .name = "pxa260", .initfn = pxa260_initfn },
+ { .name = "pxa261", .initfn = pxa261_initfn },
+ { .name = "pxa262", .initfn = pxa262_initfn },
+ /* "pxa270" is an alias for "pxa270-a0" */
+ { .name = "pxa270", .initfn = pxa270a0_initfn },
+ { .name = "pxa270-a0", .initfn = pxa270a0_initfn },
+ { .name = "pxa270-a1", .initfn = pxa270a1_initfn },
+ { .name = "pxa270-b0", .initfn = pxa270b0_initfn },
+ { .name = "pxa270-b1", .initfn = pxa270b1_initfn },
+ { .name = "pxa270-c0", .initfn = pxa270c0_initfn },
+ { .name = "pxa270-c5", .initfn = pxa270c5_initfn },
+ { .name = "any", .initfn = arm_any_initfn },
+};
+
+static void arm_cpu_class_init(ObjectClass *oc, void *data)
+{
+ ARMCPUClass *acc = ARM_CPU_CLASS(oc);
+ CPUClass *cc = CPU_CLASS(acc);
+
+ acc->parent_reset = cc->reset;
+ cc->reset = arm_cpu_reset;
+}
+
+static void cpu_register(const ARMCPUInfo *info)
+{
+ TypeInfo type_info = {
+ .name = info->name,
+ .parent = TYPE_ARM_CPU,
+ .instance_size = sizeof(ARMCPU),
+ .instance_init = info->initfn,
+ .class_size = sizeof(ARMCPUClass),
+ };
+
+ type_register_static(&type_info);
+}
+
+static const TypeInfo arm_cpu_type_info = {
+ .name = TYPE_ARM_CPU,
+ .parent = TYPE_CPU,
+ .instance_size = sizeof(ARMCPU),
+ .instance_init = arm_cpu_initfn,
+ .instance_finalize = arm_cpu_finalizefn,
+ .abstract = true,
+ .class_size = sizeof(ARMCPUClass),
+ .class_init = arm_cpu_class_init,
+};
+
+static void arm_cpu_register_types(void)
+{
+ int i;
+
+ type_register_static(&arm_cpu_type_info);
+ for (i = 0; i < ARRAY_SIZE(arm_cpus); i++) {
+ cpu_register(&arm_cpus[i]);
+ }
+}
+
+type_init(arm_cpu_register_types)
diff --git a/target-arm/cpu.h b/target-arm/cpu.h
new file mode 100644
index 000000000..d7f93d98f
--- /dev/null
+++ b/target-arm/cpu.h
@@ -0,0 +1,756 @@
+/*
+ * ARM virtual CPU header
+ *
+ * Copyright (c) 2003 Fabrice Bellard
+ *
+ * This library is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU Lesser General Public
+ * License as published by the Free Software Foundation; either
+ * version 2 of the License, or (at your option) any later version.
+ *
+ * This library is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ * Lesser General Public License for more details.
+ *
+ * You should have received a copy of the GNU Lesser General Public
+ * License along with this library; if not, see <http://www.gnu.org/licenses/>.
+ */
+#ifndef CPU_ARM_H
+#define CPU_ARM_H
+
+#define TARGET_LONG_BITS 32
+
+#define ELF_MACHINE EM_ARM
+
+#define CPUArchState struct CPUARMState
+
+#include "config.h"
+#include "qemu-common.h"
+#include "cpu-defs.h"
+
+#include "softfloat.h"
+
+#define TARGET_HAS_ICE 1
+
+#define EXCP_UDEF 1 /* undefined instruction */
+#define EXCP_SWI 2 /* software interrupt */
+#define EXCP_PREFETCH_ABORT 3
+#define EXCP_DATA_ABORT 4
+#define EXCP_IRQ 5
+#define EXCP_FIQ 6
+#define EXCP_BKPT 7
+#define EXCP_EXCEPTION_EXIT 8 /* Return from v7M exception. */
+#define EXCP_KERNEL_TRAP 9 /* Jumped to kernel code page. */
+#define EXCP_STREX 10
+
+#define ARMV7M_EXCP_RESET 1
+#define ARMV7M_EXCP_NMI 2
+#define ARMV7M_EXCP_HARD 3
+#define ARMV7M_EXCP_MEM 4
+#define ARMV7M_EXCP_BUS 5
+#define ARMV7M_EXCP_USAGE 6
+#define ARMV7M_EXCP_SVC 11
+#define ARMV7M_EXCP_DEBUG 12
+#define ARMV7M_EXCP_PENDSV 14
+#define ARMV7M_EXCP_SYSTICK 15
+
+/* ARM-specific interrupt pending bits. */
+#define CPU_INTERRUPT_FIQ CPU_INTERRUPT_TGT_EXT_1
+
+
+typedef void ARMWriteCPFunc(void *opaque, int cp_info,
+ int srcreg, int operand, uint32_t value);
+typedef uint32_t ARMReadCPFunc(void *opaque, int cp_info,
+ int dstreg, int operand);
+
+struct arm_boot_info;
+
+#define NB_MMU_MODES 2
+
+/* We currently assume float and double are IEEE single and double
+ precision respectively.
+ Doing runtime conversions is tricky because VFP registers may contain
+ integer values (eg. as the result of a FTOSI instruction).
+ s<2n> maps to the least significant half of d<n>
+ s<2n+1> maps to the most significant half of d<n>
+ */
+
+typedef struct CPUARMState {
+ /* Regs for current mode. */
+ uint32_t regs[16];
+ /* Frequently accessed CPSR bits are stored separately for efficiency.
+ This contains all the other bits. Use cpsr_{read,write} to access
+ the whole CPSR. */
+ uint32_t uncached_cpsr;
+ uint32_t spsr;
+
+ /* Banked registers. */
+ uint32_t banked_spsr[6];
+ uint32_t banked_r13[6];
+ uint32_t banked_r14[6];
+
+ /* These hold r8-r12. */
+ uint32_t usr_regs[5];
+ uint32_t fiq_regs[5];
+
+ /* cpsr flag cache for faster execution */
+ uint32_t CF; /* 0 or 1 */
+ uint32_t VF; /* V is the bit 31. All other bits are undefined */
+ uint32_t NF; /* N is bit 31. All other bits are undefined. */
+ uint32_t ZF; /* Z set if zero. */
+ uint32_t QF; /* 0 or 1 */
+ uint32_t GE; /* cpsr[19:16] */
+ uint32_t thumb; /* cpsr[5]. 0 = arm mode, 1 = thumb mode. */
+ uint32_t condexec_bits; /* IT bits. cpsr[15:10,26:25]. */
+
+ /* System control coprocessor (cp15) */
+ struct {
+ uint32_t c0_cpuid;
+ uint32_t c0_cssel; /* Cache size selection. */
+ uint32_t c1_sys; /* System control register. */
+ uint32_t c1_coproc; /* Coprocessor access register. */
+ uint32_t c1_xscaleauxcr; /* XScale auxiliary control register. */
+ uint32_t c1_scr; /* secure config register. */
+ uint32_t c2_base0; /* MMU translation table base 0. */
+ uint32_t c2_base0_hi; /* MMU translation table base 0, high 32 bits */
+ uint32_t c2_base1; /* MMU translation table base 0. */
+ uint32_t c2_base1_hi; /* MMU translation table base 1, high 32 bits */
+ uint32_t c2_control; /* MMU translation table base control. */
+ uint32_t c2_mask; /* MMU translation table base selection mask. */
+ uint32_t c2_base_mask; /* MMU translation table base 0 mask. */
+ uint32_t c2_data; /* MPU data cachable bits. */
+ uint32_t c2_insn; /* MPU instruction cachable bits. */
+ uint32_t c3; /* MMU domain access control register
+ MPU write buffer control. */
+ uint32_t c5_insn; /* Fault status registers. */
+ uint32_t c5_data;
+ uint32_t c6_region[8]; /* MPU base/size registers. */
+ uint32_t c6_insn; /* Fault address registers. */
+ uint32_t c6_data;
+ uint32_t c7_par; /* Translation result. */
+ uint32_t c7_par_hi; /* Translation result, high 32 bits */
+ uint32_t c9_insn; /* Cache lockdown registers. */
+ uint32_t c9_data;
+ uint32_t c9_pmcr; /* performance monitor control register */
+ uint32_t c9_pmcnten; /* perf monitor counter enables */
+ uint32_t c9_pmovsr; /* perf monitor overflow status */
+ uint32_t c9_pmxevtyper; /* perf monitor event type */
+ uint32_t c9_pmuserenr; /* perf monitor user enable */
+ uint32_t c9_pminten; /* perf monitor interrupt enables */
+ uint32_t c13_fcse; /* FCSE PID. */
+ uint32_t c13_context; /* Context ID. */
+ uint32_t c13_tls1; /* User RW Thread register. */
+ uint32_t c13_tls2; /* User RO Thread register. */
+ uint32_t c13_tls3; /* Privileged Thread register. */
+ uint32_t c15_cpar; /* XScale Coprocessor Access Register */
+ uint32_t c15_ticonfig; /* TI925T configuration byte. */
+ uint32_t c15_i_max; /* Maximum D-cache dirty line index. */
+ uint32_t c15_i_min; /* Minimum D-cache dirty line index. */
+ uint32_t c15_threadid; /* TI debugger thread-ID. */
+ uint32_t c15_config_base_address; /* SCU base address. */
+ uint32_t c15_diagnostic; /* diagnostic register */
+ uint32_t c15_power_diagnostic;
+ uint32_t c15_power_control; /* power control */
+ } cp15;
+
+ struct {
+ uint32_t other_sp;
+ uint32_t vecbase;
+ uint32_t basepri;
+ uint32_t control;
+ int current_sp;
+ int exception;
+ int pending_exception;
+ } v7m;
+
+ /* Thumb-2 EE state. */
+ uint32_t teecr;
+ uint32_t teehbr;
+
+ /* VFP coprocessor state. */
+ struct {
+ float64 regs[32];
+
+ uint32_t xregs[16];
+ /* We store these fpcsr fields separately for convenience. */
+ int vec_len;
+ int vec_stride;
+
+ /* scratch space when Tn are not sufficient. */
+ uint32_t scratch[8];
+
+ /* fp_status is the "normal" fp status. standard_fp_status retains
+ * values corresponding to the ARM "Standard FPSCR Value", ie
+ * default-NaN, flush-to-zero, round-to-nearest and is used by
+ * any operations (generally Neon) which the architecture defines
+ * as controlled by the standard FPSCR value rather than the FPSCR.
+ *
+ * To avoid having to transfer exception bits around, we simply
+ * say that the FPSCR cumulative exception flags are the logical
+ * OR of the flags in the two fp statuses. This relies on the
+ * only thing which needs to read the exception flags being
+ * an explicit FPSCR read.
+ */
+ float_status fp_status;
+ float_status standard_fp_status;
+ } vfp;
+ uint32_t exclusive_addr;
+ uint32_t exclusive_val;
+ uint32_t exclusive_high;
+#if defined(CONFIG_USER_ONLY)
+ uint32_t exclusive_test;
+ uint32_t exclusive_info;
+#endif
+
+ /* iwMMXt coprocessor state. */
+ struct {
+ uint64_t regs[16];
+ uint64_t val;
+
+ uint32_t cregs[16];
+ } iwmmxt;
+
+ /* For mixed endian mode. */
+ bool bswap_code;
+
+#if defined(CONFIG_USER_ONLY)
+ /* For usermode syscall translation. */
+ int eabi;
+#endif
+
+ CPU_COMMON
+
+ /* These fields after the common ones so they are preserved on reset. */
+
+ /* Internal CPU feature flags. */
+ uint64_t features;
+
+ void *nvic;
+ const struct arm_boot_info *boot_info;
+} CPUARMState;
+
+#include "cpu-qom.h"
+
+ARMCPU *cpu_arm_init(const char *cpu_model);
+void arm_translate_init(void);
+int cpu_arm_exec(CPUARMState *s);
+void do_interrupt(CPUARMState *);
+void switch_mode(CPUARMState *, int);
+uint32_t do_arm_semihosting(CPUARMState *env);
+
+/* you can call this signal handler from your SIGBUS and SIGSEGV
+ signal handlers to inform the virtual CPU of exceptions. non zero
+ is returned if the signal was handled by the virtual CPU. */
+int cpu_arm_signal_handler(int host_signum, void *pinfo,
+ void *puc);
+int cpu_arm_handle_mmu_fault (CPUARMState *env, target_ulong address, int rw,
+ int mmu_idx);
+#define cpu_handle_mmu_fault cpu_arm_handle_mmu_fault
+
+static inline void cpu_set_tls(CPUARMState *env, target_ulong newtls)
+{
+ env->cp15.c13_tls2 = newtls;
+}
+
+#define CPSR_M (0x1f)
+#define CPSR_T (1 << 5)
+#define CPSR_F (1 << 6)
+#define CPSR_I (1 << 7)
+#define CPSR_A (1 << 8)
+#define CPSR_E (1 << 9)
+#define CPSR_IT_2_7 (0xfc00)
+#define CPSR_GE (0xf << 16)
+#define CPSR_RESERVED (0xf << 20)
+#define CPSR_J (1 << 24)
+#define CPSR_IT_0_1 (3 << 25)
+#define CPSR_Q (1 << 27)
+#define CPSR_V (1 << 28)
+#define CPSR_C (1 << 29)
+#define CPSR_Z (1 << 30)
+#define CPSR_N (1 << 31)
+#define CPSR_NZCV (CPSR_N | CPSR_Z | CPSR_C | CPSR_V)
+
+#define CPSR_IT (CPSR_IT_0_1 | CPSR_IT_2_7)
+#define CACHED_CPSR_BITS (CPSR_T | CPSR_GE | CPSR_IT | CPSR_Q | CPSR_NZCV)
+/* Bits writable in user mode. */
+#define CPSR_USER (CPSR_NZCV | CPSR_Q | CPSR_GE)
+/* Execution state bits. MRS read as zero, MSR writes ignored. */
+#define CPSR_EXEC (CPSR_T | CPSR_IT | CPSR_J)
+
+/* Return the current CPSR value. */
+uint32_t cpsr_read(CPUARMState *env);
+/* Set the CPSR. Note that some bits of mask must be all-set or all-clear. */
+void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask);
+
+/* Return the current xPSR value. */
+static inline uint32_t xpsr_read(CPUARMState *env)
+{
+ int ZF;
+ ZF = (env->ZF == 0);
+ return (env->NF & 0x80000000) | (ZF << 30)
+ | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
+ | (env->thumb << 24) | ((env->condexec_bits & 3) << 25)
+ | ((env->condexec_bits & 0xfc) << 8)
+ | env->v7m.exception;
+}
+
+/* Set the xPSR. Note that some bits of mask must be all-set or all-clear. */
+static inline void xpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
+{
+ if (mask & CPSR_NZCV) {
+ env->ZF = (~val) & CPSR_Z;
+ env->NF = val;
+ env->CF = (val >> 29) & 1;
+ env->VF = (val << 3) & 0x80000000;
+ }
+ if (mask & CPSR_Q)
+ env->QF = ((val & CPSR_Q) != 0);
+ if (mask & (1 << 24))
+ env->thumb = ((val & (1 << 24)) != 0);
+ if (mask & CPSR_IT_0_1) {
+ env->condexec_bits &= ~3;
+ env->condexec_bits |= (val >> 25) & 3;
+ }
+ if (mask & CPSR_IT_2_7) {
+ env->condexec_bits &= 3;
+ env->condexec_bits |= (val >> 8) & 0xfc;
+ }
+ if (mask & 0x1ff) {
+ env->v7m.exception = val & 0x1ff;
+ }
+}
+
+/* Return the current FPSCR value. */
+uint32_t vfp_get_fpscr(CPUARMState *env);
+void vfp_set_fpscr(CPUARMState *env, uint32_t val);
+
+enum arm_cpu_mode {
+ ARM_CPU_MODE_USR = 0x10,
+ ARM_CPU_MODE_FIQ = 0x11,
+ ARM_CPU_MODE_IRQ = 0x12,
+ ARM_CPU_MODE_SVC = 0x13,
+ ARM_CPU_MODE_ABT = 0x17,
+ ARM_CPU_MODE_UND = 0x1b,
+ ARM_CPU_MODE_SYS = 0x1f
+};
+
+/* VFP system registers. */
+#define ARM_VFP_FPSID 0
+#define ARM_VFP_FPSCR 1
+#define ARM_VFP_MVFR1 6
+#define ARM_VFP_MVFR0 7
+#define ARM_VFP_FPEXC 8
+#define ARM_VFP_FPINST 9
+#define ARM_VFP_FPINST2 10
+
+/* iwMMXt coprocessor control registers. */
+#define ARM_IWMMXT_wCID 0
+#define ARM_IWMMXT_wCon 1
+#define ARM_IWMMXT_wCSSF 2
+#define ARM_IWMMXT_wCASF 3
+#define ARM_IWMMXT_wCGR0 8
+#define ARM_IWMMXT_wCGR1 9
+#define ARM_IWMMXT_wCGR2 10
+#define ARM_IWMMXT_wCGR3 11
+
+/* If adding a feature bit which corresponds to a Linux ELF
+ * HWCAP bit, remember to update the feature-bit-to-hwcap
+ * mapping in linux-user/elfload.c:get_elf_hwcap().
+ */
+enum arm_features {
+ ARM_FEATURE_VFP,
+ ARM_FEATURE_AUXCR, /* ARM1026 Auxiliary control register. */
+ ARM_FEATURE_XSCALE, /* Intel XScale extensions. */
+ ARM_FEATURE_IWMMXT, /* Intel iwMMXt extension. */
+ ARM_FEATURE_V6,
+ ARM_FEATURE_V6K,
+ ARM_FEATURE_V7,
+ ARM_FEATURE_THUMB2,
+ ARM_FEATURE_MPU, /* Only has Memory Protection Unit, not full MMU. */
+ ARM_FEATURE_VFP3,
+ ARM_FEATURE_VFP_FP16,
+ ARM_FEATURE_NEON,
+ ARM_FEATURE_THUMB_DIV, /* divide supported in Thumb encoding */
+ ARM_FEATURE_M, /* Microcontroller profile. */
+ ARM_FEATURE_OMAPCP, /* OMAP specific CP15 ops handling. */
+ ARM_FEATURE_THUMB2EE,
+ ARM_FEATURE_V7MP, /* v7 Multiprocessing Extensions */
+ ARM_FEATURE_V4T,
+ ARM_FEATURE_V5,
+ ARM_FEATURE_STRONGARM,
+ ARM_FEATURE_VAPA, /* cp15 VA to PA lookups */
+ ARM_FEATURE_ARM_DIV, /* divide supported in ARM encoding */
+ ARM_FEATURE_VFP4, /* VFPv4 (implies that NEON is v2) */
+ ARM_FEATURE_GENERIC_TIMER,
+ ARM_FEATURE_MVFR, /* Media and VFP Feature Registers 0 and 1 */
+ ARM_FEATURE_DUMMY_C15_REGS, /* RAZ/WI all of cp15 crn=15 */
+ ARM_FEATURE_CACHE_TEST_CLEAN, /* 926/1026 style test-and-clean ops */
+ ARM_FEATURE_CACHE_DIRTY_REG, /* 1136/1176 cache dirty status register */
+ ARM_FEATURE_CACHE_BLOCK_OPS, /* v6 optional cache block operations */
+ ARM_FEATURE_MPIDR, /* has cp15 MPIDR */
+ ARM_FEATURE_PXN, /* has Privileged Execute Never bit */
+ ARM_FEATURE_LPAE, /* has Large Physical Address Extension */
+};
+
+static inline int arm_feature(CPUARMState *env, int feature)
+{
+ return (env->features & (1ULL << feature)) != 0;
+}
+
+void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf);
+
+/* Interface between CPU and Interrupt controller. */
+void armv7m_nvic_set_pending(void *opaque, int irq);
+int armv7m_nvic_acknowledge_irq(void *opaque);
+void armv7m_nvic_complete_irq(void *opaque, int irq);
+
+/* Interface for defining coprocessor registers.
+ * Registers are defined in tables of arm_cp_reginfo structs
+ * which are passed to define_arm_cp_regs().
+ */
+
+/* When looking up a coprocessor register we look for it
+ * via an integer which encodes all of:
+ * coprocessor number
+ * Crn, Crm, opc1, opc2 fields
+ * 32 or 64 bit register (ie is it accessed via MRC/MCR
+ * or via MRRC/MCRR?)
+ * We allow 4 bits for opc1 because MRRC/MCRR have a 4 bit field.
+ * (In this case crn and opc2 should be zero.)
+ */
+#define ENCODE_CP_REG(cp, is64, crn, crm, opc1, opc2) \
+ (((cp) << 16) | ((is64) << 15) | ((crn) << 11) | \
+ ((crm) << 7) | ((opc1) << 3) | (opc2))
+
+#define DECODE_CPREG_CRN(enc) (((enc) >> 7) & 0xf)
+
+/* ARMCPRegInfo type field bits. If the SPECIAL bit is set this is a
+ * special-behaviour cp reg and bits [15..8] indicate what behaviour
+ * it has. Otherwise it is a simple cp reg, where CONST indicates that
+ * TCG can assume the value to be constant (ie load at translate time)
+ * and 64BIT indicates a 64 bit wide coprocessor register. SUPPRESS_TB_END
+ * indicates that the TB should not be ended after a write to this register
+ * (the default is that the TB ends after cp writes). OVERRIDE permits
+ * a register definition to override a previous definition for the
+ * same (cp, is64, crn, crm, opc1, opc2) tuple: either the new or the
+ * old must have the OVERRIDE bit set.
+ */
+#define ARM_CP_SPECIAL 1
+#define ARM_CP_CONST 2
+#define ARM_CP_64BIT 4
+#define ARM_CP_SUPPRESS_TB_END 8
+#define ARM_CP_OVERRIDE 16
+#define ARM_CP_NOP (ARM_CP_SPECIAL | (1 << 8))
+#define ARM_CP_WFI (ARM_CP_SPECIAL | (2 << 8))
+#define ARM_LAST_SPECIAL ARM_CP_WFI
+/* Used only as a terminator for ARMCPRegInfo lists */
+#define ARM_CP_SENTINEL 0xffff
+/* Mask of only the flag bits in a type field */
+#define ARM_CP_FLAG_MASK 0x1f
+
+/* Return true if cptype is a valid type field. This is used to try to
+ * catch errors where the sentinel has been accidentally left off the end
+ * of a list of registers.
+ */
+static inline bool cptype_valid(int cptype)
+{
+ return ((cptype & ~ARM_CP_FLAG_MASK) == 0)
+ || ((cptype & ARM_CP_SPECIAL) &&
+ (cptype <= ARM_LAST_SPECIAL));
+}
+
+/* Access rights:
+ * We define bits for Read and Write access for what rev C of the v7-AR ARM ARM
+ * defines as PL0 (user), PL1 (fiq/irq/svc/abt/und/sys, ie privileged), and
+ * PL2 (hyp). The other level which has Read and Write bits is Secure PL1
+ * (ie any of the privileged modes in Secure state, or Monitor mode).
+ * If a register is accessible in one privilege level it's always accessible
+ * in higher privilege levels too. Since "Secure PL1" also follows this rule
+ * (ie anything visible in PL2 is visible in S-PL1, some things are only
+ * visible in S-PL1) but "Secure PL1" is a bit of a mouthful, we bend the
+ * terminology a little and call this PL3.
+ *
+ * If access permissions for a register are more complex than can be
+ * described with these bits, then use a laxer set of restrictions, and
+ * do the more restrictive/complex check inside a helper function.
+ */
+#define PL3_R 0x80
+#define PL3_W 0x40
+#define PL2_R (0x20 | PL3_R)
+#define PL2_W (0x10 | PL3_W)
+#define PL1_R (0x08 | PL2_R)
+#define PL1_W (0x04 | PL2_W)
+#define PL0_R (0x02 | PL1_R)
+#define PL0_W (0x01 | PL1_W)
+
+#define PL3_RW (PL3_R | PL3_W)
+#define PL2_RW (PL2_R | PL2_W)
+#define PL1_RW (PL1_R | PL1_W)
+#define PL0_RW (PL0_R | PL0_W)
+
+static inline int arm_current_pl(CPUARMState *env)
+{
+ if ((env->uncached_cpsr & 0x1f) == ARM_CPU_MODE_USR) {
+ return 0;
+ }
+ /* We don't currently implement the Virtualization or TrustZone
+ * extensions, so PL2 and PL3 don't exist for us.
+ */
+ return 1;
+}
+
+typedef struct ARMCPRegInfo ARMCPRegInfo;
+
+/* Access functions for coprocessor registers. These should return
+ * 0 on success, or one of the EXCP_* constants if access should cause
+ * an exception (in which case *value is not written).
+ */
+typedef int CPReadFn(CPUARMState *env, const ARMCPRegInfo *opaque,
+ uint64_t *value);
+typedef int CPWriteFn(CPUARMState *env, const ARMCPRegInfo *opaque,
+ uint64_t value);
+/* Hook function for register reset */
+typedef void CPResetFn(CPUARMState *env, const ARMCPRegInfo *opaque);
+
+#define CP_ANY 0xff
+
+/* Definition of an ARM coprocessor register */
+struct ARMCPRegInfo {
+ /* Name of register (useful mainly for debugging, need not be unique) */
+ const char *name;
+ /* Location of register: coprocessor number and (crn,crm,opc1,opc2)
+ * tuple. Any of crm, opc1 and opc2 may be CP_ANY to indicate a
+ * 'wildcard' field -- any value of that field in the MRC/MCR insn
+ * will be decoded to this register. The register read and write
+ * callbacks will be passed an ARMCPRegInfo with the crn/crm/opc1/opc2
+ * used by the program, so it is possible to register a wildcard and
+ * then behave differently on read/write if necessary.
+ * For 64 bit registers, only crm and opc1 are relevant; crn and opc2
+ * must both be zero.
+ */
+ uint8_t cp;
+ uint8_t crn;
+ uint8_t crm;
+ uint8_t opc1;
+ uint8_t opc2;
+ /* Register type: ARM_CP_* bits/values */
+ int type;
+ /* Access rights: PL*_[RW] */
+ int access;
+ /* The opaque pointer passed to define_arm_cp_regs_with_opaque() when
+ * this register was defined: can be used to hand data through to the
+ * register read/write functions, since they are passed the ARMCPRegInfo*.
+ */
+ void *opaque;
+ /* Value of this register, if it is ARM_CP_CONST. Otherwise, if
+ * fieldoffset is non-zero, the reset value of the register.
+ */
+ uint64_t resetvalue;
+ /* Offset of the field in CPUARMState for this register. This is not
+ * needed if either:
+ * 1. type is ARM_CP_CONST or one of the ARM_CP_SPECIALs
+ * 2. both readfn and writefn are specified
+ */
+ ptrdiff_t fieldoffset; /* offsetof(CPUARMState, field) */
+ /* Function for handling reads of this register. If NULL, then reads
+ * will be done by loading from the offset into CPUARMState specified
+ * by fieldoffset.
+ */
+ CPReadFn *readfn;
+ /* Function for handling writes of this register. If NULL, then writes
+ * will be done by writing to the offset into CPUARMState specified
+ * by fieldoffset.
+ */
+ CPWriteFn *writefn;
+ /* Function for resetting the register. If NULL, then reset will be done
+ * by writing resetvalue to the field specified in fieldoffset. If
+ * fieldoffset is 0 then no reset will be done.
+ */
+ CPResetFn *resetfn;
+};
+
+/* Macros which are lvalues for the field in CPUARMState for the
+ * ARMCPRegInfo *ri.
+ */
+#define CPREG_FIELD32(env, ri) \
+ (*(uint32_t *)((char *)(env) + (ri)->fieldoffset))
+#define CPREG_FIELD64(env, ri) \
+ (*(uint64_t *)((char *)(env) + (ri)->fieldoffset))
+
+#define REGINFO_SENTINEL { .type = ARM_CP_SENTINEL }
+
+void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
+ const ARMCPRegInfo *regs, void *opaque);
+void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
+ const ARMCPRegInfo *regs, void *opaque);
+static inline void define_arm_cp_regs(ARMCPU *cpu, const ARMCPRegInfo *regs)
+{
+ define_arm_cp_regs_with_opaque(cpu, regs, 0);
+}
+static inline void define_one_arm_cp_reg(ARMCPU *cpu, const ARMCPRegInfo *regs)
+{
+ define_one_arm_cp_reg_with_opaque(cpu, regs, 0);
+}
+const ARMCPRegInfo *get_arm_cp_reginfo(ARMCPU *cpu, uint32_t encoded_cp);
+
+/* CPWriteFn that can be used to implement writes-ignored behaviour */
+int arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
+ uint64_t value);
+/* CPReadFn that can be used for read-as-zero behaviour */
+int arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t *value);
+
+static inline bool cp_access_ok(CPUARMState *env,
+ const ARMCPRegInfo *ri, int isread)
+{
+ return (ri->access >> ((arm_current_pl(env) * 2) + isread)) & 1;
+}
+
+/* Does the core conform to the the "MicroController" profile. e.g. Cortex-M3.
+ Note the M in older cores (eg. ARM7TDMI) stands for Multiply. These are
+ conventional cores (ie. Application or Realtime profile). */
+
+#define IS_M(env) arm_feature(env, ARM_FEATURE_M)
+
+#define ARM_CPUID_TI915T 0x54029152
+#define ARM_CPUID_TI925T 0x54029252
+
+#if defined(CONFIG_USER_ONLY)
+#define TARGET_PAGE_BITS 12
+#else
+/* The ARM MMU allows 1k pages. */
+/* ??? Linux doesn't actually use these, and they're deprecated in recent
+ architecture revisions. Maybe a configure option to disable them. */
+#define TARGET_PAGE_BITS 10
+#endif
+
+#define TARGET_PHYS_ADDR_SPACE_BITS 40
+#define TARGET_VIRT_ADDR_SPACE_BITS 32
+
+static inline CPUARMState *cpu_init(const char *cpu_model)
+{
+ ARMCPU *cpu = cpu_arm_init(cpu_model);
+ if (cpu) {
+ return &cpu->env;
+ }
+ return NULL;
+}
+
+#define cpu_exec cpu_arm_exec
+#define cpu_gen_code cpu_arm_gen_code
+#define cpu_signal_handler cpu_arm_signal_handler
+#define cpu_list arm_cpu_list
+
+#define CPU_SAVE_VERSION 9
+
+/* MMU modes definitions */
+#define MMU_MODE0_SUFFIX _kernel
+#define MMU_MODE1_SUFFIX _user
+#define MMU_USER_IDX 1
+static inline int cpu_mmu_index (CPUARMState *env)
+{
+ return (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR ? 1 : 0;
+}
+
+#if defined(CONFIG_USER_ONLY)
+static inline void cpu_clone_regs(CPUARMState *env, target_ulong newsp)
+{
+ if (newsp)
+ env->regs[13] = newsp;
+ env->regs[0] = 0;
+}
+#endif
+
+#include "cpu-all.h"
+
+/* Bit usage in the TB flags field: */
+#define ARM_TBFLAG_THUMB_SHIFT 0
+#define ARM_TBFLAG_THUMB_MASK (1 << ARM_TBFLAG_THUMB_SHIFT)
+#define ARM_TBFLAG_VECLEN_SHIFT 1
+#define ARM_TBFLAG_VECLEN_MASK (0x7 << ARM_TBFLAG_VECLEN_SHIFT)
+#define ARM_TBFLAG_VECSTRIDE_SHIFT 4
+#define ARM_TBFLAG_VECSTRIDE_MASK (0x3 << ARM_TBFLAG_VECSTRIDE_SHIFT)
+#define ARM_TBFLAG_PRIV_SHIFT 6
+#define ARM_TBFLAG_PRIV_MASK (1 << ARM_TBFLAG_PRIV_SHIFT)
+#define ARM_TBFLAG_VFPEN_SHIFT 7
+#define ARM_TBFLAG_VFPEN_MASK (1 << ARM_TBFLAG_VFPEN_SHIFT)
+#define ARM_TBFLAG_CONDEXEC_SHIFT 8
+#define ARM_TBFLAG_CONDEXEC_MASK (0xff << ARM_TBFLAG_CONDEXEC_SHIFT)
+#define ARM_TBFLAG_BSWAP_CODE_SHIFT 16
+#define ARM_TBFLAG_BSWAP_CODE_MASK (1 << ARM_TBFLAG_BSWAP_CODE_SHIFT)
+/* Bits 31..17 are currently unused. */
+
+/* some convenience accessor macros */
+#define ARM_TBFLAG_THUMB(F) \
+ (((F) & ARM_TBFLAG_THUMB_MASK) >> ARM_TBFLAG_THUMB_SHIFT)
+#define ARM_TBFLAG_VECLEN(F) \
+ (((F) & ARM_TBFLAG_VECLEN_MASK) >> ARM_TBFLAG_VECLEN_SHIFT)
+#define ARM_TBFLAG_VECSTRIDE(F) \
+ (((F) & ARM_TBFLAG_VECSTRIDE_MASK) >> ARM_TBFLAG_VECSTRIDE_SHIFT)
+#define ARM_TBFLAG_PRIV(F) \
+ (((F) & ARM_TBFLAG_PRIV_MASK) >> ARM_TBFLAG_PRIV_SHIFT)
+#define ARM_TBFLAG_VFPEN(F) \
+ (((F) & ARM_TBFLAG_VFPEN_MASK) >> ARM_TBFLAG_VFPEN_SHIFT)
+#define ARM_TBFLAG_CONDEXEC(F) \
+ (((F) & ARM_TBFLAG_CONDEXEC_MASK) >> ARM_TBFLAG_CONDEXEC_SHIFT)
+#define ARM_TBFLAG_BSWAP_CODE(F) \
+ (((F) & ARM_TBFLAG_BSWAP_CODE_MASK) >> ARM_TBFLAG_BSWAP_CODE_SHIFT)
+
+static inline void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc,
+ target_ulong *cs_base, int *flags)
+{
+ int privmode;
+ *pc = env->regs[15];
+ *cs_base = 0;
+ *flags = (env->thumb << ARM_TBFLAG_THUMB_SHIFT)
+ | (env->vfp.vec_len << ARM_TBFLAG_VECLEN_SHIFT)
+ | (env->vfp.vec_stride << ARM_TBFLAG_VECSTRIDE_SHIFT)
+ | (env->condexec_bits << ARM_TBFLAG_CONDEXEC_SHIFT)
+ | (env->bswap_code << ARM_TBFLAG_BSWAP_CODE_SHIFT);
+ if (arm_feature(env, ARM_FEATURE_M)) {
+ privmode = !((env->v7m.exception == 0) && (env->v7m.control & 1));
+ } else {
+ privmode = (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR;
+ }
+ if (privmode) {
+ *flags |= ARM_TBFLAG_PRIV_MASK;
+ }
+ if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30)) {
+ *flags |= ARM_TBFLAG_VFPEN_MASK;
+ }
+}
+
+static inline bool cpu_has_work(CPUARMState *env)
+{
+ return env->interrupt_request &
+ (CPU_INTERRUPT_FIQ | CPU_INTERRUPT_HARD | CPU_INTERRUPT_EXITTB);
+}
+
+#include "exec-all.h"
+
+static inline void cpu_pc_from_tb(CPUARMState *env, TranslationBlock *tb)
+{
+ env->regs[15] = tb->pc;
+}
+
+/* Load an instruction and return it in the standard little-endian order */
+static inline uint32_t arm_ldl_code(uint32_t addr, bool do_swap)
+{
+ uint32_t insn = ldl_code(addr);
+ if (do_swap) {
+ return bswap32(insn);
+ }
+ return insn;
+}
+
+/* Ditto, for a halfword (Thumb) instruction */
+static inline uint16_t arm_lduw_code(uint32_t addr, bool do_swap)
+{
+ uint16_t insn = lduw_code(addr);
+ if (do_swap) {
+ return bswap16(insn);
+ }
+ return insn;
+}
+
+#endif
diff --git a/target-arm/helper.c b/target-arm/helper.c
new file mode 100644
index 000000000..dceaa95c8
--- /dev/null
+++ b/target-arm/helper.c
@@ -0,0 +1,3480 @@
+#include "cpu.h"
+#include "gdbstub.h"
+#include "helper.h"
+#include "host-utils.h"
+#include "sysemu.h"
+#include "bitops.h"
+
+#ifndef CONFIG_USER_ONLY
+static inline int get_phys_addr(CPUARMState *env, uint32_t address,
+ int access_type, int is_user,
+ target_phys_addr_t *phys_ptr, int *prot,
+ target_ulong *page_size);
+#endif
+
+static int vfp_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg)
+{
+ int nregs;
+
+ /* VFP data registers are always little-endian. */
+ nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
+ if (reg < nregs) {
+ stfq_le_p(buf, env->vfp.regs[reg]);
+ return 8;
+ }
+ if (arm_feature(env, ARM_FEATURE_NEON)) {
+ /* Aliases for Q regs. */
+ nregs += 16;
+ if (reg < nregs) {
+ stfq_le_p(buf, env->vfp.regs[(reg - 32) * 2]);
+ stfq_le_p(buf + 8, env->vfp.regs[(reg - 32) * 2 + 1]);
+ return 16;
+ }
+ }
+ switch (reg - nregs) {
+ case 0: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSID]); return 4;
+ case 1: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSCR]); return 4;
+ case 2: stl_p(buf, env->vfp.xregs[ARM_VFP_FPEXC]); return 4;
+ }
+ return 0;
+}
+
+static int vfp_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
+{
+ int nregs;
+
+ nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
+ if (reg < nregs) {
+ env->vfp.regs[reg] = ldfq_le_p(buf);
+ return 8;
+ }
+ if (arm_feature(env, ARM_FEATURE_NEON)) {
+ nregs += 16;
+ if (reg < nregs) {
+ env->vfp.regs[(reg - 32) * 2] = ldfq_le_p(buf);
+ env->vfp.regs[(reg - 32) * 2 + 1] = ldfq_le_p(buf + 8);
+ return 16;
+ }
+ }
+ switch (reg - nregs) {
+ case 0: env->vfp.xregs[ARM_VFP_FPSID] = ldl_p(buf); return 4;
+ case 1: env->vfp.xregs[ARM_VFP_FPSCR] = ldl_p(buf); return 4;
+ case 2: env->vfp.xregs[ARM_VFP_FPEXC] = ldl_p(buf) & (1 << 30); return 4;
+ }
+ return 0;
+}
+
+static int dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
+{
+ env->cp15.c3 = value;
+ tlb_flush(env, 1); /* Flush TLB as domain not tracked in TLB */
+ return 0;
+}
+
+static int fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
+{
+ if (env->cp15.c13_fcse != value) {
+ /* Unlike real hardware the qemu TLB uses virtual addresses,
+ * not modified virtual addresses, so this causes a TLB flush.
+ */
+ tlb_flush(env, 1);
+ env->cp15.c13_fcse = value;
+ }
+ return 0;
+}
+static int contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri,
+ uint64_t value)
+{
+ if (env->cp15.c13_context != value && !arm_feature(env, ARM_FEATURE_MPU)) {
+ /* For VMSA (when not using the LPAE long descriptor page table
+ * format) this register includes the ASID, so do a TLB flush.
+ * For PMSA it is purely a process ID and no action is needed.
+ */
+ tlb_flush(env, 1);
+ }
+ env->cp15.c13_context = value;
+ return 0;
+}
+
+static int tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri,
+ uint64_t value)
+{
+ /* Invalidate all (TLBIALL) */
+ tlb_flush(env, 1);
+ return 0;
+}
+
+static int tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri,
+ uint64_t value)
+{
+ /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */
+ tlb_flush_page(env, value & TARGET_PAGE_MASK);
+ return 0;
+}
+
+static int tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri,
+ uint64_t value)
+{
+ /* Invalidate by ASID (TLBIASID) */
+ tlb_flush(env, value == 0);
+ return 0;
+}
+
+static int tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri,
+ uint64_t value)
+{
+ /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */
+ tlb_flush_page(env, value & TARGET_PAGE_MASK);
+ return 0;
+}
+
+static const ARMCPRegInfo cp_reginfo[] = {
+ /* DBGDIDR: just RAZ. In particular this means the "debug architecture
+ * version" bits will read as a reserved value, which should cause
+ * Linux to not try to use the debug hardware.
+ */
+ { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
+ .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
+ /* MMU Domain access control / MPU write buffer control */
+ { .name = "DACR", .cp = 15,
+ .crn = 3, .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
+ .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c3),
+ .resetvalue = 0, .writefn = dacr_write },
+ { .name = "FCSEIDR", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 0,
+ .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c13_fcse),
+ .resetvalue = 0, .writefn = fcse_write },
+ { .name = "CONTEXTIDR", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 1,
+ .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c13_fcse),
+ .resetvalue = 0, .writefn = contextidr_write },
+ /* ??? This covers not just the impdef TLB lockdown registers but also
+ * some v7VMSA registers relating to TEX remap, so it is overly broad.
+ */
+ { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = CP_ANY,
+ .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
+ /* MMU TLB control. Note that the wildcarding means we cover not just
+ * the unified TLB ops but also the dside/iside/inner-shareable variants.
+ */
+ { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY,
+ .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write, },
+ { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY,
+ .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write, },
+ { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY,
+ .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write, },
+ { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY,
+ .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write, },
+ /* Cache maintenance ops; some of this space may be overridden later. */
+ { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
+ .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
+ .type = ARM_CP_NOP | ARM_CP_OVERRIDE },
+ REGINFO_SENTINEL
+};
+
+static const ARMCPRegInfo not_v6_cp_reginfo[] = {
+ /* Not all pre-v6 cores implemented this WFI, so this is slightly
+ * over-broad.
+ */
+ { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2,
+ .access = PL1_W, .type = ARM_CP_WFI },
+ REGINFO_SENTINEL
+};
+
+static const ARMCPRegInfo not_v7_cp_reginfo[] = {
+ /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which
+ * is UNPREDICTABLE; we choose to NOP as most implementations do).
+ */
+ { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
+ .access = PL1_W, .type = ARM_CP_WFI },
+ /* L1 cache lockdown. Not architectural in v6 and earlier but in practice
+ * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and
+ * OMAPCP will override this space.
+ */
+ { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0,
+ .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data),
+ .resetvalue = 0 },
+ { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1,
+ .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn),
+ .resetvalue = 0 },
+ /* v6 doesn't have the cache ID registers but Linux reads them anyway */
+ { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY,
+ .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
+ REGINFO_SENTINEL
+};
+
+static int cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
+{
+ if (env->cp15.c1_coproc != value) {
+ env->cp15.c1_coproc = value;
+ /* ??? Is this safe when called from within a TB? */
+ tb_flush(env);
+ }
+ return 0;
+}
+
+static const ARMCPRegInfo v6_cp_reginfo[] = {
+ /* prefetch by MVA in v6, NOP in v7 */
+ { .name = "MVA_prefetch",
+ .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1,
+ .access = PL1_W, .type = ARM_CP_NOP },
+ { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4,
+ .access = PL0_W, .type = ARM_CP_NOP },
+ { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4,
+ .access = PL0_W, .type = ARM_CP_NOP },
+ { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5,
+ .access = PL0_W, .type = ARM_CP_NOP },
+ { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2,
+ .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c6_insn),
+ .resetvalue = 0, },
+ /* Watchpoint Fault Address Register : should actually only be present
+ * for 1136, 1176, 11MPCore.
+ */
+ { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1,
+ .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, },
+ { .name = "CPACR", .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2,
+ .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c1_coproc),
+ .resetvalue = 0, .writefn = cpacr_write },
+ REGINFO_SENTINEL
+};
+
+static int pmreg_read(CPUARMState *env, const ARMCPRegInfo *ri,
+ uint64_t *value)
+{
+ /* Generic performance monitor register read function for where
+ * user access may be allowed by PMUSERENR.
+ */
+ if (arm_current_pl(env) == 0 && !env->cp15.c9_pmuserenr) {
+ return EXCP_UDEF;
+ }
+ *value = CPREG_FIELD32(env, ri);
+ return 0;
+}
+
+static int pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
+ uint64_t value)
+{
+ if (arm_current_pl(env) == 0 && !env->cp15.c9_pmuserenr) {
+ return EXCP_UDEF;
+ }
+ /* only the DP, X, D and E bits are writable */
+ env->cp15.c9_pmcr &= ~0x39;
+ env->cp15.c9_pmcr |= (value & 0x39);
+ return 0;
+}
+
+static int pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
+ uint64_t value)
+{
+ if (arm_current_pl(env) == 0 && !env->cp15.c9_pmuserenr) {
+ return EXCP_UDEF;
+ }
+ value &= (1 << 31);
+ env->cp15.c9_pmcnten |= value;
+ return 0;
+}
+
+static int pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
+ uint64_t value)
+{
+ if (arm_current_pl(env) == 0 && !env->cp15.c9_pmuserenr) {
+ return EXCP_UDEF;
+ }
+ value &= (1 << 31);
+ env->cp15.c9_pmcnten &= ~value;
+ return 0;
+}
+
+static int pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
+ uint64_t value)
+{
+ if (arm_current_pl(env) == 0 && !env->cp15.c9_pmuserenr) {
+ return EXCP_UDEF;
+ }
+ env->cp15.c9_pmovsr &= ~value;
+ return 0;
+}
+
+static int pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
+ uint64_t value)
+{
+ if (arm_current_pl(env) == 0 && !env->cp15.c9_pmuserenr) {
+ return EXCP_UDEF;
+ }
+ env->cp15.c9_pmxevtyper = value & 0xff;
+ return 0;
+}
+
+static int pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri,
+ uint64_t value)
+{
+ env->cp15.c9_pmuserenr = value & 1;
+ return 0;
+}
+
+static int pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
+ uint64_t value)
+{
+ /* We have no event counters so only the C bit can be changed */
+ value &= (1 << 31);
+ env->cp15.c9_pminten |= value;
+ return 0;
+}
+
+static int pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
+ uint64_t value)
+{
+ value &= (1 << 31);
+ env->cp15.c9_pminten &= ~value;
+ return 0;
+}
+
+static int ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri,
+ uint64_t *value)
+{
+ ARMCPU *cpu = arm_env_get_cpu(env);
+ *value = cpu->ccsidr[env->cp15.c0_cssel];
+ return 0;
+}
+
+static int csselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
+ uint64_t value)
+{
+ env->cp15.c0_cssel = value & 0xf;
+ return 0;
+}
+
+static const ARMCPRegInfo v7_cp_reginfo[] = {
+ /* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped
+ * debug components
+ */
+ { .name = "DBGDRAR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0,
+ .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
+ { .name = "DBGDSAR", .cp = 14, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
+ .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
+ /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */
+ { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
+ .access = PL1_W, .type = ARM_CP_NOP },
+ /* Performance monitors are implementation defined in v7,
+ * but with an ARM recommended set of registers, which we
+ * follow (although we don't actually implement any counters)
+ *
+ * Performance registers fall into three categories:
+ * (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR)
+ * (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR)
+ * (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others)
+ * For the cases controlled by PMUSERENR we must set .access to PL0_RW
+ * or PL0_RO as appropriate and then check PMUSERENR in the helper fn.
+ */
+ { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1,
+ .access = PL0_RW, .resetvalue = 0,
+ .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten),
+ .readfn = pmreg_read, .writefn = pmcntenset_write },
+ { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2,
+ .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten),
+ .readfn = pmreg_read, .writefn = pmcntenclr_write },
+ { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3,
+ .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
+ .readfn = pmreg_read, .writefn = pmovsr_write },
+ /* Unimplemented so WI. Strictly speaking write accesses in PL0 should
+ * respect PMUSERENR.
+ */
+ { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4,
+ .access = PL0_W, .type = ARM_CP_NOP },
+ /* Since we don't implement any events, writing to PMSELR is UNPREDICTABLE.
+ * We choose to RAZ/WI. XXX should respect PMUSERENR.
+ */
+ { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5,
+ .access = PL0_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
+ /* Unimplemented, RAZ/WI. XXX PMUSERENR */
+ { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0,
+ .access = PL0_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
+ { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1,
+ .access = PL0_RW,
+ .fieldoffset = offsetof(CPUARMState, cp15.c9_pmxevtyper),
+ .readfn = pmreg_read, .writefn = pmxevtyper_write },
+ /* Unimplemented, RAZ/WI. XXX PMUSERENR */
+ { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2,
+ .access = PL0_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
+ { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0,
+ .access = PL0_R | PL1_RW,
+ .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr),
+ .resetvalue = 0,
+ .writefn = pmuserenr_write },
+ { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1,
+ .access = PL1_RW,
+ .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
+ .resetvalue = 0,
+ .writefn = pmintenset_write },
+ { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2,
+ .access = PL1_RW,
+ .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
+ .resetvalue = 0,
+ .writefn = pmintenclr_write },
+ { .name = "SCR", .cp = 15, .crn = 1, .crm = 1, .opc1 = 0, .opc2 = 0,
+ .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c1_scr),
+ .resetvalue = 0, },
+ { .name = "CCSIDR", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0,
+ .access = PL1_R, .readfn = ccsidr_read },
+ { .name = "CSSELR", .cp = 15, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0,
+ .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c0_cssel),
+ .writefn = csselr_write, .resetvalue = 0 },
+ /* Auxiliary ID register: this actually has an IMPDEF value but for now
+ * just RAZ for all cores:
+ */
+ { .name = "AIDR", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 7,
+ .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
+ REGINFO_SENTINEL
+};
+
+static int teecr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
+{
+ value &= 1;
+ env->teecr = value;
+ return 0;
+}
+
+static int teehbr_read(CPUARMState *env, const ARMCPRegInfo *ri,
+ uint64_t *value)
+{
+ /* This is a helper function because the user access rights
+ * depend on the value of the TEECR.
+ */
+ if (arm_current_pl(env) == 0 && (env->teecr & 1)) {
+ return EXCP_UDEF;
+ }
+ *value = env->teehbr;
+ return 0;
+}
+
+static int teehbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
+ uint64_t value)
+{
+ if (arm_current_pl(env) == 0 && (env->teecr & 1)) {
+ return EXCP_UDEF;
+ }
+ env->teehbr = value;
+ return 0;
+}
+
+static const ARMCPRegInfo t2ee_cp_reginfo[] = {
+ { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0,
+ .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr),
+ .resetvalue = 0,
+ .writefn = teecr_write },
+ { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0,
+ .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr),
+ .resetvalue = 0,
+ .readfn = teehbr_read, .writefn = teehbr_write },
+ REGINFO_SENTINEL
+};
+
+static const ARMCPRegInfo v6k_cp_reginfo[] = {
+ { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2,
+ .access = PL0_RW,
+ .fieldoffset = offsetof(CPUARMState, cp15.c13_tls1),
+ .resetvalue = 0 },
+ { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3,
+ .access = PL0_R|PL1_W,
+ .fieldoffset = offsetof(CPUARMState, cp15.c13_tls2),
+ .resetvalue = 0 },
+ { .name = "TPIDRPRW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 4,
+ .access = PL1_RW,
+ .fieldoffset = offsetof(CPUARMState, cp15.c13_tls3),
+ .resetvalue = 0 },
+ REGINFO_SENTINEL
+};
+
+static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
+ /* Dummy implementation: RAZ/WI the whole crn=14 space */
+ { .name = "GENERIC_TIMER", .cp = 15, .crn = 14,
+ .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
+ .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
+ REGINFO_SENTINEL
+};
+
+static int par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
+{
+ if (arm_feature(env, ARM_FEATURE_LPAE)) {
+ env->cp15.c7_par = value;
+ } else if (arm_feature(env, ARM_FEATURE_V7)) {
+ env->cp15.c7_par = value & 0xfffff6ff;
+ } else {
+ env->cp15.c7_par = value & 0xfffff1ff;
+ }
+ return 0;
+}
+
+#ifndef CONFIG_USER_ONLY
+/* get_phys_addr() isn't present for user-mode-only targets */
+
+/* Return true if extended addresses are enabled, ie this is an
+ * LPAE implementation and we are using the long-descriptor translation
+ * table format because the TTBCR EAE bit is set.
+ */
+static inline bool extended_addresses_enabled(CPUARMState *env)
+{
+ return arm_feature(env, ARM_FEATURE_LPAE)
+ && (env->cp15.c2_control & (1 << 31));
+}
+
+static int ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
+{
+ target_phys_addr_t phys_addr;
+ target_ulong page_size;
+ int prot;
+ int ret, is_user = ri->opc2 & 2;
+ int access_type = ri->opc2 & 1;
+
+ if (ri->opc2 & 4) {
+ /* Other states are only available with TrustZone */
+ return EXCP_UDEF;
+ }
+ ret = get_phys_addr(env, value, access_type, is_user,
+ &phys_addr, &prot, &page_size);
+ if (extended_addresses_enabled(env)) {
+ /* ret is a DFSR/IFSR value for the long descriptor
+ * translation table format, but with WnR always clear.
+ * Convert it to a 64-bit PAR.
+ */
+ uint64_t par64 = (1 << 11); /* LPAE bit always set */
+ if (ret == 0) {
+ par64 |= phys_addr & ~0xfffULL;
+ /* We don't set the ATTR or SH fields in the PAR. */
+ } else {
+ par64 |= 1; /* F */
+ par64 |= (ret & 0x3f) << 1; /* FS */
+ /* Note that S2WLK and FSTAGE are always zero, because we don't
+ * implement virtualization and therefore there can't be a stage 2
+ * fault.
+ */
+ }
+ env->cp15.c7_par = par64;
+ env->cp15.c7_par_hi = par64 >> 32;
+ } else {
+ /* ret is a DFSR/IFSR value for the short descriptor
+ * translation table format (with WnR always clear).
+ * Convert it to a 32-bit PAR.
+ */
+ if (ret == 0) {
+ /* We do not set any attribute bits in the PAR */
+ if (page_size == (1 << 24)
+ && arm_feature(env, ARM_FEATURE_V7)) {
+ env->cp15.c7_par = (phys_addr & 0xff000000) | 1 << 1;
+ } else {
+ env->cp15.c7_par = phys_addr & 0xfffff000;
+ }
+ } else {
+ env->cp15.c7_par = ((ret & (10 << 1)) >> 5) |
+ ((ret & (12 << 1)) >> 6) |
+ ((ret & 0xf) << 1) | 1;
+ }
+ env->cp15.c7_par_hi = 0;
+ }
+ return 0;
+}
+#endif
+
+static const ARMCPRegInfo vapa_cp_reginfo[] = {
+ { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0,
+ .access = PL1_RW, .resetvalue = 0,
+ .fieldoffset = offsetof(CPUARMState, cp15.c7_par),
+ .writefn = par_write },
+#ifndef CONFIG_USER_ONLY
+ { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY,
+ .access = PL1_W, .writefn = ats_write },
+#endif
+ REGINFO_SENTINEL
+};
+
+/* Return basic MPU access permission bits. */
+static uint32_t simple_mpu_ap_bits(uint32_t val)
+{
+ uint32_t ret;
+ uint32_t mask;
+ int i;
+ ret = 0;
+ mask = 3;
+ for (i = 0; i < 16; i += 2) {
+ ret |= (val >> i) & mask;
+ mask <<= 2;
+ }
+ return ret;
+}
+
+/* Pad basic MPU access permission bits to extended format. */
+static uint32_t extended_mpu_ap_bits(uint32_t val)
+{
+ uint32_t ret;
+ uint32_t mask;
+ int i;
+ ret = 0;
+ mask = 3;
+ for (i = 0; i < 16; i += 2) {
+ ret |= (val & mask) << i;
+ mask <<= 2;
+ }
+ return ret;
+}
+
+static int pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
+ uint64_t value)
+{
+ env->cp15.c5_data = extended_mpu_ap_bits(value);
+ return 0;
+}
+
+static int pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri,
+ uint64_t *value)
+{
+ *value = simple_mpu_ap_bits(env->cp15.c5_data);
+ return 0;
+}
+
+static int pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
+ uint64_t value)
+{
+ env->cp15.c5_insn = extended_mpu_ap_bits(value);
+ return 0;
+}
+
+static int pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri,
+ uint64_t *value)
+{
+ *value = simple_mpu_ap_bits(env->cp15.c5_insn);
+ return 0;
+}
+
+static int arm946_prbs_read(CPUARMState *env, const ARMCPRegInfo *ri,
+ uint64_t *value)
+{
+ if (ri->crm > 8) {
+ return EXCP_UDEF;
+ }
+ *value = env->cp15.c6_region[ri->crm];
+ return 0;
+}
+
+static int arm946_prbs_write(CPUARMState *env, const ARMCPRegInfo *ri,
+ uint64_t value)
+{
+ if (ri->crm > 8) {
+ return EXCP_UDEF;
+ }
+ env->cp15.c6_region[ri->crm] = value;
+ return 0;
+}
+
+static const ARMCPRegInfo pmsav5_cp_reginfo[] = {
+ { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
+ .access = PL1_RW,
+ .fieldoffset = offsetof(CPUARMState, cp15.c5_data), .resetvalue = 0,
+ .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, },
+ { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
+ .access = PL1_RW,
+ .fieldoffset = offsetof(CPUARMState, cp15.c5_insn), .resetvalue = 0,
+ .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, },
+ { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2,
+ .access = PL1_RW,
+ .fieldoffset = offsetof(CPUARMState, cp15.c5_data), .resetvalue = 0, },
+ { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3,
+ .access = PL1_RW,
+ .fieldoffset = offsetof(CPUARMState, cp15.c5_insn), .resetvalue = 0, },
+ { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
+ .access = PL1_RW,
+ .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, },
+ { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1,
+ .access = PL1_RW,
+ .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, },
+ /* Protection region base and size registers */
+ { .name = "946_PRBS", .cp = 15, .crn = 6, .crm = CP_ANY, .opc1 = 0,
+ .opc2 = CP_ANY, .access = PL1_RW,
+ .readfn = arm946_prbs_read, .writefn = arm946_prbs_write, },
+ REGINFO_SENTINEL
+};
+
+static int vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
+ uint64_t value)
+{
+ if (arm_feature(env, ARM_FEATURE_LPAE)) {
+ value &= ~((7 << 19) | (3 << 14) | (0xf << 3));
+ /* With LPAE the TTBCR could result in a change of ASID
+ * via the TTBCR.A1 bit, so do a TLB flush.
+ */
+ tlb_flush(env, 1);
+ } else {
+ value &= 7;
+ }
+ /* Note that we always calculate c2_mask and c2_base_mask, but
+ * they are only used for short-descriptor tables (ie if EAE is 0);
+ * for long-descriptor tables the TTBCR fields are used differently
+ * and the c2_mask and c2_base_mask values are meaningless.
+ */
+ env->cp15.c2_control = value;
+ env->cp15.c2_mask = ~(((uint32_t)0xffffffffu) >> value);
+ env->cp15.c2_base_mask = ~((uint32_t)0x3fffu >> value);
+ return 0;
+}
+
+static void vmsa_ttbcr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
+{
+ env->cp15.c2_base_mask = 0xffffc000u;
+ env->cp15.c2_control = 0;
+ env->cp15.c2_mask = 0;
+}
+
+static const ARMCPRegInfo vmsa_cp_reginfo[] = {
+ { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
+ .access = PL1_RW,
+ .fieldoffset = offsetof(CPUARMState, cp15.c5_data), .resetvalue = 0, },
+ { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
+ .access = PL1_RW,
+ .fieldoffset = offsetof(CPUARMState, cp15.c5_insn), .resetvalue = 0, },
+ { .name = "TTBR0", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
+ .access = PL1_RW,
+ .fieldoffset = offsetof(CPUARMState, cp15.c2_base0), .resetvalue = 0, },
+ { .name = "TTBR1", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1,
+ .access = PL1_RW,
+ .fieldoffset = offsetof(CPUARMState, cp15.c2_base1), .resetvalue = 0, },
+ { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
+ .access = PL1_RW, .writefn = vmsa_ttbcr_write,
+ .resetfn = vmsa_ttbcr_reset,
+ .fieldoffset = offsetof(CPUARMState, cp15.c2_control) },
+ { .name = "DFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0,
+ .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c6_data),
+ .resetvalue = 0, },
+ REGINFO_SENTINEL
+};
+
+static int omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri,
+ uint64_t value)
+{
+ env->cp15.c15_ticonfig = value & 0xe7;
+ /* The OS_TYPE bit in this register changes the reported CPUID! */
+ env->cp15.c0_cpuid = (value & (1 << 5)) ?
+ ARM_CPUID_TI915T : ARM_CPUID_TI925T;
+ return 0;
+}
+
+static int omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri,
+ uint64_t value)
+{
+ env->cp15.c15_threadid = value & 0xffff;
+ return 0;
+}
+
+static int omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri,
+ uint64_t value)
+{
+ /* Wait-for-interrupt (deprecated) */
+ cpu_interrupt(env, CPU_INTERRUPT_HALT);
+ return 0;
+}
+
+static int omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri,
+ uint64_t value)
+{
+ /* On OMAP there are registers indicating the max/min index of dcache lines
+ * containing a dirty line; cache flush operations have to reset these.
+ */
+ env->cp15.c15_i_max = 0x000;
+ env->cp15.c15_i_min = 0xff0;
+ return 0;
+}
+
+static const ARMCPRegInfo omap_cp_reginfo[] = {
+ { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY,
+ .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE,
+ .fieldoffset = offsetof(CPUARMState, cp15.c5_data), .resetvalue = 0, },
+ { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
+ .access = PL1_RW, .type = ARM_CP_NOP },
+ { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
+ .access = PL1_RW,
+ .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0,
+ .writefn = omap_ticonfig_write },
+ { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0,
+ .access = PL1_RW,
+ .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, },
+ { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0,
+ .access = PL1_RW, .resetvalue = 0xff0,
+ .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) },
+ { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0,
+ .access = PL1_RW,
+ .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0,
+ .writefn = omap_threadid_write },
+ { .name = "TI925T_STATUS", .cp = 15, .crn = 15,
+ .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
+ .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, },
+ /* TODO: Peripheral port remap register:
+ * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller
+ * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff),
+ * when MMU is off.
+ */
+ { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
+ .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W, .type = ARM_CP_OVERRIDE,
+ .writefn = omap_cachemaint_write },
+ { .name = "C9", .cp = 15, .crn = 9,
+ .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW,
+ .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 },
+ REGINFO_SENTINEL
+};
+
+static int xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri,
+ uint64_t value)
+{
+ value &= 0x3fff;
+ if (env->cp15.c15_cpar != value) {
+ /* Changes cp0 to cp13 behavior, so needs a TB flush. */
+ tb_flush(env);
+ env->cp15.c15_cpar = value;
+ }
+ return 0;
+}
+
+static const ARMCPRegInfo xscale_cp_reginfo[] = {
+ { .name = "XSCALE_CPAR",
+ .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
+ .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0,
+ .writefn = xscale_cpar_write, },
+ { .name = "XSCALE_AUXCR",
+ .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW,
+ .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr),
+ .resetvalue = 0, },
+ REGINFO_SENTINEL
+};
+
+static const ARMCPRegInfo dummy_c15_cp_reginfo[] = {
+ /* RAZ/WI the whole crn=15 space, when we don't have a more specific
+ * implementation of this implementation-defined space.
+ * Ideally this should eventually disappear in favour of actually
+ * implementing the correct behaviour for all cores.
+ */
+ { .name = "C15_IMPDEF", .cp = 15, .crn = 15,
+ .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
+ .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
+ REGINFO_SENTINEL
+};
+
+static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = {
+ /* Cache status: RAZ because we have no cache so it's always clean */
+ { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6,
+ .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
+ REGINFO_SENTINEL
+};
+
+static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = {
+ /* We never have a a block transfer operation in progress */
+ { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4,
+ .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
+ /* The cache ops themselves: these all NOP for QEMU */
+ { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0,
+ .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
+ { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0,
+ .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
+ { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0,
+ .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
+ { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1,
+ .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
+ { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2,
+ .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
+ { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0,
+ .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
+ REGINFO_SENTINEL
+};
+
+static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = {
+ /* The cache test-and-clean instructions always return (1 << 30)
+ * to indicate that there are no dirty cache lines.
+ */
+ { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3,
+ .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = (1 << 30) },
+ { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3,
+ .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = (1 << 30) },
+ REGINFO_SENTINEL
+};
+
+static const ARMCPRegInfo strongarm_cp_reginfo[] = {
+ /* Ignore ReadBuffer accesses */
+ { .name = "C9_READBUFFER", .cp = 15, .crn = 9,
+ .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
+ .access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_OVERRIDE,
+ .resetvalue = 0 },
+ REGINFO_SENTINEL
+};
+
+static int mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri,
+ uint64_t *value)
+{
+ uint32_t mpidr = env->cpu_index;
+ /* We don't support setting cluster ID ([8..11])
+ * so these bits always RAZ.
+ */
+ if (arm_feature(env, ARM_FEATURE_V7MP)) {
+ mpidr |= (1 << 31);
+ /* Cores which are uniprocessor (non-coherent)
+ * but still implement the MP extensions set
+ * bit 30. (For instance, A9UP.) However we do
+ * not currently model any of those cores.
+ */
+ }
+ *value = mpidr;
+ return 0;
+}
+
+static const ARMCPRegInfo mpidr_cp_reginfo[] = {
+ { .name = "MPIDR", .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5,
+ .access = PL1_R, .readfn = mpidr_read },
+ REGINFO_SENTINEL
+};
+
+static int par64_read(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t *value)
+{
+ *value = ((uint64_t)env->cp15.c7_par_hi << 32) | env->cp15.c7_par;
+ return 0;
+}
+
+static int par64_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
+{
+ env->cp15.c7_par_hi = value >> 32;
+ env->cp15.c7_par = value;
+ return 0;
+}
+
+static void par64_reset(CPUARMState *env, const ARMCPRegInfo *ri)
+{
+ env->cp15.c7_par_hi = 0;
+ env->cp15.c7_par = 0;
+}
+
+static int ttbr064_read(CPUARMState *env, const ARMCPRegInfo *ri,
+ uint64_t *value)
+{
+ *value = ((uint64_t)env->cp15.c2_base0_hi << 32) | env->cp15.c2_base0;
+ return 0;
+}
+
+static int ttbr064_write(CPUARMState *env, const ARMCPRegInfo *ri,
+ uint64_t value)
+{
+ env->cp15.c2_base0_hi = value >> 32;
+ env->cp15.c2_base0 = value;
+ /* Writes to the 64 bit format TTBRs may change the ASID */
+ tlb_flush(env, 1);
+ return 0;
+}
+
+static void ttbr064_reset(CPUARMState *env, const ARMCPRegInfo *ri)
+{
+ env->cp15.c2_base0_hi = 0;
+ env->cp15.c2_base0 = 0;
+}
+
+static int ttbr164_read(CPUARMState *env, const ARMCPRegInfo *ri,
+ uint64_t *value)
+{
+ *value = ((uint64_t)env->cp15.c2_base1_hi << 32) | env->cp15.c2_base1;
+ return 0;
+}
+
+static int ttbr164_write(CPUARMState *env, const ARMCPRegInfo *ri,
+ uint64_t value)
+{
+ env->cp15.c2_base1_hi = value >> 32;
+ env->cp15.c2_base1 = value;
+ return 0;
+}
+
+static void ttbr164_reset(CPUARMState *env, const ARMCPRegInfo *ri)
+{
+ env->cp15.c2_base1_hi = 0;
+ env->cp15.c2_base1 = 0;
+}
+
+static const ARMCPRegInfo lpae_cp_reginfo[] = {
+ /* NOP AMAIR0/1: the override is because these clash with the rather
+ * broadly specified TLB_LOCKDOWN entry in the generic cp_reginfo.
+ */
+ { .name = "AMAIR0", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0,
+ .access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_OVERRIDE,
+ .resetvalue = 0 },
+ { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1,
+ .access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_OVERRIDE,
+ .resetvalue = 0 },
+ /* 64 bit access versions of the (dummy) debug registers */
+ { .name = "DBGDRAR", .cp = 14, .crm = 1, .opc1 = 0,
+ .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
+ { .name = "DBGDSAR", .cp = 14, .crm = 2, .opc1 = 0,
+ .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
+ { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0,
+ .access = PL1_RW, .type = ARM_CP_64BIT,
+ .readfn = par64_read, .writefn = par64_write, .resetfn = par64_reset },
+ { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0,
+ .access = PL1_RW, .type = ARM_CP_64BIT, .readfn = ttbr064_read,
+ .writefn = ttbr064_write, .resetfn = ttbr064_reset },
+ { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1,
+ .access = PL1_RW, .type = ARM_CP_64BIT, .readfn = ttbr164_read,
+ .writefn = ttbr164_write, .resetfn = ttbr164_reset },
+ REGINFO_SENTINEL
+};
+
+static int sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
+{
+ env->cp15.c1_sys = value;
+ /* ??? Lots of these bits are not implemented. */
+ /* This may enable/disable the MMU, so do a TLB flush. */
+ tlb_flush(env, 1);
+ return 0;
+}
+
+void register_cp_regs_for_features(ARMCPU *cpu)
+{
+ /* Register all the coprocessor registers based on feature bits */
+ CPUARMState *env = &cpu->env;
+ if (arm_feature(env, ARM_FEATURE_M)) {
+ /* M profile has no coprocessor registers */
+ return;
+ }
+
+ define_arm_cp_regs(cpu, cp_reginfo);
+ if (arm_feature(env, ARM_FEATURE_V6)) {
+ /* The ID registers all have impdef reset values */
+ ARMCPRegInfo v6_idregs[] = {
+ { .name = "ID_PFR0", .cp = 15, .crn = 0, .crm = 1,
+ .opc1 = 0, .opc2 = 0, .access = PL1_R, .type = ARM_CP_CONST,
+ .resetvalue = cpu->id_pfr0 },
+ { .name = "ID_PFR1", .cp = 15, .crn = 0, .crm = 1,
+ .opc1 = 0, .opc2 = 1, .access = PL1_R, .type = ARM_CP_CONST,
+ .resetvalue = cpu->id_pfr1 },
+ { .name = "ID_DFR0", .cp = 15, .crn = 0, .crm = 1,
+ .opc1 = 0, .opc2 = 2, .access = PL1_R, .type = ARM_CP_CONST,
+ .resetvalue = cpu->id_dfr0 },
+ { .name = "ID_AFR0", .cp = 15, .crn = 0, .crm = 1,
+ .opc1 = 0, .opc2 = 3, .access = PL1_R, .type = ARM_CP_CONST,
+ .resetvalue = cpu->id_afr0 },
+ { .name = "ID_MMFR0", .cp = 15, .crn = 0, .crm = 1,
+ .opc1 = 0, .opc2 = 4, .access = PL1_R, .type = ARM_CP_CONST,
+ .resetvalue = cpu->id_mmfr0 },
+ { .name = "ID_MMFR1", .cp = 15, .crn = 0, .crm = 1,
+ .opc1 = 0, .opc2 = 5, .access = PL1_R, .type = ARM_CP_CONST,
+ .resetvalue = cpu->id_mmfr1 },
+ { .name = "ID_MMFR2", .cp = 15, .crn = 0, .crm = 1,
+ .opc1 = 0, .opc2 = 6, .access = PL1_R, .type = ARM_CP_CONST,
+ .resetvalue = cpu->id_mmfr2 },
+ { .name = "ID_MMFR3", .cp = 15, .crn = 0, .crm = 1,
+ .opc1 = 0, .opc2 = 7, .access = PL1_R, .type = ARM_CP_CONST,
+ .resetvalue = cpu->id_mmfr3 },
+ { .name = "ID_ISAR0", .cp = 15, .crn = 0, .crm = 2,
+ .opc1 = 0, .opc2 = 0, .access = PL1_R, .type = ARM_CP_CONST,
+ .resetvalue = cpu->id_isar0 },
+ { .name = "ID_ISAR1", .cp = 15, .crn = 0, .crm = 2,
+ .opc1 = 0, .opc2 = 1, .access = PL1_R, .type = ARM_CP_CONST,
+ .resetvalue = cpu->id_isar1 },
+ { .name = "ID_ISAR2", .cp = 15, .crn = 0, .crm = 2,
+ .opc1 = 0, .opc2 = 2, .access = PL1_R, .type = ARM_CP_CONST,
+ .resetvalue = cpu->id_isar2 },
+ { .name = "ID_ISAR3", .cp = 15, .crn = 0, .crm = 2,
+ .opc1 = 0, .opc2 = 3, .access = PL1_R, .type = ARM_CP_CONST,
+ .resetvalue = cpu->id_isar3 },
+ { .name = "ID_ISAR4", .cp = 15, .crn = 0, .crm = 2,
+ .opc1 = 0, .opc2 = 4, .access = PL1_R, .type = ARM_CP_CONST,
+ .resetvalue = cpu->id_isar4 },
+ { .name = "ID_ISAR5", .cp = 15, .crn = 0, .crm = 2,
+ .opc1 = 0, .opc2 = 5, .access = PL1_R, .type = ARM_CP_CONST,
+ .resetvalue = cpu->id_isar5 },
+ /* 6..7 are as yet unallocated and must RAZ */
+ { .name = "ID_ISAR6", .cp = 15, .crn = 0, .crm = 2,
+ .opc1 = 0, .opc2 = 6, .access = PL1_R, .type = ARM_CP_CONST,
+ .resetvalue = 0 },
+ { .name = "ID_ISAR7", .cp = 15, .crn = 0, .crm = 2,
+ .opc1 = 0, .opc2 = 7, .access = PL1_R, .type = ARM_CP_CONST,
+ .resetvalue = 0 },
+ REGINFO_SENTINEL
+ };
+ define_arm_cp_regs(cpu, v6_idregs);
+ define_arm_cp_regs(cpu, v6_cp_reginfo);
+ } else {
+ define_arm_cp_regs(cpu, not_v6_cp_reginfo);
+ }
+ if (arm_feature(env, ARM_FEATURE_V6K)) {
+ define_arm_cp_regs(cpu, v6k_cp_reginfo);
+ }
+ if (arm_feature(env, ARM_FEATURE_V7)) {
+ /* v7 performance monitor control register: same implementor
+ * field as main ID register, and we implement no event counters.
+ */
+ ARMCPRegInfo pmcr = {
+ .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0,
+ .access = PL0_RW, .resetvalue = cpu->midr & 0xff000000,
+ .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr),
+ .readfn = pmreg_read, .writefn = pmcr_write
+ };
+ ARMCPRegInfo clidr = {
+ .name = "CLIDR", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1,
+ .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->clidr
+ };
+ define_one_arm_cp_reg(cpu, &pmcr);
+ define_one_arm_cp_reg(cpu, &clidr);
+ define_arm_cp_regs(cpu, v7_cp_reginfo);
+ } else {
+ define_arm_cp_regs(cpu, not_v7_cp_reginfo);
+ }
+ if (arm_feature(env, ARM_FEATURE_MPU)) {
+ /* These are the MPU registers prior to PMSAv6. Any new
+ * PMSA core later than the ARM946 will require that we
+ * implement the PMSAv6 or PMSAv7 registers, which are
+ * completely different.
+ */
+ assert(!arm_feature(env, ARM_FEATURE_V6));
+ define_arm_cp_regs(cpu, pmsav5_cp_reginfo);
+ } else {
+ define_arm_cp_regs(cpu, vmsa_cp_reginfo);
+ }
+ if (arm_feature(env, ARM_FEATURE_THUMB2EE)) {
+ define_arm_cp_regs(cpu, t2ee_cp_reginfo);
+ }
+ if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
+ define_arm_cp_regs(cpu, generic_timer_cp_reginfo);
+ }
+ if (arm_feature(env, ARM_FEATURE_VAPA)) {
+ define_arm_cp_regs(cpu, vapa_cp_reginfo);
+ }
+ if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) {
+ define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo);
+ }
+ if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) {
+ define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo);
+ }
+ if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) {
+ define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo);
+ }
+ if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
+ define_arm_cp_regs(cpu, omap_cp_reginfo);
+ }
+ if (arm_feature(env, ARM_FEATURE_STRONGARM)) {
+ define_arm_cp_regs(cpu, strongarm_cp_reginfo);
+ }
+ if (arm_feature(env, ARM_FEATURE_XSCALE)) {
+ define_arm_cp_regs(cpu, xscale_cp_reginfo);
+ }
+ if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) {
+ define_arm_cp_regs(cpu, dummy_c15_cp_reginfo);
+ }
+ if (arm_feature(env, ARM_FEATURE_MPIDR)) {
+ define_arm_cp_regs(cpu, mpidr_cp_reginfo);
+ }
+ if (arm_feature(env, ARM_FEATURE_LPAE)) {
+ define_arm_cp_regs(cpu, lpae_cp_reginfo);
+ }
+ /* Slightly awkwardly, the OMAP and StrongARM cores need all of
+ * cp15 crn=0 to be writes-ignored, whereas for other cores they should
+ * be read-only (ie write causes UNDEF exception).
+ */
+ {
+ ARMCPRegInfo id_cp_reginfo[] = {
+ /* Note that the MIDR isn't a simple constant register because
+ * of the TI925 behaviour where writes to another register can
+ * cause the MIDR value to change.
+ */
+ { .name = "MIDR",
+ .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
+ .access = PL1_R, .resetvalue = cpu->midr,
+ .writefn = arm_cp_write_ignore,
+ .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid) },
+ { .name = "CTR",
+ .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1,
+ .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
+ { .name = "TCMTR",
+ .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2,
+ .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
+ { .name = "TLBTR",
+ .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3,
+ .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
+ /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */
+ { .name = "DUMMY",
+ .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY,
+ .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
+ { .name = "DUMMY",
+ .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY,
+ .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
+ { .name = "DUMMY",
+ .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY,
+ .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
+ { .name = "DUMMY",
+ .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY,
+ .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
+ { .name = "DUMMY",
+ .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY,
+ .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
+ REGINFO_SENTINEL
+ };
+ ARMCPRegInfo crn0_wi_reginfo = {
+ .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY,
+ .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W,
+ .type = ARM_CP_NOP | ARM_CP_OVERRIDE
+ };
+ if (arm_feature(env, ARM_FEATURE_OMAPCP) ||
+ arm_feature(env, ARM_FEATURE_STRONGARM)) {
+ ARMCPRegInfo *r;
+ /* Register the blanket "writes ignored" value first to cover the
+ * whole space. Then define the specific ID registers, but update
+ * their access field to allow write access, so that they ignore
+ * writes rather than causing them to UNDEF.
+ */
+ define_one_arm_cp_reg(cpu, &crn0_wi_reginfo);
+ for (r = id_cp_reginfo; r->type != ARM_CP_SENTINEL; r++) {
+ r->access = PL1_RW;
+ define_one_arm_cp_reg(cpu, r);
+ }
+ } else {
+ /* Just register the standard ID registers (read-only, meaning
+ * that writes will UNDEF).
+ */
+ define_arm_cp_regs(cpu, id_cp_reginfo);
+ }
+ }
+
+ if (arm_feature(env, ARM_FEATURE_AUXCR)) {
+ ARMCPRegInfo auxcr = {
+ .name = "AUXCR", .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1,
+ .access = PL1_RW, .type = ARM_CP_CONST,
+ .resetvalue = cpu->reset_auxcr
+ };
+ define_one_arm_cp_reg(cpu, &auxcr);
+ }
+
+ /* Generic registers whose values depend on the implementation */
+ {
+ ARMCPRegInfo sctlr = {
+ .name = "SCTLR", .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0,
+ .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c1_sys),
+ .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr
+ };
+ if (arm_feature(env, ARM_FEATURE_XSCALE)) {
+ /* Normally we would always end the TB on an SCTLR write, but Linux
+ * arch/arm/mach-pxa/sleep.S expects two instructions following
+ * an MMU enable to execute from cache. Imitate this behaviour.
+ */
+ sctlr.type |= ARM_CP_SUPPRESS_TB_END;
+ }
+ define_one_arm_cp_reg(cpu, &sctlr);
+ }
+}
+
+ARMCPU *cpu_arm_init(const char *cpu_model)
+{
+ ARMCPU *cpu;
+ CPUARMState *env;
+ static int inited = 0;
+
+ if (!object_class_by_name(cpu_model)) {
+ return NULL;
+ }
+ cpu = ARM_CPU(object_new(cpu_model));
+ env = &cpu->env;
+ env->cpu_model_str = cpu_model;
+ arm_cpu_realize(cpu);
+
+ if (tcg_enabled() && !inited) {
+ inited = 1;
+ arm_translate_init();
+ }
+
+ cpu_reset(CPU(cpu));
+ if (arm_feature(env, ARM_FEATURE_NEON)) {
+ gdb_register_coprocessor(env, vfp_gdb_get_reg, vfp_gdb_set_reg,
+ 51, "arm-neon.xml", 0);
+ } else if (arm_feature(env, ARM_FEATURE_VFP3)) {
+ gdb_register_coprocessor(env, vfp_gdb_get_reg, vfp_gdb_set_reg,
+ 35, "arm-vfp3.xml", 0);
+ } else if (arm_feature(env, ARM_FEATURE_VFP)) {
+ gdb_register_coprocessor(env, vfp_gdb_get_reg, vfp_gdb_set_reg,
+ 19, "arm-vfp.xml", 0);
+ }
+ qemu_init_vcpu(env);
+ return cpu;
+}
+
+typedef struct ARMCPUListState {
+ fprintf_function cpu_fprintf;
+ FILE *file;
+} ARMCPUListState;
+
+/* Sort alphabetically by type name, except for "any". */
+static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b)
+{
+ ObjectClass *class_a = (ObjectClass *)a;
+ ObjectClass *class_b = (ObjectClass *)b;
+ const char *name_a, *name_b;
+
+ name_a = object_class_get_name(class_a);
+ name_b = object_class_get_name(class_b);
+ if (strcmp(name_a, "any") == 0) {
+ return 1;
+ } else if (strcmp(name_b, "any") == 0) {
+ return -1;
+ } else {
+ return strcmp(name_a, name_b);
+ }
+}
+
+static void arm_cpu_list_entry(gpointer data, gpointer user_data)
+{
+ ObjectClass *oc = data;
+ ARMCPUListState *s = user_data;
+
+ (*s->cpu_fprintf)(s->file, " %s\n",
+ object_class_get_name(oc));
+}
+
+void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf)
+{
+ ARMCPUListState s = {
+ .file = f,
+ .cpu_fprintf = cpu_fprintf,
+ };
+ GSList *list;
+
+ list = object_class_get_list(TYPE_ARM_CPU, false);
+ list = g_slist_sort(list, arm_cpu_list_compare);
+ (*cpu_fprintf)(f, "Available CPUs:\n");
+ g_slist_foreach(list, arm_cpu_list_entry, &s);
+ g_slist_free(list);
+}
+
+void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
+ const ARMCPRegInfo *r, void *opaque)
+{
+ /* Define implementations of coprocessor registers.
+ * We store these in a hashtable because typically
+ * there are less than 150 registers in a space which
+ * is 16*16*16*8*8 = 262144 in size.
+ * Wildcarding is supported for the crm, opc1 and opc2 fields.
+ * If a register is defined twice then the second definition is
+ * used, so this can be used to define some generic registers and
+ * then override them with implementation specific variations.
+ * At least one of the original and the second definition should
+ * include ARM_CP_OVERRIDE in its type bits -- this is just a guard
+ * against accidental use.
+ */
+ int crm, opc1, opc2;
+ int crmmin = (r->crm == CP_ANY) ? 0 : r->crm;
+ int crmmax = (r->crm == CP_ANY) ? 15 : r->crm;
+ int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1;
+ int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1;
+ int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2;
+ int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2;
+ /* 64 bit registers have only CRm and Opc1 fields */
+ assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn)));
+ /* Check that the register definition has enough info to handle
+ * reads and writes if they are permitted.
+ */
+ if (!(r->type & (ARM_CP_SPECIAL|ARM_CP_CONST))) {
+ if (r->access & PL3_R) {
+ assert(r->fieldoffset || r->readfn);
+ }
+ if (r->access & PL3_W) {
+ assert(r->fieldoffset || r->writefn);
+ }
+ }
+ /* Bad type field probably means missing sentinel at end of reg list */
+ assert(cptype_valid(r->type));
+ for (crm = crmmin; crm <= crmmax; crm++) {
+ for (opc1 = opc1min; opc1 <= opc1max; opc1++) {
+ for (opc2 = opc2min; opc2 <= opc2max; opc2++) {
+ uint32_t *key = g_new(uint32_t, 1);
+ ARMCPRegInfo *r2 = g_memdup(r, sizeof(ARMCPRegInfo));
+ int is64 = (r->type & ARM_CP_64BIT) ? 1 : 0;
+ *key = ENCODE_CP_REG(r->cp, is64, r->crn, crm, opc1, opc2);
+ r2->opaque = opaque;
+ /* Make sure reginfo passed to helpers for wildcarded regs
+ * has the correct crm/opc1/opc2 for this reg, not CP_ANY:
+ */
+ r2->crm = crm;
+ r2->opc1 = opc1;
+ r2->opc2 = opc2;
+ /* Overriding of an existing definition must be explicitly
+ * requested.
+ */
+ if (!(r->type & ARM_CP_OVERRIDE)) {
+ ARMCPRegInfo *oldreg;
+ oldreg = g_hash_table_lookup(cpu->cp_regs, key);
+ if (oldreg && !(oldreg->type & ARM_CP_OVERRIDE)) {
+ fprintf(stderr, "Register redefined: cp=%d %d bit "
+ "crn=%d crm=%d opc1=%d opc2=%d, "
+ "was %s, now %s\n", r2->cp, 32 + 32 * is64,
+ r2->crn, r2->crm, r2->opc1, r2->opc2,
+ oldreg->name, r2->name);
+ assert(0);
+ }
+ }
+ g_hash_table_insert(cpu->cp_regs, key, r2);
+ }
+ }
+ }
+}
+
+void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
+ const ARMCPRegInfo *regs, void *opaque)
+{
+ /* Define a whole list of registers */
+ const ARMCPRegInfo *r;
+ for (r = regs; r->type != ARM_CP_SENTINEL; r++) {
+ define_one_arm_cp_reg_with_opaque(cpu, r, opaque);
+ }
+}
+
+const ARMCPRegInfo *get_arm_cp_reginfo(ARMCPU *cpu, uint32_t encoded_cp)
+{
+ return g_hash_table_lookup(cpu->cp_regs, &encoded_cp);
+}
+
+int arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
+ uint64_t value)
+{
+ /* Helper coprocessor write function for write-ignore registers */
+ return 0;
+}
+
+int arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t *value)
+{
+ /* Helper coprocessor write function for read-as-zero registers */
+ *value = 0;
+ return 0;
+}
+
+static int bad_mode_switch(CPUARMState *env, int mode)
+{
+ /* Return true if it is not valid for us to switch to
+ * this CPU mode (ie all the UNPREDICTABLE cases in
+ * the ARM ARM CPSRWriteByInstr pseudocode).
+ */
+ switch (mode) {
+ case ARM_CPU_MODE_USR:
+ case ARM_CPU_MODE_SYS:
+ case ARM_CPU_MODE_SVC:
+ case ARM_CPU_MODE_ABT:
+ case ARM_CPU_MODE_UND:
+ case ARM_CPU_MODE_IRQ:
+ case ARM_CPU_MODE_FIQ:
+ return 0;
+ default:
+ return 1;
+ }
+}
+
+uint32_t cpsr_read(CPUARMState *env)
+{
+ int ZF;
+ ZF = (env->ZF == 0);
+ return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) |
+ (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
+ | (env->thumb << 5) | ((env->condexec_bits & 3) << 25)
+ | ((env->condexec_bits & 0xfc) << 8)
+ | (env->GE << 16);
+}
+
+void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
+{
+ if (mask & CPSR_NZCV) {
+ env->ZF = (~val) & CPSR_Z;
+ env->NF = val;
+ env->CF = (val >> 29) & 1;
+ env->VF = (val << 3) & 0x80000000;
+ }
+ if (mask & CPSR_Q)
+ env->QF = ((val & CPSR_Q) != 0);
+ if (mask & CPSR_T)
+ env->thumb = ((val & CPSR_T) != 0);
+ if (mask & CPSR_IT_0_1) {
+ env->condexec_bits &= ~3;
+ env->condexec_bits |= (val >> 25) & 3;
+ }
+ if (mask & CPSR_IT_2_7) {
+ env->condexec_bits &= 3;
+ env->condexec_bits |= (val >> 8) & 0xfc;
+ }
+ if (mask & CPSR_GE) {
+ env->GE = (val >> 16) & 0xf;
+ }
+
+ if ((env->uncached_cpsr ^ val) & mask & CPSR_M) {
+ if (bad_mode_switch(env, val & CPSR_M)) {
+ /* Attempt to switch to an invalid mode: this is UNPREDICTABLE.
+ * We choose to ignore the attempt and leave the CPSR M field
+ * untouched.
+ */
+ mask &= ~CPSR_M;
+ } else {
+ switch_mode(env, val & CPSR_M);
+ }
+ }
+ mask &= ~CACHED_CPSR_BITS;
+ env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask);
+}
+
+/* Sign/zero extend */
+uint32_t HELPER(sxtb16)(uint32_t x)
+{
+ uint32_t res;
+ res = (uint16_t)(int8_t)x;
+ res |= (uint32_t)(int8_t)(x >> 16) << 16;
+ return res;
+}
+
+uint32_t HELPER(uxtb16)(uint32_t x)
+{
+ uint32_t res;
+ res = (uint16_t)(uint8_t)x;
+ res |= (uint32_t)(uint8_t)(x >> 16) << 16;
+ return res;
+}
+
+uint32_t HELPER(clz)(uint32_t x)
+{
+ return clz32(x);
+}
+
+int32_t HELPER(sdiv)(int32_t num, int32_t den)
+{
+ if (den == 0)
+ return 0;
+ if (num == INT_MIN && den == -1)
+ return INT_MIN;
+ return num / den;
+}
+
+uint32_t HELPER(udiv)(uint32_t num, uint32_t den)
+{
+ if (den == 0)
+ return 0;
+ return num / den;
+}
+
+uint32_t HELPER(rbit)(uint32_t x)
+{
+ x = ((x & 0xff000000) >> 24)
+ | ((x & 0x00ff0000) >> 8)
+ | ((x & 0x0000ff00) << 8)
+ | ((x & 0x000000ff) << 24);
+ x = ((x & 0xf0f0f0f0) >> 4)
+ | ((x & 0x0f0f0f0f) << 4);
+ x = ((x & 0x88888888) >> 3)
+ | ((x & 0x44444444) >> 1)
+ | ((x & 0x22222222) << 1)
+ | ((x & 0x11111111) << 3);
+ return x;
+}
+
+uint32_t HELPER(abs)(uint32_t x)
+{
+ return ((int32_t)x < 0) ? -x : x;
+}
+
+#if defined(CONFIG_USER_ONLY)
+
+void do_interrupt (CPUARMState *env)
+{
+ env->exception_index = -1;
+}
+
+int cpu_arm_handle_mmu_fault (CPUARMState *env, target_ulong address, int rw,
+ int mmu_idx)
+{
+ if (rw == 2) {
+ env->exception_index = EXCP_PREFETCH_ABORT;
+ env->cp15.c6_insn = address;
+ } else {
+ env->exception_index = EXCP_DATA_ABORT;
+ env->cp15.c6_data = address;
+ }
+ return 1;
+}
+
+/* These should probably raise undefined insn exceptions. */
+void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val)
+{
+ cpu_abort(env, "v7m_mrs %d\n", reg);
+}
+
+uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg)
+{
+ cpu_abort(env, "v7m_mrs %d\n", reg);
+ return 0;
+}
+
+void switch_mode(CPUARMState *env, int mode)
+{
+ if (mode != ARM_CPU_MODE_USR)
+ cpu_abort(env, "Tried to switch out of user mode\n");
+}
+
+void HELPER(set_r13_banked)(CPUARMState *env, uint32_t mode, uint32_t val)
+{
+ cpu_abort(env, "banked r13 write\n");
+}
+
+uint32_t HELPER(get_r13_banked)(CPUARMState *env, uint32_t mode)
+{
+ cpu_abort(env, "banked r13 read\n");
+ return 0;
+}
+
+#else
+
+/* Map CPU modes onto saved register banks. */
+static inline int bank_number(CPUARMState *env, int mode)
+{
+ switch (mode) {
+ case ARM_CPU_MODE_USR:
+ case ARM_CPU_MODE_SYS:
+ return 0;
+ case ARM_CPU_MODE_SVC:
+ return 1;
+ case ARM_CPU_MODE_ABT:
+ return 2;
+ case ARM_CPU_MODE_UND:
+ return 3;
+ case ARM_CPU_MODE_IRQ:
+ return 4;
+ case ARM_CPU_MODE_FIQ:
+ return 5;
+ }
+ cpu_abort(env, "Bad mode %x\n", mode);
+ return -1;
+}
+
+void switch_mode(CPUARMState *env, int mode)
+{
+ int old_mode;
+ int i;
+
+ old_mode = env->uncached_cpsr & CPSR_M;
+ if (mode == old_mode)
+ return;
+
+ if (old_mode == ARM_CPU_MODE_FIQ) {
+ memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t));
+ memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t));
+ } else if (mode == ARM_CPU_MODE_FIQ) {
+ memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t));
+ memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t));
+ }
+
+ i = bank_number(env, old_mode);
+ env->banked_r13[i] = env->regs[13];
+ env->banked_r14[i] = env->regs[14];
+ env->banked_spsr[i] = env->spsr;
+
+ i = bank_number(env, mode);
+ env->regs[13] = env->banked_r13[i];
+ env->regs[14] = env->banked_r14[i];
+ env->spsr = env->banked_spsr[i];
+}
+
+static void v7m_push(CPUARMState *env, uint32_t val)
+{
+ env->regs[13] -= 4;
+ stl_phys(env->regs[13], val);
+}
+
+static uint32_t v7m_pop(CPUARMState *env)
+{
+ uint32_t val;
+ val = ldl_phys(env->regs[13]);
+ env->regs[13] += 4;
+ return val;
+}
+
+/* Switch to V7M main or process stack pointer. */
+static void switch_v7m_sp(CPUARMState *env, int process)
+{
+ uint32_t tmp;
+ if (env->v7m.current_sp != process) {
+ tmp = env->v7m.other_sp;
+ env->v7m.other_sp = env->regs[13];
+ env->regs[13] = tmp;
+ env->v7m.current_sp = process;
+ }
+}
+
+static void do_v7m_exception_exit(CPUARMState *env)
+{
+ uint32_t type;
+ uint32_t xpsr;
+
+ type = env->regs[15];
+ if (env->v7m.exception != 0)
+ armv7m_nvic_complete_irq(env->nvic, env->v7m.exception);
+
+ /* Switch to the target stack. */
+ switch_v7m_sp(env, (type & 4) != 0);
+ /* Pop registers. */
+ env->regs[0] = v7m_pop(env);
+ env->regs[1] = v7m_pop(env);
+ env->regs[2] = v7m_pop(env);
+ env->regs[3] = v7m_pop(env);
+ env->regs[12] = v7m_pop(env);
+ env->regs[14] = v7m_pop(env);
+ env->regs[15] = v7m_pop(env);
+ xpsr = v7m_pop(env);
+ xpsr_write(env, xpsr, 0xfffffdff);
+ /* Undo stack alignment. */
+ if (xpsr & 0x200)
+ env->regs[13] |= 4;
+ /* ??? The exception return type specifies Thread/Handler mode. However
+ this is also implied by the xPSR value. Not sure what to do
+ if there is a mismatch. */
+ /* ??? Likewise for mismatches between the CONTROL register and the stack
+ pointer. */
+}
+
+static void do_interrupt_v7m(CPUARMState *env)
+{
+ uint32_t xpsr = xpsr_read(env);
+ uint32_t lr;
+ uint32_t addr;
+
+ lr = 0xfffffff1;
+ if (env->v7m.current_sp)
+ lr |= 4;
+ if (env->v7m.exception == 0)
+ lr |= 8;
+
+ /* For exceptions we just mark as pending on the NVIC, and let that
+ handle it. */
+ /* TODO: Need to escalate if the current priority is higher than the
+ one we're raising. */
+ switch (env->exception_index) {
+ case EXCP_UDEF:
+ armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE);
+ return;
+ case EXCP_SWI:
+ env->regs[15] += 2;
+ armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SVC);
+ return;
+ case EXCP_PREFETCH_ABORT:
+ case EXCP_DATA_ABORT:
+ armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_MEM);
+ return;
+ case EXCP_BKPT:
+ if (semihosting_enabled) {
+ int nr;
+ nr = arm_lduw_code(env->regs[15], env->bswap_code) & 0xff;
+ if (nr == 0xab) {
+ env->regs[15] += 2;
+ env->regs[0] = do_arm_semihosting(env);
+ return;
+ }
+ }
+ armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_DEBUG);
+ return;
+ case EXCP_IRQ:
+ env->v7m.exception = armv7m_nvic_acknowledge_irq(env->nvic);
+ break;
+ case EXCP_EXCEPTION_EXIT:
+ do_v7m_exception_exit(env);
+ return;
+ default:
+ cpu_abort(env, "Unhandled exception 0x%x\n", env->exception_index);
+ return; /* Never happens. Keep compiler happy. */
+ }
+
+ /* Align stack pointer. */
+ /* ??? Should only do this if Configuration Control Register
+ STACKALIGN bit is set. */
+ if (env->regs[13] & 4) {
+ env->regs[13] -= 4;
+ xpsr |= 0x200;
+ }
+ /* Switch to the handler mode. */
+ v7m_push(env, xpsr);
+ v7m_push(env, env->regs[15]);
+ v7m_push(env, env->regs[14]);
+ v7m_push(env, env->regs[12]);
+ v7m_push(env, env->regs[3]);
+ v7m_push(env, env->regs[2]);
+ v7m_push(env, env->regs[1]);
+ v7m_push(env, env->regs[0]);
+ switch_v7m_sp(env, 0);
+ /* Clear IT bits */
+ env->condexec_bits = 0;
+ env->regs[14] = lr;
+ addr = ldl_phys(env->v7m.vecbase + env->v7m.exception * 4);
+ env->regs[15] = addr & 0xfffffffe;
+ env->thumb = addr & 1;
+}
+
+/* Handle a CPU exception. */
+void do_interrupt(CPUARMState *env)
+{
+ uint32_t addr;
+ uint32_t mask;
+ int new_mode;
+ uint32_t offset;
+
+ if (IS_M(env)) {
+ do_interrupt_v7m(env);
+ return;
+ }
+ /* TODO: Vectored interrupt controller. */
+ switch (env->exception_index) {
+ case EXCP_UDEF:
+ new_mode = ARM_CPU_MODE_UND;
+ addr = 0x04;
+ mask = CPSR_I;
+ if (env->thumb)
+ offset = 2;
+ else
+ offset = 4;
+ break;
+ case EXCP_SWI:
+ if (semihosting_enabled) {
+ /* Check for semihosting interrupt. */
+ if (env->thumb) {
+ mask = arm_lduw_code(env->regs[15] - 2, env->bswap_code) & 0xff;
+ } else {
+ mask = arm_ldl_code(env->regs[15] - 4, env->bswap_code)
+ & 0xffffff;
+ }
+ /* Only intercept calls from privileged modes, to provide some
+ semblance of security. */
+ if (((mask == 0x123456 && !env->thumb)
+ || (mask == 0xab && env->thumb))
+ && (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR) {
+ env->regs[0] = do_arm_semihosting(env);
+ return;
+ }
+ }
+ new_mode = ARM_CPU_MODE_SVC;
+ addr = 0x08;
+ mask = CPSR_I;
+ /* The PC already points to the next instruction. */
+ offset = 0;
+ break;
+ case EXCP_BKPT:
+ /* See if this is a semihosting syscall. */
+ if (env->thumb && semihosting_enabled) {
+ mask = arm_lduw_code(env->regs[15], env->bswap_code) & 0xff;
+ if (mask == 0xab
+ && (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR) {
+ env->regs[15] += 2;
+ env->regs[0] = do_arm_semihosting(env);
+ return;
+ }
+ }
+ env->cp15.c5_insn = 2;
+ /* Fall through to prefetch abort. */
+ case EXCP_PREFETCH_ABORT:
+ new_mode = ARM_CPU_MODE_ABT;
+ addr = 0x0c;
+ mask = CPSR_A | CPSR_I;
+ offset = 4;
+ break;
+ case EXCP_DATA_ABORT:
+ new_mode = ARM_CPU_MODE_ABT;
+ addr = 0x10;
+ mask = CPSR_A | CPSR_I;
+ offset = 8;
+ break;
+ case EXCP_IRQ:
+ new_mode = ARM_CPU_MODE_IRQ;
+ addr = 0x18;
+ /* Disable IRQ and imprecise data aborts. */
+ mask = CPSR_A | CPSR_I;
+ offset = 4;
+ break;
+ case EXCP_FIQ:
+ new_mode = ARM_CPU_MODE_FIQ;
+ addr = 0x1c;
+ /* Disable FIQ, IRQ and imprecise data aborts. */
+ mask = CPSR_A | CPSR_I | CPSR_F;
+ offset = 4;
+ break;
+ default:
+ cpu_abort(env, "Unhandled exception 0x%x\n", env->exception_index);
+ return; /* Never happens. Keep compiler happy. */
+ }
+ /* High vectors. */
+ if (env->cp15.c1_sys & (1 << 13)) {
+ addr += 0xffff0000;
+ }
+ switch_mode (env, new_mode);
+ env->spsr = cpsr_read(env);
+ /* Clear IT bits. */
+ env->condexec_bits = 0;
+ /* Switch to the new mode, and to the correct instruction set. */
+ env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode;
+ env->uncached_cpsr |= mask;
+ /* this is a lie, as the was no c1_sys on V4T/V5, but who cares
+ * and we should just guard the thumb mode on V4 */
+ if (arm_feature(env, ARM_FEATURE_V4T)) {
+ env->thumb = (env->cp15.c1_sys & (1 << 30)) != 0;
+ }
+ env->regs[14] = env->regs[15] + offset;
+ env->regs[15] = addr;
+ env->interrupt_request |= CPU_INTERRUPT_EXITTB;
+}
+
+/* Check section/page access permissions.
+ Returns the page protection flags, or zero if the access is not
+ permitted. */
+static inline int check_ap(CPUARMState *env, int ap, int domain_prot,
+ int access_type, int is_user)
+{
+ int prot_ro;
+
+ if (domain_prot == 3) {
+ return PAGE_READ | PAGE_WRITE;
+ }
+
+ if (access_type == 1)
+ prot_ro = 0;
+ else
+ prot_ro = PAGE_READ;
+
+ switch (ap) {
+ case 0:
+ if (access_type == 1)
+ return 0;
+ switch ((env->cp15.c1_sys >> 8) & 3) {
+ case 1:
+ return is_user ? 0 : PAGE_READ;
+ case 2:
+ return PAGE_READ;
+ default:
+ return 0;
+ }
+ case 1:
+ return is_user ? 0 : PAGE_READ | PAGE_WRITE;
+ case 2:
+ if (is_user)
+ return prot_ro;
+ else
+ return PAGE_READ | PAGE_WRITE;
+ case 3:
+ return PAGE_READ | PAGE_WRITE;
+ case 4: /* Reserved. */
+ return 0;
+ case 5:
+ return is_user ? 0 : prot_ro;
+ case 6:
+ return prot_ro;
+ case 7:
+ if (!arm_feature (env, ARM_FEATURE_V6K))
+ return 0;
+ return prot_ro;
+ default:
+ abort();
+ }
+}
+
+static uint32_t get_level1_table_address(CPUARMState *env, uint32_t address)
+{
+ uint32_t table;
+
+ if (address & env->cp15.c2_mask)
+ table = env->cp15.c2_base1 & 0xffffc000;
+ else
+ table = env->cp15.c2_base0 & env->cp15.c2_base_mask;
+
+ table |= (address >> 18) & 0x3ffc;
+ return table;
+}
+
+static int get_phys_addr_v5(CPUARMState *env, uint32_t address, int access_type,
+ int is_user, target_phys_addr_t *phys_ptr,
+ int *prot, target_ulong *page_size)
+{
+ int code;
+ uint32_t table;
+ uint32_t desc;
+ int type;
+ int ap;
+ int domain;
+ int domain_prot;
+ target_phys_addr_t phys_addr;
+
+ /* Pagetable walk. */
+ /* Lookup l1 descriptor. */
+ table = get_level1_table_address(env, address);
+ desc = ldl_phys(table);
+ type = (desc & 3);
+ domain = (desc >> 5) & 0x0f;
+ domain_prot = (env->cp15.c3 >> (domain * 2)) & 3;
+ if (type == 0) {
+ /* Section translation fault. */
+ code = 5;
+ goto do_fault;
+ }
+ if (domain_prot == 0 || domain_prot == 2) {
+ if (type == 2)
+ code = 9; /* Section domain fault. */
+ else
+ code = 11; /* Page domain fault. */
+ goto do_fault;
+ }
+ if (type == 2) {
+ /* 1Mb section. */
+ phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
+ ap = (desc >> 10) & 3;
+ code = 13;
+ *page_size = 1024 * 1024;
+ } else {
+ /* Lookup l2 entry. */
+ if (type == 1) {
+ /* Coarse pagetable. */
+ table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
+ } else {
+ /* Fine pagetable. */
+ table = (desc & 0xfffff000) | ((address >> 8) & 0xffc);
+ }
+ desc = ldl_phys(table);
+ switch (desc & 3) {
+ case 0: /* Page translation fault. */
+ code = 7;
+ goto do_fault;
+ case 1: /* 64k page. */
+ phys_addr = (desc & 0xffff0000) | (address & 0xffff);
+ ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
+ *page_size = 0x10000;
+ break;
+ case 2: /* 4k page. */
+ phys_addr = (desc & 0xfffff000) | (address & 0xfff);
+ ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
+ *page_size = 0x1000;
+ break;
+ case 3: /* 1k page. */
+ if (type == 1) {
+ if (arm_feature(env, ARM_FEATURE_XSCALE)) {
+ phys_addr = (desc & 0xfffff000) | (address & 0xfff);
+ } else {
+ /* Page translation fault. */
+ code = 7;
+ goto do_fault;
+ }
+ } else {
+ phys_addr = (desc & 0xfffffc00) | (address & 0x3ff);
+ }
+ ap = (desc >> 4) & 3;
+ *page_size = 0x400;
+ break;
+ default:
+ /* Never happens, but compiler isn't smart enough to tell. */
+ abort();
+ }
+ code = 15;
+ }
+ *prot = check_ap(env, ap, domain_prot, access_type, is_user);
+ if (!*prot) {
+ /* Access permission fault. */
+ goto do_fault;
+ }
+ *prot |= PAGE_EXEC;
+ *phys_ptr = phys_addr;
+ return 0;
+do_fault:
+ return code | (domain << 4);
+}
+
+static int get_phys_addr_v6(CPUARMState *env, uint32_t address, int access_type,
+ int is_user, target_phys_addr_t *phys_ptr,
+ int *prot, target_ulong *page_size)
+{
+ int code;
+ uint32_t table;
+ uint32_t desc;
+ uint32_t xn;
+ uint32_t pxn = 0;
+ int type;
+ int ap;
+ int domain = 0;
+ int domain_prot;
+ target_phys_addr_t phys_addr;
+
+ /* Pagetable walk. */
+ /* Lookup l1 descriptor. */
+ table = get_level1_table_address(env, address);
+ desc = ldl_phys(table);
+ type = (desc & 3);
+ if (type == 0 || (type == 3 && !arm_feature(env, ARM_FEATURE_PXN))) {
+ /* Section translation fault, or attempt to use the encoding
+ * which is Reserved on implementations without PXN.
+ */
+ code = 5;
+ goto do_fault;
+ }
+ if ((type == 1) || !(desc & (1 << 18))) {
+ /* Page or Section. */
+ domain = (desc >> 5) & 0x0f;
+ }
+ domain_prot = (env->cp15.c3 >> (domain * 2)) & 3;
+ if (domain_prot == 0 || domain_prot == 2) {
+ if (type != 1) {
+ code = 9; /* Section domain fault. */
+ } else {
+ code = 11; /* Page domain fault. */
+ }
+ goto do_fault;
+ }
+ if (type != 1) {
+ if (desc & (1 << 18)) {
+ /* Supersection. */
+ phys_addr = (desc & 0xff000000) | (address & 0x00ffffff);
+ *page_size = 0x1000000;
+ } else {
+ /* Section. */
+ phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
+ *page_size = 0x100000;
+ }
+ ap = ((desc >> 10) & 3) | ((desc >> 13) & 4);
+ xn = desc & (1 << 4);
+ pxn = desc & 1;
+ code = 13;
+ } else {
+ if (arm_feature(env, ARM_FEATURE_PXN)) {
+ pxn = (desc >> 2) & 1;
+ }
+ /* Lookup l2 entry. */
+ table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
+ desc = ldl_phys(table);
+ ap = ((desc >> 4) & 3) | ((desc >> 7) & 4);
+ switch (desc & 3) {
+ case 0: /* Page translation fault. */
+ code = 7;
+ goto do_fault;
+ case 1: /* 64k page. */
+ phys_addr = (desc & 0xffff0000) | (address & 0xffff);
+ xn = desc & (1 << 15);
+ *page_size = 0x10000;
+ break;
+ case 2: case 3: /* 4k page. */
+ phys_addr = (desc & 0xfffff000) | (address & 0xfff);
+ xn = desc & 1;
+ *page_size = 0x1000;
+ break;
+ default:
+ /* Never happens, but compiler isn't smart enough to tell. */
+ abort();
+ }
+ code = 15;
+ }
+ if (domain_prot == 3) {
+ *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
+ } else {
+ if (pxn && !is_user) {
+ xn = 1;
+ }
+ if (xn && access_type == 2)
+ goto do_fault;
+
+ /* The simplified model uses AP[0] as an access control bit. */
+ if ((env->cp15.c1_sys & (1 << 29)) && (ap & 1) == 0) {
+ /* Access flag fault. */
+ code = (code == 15) ? 6 : 3;
+ goto do_fault;
+ }
+ *prot = check_ap(env, ap, domain_prot, access_type, is_user);
+ if (!*prot) {
+ /* Access permission fault. */
+ goto do_fault;
+ }
+ if (!xn) {
+ *prot |= PAGE_EXEC;
+ }
+ }
+ *phys_ptr = phys_addr;
+ return 0;
+do_fault:
+ return code | (domain << 4);
+}
+
+/* Fault type for long-descriptor MMU fault reporting; this corresponds
+ * to bits [5..2] in the STATUS field in long-format DFSR/IFSR.
+ */
+typedef enum {
+ translation_fault = 1,
+ access_fault = 2,
+ permission_fault = 3,
+} MMUFaultType;
+
+static int get_phys_addr_lpae(CPUARMState *env, uint32_t address,
+ int access_type, int is_user,
+ target_phys_addr_t *phys_ptr, int *prot,
+ target_ulong *page_size_ptr)
+{
+ /* Read an LPAE long-descriptor translation table. */
+ MMUFaultType fault_type = translation_fault;
+ uint32_t level = 1;
+ uint32_t epd;
+ uint32_t tsz;
+ uint64_t ttbr;
+ int ttbr_select;
+ int n;
+ target_phys_addr_t descaddr;
+ uint32_t tableattrs;
+ target_ulong page_size;
+ uint32_t attrs;
+
+ /* Determine whether this address is in the region controlled by
+ * TTBR0 or TTBR1 (or if it is in neither region and should fault).
+ * This is a Non-secure PL0/1 stage 1 translation, so controlled by
+ * TTBCR/TTBR0/TTBR1 in accordance with ARM ARM DDI0406C table B-32:
+ */
+ uint32_t t0sz = extract32(env->cp15.c2_control, 0, 3);
+ uint32_t t1sz = extract32(env->cp15.c2_control, 16, 3);
+ if (t0sz && !extract32(address, 32 - t0sz, t0sz)) {
+ /* there is a ttbr0 region and we are in it (high bits all zero) */
+ ttbr_select = 0;
+ } else if (t1sz && !extract32(~address, 32 - t1sz, t1sz)) {
+ /* there is a ttbr1 region and we are in it (high bits all one) */
+ ttbr_select = 1;
+ } else if (!t0sz) {
+ /* ttbr0 region is "everything not in the ttbr1 region" */
+ ttbr_select = 0;
+ } else if (!t1sz) {
+ /* ttbr1 region is "everything not in the ttbr0 region" */
+ ttbr_select = 1;
+ } else {
+ /* in the gap between the two regions, this is a Translation fault */
+ fault_type = translation_fault;
+ goto do_fault;
+ }
+
+ /* Note that QEMU ignores shareability and cacheability attributes,
+ * so we don't need to do anything with the SH, ORGN, IRGN fields
+ * in the TTBCR. Similarly, TTBCR:A1 selects whether we get the
+ * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently
+ * implement any ASID-like capability so we can ignore it (instead
+ * we will always flush the TLB any time the ASID is changed).
+ */
+ if (ttbr_select == 0) {
+ ttbr = ((uint64_t)env->cp15.c2_base0_hi << 32) | env->cp15.c2_base0;
+ epd = extract32(env->cp15.c2_control, 7, 1);
+ tsz = t0sz;
+ } else {
+ ttbr = ((uint64_t)env->cp15.c2_base1_hi << 32) | env->cp15.c2_base1;
+ epd = extract32(env->cp15.c2_control, 23, 1);
+ tsz = t1sz;
+ }
+
+ if (epd) {
+ /* Translation table walk disabled => Translation fault on TLB miss */
+ goto do_fault;
+ }
+
+ /* If the region is small enough we will skip straight to a 2nd level
+ * lookup. This affects the number of bits of the address used in
+ * combination with the TTBR to find the first descriptor. ('n' here
+ * matches the usage in the ARM ARM sB3.6.6, where bits [39..n] are
+ * from the TTBR, [n-1..3] from the vaddr, and [2..0] always zero).
+ */
+ if (tsz > 1) {
+ level = 2;
+ n = 14 - tsz;
+ } else {
+ n = 5 - tsz;
+ }
+
+ /* Clear the vaddr bits which aren't part of the within-region address,
+ * so that we don't have to special case things when calculating the
+ * first descriptor address.
+ */
+ address &= (0xffffffffU >> tsz);
+
+ /* Now we can extract the actual base address from the TTBR */
+ descaddr = extract64(ttbr, 0, 40);
+ descaddr &= ~((1ULL << n) - 1);
+
+ tableattrs = 0;
+ for (;;) {
+ uint64_t descriptor;
+
+ descaddr |= ((address >> (9 * (4 - level))) & 0xff8);
+ descriptor = ldq_phys(descaddr);
+ if (!(descriptor & 1) ||
+ (!(descriptor & 2) && (level == 3))) {
+ /* Invalid, or the Reserved level 3 encoding */
+ goto do_fault;
+ }
+ descaddr = descriptor & 0xfffffff000ULL;
+
+ if ((descriptor & 2) && (level < 3)) {
+ /* Table entry. The top five bits are attributes which may
+ * propagate down through lower levels of the table (and
+ * which are all arranged so that 0 means "no effect", so
+ * we can gather them up by ORing in the bits at each level).
+ */
+ tableattrs |= extract64(descriptor, 59, 5);
+ level++;
+ continue;
+ }
+ /* Block entry at level 1 or 2, or page entry at level 3.
+ * These are basically the same thing, although the number
+ * of bits we pull in from the vaddr varies.
+ */
+ page_size = (1 << (39 - (9 * level)));
+ descaddr |= (address & (page_size - 1));
+ /* Extract attributes from the descriptor and merge with table attrs */
+ attrs = extract64(descriptor, 2, 10)
+ | (extract64(descriptor, 52, 12) << 10);
+ attrs |= extract32(tableattrs, 0, 2) << 11; /* XN, PXN */
+ attrs |= extract32(tableattrs, 3, 1) << 5; /* APTable[1] => AP[2] */
+ /* The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1
+ * means "force PL1 access only", which means forcing AP[1] to 0.
+ */
+ if (extract32(tableattrs, 2, 1)) {
+ attrs &= ~(1 << 4);
+ }
+ /* Since we're always in the Non-secure state, NSTable is ignored. */
+ break;
+ }
+ /* Here descaddr is the final physical address, and attributes
+ * are all in attrs.
+ */
+ fault_type = access_fault;
+ if ((attrs & (1 << 8)) == 0) {
+ /* Access flag */
+ goto do_fault;
+ }
+ fault_type = permission_fault;
+ if (is_user && !(attrs & (1 << 4))) {
+ /* Unprivileged access not enabled */
+ goto do_fault;
+ }
+ *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
+ if (attrs & (1 << 12) || (!is_user && (attrs & (1 << 11)))) {
+ /* XN or PXN */
+ if (access_type == 2) {
+ goto do_fault;
+ }
+ *prot &= ~PAGE_EXEC;
+ }
+ if (attrs & (1 << 5)) {
+ /* Write access forbidden */
+ if (access_type == 1) {
+ goto do_fault;
+ }
+ *prot &= ~PAGE_WRITE;
+ }
+
+ *phys_ptr = descaddr;
+ *page_size_ptr = page_size;
+ return 0;
+
+do_fault:
+ /* Long-descriptor format IFSR/DFSR value */
+ return (1 << 9) | (fault_type << 2) | level;
+}
+
+static int get_phys_addr_mpu(CPUARMState *env, uint32_t address,
+ int access_type, int is_user,
+ target_phys_addr_t *phys_ptr, int *prot)
+{
+ int n;
+ uint32_t mask;
+ uint32_t base;
+
+ *phys_ptr = address;
+ for (n = 7; n >= 0; n--) {
+ base = env->cp15.c6_region[n];
+ if ((base & 1) == 0)
+ continue;
+ mask = 1 << ((base >> 1) & 0x1f);
+ /* Keep this shift separate from the above to avoid an
+ (undefined) << 32. */
+ mask = (mask << 1) - 1;
+ if (((base ^ address) & ~mask) == 0)
+ break;
+ }
+ if (n < 0)
+ return 2;
+
+ if (access_type == 2) {
+ mask = env->cp15.c5_insn;
+ } else {
+ mask = env->cp15.c5_data;
+ }
+ mask = (mask >> (n * 4)) & 0xf;
+ switch (mask) {
+ case 0:
+ return 1;
+ case 1:
+ if (is_user)
+ return 1;
+ *prot = PAGE_READ | PAGE_WRITE;
+ break;
+ case 2:
+ *prot = PAGE_READ;
+ if (!is_user)
+ *prot |= PAGE_WRITE;
+ break;
+ case 3:
+ *prot = PAGE_READ | PAGE_WRITE;
+ break;
+ case 5:
+ if (is_user)
+ return 1;
+ *prot = PAGE_READ;
+ break;
+ case 6:
+ *prot = PAGE_READ;
+ break;
+ default:
+ /* Bad permission. */
+ return 1;
+ }
+ *prot |= PAGE_EXEC;
+ return 0;
+}
+
+/* get_phys_addr - get the physical address for this virtual address
+ *
+ * Find the physical address corresponding to the given virtual address,
+ * by doing a translation table walk on MMU based systems or using the
+ * MPU state on MPU based systems.
+ *
+ * Returns 0 if the translation was successful. Otherwise, phys_ptr,
+ * prot and page_size are not filled in, and the return value provides
+ * information on why the translation aborted, in the format of a
+ * DFSR/IFSR fault register, with the following caveats:
+ * * we honour the short vs long DFSR format differences.
+ * * the WnR bit is never set (the caller must do this).
+ * * for MPU based systems we don't bother to return a full FSR format
+ * value.
+ *
+ * @env: CPUARMState
+ * @address: virtual address to get physical address for
+ * @access_type: 0 for read, 1 for write, 2 for execute
+ * @is_user: 0 for privileged access, 1 for user
+ * @phys_ptr: set to the physical address corresponding to the virtual address
+ * @prot: set to the permissions for the page containing phys_ptr
+ * @page_size: set to the size of the page containing phys_ptr
+ */
+static inline int get_phys_addr(CPUARMState *env, uint32_t address,
+ int access_type, int is_user,
+ target_phys_addr_t *phys_ptr, int *prot,
+ target_ulong *page_size)
+{
+ /* Fast Context Switch Extension. */
+ if (address < 0x02000000)
+ address += env->cp15.c13_fcse;
+
+ if ((env->cp15.c1_sys & 1) == 0) {
+ /* MMU/MPU disabled. */
+ *phys_ptr = address;
+ *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
+ *page_size = TARGET_PAGE_SIZE;
+ return 0;
+ } else if (arm_feature(env, ARM_FEATURE_MPU)) {
+ *page_size = TARGET_PAGE_SIZE;
+ return get_phys_addr_mpu(env, address, access_type, is_user, phys_ptr,
+ prot);
+ } else if (extended_addresses_enabled(env)) {
+ return get_phys_addr_lpae(env, address, access_type, is_user, phys_ptr,
+ prot, page_size);
+ } else if (env->cp15.c1_sys & (1 << 23)) {
+ return get_phys_addr_v6(env, address, access_type, is_user, phys_ptr,
+ prot, page_size);
+ } else {
+ return get_phys_addr_v5(env, address, access_type, is_user, phys_ptr,
+ prot, page_size);
+ }
+}
+
+int cpu_arm_handle_mmu_fault (CPUARMState *env, target_ulong address,
+ int access_type, int mmu_idx)
+{
+ target_phys_addr_t phys_addr;
+ target_ulong page_size;
+ int prot;
+ int ret, is_user;
+
+ is_user = mmu_idx == MMU_USER_IDX;
+ ret = get_phys_addr(env, address, access_type, is_user, &phys_addr, &prot,
+ &page_size);
+ if (ret == 0) {
+ /* Map a single [sub]page. */
+ phys_addr &= ~(target_phys_addr_t)0x3ff;
+ address &= ~(uint32_t)0x3ff;
+ tlb_set_page (env, address, phys_addr, prot, mmu_idx, page_size);
+ return 0;
+ }
+
+ if (access_type == 2) {
+ env->cp15.c5_insn = ret;
+ env->cp15.c6_insn = address;
+ env->exception_index = EXCP_PREFETCH_ABORT;
+ } else {
+ env->cp15.c5_data = ret;
+ if (access_type == 1 && arm_feature(env, ARM_FEATURE_V6))
+ env->cp15.c5_data |= (1 << 11);
+ env->cp15.c6_data = address;
+ env->exception_index = EXCP_DATA_ABORT;
+ }
+ return 1;
+}
+
+target_phys_addr_t cpu_get_phys_page_debug(CPUARMState *env, target_ulong addr)
+{
+ target_phys_addr_t phys_addr;
+ target_ulong page_size;
+ int prot;
+ int ret;
+
+ ret = get_phys_addr(env, addr, 0, 0, &phys_addr, &prot, &page_size);
+
+ if (ret != 0)
+ return -1;
+
+ return phys_addr;
+}
+
+void HELPER(set_r13_banked)(CPUARMState *env, uint32_t mode, uint32_t val)
+{
+ if ((env->uncached_cpsr & CPSR_M) == mode) {
+ env->regs[13] = val;
+ } else {
+ env->banked_r13[bank_number(env, mode)] = val;
+ }
+}
+
+uint32_t HELPER(get_r13_banked)(CPUARMState *env, uint32_t mode)
+{
+ if ((env->uncached_cpsr & CPSR_M) == mode) {
+ return env->regs[13];
+ } else {
+ return env->banked_r13[bank_number(env, mode)];
+ }
+}
+
+uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg)
+{
+ switch (reg) {
+ case 0: /* APSR */
+ return xpsr_read(env) & 0xf8000000;
+ case 1: /* IAPSR */
+ return xpsr_read(env) & 0xf80001ff;
+ case 2: /* EAPSR */
+ return xpsr_read(env) & 0xff00fc00;
+ case 3: /* xPSR */
+ return xpsr_read(env) & 0xff00fdff;
+ case 5: /* IPSR */
+ return xpsr_read(env) & 0x000001ff;
+ case 6: /* EPSR */
+ return xpsr_read(env) & 0x0700fc00;
+ case 7: /* IEPSR */
+ return xpsr_read(env) & 0x0700edff;
+ case 8: /* MSP */
+ return env->v7m.current_sp ? env->v7m.other_sp : env->regs[13];
+ case 9: /* PSP */
+ return env->v7m.current_sp ? env->regs[13] : env->v7m.other_sp;
+ case 16: /* PRIMASK */
+ return (env->uncached_cpsr & CPSR_I) != 0;
+ case 17: /* BASEPRI */
+ case 18: /* BASEPRI_MAX */
+ return env->v7m.basepri;
+ case 19: /* FAULTMASK */
+ return (env->uncached_cpsr & CPSR_F) != 0;
+ case 20: /* CONTROL */
+ return env->v7m.control;
+ default:
+ /* ??? For debugging only. */
+ cpu_abort(env, "Unimplemented system register read (%d)\n", reg);
+ return 0;
+ }
+}
+
+void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val)
+{
+ switch (reg) {
+ case 0: /* APSR */
+ xpsr_write(env, val, 0xf8000000);
+ break;
+ case 1: /* IAPSR */
+ xpsr_write(env, val, 0xf8000000);
+ break;
+ case 2: /* EAPSR */
+ xpsr_write(env, val, 0xfe00fc00);
+ break;
+ case 3: /* xPSR */
+ xpsr_write(env, val, 0xfe00fc00);
+ break;
+ case 5: /* IPSR */
+ /* IPSR bits are readonly. */
+ break;
+ case 6: /* EPSR */
+ xpsr_write(env, val, 0x0600fc00);
+ break;
+ case 7: /* IEPSR */
+ xpsr_write(env, val, 0x0600fc00);
+ break;
+ case 8: /* MSP */
+ if (env->v7m.current_sp)
+ env->v7m.other_sp = val;
+ else
+ env->regs[13] = val;
+ break;
+ case 9: /* PSP */
+ if (env->v7m.current_sp)
+ env->regs[13] = val;
+ else
+ env->v7m.other_sp = val;
+ break;
+ case 16: /* PRIMASK */
+ if (val & 1)
+ env->uncached_cpsr |= CPSR_I;
+ else
+ env->uncached_cpsr &= ~CPSR_I;
+ break;
+ case 17: /* BASEPRI */
+ env->v7m.basepri = val & 0xff;
+ break;
+ case 18: /* BASEPRI_MAX */
+ val &= 0xff;
+ if (val != 0 && (val < env->v7m.basepri || env->v7m.basepri == 0))
+ env->v7m.basepri = val;
+ break;
+ case 19: /* FAULTMASK */
+ if (val & 1)
+ env->uncached_cpsr |= CPSR_F;
+ else
+ env->uncached_cpsr &= ~CPSR_F;
+ break;
+ case 20: /* CONTROL */
+ env->v7m.control = val & 3;
+ switch_v7m_sp(env, (val & 2) != 0);
+ break;
+ default:
+ /* ??? For debugging only. */
+ cpu_abort(env, "Unimplemented system register write (%d)\n", reg);
+ return;
+ }
+}
+
+#endif
+
+/* Note that signed overflow is undefined in C. The following routines are
+ careful to use unsigned types where modulo arithmetic is required.
+ Failure to do so _will_ break on newer gcc. */
+
+/* Signed saturating arithmetic. */
+
+/* Perform 16-bit signed saturating addition. */
+static inline uint16_t add16_sat(uint16_t a, uint16_t b)
+{
+ uint16_t res;
+
+ res = a + b;
+ if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) {
+ if (a & 0x8000)
+ res = 0x8000;
+ else
+ res = 0x7fff;
+ }
+ return res;
+}
+
+/* Perform 8-bit signed saturating addition. */
+static inline uint8_t add8_sat(uint8_t a, uint8_t b)
+{
+ uint8_t res;
+
+ res = a + b;
+ if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) {
+ if (a & 0x80)
+ res = 0x80;
+ else
+ res = 0x7f;
+ }
+ return res;
+}
+
+/* Perform 16-bit signed saturating subtraction. */
+static inline uint16_t sub16_sat(uint16_t a, uint16_t b)
+{
+ uint16_t res;
+
+ res = a - b;
+ if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) {
+ if (a & 0x8000)
+ res = 0x8000;
+ else
+ res = 0x7fff;
+ }
+ return res;
+}
+
+/* Perform 8-bit signed saturating subtraction. */
+static inline uint8_t sub8_sat(uint8_t a, uint8_t b)
+{
+ uint8_t res;
+
+ res = a - b;
+ if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) {
+ if (a & 0x80)
+ res = 0x80;
+ else
+ res = 0x7f;
+ }
+ return res;
+}
+
+#define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16);
+#define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16);
+#define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8);
+#define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8);
+#define PFX q
+
+#include "op_addsub.h"
+
+/* Unsigned saturating arithmetic. */
+static inline uint16_t add16_usat(uint16_t a, uint16_t b)
+{
+ uint16_t res;
+ res = a + b;
+ if (res < a)
+ res = 0xffff;
+ return res;
+}
+
+static inline uint16_t sub16_usat(uint16_t a, uint16_t b)
+{
+ if (a > b)
+ return a - b;
+ else
+ return 0;
+}
+
+static inline uint8_t add8_usat(uint8_t a, uint8_t b)
+{
+ uint8_t res;
+ res = a + b;
+ if (res < a)
+ res = 0xff;
+ return res;
+}
+
+static inline uint8_t sub8_usat(uint8_t a, uint8_t b)
+{
+ if (a > b)
+ return a - b;
+ else
+ return 0;
+}
+
+#define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16);
+#define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16);
+#define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8);
+#define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8);
+#define PFX uq
+
+#include "op_addsub.h"
+
+/* Signed modulo arithmetic. */
+#define SARITH16(a, b, n, op) do { \
+ int32_t sum; \
+ sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \
+ RESULT(sum, n, 16); \
+ if (sum >= 0) \
+ ge |= 3 << (n * 2); \
+ } while(0)
+
+#define SARITH8(a, b, n, op) do { \
+ int32_t sum; \
+ sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \
+ RESULT(sum, n, 8); \
+ if (sum >= 0) \
+ ge |= 1 << n; \
+ } while(0)
+
+
+#define ADD16(a, b, n) SARITH16(a, b, n, +)
+#define SUB16(a, b, n) SARITH16(a, b, n, -)
+#define ADD8(a, b, n) SARITH8(a, b, n, +)
+#define SUB8(a, b, n) SARITH8(a, b, n, -)
+#define PFX s
+#define ARITH_GE
+
+#include "op_addsub.h"
+
+/* Unsigned modulo arithmetic. */
+#define ADD16(a, b, n) do { \
+ uint32_t sum; \
+ sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \
+ RESULT(sum, n, 16); \
+ if ((sum >> 16) == 1) \
+ ge |= 3 << (n * 2); \
+ } while(0)
+
+#define ADD8(a, b, n) do { \
+ uint32_t sum; \
+ sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \
+ RESULT(sum, n, 8); \
+ if ((sum >> 8) == 1) \
+ ge |= 1 << n; \
+ } while(0)
+
+#define SUB16(a, b, n) do { \
+ uint32_t sum; \
+ sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \
+ RESULT(sum, n, 16); \
+ if ((sum >> 16) == 0) \
+ ge |= 3 << (n * 2); \
+ } while(0)
+
+#define SUB8(a, b, n) do { \
+ uint32_t sum; \
+ sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \
+ RESULT(sum, n, 8); \
+ if ((sum >> 8) == 0) \
+ ge |= 1 << n; \
+ } while(0)
+
+#define PFX u
+#define ARITH_GE
+
+#include "op_addsub.h"
+
+/* Halved signed arithmetic. */
+#define ADD16(a, b, n) \
+ RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16)
+#define SUB16(a, b, n) \
+ RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16)
+#define ADD8(a, b, n) \
+ RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8)
+#define SUB8(a, b, n) \
+ RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8)
+#define PFX sh
+
+#include "op_addsub.h"
+
+/* Halved unsigned arithmetic. */
+#define ADD16(a, b, n) \
+ RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16)
+#define SUB16(a, b, n) \
+ RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16)
+#define ADD8(a, b, n) \
+ RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8)
+#define SUB8(a, b, n) \
+ RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8)
+#define PFX uh
+
+#include "op_addsub.h"
+
+static inline uint8_t do_usad(uint8_t a, uint8_t b)
+{
+ if (a > b)
+ return a - b;
+ else
+ return b - a;
+}
+
+/* Unsigned sum of absolute byte differences. */
+uint32_t HELPER(usad8)(uint32_t a, uint32_t b)
+{
+ uint32_t sum;
+ sum = do_usad(a, b);
+ sum += do_usad(a >> 8, b >> 8);
+ sum += do_usad(a >> 16, b >>16);
+ sum += do_usad(a >> 24, b >> 24);
+ return sum;
+}
+
+/* For ARMv6 SEL instruction. */
+uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b)
+{
+ uint32_t mask;
+
+ mask = 0;
+ if (flags & 1)
+ mask |= 0xff;
+ if (flags & 2)
+ mask |= 0xff00;
+ if (flags & 4)
+ mask |= 0xff0000;
+ if (flags & 8)
+ mask |= 0xff000000;
+ return (a & mask) | (b & ~mask);
+}
+
+uint32_t HELPER(logicq_cc)(uint64_t val)
+{
+ return (val >> 32) | (val != 0);
+}
+
+/* VFP support. We follow the convention used for VFP instructions:
+ Single precision routines have a "s" suffix, double precision a
+ "d" suffix. */
+
+/* Convert host exception flags to vfp form. */
+static inline int vfp_exceptbits_from_host(int host_bits)
+{
+ int target_bits = 0;
+
+ if (host_bits & float_flag_invalid)
+ target_bits |= 1;
+ if (host_bits & float_flag_divbyzero)
+ target_bits |= 2;
+ if (host_bits & float_flag_overflow)
+ target_bits |= 4;
+ if (host_bits & (float_flag_underflow | float_flag_output_denormal))
+ target_bits |= 8;
+ if (host_bits & float_flag_inexact)
+ target_bits |= 0x10;
+ if (host_bits & float_flag_input_denormal)
+ target_bits |= 0x80;
+ return target_bits;
+}
+
+uint32_t HELPER(vfp_get_fpscr)(CPUARMState *env)
+{
+ int i;
+ uint32_t fpscr;
+
+ fpscr = (env->vfp.xregs[ARM_VFP_FPSCR] & 0xffc8ffff)
+ | (env->vfp.vec_len << 16)
+ | (env->vfp.vec_stride << 20);
+ i = get_float_exception_flags(&env->vfp.fp_status);
+ i |= get_float_exception_flags(&env->vfp.standard_fp_status);
+ fpscr |= vfp_exceptbits_from_host(i);
+ return fpscr;
+}
+
+uint32_t vfp_get_fpscr(CPUARMState *env)
+{
+ return HELPER(vfp_get_fpscr)(env);
+}
+
+/* Convert vfp exception flags to target form. */
+static inline int vfp_exceptbits_to_host(int target_bits)
+{
+ int host_bits = 0;
+
+ if (target_bits & 1)
+ host_bits |= float_flag_invalid;
+ if (target_bits & 2)
+ host_bits |= float_flag_divbyzero;
+ if (target_bits & 4)
+ host_bits |= float_flag_overflow;
+ if (target_bits & 8)
+ host_bits |= float_flag_underflow;
+ if (target_bits & 0x10)
+ host_bits |= float_flag_inexact;
+ if (target_bits & 0x80)
+ host_bits |= float_flag_input_denormal;
+ return host_bits;
+}
+
+void HELPER(vfp_set_fpscr)(CPUARMState *env, uint32_t val)
+{
+ int i;
+ uint32_t changed;
+
+ changed = env->vfp.xregs[ARM_VFP_FPSCR];
+ env->vfp.xregs[ARM_VFP_FPSCR] = (val & 0xffc8ffff);
+ env->vfp.vec_len = (val >> 16) & 7;
+ env->vfp.vec_stride = (val >> 20) & 3;
+
+ changed ^= val;
+ if (changed & (3 << 22)) {
+ i = (val >> 22) & 3;
+ switch (i) {
+ case 0:
+ i = float_round_nearest_even;
+ break;
+ case 1:
+ i = float_round_up;
+ break;
+ case 2:
+ i = float_round_down;
+ break;
+ case 3:
+ i = float_round_to_zero;
+ break;
+ }
+ set_float_rounding_mode(i, &env->vfp.fp_status);
+ }
+ if (changed & (1 << 24)) {
+ set_flush_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status);
+ set_flush_inputs_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status);
+ }
+ if (changed & (1 << 25))
+ set_default_nan_mode((val & (1 << 25)) != 0, &env->vfp.fp_status);
+
+ i = vfp_exceptbits_to_host(val);
+ set_float_exception_flags(i, &env->vfp.fp_status);
+ set_float_exception_flags(0, &env->vfp.standard_fp_status);
+}
+
+void vfp_set_fpscr(CPUARMState *env, uint32_t val)
+{
+ HELPER(vfp_set_fpscr)(env, val);
+}
+
+#define VFP_HELPER(name, p) HELPER(glue(glue(vfp_,name),p))
+
+#define VFP_BINOP(name) \
+float32 VFP_HELPER(name, s)(float32 a, float32 b, void *fpstp) \
+{ \
+ float_status *fpst = fpstp; \
+ return float32_ ## name(a, b, fpst); \
+} \
+float64 VFP_HELPER(name, d)(float64 a, float64 b, void *fpstp) \
+{ \
+ float_status *fpst = fpstp; \
+ return float64_ ## name(a, b, fpst); \
+}
+VFP_BINOP(add)
+VFP_BINOP(sub)
+VFP_BINOP(mul)
+VFP_BINOP(div)
+#undef VFP_BINOP
+
+float32 VFP_HELPER(neg, s)(float32 a)
+{
+ return float32_chs(a);
+}
+
+float64 VFP_HELPER(neg, d)(float64 a)
+{
+ return float64_chs(a);
+}
+
+float32 VFP_HELPER(abs, s)(float32 a)
+{
+ return float32_abs(a);
+}
+
+float64 VFP_HELPER(abs, d)(float64 a)
+{
+ return float64_abs(a);
+}
+
+float32 VFP_HELPER(sqrt, s)(float32 a, CPUARMState *env)
+{
+ return float32_sqrt(a, &env->vfp.fp_status);
+}
+
+float64 VFP_HELPER(sqrt, d)(float64 a, CPUARMState *env)
+{
+ return float64_sqrt(a, &env->vfp.fp_status);
+}
+
+/* XXX: check quiet/signaling case */
+#define DO_VFP_cmp(p, type) \
+void VFP_HELPER(cmp, p)(type a, type b, CPUARMState *env) \
+{ \
+ uint32_t flags; \
+ switch(type ## _compare_quiet(a, b, &env->vfp.fp_status)) { \
+ case 0: flags = 0x6; break; \
+ case -1: flags = 0x8; break; \
+ case 1: flags = 0x2; break; \
+ default: case 2: flags = 0x3; break; \
+ } \
+ env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
+ | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
+} \
+void VFP_HELPER(cmpe, p)(type a, type b, CPUARMState *env) \
+{ \
+ uint32_t flags; \
+ switch(type ## _compare(a, b, &env->vfp.fp_status)) { \
+ case 0: flags = 0x6; break; \
+ case -1: flags = 0x8; break; \
+ case 1: flags = 0x2; break; \
+ default: case 2: flags = 0x3; break; \
+ } \
+ env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
+ | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
+}
+DO_VFP_cmp(s, float32)
+DO_VFP_cmp(d, float64)
+#undef DO_VFP_cmp
+
+/* Integer to float and float to integer conversions */
+
+#define CONV_ITOF(name, fsz, sign) \
+ float##fsz HELPER(name)(uint32_t x, void *fpstp) \
+{ \
+ float_status *fpst = fpstp; \
+ return sign##int32_to_##float##fsz((sign##int32_t)x, fpst); \
+}
+
+#define CONV_FTOI(name, fsz, sign, round) \
+uint32_t HELPER(name)(float##fsz x, void *fpstp) \
+{ \
+ float_status *fpst = fpstp; \
+ if (float##fsz##_is_any_nan(x)) { \
+ float_raise(float_flag_invalid, fpst); \
+ return 0; \
+ } \
+ return float##fsz##_to_##sign##int32##round(x, fpst); \
+}
+
+#define FLOAT_CONVS(name, p, fsz, sign) \
+CONV_ITOF(vfp_##name##to##p, fsz, sign) \
+CONV_FTOI(vfp_to##name##p, fsz, sign, ) \
+CONV_FTOI(vfp_to##name##z##p, fsz, sign, _round_to_zero)
+
+FLOAT_CONVS(si, s, 32, )
+FLOAT_CONVS(si, d, 64, )
+FLOAT_CONVS(ui, s, 32, u)
+FLOAT_CONVS(ui, d, 64, u)
+
+#undef CONV_ITOF
+#undef CONV_FTOI
+#undef FLOAT_CONVS
+
+/* floating point conversion */
+float64 VFP_HELPER(fcvtd, s)(float32 x, CPUARMState *env)
+{
+ float64 r = float32_to_float64(x, &env->vfp.fp_status);
+ /* ARM requires that S<->D conversion of any kind of NaN generates
+ * a quiet NaN by forcing the most significant frac bit to 1.
+ */
+ return float64_maybe_silence_nan(r);
+}
+
+float32 VFP_HELPER(fcvts, d)(float64 x, CPUARMState *env)
+{
+ float32 r = float64_to_float32(x, &env->vfp.fp_status);
+ /* ARM requires that S<->D conversion of any kind of NaN generates
+ * a quiet NaN by forcing the most significant frac bit to 1.
+ */
+ return float32_maybe_silence_nan(r);
+}
+
+/* VFP3 fixed point conversion. */
+#define VFP_CONV_FIX(name, p, fsz, itype, sign) \
+float##fsz HELPER(vfp_##name##to##p)(uint##fsz##_t x, uint32_t shift, \
+ void *fpstp) \
+{ \
+ float_status *fpst = fpstp; \
+ float##fsz tmp; \
+ tmp = sign##int32_to_##float##fsz((itype##_t)x, fpst); \
+ return float##fsz##_scalbn(tmp, -(int)shift, fpst); \
+} \
+uint##fsz##_t HELPER(vfp_to##name##p)(float##fsz x, uint32_t shift, \
+ void *fpstp) \
+{ \
+ float_status *fpst = fpstp; \
+ float##fsz tmp; \
+ if (float##fsz##_is_any_nan(x)) { \
+ float_raise(float_flag_invalid, fpst); \
+ return 0; \
+ } \
+ tmp = float##fsz##_scalbn(x, shift, fpst); \
+ return float##fsz##_to_##itype##_round_to_zero(tmp, fpst); \
+}
+
+VFP_CONV_FIX(sh, d, 64, int16, )
+VFP_CONV_FIX(sl, d, 64, int32, )
+VFP_CONV_FIX(uh, d, 64, uint16, u)
+VFP_CONV_FIX(ul, d, 64, uint32, u)
+VFP_CONV_FIX(sh, s, 32, int16, )
+VFP_CONV_FIX(sl, s, 32, int32, )
+VFP_CONV_FIX(uh, s, 32, uint16, u)
+VFP_CONV_FIX(ul, s, 32, uint32, u)
+#undef VFP_CONV_FIX
+
+/* Half precision conversions. */
+static float32 do_fcvt_f16_to_f32(uint32_t a, CPUARMState *env, float_status *s)
+{
+ int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
+ float32 r = float16_to_float32(make_float16(a), ieee, s);
+ if (ieee) {
+ return float32_maybe_silence_nan(r);
+ }
+ return r;
+}
+
+static uint32_t do_fcvt_f32_to_f16(float32 a, CPUARMState *env, float_status *s)
+{
+ int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
+ float16 r = float32_to_float16(a, ieee, s);
+ if (ieee) {
+ r = float16_maybe_silence_nan(r);
+ }
+ return float16_val(r);
+}
+
+float32 HELPER(neon_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env)
+{
+ return do_fcvt_f16_to_f32(a, env, &env->vfp.standard_fp_status);
+}
+
+uint32_t HELPER(neon_fcvt_f32_to_f16)(float32 a, CPUARMState *env)
+{
+ return do_fcvt_f32_to_f16(a, env, &env->vfp.standard_fp_status);
+}
+
+float32 HELPER(vfp_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env)
+{
+ return do_fcvt_f16_to_f32(a, env, &env->vfp.fp_status);
+}
+
+uint32_t HELPER(vfp_fcvt_f32_to_f16)(float32 a, CPUARMState *env)
+{
+ return do_fcvt_f32_to_f16(a, env, &env->vfp.fp_status);
+}
+
+#define float32_two make_float32(0x40000000)
+#define float32_three make_float32(0x40400000)
+#define float32_one_point_five make_float32(0x3fc00000)
+
+float32 HELPER(recps_f32)(float32 a, float32 b, CPUARMState *env)
+{
+ float_status *s = &env->vfp.standard_fp_status;
+ if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) ||
+ (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) {
+ if (!(float32_is_zero(a) || float32_is_zero(b))) {
+ float_raise(float_flag_input_denormal, s);
+ }
+ return float32_two;
+ }
+ return float32_sub(float32_two, float32_mul(a, b, s), s);
+}
+
+float32 HELPER(rsqrts_f32)(float32 a, float32 b, CPUARMState *env)
+{
+ float_status *s = &env->vfp.standard_fp_status;
+ float32 product;
+ if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) ||
+ (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) {
+ if (!(float32_is_zero(a) || float32_is_zero(b))) {
+ float_raise(float_flag_input_denormal, s);
+ }
+ return float32_one_point_five;
+ }
+ product = float32_mul(a, b, s);
+ return float32_div(float32_sub(float32_three, product, s), float32_two, s);
+}
+
+/* NEON helpers. */
+
+/* Constants 256 and 512 are used in some helpers; we avoid relying on
+ * int->float conversions at run-time. */
+#define float64_256 make_float64(0x4070000000000000LL)
+#define float64_512 make_float64(0x4080000000000000LL)
+
+/* The algorithm that must be used to calculate the estimate
+ * is specified by the ARM ARM.
+ */
+static float64 recip_estimate(float64 a, CPUARMState *env)
+{
+ /* These calculations mustn't set any fp exception flags,
+ * so we use a local copy of the fp_status.
+ */
+ float_status dummy_status = env->vfp.standard_fp_status;
+ float_status *s = &dummy_status;
+ /* q = (int)(a * 512.0) */
+ float64 q = float64_mul(float64_512, a, s);
+ int64_t q_int = float64_to_int64_round_to_zero(q, s);
+
+ /* r = 1.0 / (((double)q + 0.5) / 512.0) */
+ q = int64_to_float64(q_int, s);
+ q = float64_add(q, float64_half, s);
+ q = float64_div(q, float64_512, s);
+ q = float64_div(float64_one, q, s);
+
+ /* s = (int)(256.0 * r + 0.5) */
+ q = float64_mul(q, float64_256, s);
+ q = float64_add(q, float64_half, s);
+ q_int = float64_to_int64_round_to_zero(q, s);
+
+ /* return (double)s / 256.0 */
+ return float64_div(int64_to_float64(q_int, s), float64_256, s);
+}
+
+float32 HELPER(recpe_f32)(float32 a, CPUARMState *env)
+{
+ float_status *s = &env->vfp.standard_fp_status;
+ float64 f64;
+ uint32_t val32 = float32_val(a);
+
+ int result_exp;
+ int a_exp = (val32 & 0x7f800000) >> 23;
+ int sign = val32 & 0x80000000;
+
+ if (float32_is_any_nan(a)) {
+ if (float32_is_signaling_nan(a)) {
+ float_raise(float_flag_invalid, s);
+ }
+ return float32_default_nan;
+ } else if (float32_is_infinity(a)) {
+ return float32_set_sign(float32_zero, float32_is_neg(a));
+ } else if (float32_is_zero_or_denormal(a)) {
+ if (!float32_is_zero(a)) {
+ float_raise(float_flag_input_denormal, s);
+ }
+ float_raise(float_flag_divbyzero, s);
+ return float32_set_sign(float32_infinity, float32_is_neg(a));
+ } else if (a_exp >= 253) {
+ float_raise(float_flag_underflow, s);
+ return float32_set_sign(float32_zero, float32_is_neg(a));
+ }
+
+ f64 = make_float64((0x3feULL << 52)
+ | ((int64_t)(val32 & 0x7fffff) << 29));
+
+ result_exp = 253 - a_exp;
+
+ f64 = recip_estimate(f64, env);
+
+ val32 = sign
+ | ((result_exp & 0xff) << 23)
+ | ((float64_val(f64) >> 29) & 0x7fffff);
+ return make_float32(val32);
+}
+
+/* The algorithm that must be used to calculate the estimate
+ * is specified by the ARM ARM.
+ */
+static float64 recip_sqrt_estimate(float64 a, CPUARMState *env)
+{
+ /* These calculations mustn't set any fp exception flags,
+ * so we use a local copy of the fp_status.
+ */
+ float_status dummy_status = env->vfp.standard_fp_status;
+ float_status *s = &dummy_status;
+ float64 q;
+ int64_t q_int;
+
+ if (float64_lt(a, float64_half, s)) {
+ /* range 0.25 <= a < 0.5 */
+
+ /* a in units of 1/512 rounded down */
+ /* q0 = (int)(a * 512.0); */
+ q = float64_mul(float64_512, a, s);
+ q_int = float64_to_int64_round_to_zero(q, s);
+
+ /* reciprocal root r */
+ /* r = 1.0 / sqrt(((double)q0 + 0.5) / 512.0); */
+ q = int64_to_float64(q_int, s);
+ q = float64_add(q, float64_half, s);
+ q = float64_div(q, float64_512, s);
+ q = float64_sqrt(q, s);
+ q = float64_div(float64_one, q, s);
+ } else {
+ /* range 0.5 <= a < 1.0 */
+
+ /* a in units of 1/256 rounded down */
+ /* q1 = (int)(a * 256.0); */
+ q = float64_mul(float64_256, a, s);
+ int64_t q_int = float64_to_int64_round_to_zero(q, s);
+
+ /* reciprocal root r */
+ /* r = 1.0 /sqrt(((double)q1 + 0.5) / 256); */
+ q = int64_to_float64(q_int, s);
+ q = float64_add(q, float64_half, s);
+ q = float64_div(q, float64_256, s);
+ q = float64_sqrt(q, s);
+ q = float64_div(float64_one, q, s);
+ }
+ /* r in units of 1/256 rounded to nearest */
+ /* s = (int)(256.0 * r + 0.5); */
+
+ q = float64_mul(q, float64_256,s );
+ q = float64_add(q, float64_half, s);
+ q_int = float64_to_int64_round_to_zero(q, s);
+
+ /* return (double)s / 256.0;*/
+ return float64_div(int64_to_float64(q_int, s), float64_256, s);
+}
+
+float32 HELPER(rsqrte_f32)(float32 a, CPUARMState *env)
+{
+ float_status *s = &env->vfp.standard_fp_status;
+ int result_exp;
+ float64 f64;
+ uint32_t val;
+ uint64_t val64;
+
+ val = float32_val(a);
+
+ if (float32_is_any_nan(a)) {
+ if (float32_is_signaling_nan(a)) {
+ float_raise(float_flag_invalid, s);
+ }
+ return float32_default_nan;
+ } else if (float32_is_zero_or_denormal(a)) {
+ if (!float32_is_zero(a)) {
+ float_raise(float_flag_input_denormal, s);
+ }
+ float_raise(float_flag_divbyzero, s);
+ return float32_set_sign(float32_infinity, float32_is_neg(a));
+ } else if (float32_is_neg(a)) {
+ float_raise(float_flag_invalid, s);
+ return float32_default_nan;
+ } else if (float32_is_infinity(a)) {
+ return float32_zero;
+ }
+
+ /* Normalize to a double-precision value between 0.25 and 1.0,
+ * preserving the parity of the exponent. */
+ if ((val & 0x800000) == 0) {
+ f64 = make_float64(((uint64_t)(val & 0x80000000) << 32)
+ | (0x3feULL << 52)
+ | ((uint64_t)(val & 0x7fffff) << 29));
+ } else {
+ f64 = make_float64(((uint64_t)(val & 0x80000000) << 32)
+ | (0x3fdULL << 52)
+ | ((uint64_t)(val & 0x7fffff) << 29));
+ }
+
+ result_exp = (380 - ((val & 0x7f800000) >> 23)) / 2;
+
+ f64 = recip_sqrt_estimate(f64, env);
+
+ val64 = float64_val(f64);
+
+ val = ((result_exp & 0xff) << 23)
+ | ((val64 >> 29) & 0x7fffff);
+ return make_float32(val);
+}
+
+uint32_t HELPER(recpe_u32)(uint32_t a, CPUARMState *env)
+{
+ float64 f64;
+
+ if ((a & 0x80000000) == 0) {
+ return 0xffffffff;
+ }
+
+ f64 = make_float64((0x3feULL << 52)
+ | ((int64_t)(a & 0x7fffffff) << 21));
+
+ f64 = recip_estimate (f64, env);
+
+ return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff);
+}
+
+uint32_t HELPER(rsqrte_u32)(uint32_t a, CPUARMState *env)
+{
+ float64 f64;
+
+ if ((a & 0xc0000000) == 0) {
+ return 0xffffffff;
+ }
+
+ if (a & 0x80000000) {
+ f64 = make_float64((0x3feULL << 52)
+ | ((uint64_t)(a & 0x7fffffff) << 21));
+ } else { /* bits 31-30 == '01' */
+ f64 = make_float64((0x3fdULL << 52)
+ | ((uint64_t)(a & 0x3fffffff) << 22));
+ }
+
+ f64 = recip_sqrt_estimate(f64, env);
+
+ return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff);
+}
+
+/* VFPv4 fused multiply-accumulate */
+float32 VFP_HELPER(muladd, s)(float32 a, float32 b, float32 c, void *fpstp)
+{
+ float_status *fpst = fpstp;
+ return float32_muladd(a, b, c, 0, fpst);
+}
+
+float64 VFP_HELPER(muladd, d)(float64 a, float64 b, float64 c, void *fpstp)
+{
+ float_status *fpst = fpstp;
+ return float64_muladd(a, b, c, 0, fpst);
+}
diff --git a/target-arm/helper.h b/target-arm/helper.h
new file mode 100644
index 000000000..21e9cfe05
--- /dev/null
+++ b/target-arm/helper.h
@@ -0,0 +1,472 @@
+#include "def-helper.h"
+
+DEF_HELPER_1(clz, i32, i32)
+DEF_HELPER_1(sxtb16, i32, i32)
+DEF_HELPER_1(uxtb16, i32, i32)
+
+DEF_HELPER_2(add_setq, i32, i32, i32)
+DEF_HELPER_2(add_saturate, i32, i32, i32)
+DEF_HELPER_2(sub_saturate, i32, i32, i32)
+DEF_HELPER_2(add_usaturate, i32, i32, i32)
+DEF_HELPER_2(sub_usaturate, i32, i32, i32)
+DEF_HELPER_1(double_saturate, i32, s32)
+DEF_HELPER_2(sdiv, s32, s32, s32)
+DEF_HELPER_2(udiv, i32, i32, i32)
+DEF_HELPER_1(rbit, i32, i32)
+DEF_HELPER_1(abs, i32, i32)
+
+#define PAS_OP(pfx) \
+ DEF_HELPER_3(pfx ## add8, i32, i32, i32, ptr) \
+ DEF_HELPER_3(pfx ## sub8, i32, i32, i32, ptr) \
+ DEF_HELPER_3(pfx ## sub16, i32, i32, i32, ptr) \
+ DEF_HELPER_3(pfx ## add16, i32, i32, i32, ptr) \
+ DEF_HELPER_3(pfx ## addsubx, i32, i32, i32, ptr) \
+ DEF_HELPER_3(pfx ## subaddx, i32, i32, i32, ptr)
+
+PAS_OP(s)
+PAS_OP(u)
+#undef PAS_OP
+
+#define PAS_OP(pfx) \
+ DEF_HELPER_2(pfx ## add8, i32, i32, i32) \
+ DEF_HELPER_2(pfx ## sub8, i32, i32, i32) \
+ DEF_HELPER_2(pfx ## sub16, i32, i32, i32) \
+ DEF_HELPER_2(pfx ## add16, i32, i32, i32) \
+ DEF_HELPER_2(pfx ## addsubx, i32, i32, i32) \
+ DEF_HELPER_2(pfx ## subaddx, i32, i32, i32)
+PAS_OP(q)
+PAS_OP(sh)
+PAS_OP(uq)
+PAS_OP(uh)
+#undef PAS_OP
+
+DEF_HELPER_2(ssat, i32, i32, i32)
+DEF_HELPER_2(usat, i32, i32, i32)
+DEF_HELPER_2(ssat16, i32, i32, i32)
+DEF_HELPER_2(usat16, i32, i32, i32)
+
+DEF_HELPER_2(usad8, i32, i32, i32)
+
+DEF_HELPER_1(logicq_cc, i32, i64)
+
+DEF_HELPER_3(sel_flags, i32, i32, i32, i32)
+DEF_HELPER_1(exception, void, i32)
+DEF_HELPER_0(wfi, void)
+
+DEF_HELPER_2(cpsr_write, void, i32, i32)
+DEF_HELPER_0(cpsr_read, i32)
+
+DEF_HELPER_3(v7m_msr, void, env, i32, i32)
+DEF_HELPER_2(v7m_mrs, i32, env, i32)
+
+DEF_HELPER_3(set_cp_reg, void, env, ptr, i32)
+DEF_HELPER_2(get_cp_reg, i32, env, ptr)
+DEF_HELPER_3(set_cp_reg64, void, env, ptr, i64)
+DEF_HELPER_2(get_cp_reg64, i64, env, ptr)
+
+DEF_HELPER_2(get_r13_banked, i32, env, i32)
+DEF_HELPER_3(set_r13_banked, void, env, i32, i32)
+
+DEF_HELPER_1(get_user_reg, i32, i32)
+DEF_HELPER_2(set_user_reg, void, i32, i32)
+
+DEF_HELPER_1(vfp_get_fpscr, i32, env)
+DEF_HELPER_2(vfp_set_fpscr, void, env, i32)
+
+DEF_HELPER_3(vfp_adds, f32, f32, f32, ptr)
+DEF_HELPER_3(vfp_addd, f64, f64, f64, ptr)
+DEF_HELPER_3(vfp_subs, f32, f32, f32, ptr)
+DEF_HELPER_3(vfp_subd, f64, f64, f64, ptr)
+DEF_HELPER_3(vfp_muls, f32, f32, f32, ptr)
+DEF_HELPER_3(vfp_muld, f64, f64, f64, ptr)
+DEF_HELPER_3(vfp_divs, f32, f32, f32, ptr)
+DEF_HELPER_3(vfp_divd, f64, f64, f64, ptr)
+DEF_HELPER_1(vfp_negs, f32, f32)
+DEF_HELPER_1(vfp_negd, f64, f64)
+DEF_HELPER_1(vfp_abss, f32, f32)
+DEF_HELPER_1(vfp_absd, f64, f64)
+DEF_HELPER_2(vfp_sqrts, f32, f32, env)
+DEF_HELPER_2(vfp_sqrtd, f64, f64, env)
+DEF_HELPER_3(vfp_cmps, void, f32, f32, env)
+DEF_HELPER_3(vfp_cmpd, void, f64, f64, env)
+DEF_HELPER_3(vfp_cmpes, void, f32, f32, env)
+DEF_HELPER_3(vfp_cmped, void, f64, f64, env)
+
+DEF_HELPER_2(vfp_fcvtds, f64, f32, env)
+DEF_HELPER_2(vfp_fcvtsd, f32, f64, env)
+
+DEF_HELPER_2(vfp_uitos, f32, i32, ptr)
+DEF_HELPER_2(vfp_uitod, f64, i32, ptr)
+DEF_HELPER_2(vfp_sitos, f32, i32, ptr)
+DEF_HELPER_2(vfp_sitod, f64, i32, ptr)
+
+DEF_HELPER_2(vfp_touis, i32, f32, ptr)
+DEF_HELPER_2(vfp_touid, i32, f64, ptr)
+DEF_HELPER_2(vfp_touizs, i32, f32, ptr)
+DEF_HELPER_2(vfp_touizd, i32, f64, ptr)
+DEF_HELPER_2(vfp_tosis, i32, f32, ptr)
+DEF_HELPER_2(vfp_tosid, i32, f64, ptr)
+DEF_HELPER_2(vfp_tosizs, i32, f32, ptr)
+DEF_HELPER_2(vfp_tosizd, i32, f64, ptr)
+
+DEF_HELPER_3(vfp_toshs, i32, f32, i32, ptr)
+DEF_HELPER_3(vfp_tosls, i32, f32, i32, ptr)
+DEF_HELPER_3(vfp_touhs, i32, f32, i32, ptr)
+DEF_HELPER_3(vfp_touls, i32, f32, i32, ptr)
+DEF_HELPER_3(vfp_toshd, i64, f64, i32, ptr)
+DEF_HELPER_3(vfp_tosld, i64, f64, i32, ptr)
+DEF_HELPER_3(vfp_touhd, i64, f64, i32, ptr)
+DEF_HELPER_3(vfp_tould, i64, f64, i32, ptr)
+DEF_HELPER_3(vfp_shtos, f32, i32, i32, ptr)
+DEF_HELPER_3(vfp_sltos, f32, i32, i32, ptr)
+DEF_HELPER_3(vfp_uhtos, f32, i32, i32, ptr)
+DEF_HELPER_3(vfp_ultos, f32, i32, i32, ptr)
+DEF_HELPER_3(vfp_shtod, f64, i64, i32, ptr)
+DEF_HELPER_3(vfp_sltod, f64, i64, i32, ptr)
+DEF_HELPER_3(vfp_uhtod, f64, i64, i32, ptr)
+DEF_HELPER_3(vfp_ultod, f64, i64, i32, ptr)
+
+DEF_HELPER_2(vfp_fcvt_f16_to_f32, f32, i32, env)
+DEF_HELPER_2(vfp_fcvt_f32_to_f16, i32, f32, env)
+DEF_HELPER_2(neon_fcvt_f16_to_f32, f32, i32, env)
+DEF_HELPER_2(neon_fcvt_f32_to_f16, i32, f32, env)
+
+DEF_HELPER_4(vfp_muladdd, f64, f64, f64, f64, ptr)
+DEF_HELPER_4(vfp_muladds, f32, f32, f32, f32, ptr)
+
+DEF_HELPER_3(recps_f32, f32, f32, f32, env)
+DEF_HELPER_3(rsqrts_f32, f32, f32, f32, env)
+DEF_HELPER_2(recpe_f32, f32, f32, env)
+DEF_HELPER_2(rsqrte_f32, f32, f32, env)
+DEF_HELPER_2(recpe_u32, i32, i32, env)
+DEF_HELPER_2(rsqrte_u32, i32, i32, env)
+DEF_HELPER_4(neon_tbl, i32, i32, i32, i32, i32)
+
+DEF_HELPER_2(add_cc, i32, i32, i32)
+DEF_HELPER_2(adc_cc, i32, i32, i32)
+DEF_HELPER_2(sub_cc, i32, i32, i32)
+DEF_HELPER_2(sbc_cc, i32, i32, i32)
+
+DEF_HELPER_2(shl, i32, i32, i32)
+DEF_HELPER_2(shr, i32, i32, i32)
+DEF_HELPER_2(sar, i32, i32, i32)
+DEF_HELPER_2(shl_cc, i32, i32, i32)
+DEF_HELPER_2(shr_cc, i32, i32, i32)
+DEF_HELPER_2(sar_cc, i32, i32, i32)
+DEF_HELPER_2(ror_cc, i32, i32, i32)
+
+/* neon_helper.c */
+DEF_HELPER_3(neon_qadd_u8, i32, env, i32, i32)
+DEF_HELPER_3(neon_qadd_s8, i32, env, i32, i32)
+DEF_HELPER_3(neon_qadd_u16, i32, env, i32, i32)
+DEF_HELPER_3(neon_qadd_s16, i32, env, i32, i32)
+DEF_HELPER_3(neon_qadd_u32, i32, env, i32, i32)
+DEF_HELPER_3(neon_qadd_s32, i32, env, i32, i32)
+DEF_HELPER_3(neon_qsub_u8, i32, env, i32, i32)
+DEF_HELPER_3(neon_qsub_s8, i32, env, i32, i32)
+DEF_HELPER_3(neon_qsub_u16, i32, env, i32, i32)
+DEF_HELPER_3(neon_qsub_s16, i32, env, i32, i32)
+DEF_HELPER_3(neon_qsub_u32, i32, env, i32, i32)
+DEF_HELPER_3(neon_qsub_s32, i32, env, i32, i32)
+DEF_HELPER_3(neon_qadd_u64, i64, env, i64, i64)
+DEF_HELPER_3(neon_qadd_s64, i64, env, i64, i64)
+DEF_HELPER_3(neon_qsub_u64, i64, env, i64, i64)
+DEF_HELPER_3(neon_qsub_s64, i64, env, i64, i64)
+
+DEF_HELPER_2(neon_hadd_s8, i32, i32, i32)
+DEF_HELPER_2(neon_hadd_u8, i32, i32, i32)
+DEF_HELPER_2(neon_hadd_s16, i32, i32, i32)
+DEF_HELPER_2(neon_hadd_u16, i32, i32, i32)
+DEF_HELPER_2(neon_hadd_s32, s32, s32, s32)
+DEF_HELPER_2(neon_hadd_u32, i32, i32, i32)
+DEF_HELPER_2(neon_rhadd_s8, i32, i32, i32)
+DEF_HELPER_2(neon_rhadd_u8, i32, i32, i32)
+DEF_HELPER_2(neon_rhadd_s16, i32, i32, i32)
+DEF_HELPER_2(neon_rhadd_u16, i32, i32, i32)
+DEF_HELPER_2(neon_rhadd_s32, s32, s32, s32)
+DEF_HELPER_2(neon_rhadd_u32, i32, i32, i32)
+DEF_HELPER_2(neon_hsub_s8, i32, i32, i32)
+DEF_HELPER_2(neon_hsub_u8, i32, i32, i32)
+DEF_HELPER_2(neon_hsub_s16, i32, i32, i32)
+DEF_HELPER_2(neon_hsub_u16, i32, i32, i32)
+DEF_HELPER_2(neon_hsub_s32, s32, s32, s32)
+DEF_HELPER_2(neon_hsub_u32, i32, i32, i32)
+
+DEF_HELPER_2(neon_cgt_u8, i32, i32, i32)
+DEF_HELPER_2(neon_cgt_s8, i32, i32, i32)
+DEF_HELPER_2(neon_cgt_u16, i32, i32, i32)
+DEF_HELPER_2(neon_cgt_s16, i32, i32, i32)
+DEF_HELPER_2(neon_cgt_u32, i32, i32, i32)
+DEF_HELPER_2(neon_cgt_s32, i32, i32, i32)
+DEF_HELPER_2(neon_cge_u8, i32, i32, i32)
+DEF_HELPER_2(neon_cge_s8, i32, i32, i32)
+DEF_HELPER_2(neon_cge_u16, i32, i32, i32)
+DEF_HELPER_2(neon_cge_s16, i32, i32, i32)
+DEF_HELPER_2(neon_cge_u32, i32, i32, i32)
+DEF_HELPER_2(neon_cge_s32, i32, i32, i32)
+
+DEF_HELPER_2(neon_min_u8, i32, i32, i32)
+DEF_HELPER_2(neon_min_s8, i32, i32, i32)
+DEF_HELPER_2(neon_min_u16, i32, i32, i32)
+DEF_HELPER_2(neon_min_s16, i32, i32, i32)
+DEF_HELPER_2(neon_min_u32, i32, i32, i32)
+DEF_HELPER_2(neon_min_s32, i32, i32, i32)
+DEF_HELPER_2(neon_max_u8, i32, i32, i32)
+DEF_HELPER_2(neon_max_s8, i32, i32, i32)
+DEF_HELPER_2(neon_max_u16, i32, i32, i32)
+DEF_HELPER_2(neon_max_s16, i32, i32, i32)
+DEF_HELPER_2(neon_max_u32, i32, i32, i32)
+DEF_HELPER_2(neon_max_s32, i32, i32, i32)
+DEF_HELPER_2(neon_pmin_u8, i32, i32, i32)
+DEF_HELPER_2(neon_pmin_s8, i32, i32, i32)
+DEF_HELPER_2(neon_pmin_u16, i32, i32, i32)
+DEF_HELPER_2(neon_pmin_s16, i32, i32, i32)
+DEF_HELPER_2(neon_pmax_u8, i32, i32, i32)
+DEF_HELPER_2(neon_pmax_s8, i32, i32, i32)
+DEF_HELPER_2(neon_pmax_u16, i32, i32, i32)
+DEF_HELPER_2(neon_pmax_s16, i32, i32, i32)
+
+DEF_HELPER_2(neon_abd_u8, i32, i32, i32)
+DEF_HELPER_2(neon_abd_s8, i32, i32, i32)
+DEF_HELPER_2(neon_abd_u16, i32, i32, i32)
+DEF_HELPER_2(neon_abd_s16, i32, i32, i32)
+DEF_HELPER_2(neon_abd_u32, i32, i32, i32)
+DEF_HELPER_2(neon_abd_s32, i32, i32, i32)
+
+DEF_HELPER_2(neon_shl_u8, i32, i32, i32)
+DEF_HELPER_2(neon_shl_s8, i32, i32, i32)
+DEF_HELPER_2(neon_shl_u16, i32, i32, i32)
+DEF_HELPER_2(neon_shl_s16, i32, i32, i32)
+DEF_HELPER_2(neon_shl_u32, i32, i32, i32)
+DEF_HELPER_2(neon_shl_s32, i32, i32, i32)
+DEF_HELPER_2(neon_shl_u64, i64, i64, i64)
+DEF_HELPER_2(neon_shl_s64, i64, i64, i64)
+DEF_HELPER_2(neon_rshl_u8, i32, i32, i32)
+DEF_HELPER_2(neon_rshl_s8, i32, i32, i32)
+DEF_HELPER_2(neon_rshl_u16, i32, i32, i32)
+DEF_HELPER_2(neon_rshl_s16, i32, i32, i32)
+DEF_HELPER_2(neon_rshl_u32, i32, i32, i32)
+DEF_HELPER_2(neon_rshl_s32, i32, i32, i32)
+DEF_HELPER_2(neon_rshl_u64, i64, i64, i64)
+DEF_HELPER_2(neon_rshl_s64, i64, i64, i64)
+DEF_HELPER_3(neon_qshl_u8, i32, env, i32, i32)
+DEF_HELPER_3(neon_qshl_s8, i32, env, i32, i32)
+DEF_HELPER_3(neon_qshl_u16, i32, env, i32, i32)
+DEF_HELPER_3(neon_qshl_s16, i32, env, i32, i32)
+DEF_HELPER_3(neon_qshl_u32, i32, env, i32, i32)
+DEF_HELPER_3(neon_qshl_s32, i32, env, i32, i32)
+DEF_HELPER_3(neon_qshl_u64, i64, env, i64, i64)
+DEF_HELPER_3(neon_qshl_s64, i64, env, i64, i64)
+DEF_HELPER_3(neon_qshlu_s8, i32, env, i32, i32);
+DEF_HELPER_3(neon_qshlu_s16, i32, env, i32, i32);
+DEF_HELPER_3(neon_qshlu_s32, i32, env, i32, i32);
+DEF_HELPER_3(neon_qshlu_s64, i64, env, i64, i64);
+DEF_HELPER_3(neon_qrshl_u8, i32, env, i32, i32)
+DEF_HELPER_3(neon_qrshl_s8, i32, env, i32, i32)
+DEF_HELPER_3(neon_qrshl_u16, i32, env, i32, i32)
+DEF_HELPER_3(neon_qrshl_s16, i32, env, i32, i32)
+DEF_HELPER_3(neon_qrshl_u32, i32, env, i32, i32)
+DEF_HELPER_3(neon_qrshl_s32, i32, env, i32, i32)
+DEF_HELPER_3(neon_qrshl_u64, i64, env, i64, i64)
+DEF_HELPER_3(neon_qrshl_s64, i64, env, i64, i64)
+
+DEF_HELPER_2(neon_add_u8, i32, i32, i32)
+DEF_HELPER_2(neon_add_u16, i32, i32, i32)
+DEF_HELPER_2(neon_padd_u8, i32, i32, i32)
+DEF_HELPER_2(neon_padd_u16, i32, i32, i32)
+DEF_HELPER_2(neon_sub_u8, i32, i32, i32)
+DEF_HELPER_2(neon_sub_u16, i32, i32, i32)
+DEF_HELPER_2(neon_mul_u8, i32, i32, i32)
+DEF_HELPER_2(neon_mul_u16, i32, i32, i32)
+DEF_HELPER_2(neon_mul_p8, i32, i32, i32)
+DEF_HELPER_2(neon_mull_p8, i64, i32, i32)
+
+DEF_HELPER_2(neon_tst_u8, i32, i32, i32)
+DEF_HELPER_2(neon_tst_u16, i32, i32, i32)
+DEF_HELPER_2(neon_tst_u32, i32, i32, i32)
+DEF_HELPER_2(neon_ceq_u8, i32, i32, i32)
+DEF_HELPER_2(neon_ceq_u16, i32, i32, i32)
+DEF_HELPER_2(neon_ceq_u32, i32, i32, i32)
+
+DEF_HELPER_1(neon_abs_s8, i32, i32)
+DEF_HELPER_1(neon_abs_s16, i32, i32)
+DEF_HELPER_1(neon_clz_u8, i32, i32)
+DEF_HELPER_1(neon_clz_u16, i32, i32)
+DEF_HELPER_1(neon_cls_s8, i32, i32)
+DEF_HELPER_1(neon_cls_s16, i32, i32)
+DEF_HELPER_1(neon_cls_s32, i32, i32)
+DEF_HELPER_1(neon_cnt_u8, i32, i32)
+
+DEF_HELPER_3(neon_qdmulh_s16, i32, env, i32, i32)
+DEF_HELPER_3(neon_qrdmulh_s16, i32, env, i32, i32)
+DEF_HELPER_3(neon_qdmulh_s32, i32, env, i32, i32)
+DEF_HELPER_3(neon_qrdmulh_s32, i32, env, i32, i32)
+
+DEF_HELPER_1(neon_narrow_u8, i32, i64)
+DEF_HELPER_1(neon_narrow_u16, i32, i64)
+DEF_HELPER_2(neon_unarrow_sat8, i32, env, i64)
+DEF_HELPER_2(neon_narrow_sat_u8, i32, env, i64)
+DEF_HELPER_2(neon_narrow_sat_s8, i32, env, i64)
+DEF_HELPER_2(neon_unarrow_sat16, i32, env, i64)
+DEF_HELPER_2(neon_narrow_sat_u16, i32, env, i64)
+DEF_HELPER_2(neon_narrow_sat_s16, i32, env, i64)
+DEF_HELPER_2(neon_unarrow_sat32, i32, env, i64)
+DEF_HELPER_2(neon_narrow_sat_u32, i32, env, i64)
+DEF_HELPER_2(neon_narrow_sat_s32, i32, env, i64)
+DEF_HELPER_1(neon_narrow_high_u8, i32, i64)
+DEF_HELPER_1(neon_narrow_high_u16, i32, i64)
+DEF_HELPER_1(neon_narrow_round_high_u8, i32, i64)
+DEF_HELPER_1(neon_narrow_round_high_u16, i32, i64)
+DEF_HELPER_1(neon_widen_u8, i64, i32)
+DEF_HELPER_1(neon_widen_s8, i64, i32)
+DEF_HELPER_1(neon_widen_u16, i64, i32)
+DEF_HELPER_1(neon_widen_s16, i64, i32)
+
+DEF_HELPER_2(neon_addl_u16, i64, i64, i64)
+DEF_HELPER_2(neon_addl_u32, i64, i64, i64)
+DEF_HELPER_2(neon_paddl_u16, i64, i64, i64)
+DEF_HELPER_2(neon_paddl_u32, i64, i64, i64)
+DEF_HELPER_2(neon_subl_u16, i64, i64, i64)
+DEF_HELPER_2(neon_subl_u32, i64, i64, i64)
+DEF_HELPER_3(neon_addl_saturate_s32, i64, env, i64, i64)
+DEF_HELPER_3(neon_addl_saturate_s64, i64, env, i64, i64)
+DEF_HELPER_2(neon_abdl_u16, i64, i32, i32)
+DEF_HELPER_2(neon_abdl_s16, i64, i32, i32)
+DEF_HELPER_2(neon_abdl_u32, i64, i32, i32)
+DEF_HELPER_2(neon_abdl_s32, i64, i32, i32)
+DEF_HELPER_2(neon_abdl_u64, i64, i32, i32)
+DEF_HELPER_2(neon_abdl_s64, i64, i32, i32)
+DEF_HELPER_2(neon_mull_u8, i64, i32, i32)
+DEF_HELPER_2(neon_mull_s8, i64, i32, i32)
+DEF_HELPER_2(neon_mull_u16, i64, i32, i32)
+DEF_HELPER_2(neon_mull_s16, i64, i32, i32)
+
+DEF_HELPER_1(neon_negl_u16, i64, i64)
+DEF_HELPER_1(neon_negl_u32, i64, i64)
+DEF_HELPER_1(neon_negl_u64, i64, i64)
+
+DEF_HELPER_2(neon_qabs_s8, i32, env, i32)
+DEF_HELPER_2(neon_qabs_s16, i32, env, i32)
+DEF_HELPER_2(neon_qabs_s32, i32, env, i32)
+DEF_HELPER_2(neon_qneg_s8, i32, env, i32)
+DEF_HELPER_2(neon_qneg_s16, i32, env, i32)
+DEF_HELPER_2(neon_qneg_s32, i32, env, i32)
+
+DEF_HELPER_3(neon_min_f32, i32, i32, i32, ptr)
+DEF_HELPER_3(neon_max_f32, i32, i32, i32, ptr)
+DEF_HELPER_3(neon_abd_f32, i32, i32, i32, ptr)
+DEF_HELPER_3(neon_ceq_f32, i32, i32, i32, ptr)
+DEF_HELPER_3(neon_cge_f32, i32, i32, i32, ptr)
+DEF_HELPER_3(neon_cgt_f32, i32, i32, i32, ptr)
+DEF_HELPER_3(neon_acge_f32, i32, i32, i32, ptr)
+DEF_HELPER_3(neon_acgt_f32, i32, i32, i32, ptr)
+
+/* iwmmxt_helper.c */
+DEF_HELPER_2(iwmmxt_maddsq, i64, i64, i64)
+DEF_HELPER_2(iwmmxt_madduq, i64, i64, i64)
+DEF_HELPER_2(iwmmxt_sadb, i64, i64, i64)
+DEF_HELPER_2(iwmmxt_sadw, i64, i64, i64)
+DEF_HELPER_2(iwmmxt_mulslw, i64, i64, i64)
+DEF_HELPER_2(iwmmxt_mulshw, i64, i64, i64)
+DEF_HELPER_2(iwmmxt_mululw, i64, i64, i64)
+DEF_HELPER_2(iwmmxt_muluhw, i64, i64, i64)
+DEF_HELPER_2(iwmmxt_macsw, i64, i64, i64)
+DEF_HELPER_2(iwmmxt_macuw, i64, i64, i64)
+DEF_HELPER_1(iwmmxt_setpsr_nz, i32, i64)
+
+#define DEF_IWMMXT_HELPER_SIZE_ENV(name) \
+DEF_HELPER_3(iwmmxt_##name##b, i64, env, i64, i64) \
+DEF_HELPER_3(iwmmxt_##name##w, i64, env, i64, i64) \
+DEF_HELPER_3(iwmmxt_##name##l, i64, env, i64, i64) \
+
+DEF_IWMMXT_HELPER_SIZE_ENV(unpackl)
+DEF_IWMMXT_HELPER_SIZE_ENV(unpackh)
+
+DEF_HELPER_2(iwmmxt_unpacklub, i64, env, i64)
+DEF_HELPER_2(iwmmxt_unpackluw, i64, env, i64)
+DEF_HELPER_2(iwmmxt_unpacklul, i64, env, i64)
+DEF_HELPER_2(iwmmxt_unpackhub, i64, env, i64)
+DEF_HELPER_2(iwmmxt_unpackhuw, i64, env, i64)
+DEF_HELPER_2(iwmmxt_unpackhul, i64, env, i64)
+DEF_HELPER_2(iwmmxt_unpacklsb, i64, env, i64)
+DEF_HELPER_2(iwmmxt_unpacklsw, i64, env, i64)
+DEF_HELPER_2(iwmmxt_unpacklsl, i64, env, i64)
+DEF_HELPER_2(iwmmxt_unpackhsb, i64, env, i64)
+DEF_HELPER_2(iwmmxt_unpackhsw, i64, env, i64)
+DEF_HELPER_2(iwmmxt_unpackhsl, i64, env, i64)
+
+DEF_IWMMXT_HELPER_SIZE_ENV(cmpeq)
+DEF_IWMMXT_HELPER_SIZE_ENV(cmpgtu)
+DEF_IWMMXT_HELPER_SIZE_ENV(cmpgts)
+
+DEF_IWMMXT_HELPER_SIZE_ENV(mins)
+DEF_IWMMXT_HELPER_SIZE_ENV(minu)
+DEF_IWMMXT_HELPER_SIZE_ENV(maxs)
+DEF_IWMMXT_HELPER_SIZE_ENV(maxu)
+
+DEF_IWMMXT_HELPER_SIZE_ENV(subn)
+DEF_IWMMXT_HELPER_SIZE_ENV(addn)
+DEF_IWMMXT_HELPER_SIZE_ENV(subu)
+DEF_IWMMXT_HELPER_SIZE_ENV(addu)
+DEF_IWMMXT_HELPER_SIZE_ENV(subs)
+DEF_IWMMXT_HELPER_SIZE_ENV(adds)
+
+DEF_HELPER_3(iwmmxt_avgb0, i64, env, i64, i64)
+DEF_HELPER_3(iwmmxt_avgb1, i64, env, i64, i64)
+DEF_HELPER_3(iwmmxt_avgw0, i64, env, i64, i64)
+DEF_HELPER_3(iwmmxt_avgw1, i64, env, i64, i64)
+
+DEF_HELPER_2(iwmmxt_msadb, i64, i64, i64)
+
+DEF_HELPER_3(iwmmxt_align, i64, i64, i64, i32)
+DEF_HELPER_4(iwmmxt_insr, i64, i64, i32, i32, i32)
+
+DEF_HELPER_1(iwmmxt_bcstb, i64, i32)
+DEF_HELPER_1(iwmmxt_bcstw, i64, i32)
+DEF_HELPER_1(iwmmxt_bcstl, i64, i32)
+
+DEF_HELPER_1(iwmmxt_addcb, i64, i64)
+DEF_HELPER_1(iwmmxt_addcw, i64, i64)
+DEF_HELPER_1(iwmmxt_addcl, i64, i64)
+
+DEF_HELPER_1(iwmmxt_msbb, i32, i64)
+DEF_HELPER_1(iwmmxt_msbw, i32, i64)
+DEF_HELPER_1(iwmmxt_msbl, i32, i64)
+
+DEF_HELPER_3(iwmmxt_srlw, i64, env, i64, i32)
+DEF_HELPER_3(iwmmxt_srll, i64, env, i64, i32)
+DEF_HELPER_3(iwmmxt_srlq, i64, env, i64, i32)
+DEF_HELPER_3(iwmmxt_sllw, i64, env, i64, i32)
+DEF_HELPER_3(iwmmxt_slll, i64, env, i64, i32)
+DEF_HELPER_3(iwmmxt_sllq, i64, env, i64, i32)
+DEF_HELPER_3(iwmmxt_sraw, i64, env, i64, i32)
+DEF_HELPER_3(iwmmxt_sral, i64, env, i64, i32)
+DEF_HELPER_3(iwmmxt_sraq, i64, env, i64, i32)
+DEF_HELPER_3(iwmmxt_rorw, i64, env, i64, i32)
+DEF_HELPER_3(iwmmxt_rorl, i64, env, i64, i32)
+DEF_HELPER_3(iwmmxt_rorq, i64, env, i64, i32)
+DEF_HELPER_3(iwmmxt_shufh, i64, env, i64, i32)
+
+DEF_HELPER_3(iwmmxt_packuw, i64, env, i64, i64)
+DEF_HELPER_3(iwmmxt_packul, i64, env, i64, i64)
+DEF_HELPER_3(iwmmxt_packuq, i64, env, i64, i64)
+DEF_HELPER_3(iwmmxt_packsw, i64, env, i64, i64)
+DEF_HELPER_3(iwmmxt_packsl, i64, env, i64, i64)
+DEF_HELPER_3(iwmmxt_packsq, i64, env, i64, i64)
+
+DEF_HELPER_3(iwmmxt_muladdsl, i64, i64, i32, i32)
+DEF_HELPER_3(iwmmxt_muladdsw, i64, i64, i32, i32)
+DEF_HELPER_3(iwmmxt_muladdswl, i64, i64, i32, i32)
+
+DEF_HELPER_3(neon_unzip8, void, env, i32, i32)
+DEF_HELPER_3(neon_unzip16, void, env, i32, i32)
+DEF_HELPER_3(neon_qunzip8, void, env, i32, i32)
+DEF_HELPER_3(neon_qunzip16, void, env, i32, i32)
+DEF_HELPER_3(neon_qunzip32, void, env, i32, i32)
+DEF_HELPER_3(neon_zip8, void, env, i32, i32)
+DEF_HELPER_3(neon_zip16, void, env, i32, i32)
+DEF_HELPER_3(neon_qzip8, void, env, i32, i32)
+DEF_HELPER_3(neon_qzip16, void, env, i32, i32)
+DEF_HELPER_3(neon_qzip32, void, env, i32, i32)
+
+#include "def-helper.h"
diff --git a/target-arm/iwmmxt_helper.c b/target-arm/iwmmxt_helper.c
new file mode 100644
index 000000000..1dd8d1a3a
--- /dev/null
+++ b/target-arm/iwmmxt_helper.c
@@ -0,0 +1,681 @@
+/*
+ * iwMMXt micro operations for XScale.
+ *
+ * Copyright (c) 2007 OpenedHand, Ltd.
+ * Written by Andrzej Zaborowski <andrew@openedhand.com>
+ * Copyright (c) 2008 CodeSourcery
+ *
+ * This library is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU Lesser General Public
+ * License as published by the Free Software Foundation; either
+ * version 2 of the License, or (at your option) any later version.
+ *
+ * This library is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ * Lesser General Public License for more details.
+ *
+ * You should have received a copy of the GNU Lesser General Public
+ * License along with this library; if not, see <http://www.gnu.org/licenses/>.
+ */
+
+#include <stdlib.h>
+#include <stdio.h>
+
+#include "cpu.h"
+#include "exec-all.h"
+#include "helper.h"
+
+/* iwMMXt macros extracted from GNU gdb. */
+
+/* Set the SIMD wCASF flags for 8, 16, 32 or 64-bit operations. */
+#define SIMD8_SET( v, n, b) ((v != 0) << ((((b) + 1) * 4) + (n)))
+#define SIMD16_SET(v, n, h) ((v != 0) << ((((h) + 1) * 8) + (n)))
+#define SIMD32_SET(v, n, w) ((v != 0) << ((((w) + 1) * 16) + (n)))
+#define SIMD64_SET(v, n) ((v != 0) << (32 + (n)))
+/* Flags to pass as "n" above. */
+#define SIMD_NBIT -1
+#define SIMD_ZBIT -2
+#define SIMD_CBIT -3
+#define SIMD_VBIT -4
+/* Various status bit macros. */
+#define NBIT8(x) ((x) & 0x80)
+#define NBIT16(x) ((x) & 0x8000)
+#define NBIT32(x) ((x) & 0x80000000)
+#define NBIT64(x) ((x) & 0x8000000000000000ULL)
+#define ZBIT8(x) (((x) & 0xff) == 0)
+#define ZBIT16(x) (((x) & 0xffff) == 0)
+#define ZBIT32(x) (((x) & 0xffffffff) == 0)
+#define ZBIT64(x) (x == 0)
+/* Sign extension macros. */
+#define EXTEND8H(a) ((uint16_t) (int8_t) (a))
+#define EXTEND8(a) ((uint32_t) (int8_t) (a))
+#define EXTEND16(a) ((uint32_t) (int16_t) (a))
+#define EXTEND16S(a) ((int32_t) (int16_t) (a))
+#define EXTEND32(a) ((uint64_t) (int32_t) (a))
+
+uint64_t HELPER(iwmmxt_maddsq)(uint64_t a, uint64_t b)
+{
+ a = ((
+ EXTEND16S((a >> 0) & 0xffff) * EXTEND16S((b >> 0) & 0xffff) +
+ EXTEND16S((a >> 16) & 0xffff) * EXTEND16S((b >> 16) & 0xffff)
+ ) & 0xffffffff) | ((uint64_t) (
+ EXTEND16S((a >> 32) & 0xffff) * EXTEND16S((b >> 32) & 0xffff) +
+ EXTEND16S((a >> 48) & 0xffff) * EXTEND16S((b >> 48) & 0xffff)
+ ) << 32);
+ return a;
+}
+
+uint64_t HELPER(iwmmxt_madduq)(uint64_t a, uint64_t b)
+{
+ a = ((
+ ((a >> 0) & 0xffff) * ((b >> 0) & 0xffff) +
+ ((a >> 16) & 0xffff) * ((b >> 16) & 0xffff)
+ ) & 0xffffffff) | ((
+ ((a >> 32) & 0xffff) * ((b >> 32) & 0xffff) +
+ ((a >> 48) & 0xffff) * ((b >> 48) & 0xffff)
+ ) << 32);
+ return a;
+}
+
+uint64_t HELPER(iwmmxt_sadb)(uint64_t a, uint64_t b)
+{
+#define abs(x) (((x) >= 0) ? x : -x)
+#define SADB(SHR) abs((int) ((a >> SHR) & 0xff) - (int) ((b >> SHR) & 0xff))
+ return
+ SADB(0) + SADB(8) + SADB(16) + SADB(24) +
+ SADB(32) + SADB(40) + SADB(48) + SADB(56);
+#undef SADB
+}
+
+uint64_t HELPER(iwmmxt_sadw)(uint64_t a, uint64_t b)
+{
+#define SADW(SHR) \
+ abs((int) ((a >> SHR) & 0xffff) - (int) ((b >> SHR) & 0xffff))
+ return SADW(0) + SADW(16) + SADW(32) + SADW(48);
+#undef SADW
+}
+
+uint64_t HELPER(iwmmxt_mulslw)(uint64_t a, uint64_t b)
+{
+#define MULS(SHR) ((uint64_t) ((( \
+ EXTEND16S((a >> SHR) & 0xffff) * EXTEND16S((b >> SHR) & 0xffff) \
+ ) >> 0) & 0xffff) << SHR)
+ return MULS(0) | MULS(16) | MULS(32) | MULS(48);
+#undef MULS
+}
+
+uint64_t HELPER(iwmmxt_mulshw)(uint64_t a, uint64_t b)
+{
+#define MULS(SHR) ((uint64_t) ((( \
+ EXTEND16S((a >> SHR) & 0xffff) * EXTEND16S((b >> SHR) & 0xffff) \
+ ) >> 16) & 0xffff) << SHR)
+ return MULS(0) | MULS(16) | MULS(32) | MULS(48);
+#undef MULS
+}
+
+uint64_t HELPER(iwmmxt_mululw)(uint64_t a, uint64_t b)
+{
+#define MULU(SHR) ((uint64_t) ((( \
+ ((a >> SHR) & 0xffff) * ((b >> SHR) & 0xffff) \
+ ) >> 0) & 0xffff) << SHR)
+ return MULU(0) | MULU(16) | MULU(32) | MULU(48);
+#undef MULU
+}
+
+uint64_t HELPER(iwmmxt_muluhw)(uint64_t a, uint64_t b)
+{
+#define MULU(SHR) ((uint64_t) ((( \
+ ((a >> SHR) & 0xffff) * ((b >> SHR) & 0xffff) \
+ ) >> 16) & 0xffff) << SHR)
+ return MULU(0) | MULU(16) | MULU(32) | MULU(48);
+#undef MULU
+}
+
+uint64_t HELPER(iwmmxt_macsw)(uint64_t a, uint64_t b)
+{
+#define MACS(SHR) ( \
+ EXTEND16((a >> SHR) & 0xffff) * EXTEND16S((b >> SHR) & 0xffff))
+ return (int64_t) (MACS(0) + MACS(16) + MACS(32) + MACS(48));
+#undef MACS
+}
+
+uint64_t HELPER(iwmmxt_macuw)(uint64_t a, uint64_t b)
+{
+#define MACU(SHR) ( \
+ (uint32_t) ((a >> SHR) & 0xffff) * \
+ (uint32_t) ((b >> SHR) & 0xffff))
+ return MACU(0) + MACU(16) + MACU(32) + MACU(48);
+#undef MACU
+}
+
+#define NZBIT8(x, i) \
+ SIMD8_SET(NBIT8((x) & 0xff), SIMD_NBIT, i) | \
+ SIMD8_SET(ZBIT8((x) & 0xff), SIMD_ZBIT, i)
+#define NZBIT16(x, i) \
+ SIMD16_SET(NBIT16((x) & 0xffff), SIMD_NBIT, i) | \
+ SIMD16_SET(ZBIT16((x) & 0xffff), SIMD_ZBIT, i)
+#define NZBIT32(x, i) \
+ SIMD32_SET(NBIT32((x) & 0xffffffff), SIMD_NBIT, i) | \
+ SIMD32_SET(ZBIT32((x) & 0xffffffff), SIMD_ZBIT, i)
+#define NZBIT64(x) \
+ SIMD64_SET(NBIT64(x), SIMD_NBIT) | \
+ SIMD64_SET(ZBIT64(x), SIMD_ZBIT)
+#define IWMMXT_OP_UNPACK(S, SH0, SH1, SH2, SH3) \
+uint64_t HELPER(glue(iwmmxt_unpack, glue(S, b)))(CPUARMState *env, \
+ uint64_t a, uint64_t b) \
+{ \
+ a = \
+ (((a >> SH0) & 0xff) << 0) | (((b >> SH0) & 0xff) << 8) | \
+ (((a >> SH1) & 0xff) << 16) | (((b >> SH1) & 0xff) << 24) | \
+ (((a >> SH2) & 0xff) << 32) | (((b >> SH2) & 0xff) << 40) | \
+ (((a >> SH3) & 0xff) << 48) | (((b >> SH3) & 0xff) << 56); \
+ env->iwmmxt.cregs[ARM_IWMMXT_wCASF] = \
+ NZBIT8(a >> 0, 0) | NZBIT8(a >> 8, 1) | \
+ NZBIT8(a >> 16, 2) | NZBIT8(a >> 24, 3) | \
+ NZBIT8(a >> 32, 4) | NZBIT8(a >> 40, 5) | \
+ NZBIT8(a >> 48, 6) | NZBIT8(a >> 56, 7); \
+ return a; \
+} \
+uint64_t HELPER(glue(iwmmxt_unpack, glue(S, w)))(CPUARMState *env, \
+ uint64_t a, uint64_t b) \
+{ \
+ a = \
+ (((a >> SH0) & 0xffff) << 0) | \
+ (((b >> SH0) & 0xffff) << 16) | \
+ (((a >> SH2) & 0xffff) << 32) | \
+ (((b >> SH2) & 0xffff) << 48); \
+ env->iwmmxt.cregs[ARM_IWMMXT_wCASF] = \
+ NZBIT8(a >> 0, 0) | NZBIT8(a >> 16, 1) | \
+ NZBIT8(a >> 32, 2) | NZBIT8(a >> 48, 3); \
+ return a; \
+} \
+uint64_t HELPER(glue(iwmmxt_unpack, glue(S, l)))(CPUARMState *env, \
+ uint64_t a, uint64_t b) \
+{ \
+ a = \
+ (((a >> SH0) & 0xffffffff) << 0) | \
+ (((b >> SH0) & 0xffffffff) << 32); \
+ env->iwmmxt.cregs[ARM_IWMMXT_wCASF] = \
+ NZBIT32(a >> 0, 0) | NZBIT32(a >> 32, 1); \
+ return a; \
+} \
+uint64_t HELPER(glue(iwmmxt_unpack, glue(S, ub)))(CPUARMState *env, \
+ uint64_t x) \
+{ \
+ x = \
+ (((x >> SH0) & 0xff) << 0) | \
+ (((x >> SH1) & 0xff) << 16) | \
+ (((x >> SH2) & 0xff) << 32) | \
+ (((x >> SH3) & 0xff) << 48); \
+ env->iwmmxt.cregs[ARM_IWMMXT_wCASF] = \
+ NZBIT16(x >> 0, 0) | NZBIT16(x >> 16, 1) | \
+ NZBIT16(x >> 32, 2) | NZBIT16(x >> 48, 3); \
+ return x; \
+} \
+uint64_t HELPER(glue(iwmmxt_unpack, glue(S, uw)))(CPUARMState *env, \
+ uint64_t x) \
+{ \
+ x = \
+ (((x >> SH0) & 0xffff) << 0) | \
+ (((x >> SH2) & 0xffff) << 32); \
+ env->iwmmxt.cregs[ARM_IWMMXT_wCASF] = \
+ NZBIT32(x >> 0, 0) | NZBIT32(x >> 32, 1); \
+ return x; \
+} \
+uint64_t HELPER(glue(iwmmxt_unpack, glue(S, ul)))(CPUARMState *env, \
+ uint64_t x) \
+{ \
+ x = (((x >> SH0) & 0xffffffff) << 0); \
+ env->iwmmxt.cregs[ARM_IWMMXT_wCASF] = NZBIT64(x >> 0); \
+ return x; \
+} \
+uint64_t HELPER(glue(iwmmxt_unpack, glue(S, sb)))(CPUARMState *env, \
+ uint64_t x) \
+{ \
+ x = \
+ ((uint64_t) EXTEND8H((x >> SH0) & 0xff) << 0) | \
+ ((uint64_t) EXTEND8H((x >> SH1) & 0xff) << 16) | \
+ ((uint64_t) EXTEND8H((x >> SH2) & 0xff) << 32) | \
+ ((uint64_t) EXTEND8H((x >> SH3) & 0xff) << 48); \
+ env->iwmmxt.cregs[ARM_IWMMXT_wCASF] = \
+ NZBIT16(x >> 0, 0) | NZBIT16(x >> 16, 1) | \
+ NZBIT16(x >> 32, 2) | NZBIT16(x >> 48, 3); \
+ return x; \
+} \
+uint64_t HELPER(glue(iwmmxt_unpack, glue(S, sw)))(CPUARMState *env, \
+ uint64_t x) \
+{ \
+ x = \
+ ((uint64_t) EXTEND16((x >> SH0) & 0xffff) << 0) | \
+ ((uint64_t) EXTEND16((x >> SH2) & 0xffff) << 32); \
+ env->iwmmxt.cregs[ARM_IWMMXT_wCASF] = \
+ NZBIT32(x >> 0, 0) | NZBIT32(x >> 32, 1); \
+ return x; \
+} \
+uint64_t HELPER(glue(iwmmxt_unpack, glue(S, sl)))(CPUARMState *env, \
+ uint64_t x) \
+{ \
+ x = EXTEND32((x >> SH0) & 0xffffffff); \
+ env->iwmmxt.cregs[ARM_IWMMXT_wCASF] = NZBIT64(x >> 0); \
+ return x; \
+}
+IWMMXT_OP_UNPACK(l, 0, 8, 16, 24)
+IWMMXT_OP_UNPACK(h, 32, 40, 48, 56)
+
+#define IWMMXT_OP_CMP(SUFF, Tb, Tw, Tl, O) \
+uint64_t HELPER(glue(iwmmxt_, glue(SUFF, b)))(CPUARMState *env, \
+ uint64_t a, uint64_t b) \
+{ \
+ a = \
+ CMP(0, Tb, O, 0xff) | CMP(8, Tb, O, 0xff) | \
+ CMP(16, Tb, O, 0xff) | CMP(24, Tb, O, 0xff) | \
+ CMP(32, Tb, O, 0xff) | CMP(40, Tb, O, 0xff) | \
+ CMP(48, Tb, O, 0xff) | CMP(56, Tb, O, 0xff); \
+ env->iwmmxt.cregs[ARM_IWMMXT_wCASF] = \
+ NZBIT8(a >> 0, 0) | NZBIT8(a >> 8, 1) | \
+ NZBIT8(a >> 16, 2) | NZBIT8(a >> 24, 3) | \
+ NZBIT8(a >> 32, 4) | NZBIT8(a >> 40, 5) | \
+ NZBIT8(a >> 48, 6) | NZBIT8(a >> 56, 7); \
+ return a; \
+} \
+uint64_t HELPER(glue(iwmmxt_, glue(SUFF, w)))(CPUARMState *env, \
+ uint64_t a, uint64_t b) \
+{ \
+ a = CMP(0, Tw, O, 0xffff) | CMP(16, Tw, O, 0xffff) | \
+ CMP(32, Tw, O, 0xffff) | CMP(48, Tw, O, 0xffff); \
+ env->iwmmxt.cregs[ARM_IWMMXT_wCASF] = \
+ NZBIT16(a >> 0, 0) | NZBIT16(a >> 16, 1) | \
+ NZBIT16(a >> 32, 2) | NZBIT16(a >> 48, 3); \
+ return a; \
+} \
+uint64_t HELPER(glue(iwmmxt_, glue(SUFF, l)))(CPUARMState *env, \
+ uint64_t a, uint64_t b) \
+{ \
+ a = CMP(0, Tl, O, 0xffffffff) | \
+ CMP(32, Tl, O, 0xffffffff); \
+ env->iwmmxt.cregs[ARM_IWMMXT_wCASF] = \
+ NZBIT32(a >> 0, 0) | NZBIT32(a >> 32, 1); \
+ return a; \
+}
+#define CMP(SHR, TYPE, OPER, MASK) ((((TYPE) ((a >> SHR) & MASK) OPER \
+ (TYPE) ((b >> SHR) & MASK)) ? (uint64_t) MASK : 0) << SHR)
+IWMMXT_OP_CMP(cmpeq, uint8_t, uint16_t, uint32_t, ==)
+IWMMXT_OP_CMP(cmpgts, int8_t, int16_t, int32_t, >)
+IWMMXT_OP_CMP(cmpgtu, uint8_t, uint16_t, uint32_t, >)
+#undef CMP
+#define CMP(SHR, TYPE, OPER, MASK) ((((TYPE) ((a >> SHR) & MASK) OPER \
+ (TYPE) ((b >> SHR) & MASK)) ? a : b) & ((uint64_t) MASK << SHR))
+IWMMXT_OP_CMP(mins, int8_t, int16_t, int32_t, <)
+IWMMXT_OP_CMP(minu, uint8_t, uint16_t, uint32_t, <)
+IWMMXT_OP_CMP(maxs, int8_t, int16_t, int32_t, >)
+IWMMXT_OP_CMP(maxu, uint8_t, uint16_t, uint32_t, >)
+#undef CMP
+#define CMP(SHR, TYPE, OPER, MASK) ((uint64_t) (((TYPE) ((a >> SHR) & MASK) \
+ OPER (TYPE) ((b >> SHR) & MASK)) & MASK) << SHR)
+IWMMXT_OP_CMP(subn, uint8_t, uint16_t, uint32_t, -)
+IWMMXT_OP_CMP(addn, uint8_t, uint16_t, uint32_t, +)
+#undef CMP
+/* TODO Signed- and Unsigned-Saturation */
+#define CMP(SHR, TYPE, OPER, MASK) ((uint64_t) (((TYPE) ((a >> SHR) & MASK) \
+ OPER (TYPE) ((b >> SHR) & MASK)) & MASK) << SHR)
+IWMMXT_OP_CMP(subu, uint8_t, uint16_t, uint32_t, -)
+IWMMXT_OP_CMP(addu, uint8_t, uint16_t, uint32_t, +)
+IWMMXT_OP_CMP(subs, int8_t, int16_t, int32_t, -)
+IWMMXT_OP_CMP(adds, int8_t, int16_t, int32_t, +)
+#undef CMP
+#undef IWMMXT_OP_CMP
+
+#define AVGB(SHR) ((( \
+ ((a >> SHR) & 0xff) + ((b >> SHR) & 0xff) + round) >> 1) << SHR)
+#define IWMMXT_OP_AVGB(r) \
+uint64_t HELPER(iwmmxt_avgb##r)(CPUARMState *env, uint64_t a, uint64_t b) \
+{ \
+ const int round = r; \
+ a = AVGB(0) | AVGB(8) | AVGB(16) | AVGB(24) | \
+ AVGB(32) | AVGB(40) | AVGB(48) | AVGB(56); \
+ env->iwmmxt.cregs[ARM_IWMMXT_wCASF] = \
+ SIMD8_SET(ZBIT8((a >> 0) & 0xff), SIMD_ZBIT, 0) | \
+ SIMD8_SET(ZBIT8((a >> 8) & 0xff), SIMD_ZBIT, 1) | \
+ SIMD8_SET(ZBIT8((a >> 16) & 0xff), SIMD_ZBIT, 2) | \
+ SIMD8_SET(ZBIT8((a >> 24) & 0xff), SIMD_ZBIT, 3) | \
+ SIMD8_SET(ZBIT8((a >> 32) & 0xff), SIMD_ZBIT, 4) | \
+ SIMD8_SET(ZBIT8((a >> 40) & 0xff), SIMD_ZBIT, 5) | \
+ SIMD8_SET(ZBIT8((a >> 48) & 0xff), SIMD_ZBIT, 6) | \
+ SIMD8_SET(ZBIT8((a >> 56) & 0xff), SIMD_ZBIT, 7); \
+ return a; \
+}
+IWMMXT_OP_AVGB(0)
+IWMMXT_OP_AVGB(1)
+#undef IWMMXT_OP_AVGB
+#undef AVGB
+
+#define AVGW(SHR) ((( \
+ ((a >> SHR) & 0xffff) + ((b >> SHR) & 0xffff) + round) >> 1) << SHR)
+#define IWMMXT_OP_AVGW(r) \
+uint64_t HELPER(iwmmxt_avgw##r)(CPUARMState *env, uint64_t a, uint64_t b) \
+{ \
+ const int round = r; \
+ a = AVGW(0) | AVGW(16) | AVGW(32) | AVGW(48); \
+ env->iwmmxt.cregs[ARM_IWMMXT_wCASF] = \
+ SIMD16_SET(ZBIT16((a >> 0) & 0xffff), SIMD_ZBIT, 0) | \
+ SIMD16_SET(ZBIT16((a >> 16) & 0xffff), SIMD_ZBIT, 1) | \
+ SIMD16_SET(ZBIT16((a >> 32) & 0xffff), SIMD_ZBIT, 2) | \
+ SIMD16_SET(ZBIT16((a >> 48) & 0xffff), SIMD_ZBIT, 3); \
+ return a; \
+}
+IWMMXT_OP_AVGW(0)
+IWMMXT_OP_AVGW(1)
+#undef IWMMXT_OP_AVGW
+#undef AVGW
+
+uint64_t HELPER(iwmmxt_msadb)(uint64_t a, uint64_t b)
+{
+ a = ((((a >> 0 ) & 0xffff) * ((b >> 0) & 0xffff) +
+ ((a >> 16) & 0xffff) * ((b >> 16) & 0xffff)) & 0xffffffff) |
+ ((((a >> 32) & 0xffff) * ((b >> 32) & 0xffff) +
+ ((a >> 48) & 0xffff) * ((b >> 48) & 0xffff)) << 32);
+ return a;
+}
+
+uint64_t HELPER(iwmmxt_align)(uint64_t a, uint64_t b, uint32_t n)
+{
+ a >>= n << 3;
+ a |= b << (64 - (n << 3));
+ return a;
+}
+
+uint64_t HELPER(iwmmxt_insr)(uint64_t x, uint32_t a, uint32_t b, uint32_t n)
+{
+ x &= ~((uint64_t) b << n);
+ x |= (uint64_t) (a & b) << n;
+ return x;
+}
+
+uint32_t HELPER(iwmmxt_setpsr_nz)(uint64_t x)
+{
+ return SIMD64_SET((x == 0), SIMD_ZBIT) |
+ SIMD64_SET((x & (1ULL << 63)), SIMD_NBIT);
+}
+
+uint64_t HELPER(iwmmxt_bcstb)(uint32_t arg)
+{
+ arg &= 0xff;
+ return
+ ((uint64_t) arg << 0 ) | ((uint64_t) arg << 8 ) |
+ ((uint64_t) arg << 16) | ((uint64_t) arg << 24) |
+ ((uint64_t) arg << 32) | ((uint64_t) arg << 40) |
+ ((uint64_t) arg << 48) | ((uint64_t) arg << 56);
+}
+
+uint64_t HELPER(iwmmxt_bcstw)(uint32_t arg)
+{
+ arg &= 0xffff;
+ return
+ ((uint64_t) arg << 0 ) | ((uint64_t) arg << 16) |
+ ((uint64_t) arg << 32) | ((uint64_t) arg << 48);
+}
+
+uint64_t HELPER(iwmmxt_bcstl)(uint32_t arg)
+{
+ return arg | ((uint64_t) arg << 32);
+}
+
+uint64_t HELPER(iwmmxt_addcb)(uint64_t x)
+{
+ return
+ ((x >> 0) & 0xff) + ((x >> 8) & 0xff) +
+ ((x >> 16) & 0xff) + ((x >> 24) & 0xff) +
+ ((x >> 32) & 0xff) + ((x >> 40) & 0xff) +
+ ((x >> 48) & 0xff) + ((x >> 56) & 0xff);
+}
+
+uint64_t HELPER(iwmmxt_addcw)(uint64_t x)
+{
+ return
+ ((x >> 0) & 0xffff) + ((x >> 16) & 0xffff) +
+ ((x >> 32) & 0xffff) + ((x >> 48) & 0xffff);
+}
+
+uint64_t HELPER(iwmmxt_addcl)(uint64_t x)
+{
+ return (x & 0xffffffff) + (x >> 32);
+}
+
+uint32_t HELPER(iwmmxt_msbb)(uint64_t x)
+{
+ return
+ ((x >> 7) & 0x01) | ((x >> 14) & 0x02) |
+ ((x >> 21) & 0x04) | ((x >> 28) & 0x08) |
+ ((x >> 35) & 0x10) | ((x >> 42) & 0x20) |
+ ((x >> 49) & 0x40) | ((x >> 56) & 0x80);
+}
+
+uint32_t HELPER(iwmmxt_msbw)(uint64_t x)
+{
+ return
+ ((x >> 15) & 0x01) | ((x >> 30) & 0x02) |
+ ((x >> 45) & 0x04) | ((x >> 52) & 0x08);
+}
+
+uint32_t HELPER(iwmmxt_msbl)(uint64_t x)
+{
+ return ((x >> 31) & 0x01) | ((x >> 62) & 0x02);
+}
+
+/* FIXME: Split wCASF setting into a separate op to avoid env use. */
+uint64_t HELPER(iwmmxt_srlw)(CPUARMState *env, uint64_t x, uint32_t n)
+{
+ x = (((x & (0xffffll << 0)) >> n) & (0xffffll << 0)) |
+ (((x & (0xffffll << 16)) >> n) & (0xffffll << 16)) |
+ (((x & (0xffffll << 32)) >> n) & (0xffffll << 32)) |
+ (((x & (0xffffll << 48)) >> n) & (0xffffll << 48));
+ env->iwmmxt.cregs[ARM_IWMMXT_wCASF] =
+ NZBIT16(x >> 0, 0) | NZBIT16(x >> 16, 1) |
+ NZBIT16(x >> 32, 2) | NZBIT16(x >> 48, 3);
+ return x;
+}
+
+uint64_t HELPER(iwmmxt_srll)(CPUARMState *env, uint64_t x, uint32_t n)
+{
+ x = ((x & (0xffffffffll << 0)) >> n) |
+ ((x >> n) & (0xffffffffll << 32));
+ env->iwmmxt.cregs[ARM_IWMMXT_wCASF] =
+ NZBIT32(x >> 0, 0) | NZBIT32(x >> 32, 1);
+ return x;
+}
+
+uint64_t HELPER(iwmmxt_srlq)(CPUARMState *env, uint64_t x, uint32_t n)
+{
+ x >>= n;
+ env->iwmmxt.cregs[ARM_IWMMXT_wCASF] = NZBIT64(x);
+ return x;
+}
+
+uint64_t HELPER(iwmmxt_sllw)(CPUARMState *env, uint64_t x, uint32_t n)
+{
+ x = (((x & (0xffffll << 0)) << n) & (0xffffll << 0)) |
+ (((x & (0xffffll << 16)) << n) & (0xffffll << 16)) |
+ (((x & (0xffffll << 32)) << n) & (0xffffll << 32)) |
+ (((x & (0xffffll << 48)) << n) & (0xffffll << 48));
+ env->iwmmxt.cregs[ARM_IWMMXT_wCASF] =
+ NZBIT16(x >> 0, 0) | NZBIT16(x >> 16, 1) |
+ NZBIT16(x >> 32, 2) | NZBIT16(x >> 48, 3);
+ return x;
+}
+
+uint64_t HELPER(iwmmxt_slll)(CPUARMState *env, uint64_t x, uint32_t n)
+{
+ x = ((x << n) & (0xffffffffll << 0)) |
+ ((x & (0xffffffffll << 32)) << n);
+ env->iwmmxt.cregs[ARM_IWMMXT_wCASF] =
+ NZBIT32(x >> 0, 0) | NZBIT32(x >> 32, 1);
+ return x;
+}
+
+uint64_t HELPER(iwmmxt_sllq)(CPUARMState *env, uint64_t x, uint32_t n)
+{
+ x <<= n;
+ env->iwmmxt.cregs[ARM_IWMMXT_wCASF] = NZBIT64(x);
+ return x;
+}
+
+uint64_t HELPER(iwmmxt_sraw)(CPUARMState *env, uint64_t x, uint32_t n)
+{
+ x = ((uint64_t) ((EXTEND16(x >> 0) >> n) & 0xffff) << 0) |
+ ((uint64_t) ((EXTEND16(x >> 16) >> n) & 0xffff) << 16) |
+ ((uint64_t) ((EXTEND16(x >> 32) >> n) & 0xffff) << 32) |
+ ((uint64_t) ((EXTEND16(x >> 48) >> n) & 0xffff) << 48);
+ env->iwmmxt.cregs[ARM_IWMMXT_wCASF] =
+ NZBIT16(x >> 0, 0) | NZBIT16(x >> 16, 1) |
+ NZBIT16(x >> 32, 2) | NZBIT16(x >> 48, 3);
+ return x;
+}
+
+uint64_t HELPER(iwmmxt_sral)(CPUARMState *env, uint64_t x, uint32_t n)
+{
+ x = (((EXTEND32(x >> 0) >> n) & 0xffffffff) << 0) |
+ (((EXTEND32(x >> 32) >> n) & 0xffffffff) << 32);
+ env->iwmmxt.cregs[ARM_IWMMXT_wCASF] =
+ NZBIT32(x >> 0, 0) | NZBIT32(x >> 32, 1);
+ return x;
+}
+
+uint64_t HELPER(iwmmxt_sraq)(CPUARMState *env, uint64_t x, uint32_t n)
+{
+ x = (int64_t) x >> n;
+ env->iwmmxt.cregs[ARM_IWMMXT_wCASF] = NZBIT64(x);
+ return x;
+}
+
+uint64_t HELPER(iwmmxt_rorw)(CPUARMState *env, uint64_t x, uint32_t n)
+{
+ x = ((((x & (0xffffll << 0)) >> n) |
+ ((x & (0xffffll << 0)) << (16 - n))) & (0xffffll << 0)) |
+ ((((x & (0xffffll << 16)) >> n) |
+ ((x & (0xffffll << 16)) << (16 - n))) & (0xffffll << 16)) |
+ ((((x & (0xffffll << 32)) >> n) |
+ ((x & (0xffffll << 32)) << (16 - n))) & (0xffffll << 32)) |
+ ((((x & (0xffffll << 48)) >> n) |
+ ((x & (0xffffll << 48)) << (16 - n))) & (0xffffll << 48));
+ env->iwmmxt.cregs[ARM_IWMMXT_wCASF] =
+ NZBIT16(x >> 0, 0) | NZBIT16(x >> 16, 1) |
+ NZBIT16(x >> 32, 2) | NZBIT16(x >> 48, 3);
+ return x;
+}
+
+uint64_t HELPER(iwmmxt_rorl)(CPUARMState *env, uint64_t x, uint32_t n)
+{
+ x = ((x & (0xffffffffll << 0)) >> n) |
+ ((x >> n) & (0xffffffffll << 32)) |
+ ((x << (32 - n)) & (0xffffffffll << 0)) |
+ ((x & (0xffffffffll << 32)) << (32 - n));
+ env->iwmmxt.cregs[ARM_IWMMXT_wCASF] =
+ NZBIT32(x >> 0, 0) | NZBIT32(x >> 32, 1);
+ return x;
+}
+
+uint64_t HELPER(iwmmxt_rorq)(CPUARMState *env, uint64_t x, uint32_t n)
+{
+ x = (x >> n) | (x << (64 - n));
+ env->iwmmxt.cregs[ARM_IWMMXT_wCASF] = NZBIT64(x);
+ return x;
+}
+
+uint64_t HELPER(iwmmxt_shufh)(CPUARMState *env, uint64_t x, uint32_t n)
+{
+ x = (((x >> ((n << 4) & 0x30)) & 0xffff) << 0) |
+ (((x >> ((n << 2) & 0x30)) & 0xffff) << 16) |
+ (((x >> ((n << 0) & 0x30)) & 0xffff) << 32) |
+ (((x >> ((n >> 2) & 0x30)) & 0xffff) << 48);
+ env->iwmmxt.cregs[ARM_IWMMXT_wCASF] =
+ NZBIT16(x >> 0, 0) | NZBIT16(x >> 16, 1) |
+ NZBIT16(x >> 32, 2) | NZBIT16(x >> 48, 3);
+ return x;
+}
+
+/* TODO: Unsigned-Saturation */
+uint64_t HELPER(iwmmxt_packuw)(CPUARMState *env, uint64_t a, uint64_t b)
+{
+ a = (((a >> 0) & 0xff) << 0) | (((a >> 16) & 0xff) << 8) |
+ (((a >> 32) & 0xff) << 16) | (((a >> 48) & 0xff) << 24) |
+ (((b >> 0) & 0xff) << 32) | (((b >> 16) & 0xff) << 40) |
+ (((b >> 32) & 0xff) << 48) | (((b >> 48) & 0xff) << 56);
+ env->iwmmxt.cregs[ARM_IWMMXT_wCASF] =
+ NZBIT8(a >> 0, 0) | NZBIT8(a >> 8, 1) |
+ NZBIT8(a >> 16, 2) | NZBIT8(a >> 24, 3) |
+ NZBIT8(a >> 32, 4) | NZBIT8(a >> 40, 5) |
+ NZBIT8(a >> 48, 6) | NZBIT8(a >> 56, 7);
+ return a;
+}
+
+uint64_t HELPER(iwmmxt_packul)(CPUARMState *env, uint64_t a, uint64_t b)
+{
+ a = (((a >> 0) & 0xffff) << 0) | (((a >> 32) & 0xffff) << 16) |
+ (((b >> 0) & 0xffff) << 32) | (((b >> 32) & 0xffff) << 48);
+ env->iwmmxt.cregs[ARM_IWMMXT_wCASF] =
+ NZBIT16(a >> 0, 0) | NZBIT16(a >> 16, 1) |
+ NZBIT16(a >> 32, 2) | NZBIT16(a >> 48, 3);
+ return a;
+}
+
+uint64_t HELPER(iwmmxt_packuq)(CPUARMState *env, uint64_t a, uint64_t b)
+{
+ a = (a & 0xffffffff) | ((b & 0xffffffff) << 32);
+ env->iwmmxt.cregs[ARM_IWMMXT_wCASF] =
+ NZBIT32(a >> 0, 0) | NZBIT32(a >> 32, 1);
+ return a;
+}
+
+/* TODO: Signed-Saturation */
+uint64_t HELPER(iwmmxt_packsw)(CPUARMState *env, uint64_t a, uint64_t b)
+{
+ a = (((a >> 0) & 0xff) << 0) | (((a >> 16) & 0xff) << 8) |
+ (((a >> 32) & 0xff) << 16) | (((a >> 48) & 0xff) << 24) |
+ (((b >> 0) & 0xff) << 32) | (((b >> 16) & 0xff) << 40) |
+ (((b >> 32) & 0xff) << 48) | (((b >> 48) & 0xff) << 56);
+ env->iwmmxt.cregs[ARM_IWMMXT_wCASF] =
+ NZBIT8(a >> 0, 0) | NZBIT8(a >> 8, 1) |
+ NZBIT8(a >> 16, 2) | NZBIT8(a >> 24, 3) |
+ NZBIT8(a >> 32, 4) | NZBIT8(a >> 40, 5) |
+ NZBIT8(a >> 48, 6) | NZBIT8(a >> 56, 7);
+ return a;
+}
+
+uint64_t HELPER(iwmmxt_packsl)(CPUARMState *env, uint64_t a, uint64_t b)
+{
+ a = (((a >> 0) & 0xffff) << 0) | (((a >> 32) & 0xffff) << 16) |
+ (((b >> 0) & 0xffff) << 32) | (((b >> 32) & 0xffff) << 48);
+ env->iwmmxt.cregs[ARM_IWMMXT_wCASF] =
+ NZBIT16(a >> 0, 0) | NZBIT16(a >> 16, 1) |
+ NZBIT16(a >> 32, 2) | NZBIT16(a >> 48, 3);
+ return a;
+}
+
+uint64_t HELPER(iwmmxt_packsq)(CPUARMState *env, uint64_t a, uint64_t b)
+{
+ a = (a & 0xffffffff) | ((b & 0xffffffff) << 32);
+ env->iwmmxt.cregs[ARM_IWMMXT_wCASF] =
+ NZBIT32(a >> 0, 0) | NZBIT32(a >> 32, 1);
+ return a;
+}
+
+uint64_t HELPER(iwmmxt_muladdsl)(uint64_t c, uint32_t a, uint32_t b)
+{
+ return c + ((int32_t) EXTEND32(a) * (int32_t) EXTEND32(b));
+}
+
+uint64_t HELPER(iwmmxt_muladdsw)(uint64_t c, uint32_t a, uint32_t b)
+{
+ c += EXTEND32(EXTEND16S((a >> 0) & 0xffff) *
+ EXTEND16S((b >> 0) & 0xffff));
+ c += EXTEND32(EXTEND16S((a >> 16) & 0xffff) *
+ EXTEND16S((b >> 16) & 0xffff));
+ return c;
+}
+
+uint64_t HELPER(iwmmxt_muladdswl)(uint64_t c, uint32_t a, uint32_t b)
+{
+ return c + (EXTEND32(EXTEND16S(a & 0xffff) *
+ EXTEND16S(b & 0xffff)));
+}
diff --git a/target-arm/machine.c b/target-arm/machine.c
new file mode 100644
index 000000000..68dca7ffb
--- /dev/null
+++ b/target-arm/machine.c
@@ -0,0 +1,237 @@
+#include "hw/hw.h"
+#include "hw/boards.h"
+
+void cpu_save(QEMUFile *f, void *opaque)
+{
+ int i;
+ CPUARMState *env = (CPUARMState *)opaque;
+
+ for (i = 0; i < 16; i++) {
+ qemu_put_be32(f, env->regs[i]);
+ }
+ qemu_put_be32(f, cpsr_read(env));
+ qemu_put_be32(f, env->spsr);
+ for (i = 0; i < 6; i++) {
+ qemu_put_be32(f, env->banked_spsr[i]);
+ qemu_put_be32(f, env->banked_r13[i]);
+ qemu_put_be32(f, env->banked_r14[i]);
+ }
+ for (i = 0; i < 5; i++) {
+ qemu_put_be32(f, env->usr_regs[i]);
+ qemu_put_be32(f, env->fiq_regs[i]);
+ }
+ qemu_put_be32(f, env->cp15.c0_cpuid);
+ qemu_put_be32(f, env->cp15.c0_cssel);
+ qemu_put_be32(f, env->cp15.c1_sys);
+ qemu_put_be32(f, env->cp15.c1_coproc);
+ qemu_put_be32(f, env->cp15.c1_xscaleauxcr);
+ qemu_put_be32(f, env->cp15.c1_scr);
+ qemu_put_be32(f, env->cp15.c2_base0);
+ qemu_put_be32(f, env->cp15.c2_base0_hi);
+ qemu_put_be32(f, env->cp15.c2_base1);
+ qemu_put_be32(f, env->cp15.c2_base1_hi);
+ qemu_put_be32(f, env->cp15.c2_control);
+ qemu_put_be32(f, env->cp15.c2_mask);
+ qemu_put_be32(f, env->cp15.c2_base_mask);
+ qemu_put_be32(f, env->cp15.c2_data);
+ qemu_put_be32(f, env->cp15.c2_insn);
+ qemu_put_be32(f, env->cp15.c3);
+ qemu_put_be32(f, env->cp15.c5_insn);
+ qemu_put_be32(f, env->cp15.c5_data);
+ for (i = 0; i < 8; i++) {
+ qemu_put_be32(f, env->cp15.c6_region[i]);
+ }
+ qemu_put_be32(f, env->cp15.c6_insn);
+ qemu_put_be32(f, env->cp15.c6_data);
+ qemu_put_be32(f, env->cp15.c7_par);
+ qemu_put_be32(f, env->cp15.c7_par_hi);
+ qemu_put_be32(f, env->cp15.c9_insn);
+ qemu_put_be32(f, env->cp15.c9_data);
+ qemu_put_be32(f, env->cp15.c9_pmcr);
+ qemu_put_be32(f, env->cp15.c9_pmcnten);
+ qemu_put_be32(f, env->cp15.c9_pmovsr);
+ qemu_put_be32(f, env->cp15.c9_pmxevtyper);
+ qemu_put_be32(f, env->cp15.c9_pmuserenr);
+ qemu_put_be32(f, env->cp15.c9_pminten);
+ qemu_put_be32(f, env->cp15.c13_fcse);
+ qemu_put_be32(f, env->cp15.c13_context);
+ qemu_put_be32(f, env->cp15.c13_tls1);
+ qemu_put_be32(f, env->cp15.c13_tls2);
+ qemu_put_be32(f, env->cp15.c13_tls3);
+ qemu_put_be32(f, env->cp15.c15_cpar);
+ qemu_put_be32(f, env->cp15.c15_power_control);
+ qemu_put_be32(f, env->cp15.c15_diagnostic);
+ qemu_put_be32(f, env->cp15.c15_power_diagnostic);
+
+ qemu_put_be64(f, env->features);
+
+ if (arm_feature(env, ARM_FEATURE_VFP)) {
+ for (i = 0; i < 16; i++) {
+ CPU_DoubleU u;
+ u.d = env->vfp.regs[i];
+ qemu_put_be32(f, u.l.upper);
+ qemu_put_be32(f, u.l.lower);
+ }
+ for (i = 0; i < 16; i++) {
+ qemu_put_be32(f, env->vfp.xregs[i]);
+ }
+
+ /* TODO: Should use proper FPSCR access functions. */
+ qemu_put_be32(f, env->vfp.vec_len);
+ qemu_put_be32(f, env->vfp.vec_stride);
+
+ if (arm_feature(env, ARM_FEATURE_VFP3)) {
+ for (i = 16; i < 32; i++) {
+ CPU_DoubleU u;
+ u.d = env->vfp.regs[i];
+ qemu_put_be32(f, u.l.upper);
+ qemu_put_be32(f, u.l.lower);
+ }
+ }
+ }
+
+ if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
+ for (i = 0; i < 16; i++) {
+ qemu_put_be64(f, env->iwmmxt.regs[i]);
+ }
+ for (i = 0; i < 16; i++) {
+ qemu_put_be32(f, env->iwmmxt.cregs[i]);
+ }
+ }
+
+ if (arm_feature(env, ARM_FEATURE_M)) {
+ qemu_put_be32(f, env->v7m.other_sp);
+ qemu_put_be32(f, env->v7m.vecbase);
+ qemu_put_be32(f, env->v7m.basepri);
+ qemu_put_be32(f, env->v7m.control);
+ qemu_put_be32(f, env->v7m.current_sp);
+ qemu_put_be32(f, env->v7m.exception);
+ }
+
+ if (arm_feature(env, ARM_FEATURE_THUMB2EE)) {
+ qemu_put_be32(f, env->teecr);
+ qemu_put_be32(f, env->teehbr);
+ }
+}
+
+int cpu_load(QEMUFile *f, void *opaque, int version_id)
+{
+ CPUARMState *env = (CPUARMState *)opaque;
+ int i;
+ uint32_t val;
+
+ if (version_id != CPU_SAVE_VERSION)
+ return -EINVAL;
+
+ for (i = 0; i < 16; i++) {
+ env->regs[i] = qemu_get_be32(f);
+ }
+ val = qemu_get_be32(f);
+ /* Avoid mode switch when restoring CPSR. */
+ env->uncached_cpsr = val & CPSR_M;
+ cpsr_write(env, val, 0xffffffff);
+ env->spsr = qemu_get_be32(f);
+ for (i = 0; i < 6; i++) {
+ env->banked_spsr[i] = qemu_get_be32(f);
+ env->banked_r13[i] = qemu_get_be32(f);
+ env->banked_r14[i] = qemu_get_be32(f);
+ }
+ for (i = 0; i < 5; i++) {
+ env->usr_regs[i] = qemu_get_be32(f);
+ env->fiq_regs[i] = qemu_get_be32(f);
+ }
+ env->cp15.c0_cpuid = qemu_get_be32(f);
+ env->cp15.c0_cssel = qemu_get_be32(f);
+ env->cp15.c1_sys = qemu_get_be32(f);
+ env->cp15.c1_coproc = qemu_get_be32(f);
+ env->cp15.c1_xscaleauxcr = qemu_get_be32(f);
+ env->cp15.c1_scr = qemu_get_be32(f);
+ env->cp15.c2_base0 = qemu_get_be32(f);
+ env->cp15.c2_base0_hi = qemu_get_be32(f);
+ env->cp15.c2_base1 = qemu_get_be32(f);
+ env->cp15.c2_base1_hi = qemu_get_be32(f);
+ env->cp15.c2_control = qemu_get_be32(f);
+ env->cp15.c2_mask = qemu_get_be32(f);
+ env->cp15.c2_base_mask = qemu_get_be32(f);
+ env->cp15.c2_data = qemu_get_be32(f);
+ env->cp15.c2_insn = qemu_get_be32(f);
+ env->cp15.c3 = qemu_get_be32(f);
+ env->cp15.c5_insn = qemu_get_be32(f);
+ env->cp15.c5_data = qemu_get_be32(f);
+ for (i = 0; i < 8; i++) {
+ env->cp15.c6_region[i] = qemu_get_be32(f);
+ }
+ env->cp15.c6_insn = qemu_get_be32(f);
+ env->cp15.c6_data = qemu_get_be32(f);
+ env->cp15.c7_par = qemu_get_be32(f);
+ env->cp15.c7_par_hi = qemu_get_be32(f);
+ env->cp15.c9_insn = qemu_get_be32(f);
+ env->cp15.c9_data = qemu_get_be32(f);
+ env->cp15.c9_pmcr = qemu_get_be32(f);
+ env->cp15.c9_pmcnten = qemu_get_be32(f);
+ env->cp15.c9_pmovsr = qemu_get_be32(f);
+ env->cp15.c9_pmxevtyper = qemu_get_be32(f);
+ env->cp15.c9_pmuserenr = qemu_get_be32(f);
+ env->cp15.c9_pminten = qemu_get_be32(f);
+ env->cp15.c13_fcse = qemu_get_be32(f);
+ env->cp15.c13_context = qemu_get_be32(f);
+ env->cp15.c13_tls1 = qemu_get_be32(f);
+ env->cp15.c13_tls2 = qemu_get_be32(f);
+ env->cp15.c13_tls3 = qemu_get_be32(f);
+ env->cp15.c15_cpar = qemu_get_be32(f);
+ env->cp15.c15_power_control = qemu_get_be32(f);
+ env->cp15.c15_diagnostic = qemu_get_be32(f);
+ env->cp15.c15_power_diagnostic = qemu_get_be32(f);
+
+ env->features = qemu_get_be64(f);
+
+ if (arm_feature(env, ARM_FEATURE_VFP)) {
+ for (i = 0; i < 16; i++) {
+ CPU_DoubleU u;
+ u.l.upper = qemu_get_be32(f);
+ u.l.lower = qemu_get_be32(f);
+ env->vfp.regs[i] = u.d;
+ }
+ for (i = 0; i < 16; i++) {
+ env->vfp.xregs[i] = qemu_get_be32(f);
+ }
+
+ /* TODO: Should use proper FPSCR access functions. */
+ env->vfp.vec_len = qemu_get_be32(f);
+ env->vfp.vec_stride = qemu_get_be32(f);
+
+ if (arm_feature(env, ARM_FEATURE_VFP3)) {
+ for (i = 16; i < 32; i++) {
+ CPU_DoubleU u;
+ u.l.upper = qemu_get_be32(f);
+ u.l.lower = qemu_get_be32(f);
+ env->vfp.regs[i] = u.d;
+ }
+ }
+ }
+
+ if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
+ for (i = 0; i < 16; i++) {
+ env->iwmmxt.regs[i] = qemu_get_be64(f);
+ }
+ for (i = 0; i < 16; i++) {
+ env->iwmmxt.cregs[i] = qemu_get_be32(f);
+ }
+ }
+
+ if (arm_feature(env, ARM_FEATURE_M)) {
+ env->v7m.other_sp = qemu_get_be32(f);
+ env->v7m.vecbase = qemu_get_be32(f);
+ env->v7m.basepri = qemu_get_be32(f);
+ env->v7m.control = qemu_get_be32(f);
+ env->v7m.current_sp = qemu_get_be32(f);
+ env->v7m.exception = qemu_get_be32(f);
+ }
+
+ if (arm_feature(env, ARM_FEATURE_THUMB2EE)) {
+ env->teecr = qemu_get_be32(f);
+ env->teehbr = qemu_get_be32(f);
+ }
+
+ return 0;
+}
diff --git a/target-arm/neon_helper.c b/target-arm/neon_helper.c
new file mode 100644
index 000000000..8bb5129d6
--- /dev/null
+++ b/target-arm/neon_helper.c
@@ -0,0 +1,2017 @@
+/*
+ * ARM NEON vector operations.
+ *
+ * Copyright (c) 2007, 2008 CodeSourcery.
+ * Written by Paul Brook
+ *
+ * This code is licensed under the GNU GPL v2.
+ */
+#include <stdlib.h>
+#include <stdio.h>
+
+#include "cpu.h"
+#include "exec-all.h"
+#include "helper.h"
+
+#define SIGNBIT (uint32_t)0x80000000
+#define SIGNBIT64 ((uint64_t)1 << 63)
+
+#define SET_QC() env->vfp.xregs[ARM_VFP_FPSCR] |= CPSR_Q
+
+#define NEON_TYPE1(name, type) \
+typedef struct \
+{ \
+ type v1; \
+} neon_##name;
+#ifdef HOST_WORDS_BIGENDIAN
+#define NEON_TYPE2(name, type) \
+typedef struct \
+{ \
+ type v2; \
+ type v1; \
+} neon_##name;
+#define NEON_TYPE4(name, type) \
+typedef struct \
+{ \
+ type v4; \
+ type v3; \
+ type v2; \
+ type v1; \
+} neon_##name;
+#else
+#define NEON_TYPE2(name, type) \
+typedef struct \
+{ \
+ type v1; \
+ type v2; \
+} neon_##name;
+#define NEON_TYPE4(name, type) \
+typedef struct \
+{ \
+ type v1; \
+ type v2; \
+ type v3; \
+ type v4; \
+} neon_##name;
+#endif
+
+NEON_TYPE4(s8, int8_t)
+NEON_TYPE4(u8, uint8_t)
+NEON_TYPE2(s16, int16_t)
+NEON_TYPE2(u16, uint16_t)
+NEON_TYPE1(s32, int32_t)
+NEON_TYPE1(u32, uint32_t)
+#undef NEON_TYPE4
+#undef NEON_TYPE2
+#undef NEON_TYPE1
+
+/* Copy from a uint32_t to a vector structure type. */
+#define NEON_UNPACK(vtype, dest, val) do { \
+ union { \
+ vtype v; \
+ uint32_t i; \
+ } conv_u; \
+ conv_u.i = (val); \
+ dest = conv_u.v; \
+ } while(0)
+
+/* Copy from a vector structure type to a uint32_t. */
+#define NEON_PACK(vtype, dest, val) do { \
+ union { \
+ vtype v; \
+ uint32_t i; \
+ } conv_u; \
+ conv_u.v = (val); \
+ dest = conv_u.i; \
+ } while(0)
+
+#define NEON_DO1 \
+ NEON_FN(vdest.v1, vsrc1.v1, vsrc2.v1);
+#define NEON_DO2 \
+ NEON_FN(vdest.v1, vsrc1.v1, vsrc2.v1); \
+ NEON_FN(vdest.v2, vsrc1.v2, vsrc2.v2);
+#define NEON_DO4 \
+ NEON_FN(vdest.v1, vsrc1.v1, vsrc2.v1); \
+ NEON_FN(vdest.v2, vsrc1.v2, vsrc2.v2); \
+ NEON_FN(vdest.v3, vsrc1.v3, vsrc2.v3); \
+ NEON_FN(vdest.v4, vsrc1.v4, vsrc2.v4);
+
+#define NEON_VOP_BODY(vtype, n) \
+{ \
+ uint32_t res; \
+ vtype vsrc1; \
+ vtype vsrc2; \
+ vtype vdest; \
+ NEON_UNPACK(vtype, vsrc1, arg1); \
+ NEON_UNPACK(vtype, vsrc2, arg2); \
+ NEON_DO##n; \
+ NEON_PACK(vtype, res, vdest); \
+ return res; \
+}
+
+#define NEON_VOP(name, vtype, n) \
+uint32_t HELPER(glue(neon_,name))(uint32_t arg1, uint32_t arg2) \
+NEON_VOP_BODY(vtype, n)
+
+#define NEON_VOP_ENV(name, vtype, n) \
+uint32_t HELPER(glue(neon_,name))(CPUARMState *env, uint32_t arg1, uint32_t arg2) \
+NEON_VOP_BODY(vtype, n)
+
+/* Pairwise operations. */
+/* For 32-bit elements each segment only contains a single element, so
+ the elementwise and pairwise operations are the same. */
+#define NEON_PDO2 \
+ NEON_FN(vdest.v1, vsrc1.v1, vsrc1.v2); \
+ NEON_FN(vdest.v2, vsrc2.v1, vsrc2.v2);
+#define NEON_PDO4 \
+ NEON_FN(vdest.v1, vsrc1.v1, vsrc1.v2); \
+ NEON_FN(vdest.v2, vsrc1.v3, vsrc1.v4); \
+ NEON_FN(vdest.v3, vsrc2.v1, vsrc2.v2); \
+ NEON_FN(vdest.v4, vsrc2.v3, vsrc2.v4); \
+
+#define NEON_POP(name, vtype, n) \
+uint32_t HELPER(glue(neon_,name))(uint32_t arg1, uint32_t arg2) \
+{ \
+ uint32_t res; \
+ vtype vsrc1; \
+ vtype vsrc2; \
+ vtype vdest; \
+ NEON_UNPACK(vtype, vsrc1, arg1); \
+ NEON_UNPACK(vtype, vsrc2, arg2); \
+ NEON_PDO##n; \
+ NEON_PACK(vtype, res, vdest); \
+ return res; \
+}
+
+/* Unary operators. */
+#define NEON_VOP1(name, vtype, n) \
+uint32_t HELPER(glue(neon_,name))(uint32_t arg) \
+{ \
+ vtype vsrc1; \
+ vtype vdest; \
+ NEON_UNPACK(vtype, vsrc1, arg); \
+ NEON_DO##n; \
+ NEON_PACK(vtype, arg, vdest); \
+ return arg; \
+}
+
+
+#define NEON_USAT(dest, src1, src2, type) do { \
+ uint32_t tmp = (uint32_t)src1 + (uint32_t)src2; \
+ if (tmp != (type)tmp) { \
+ SET_QC(); \
+ dest = ~0; \
+ } else { \
+ dest = tmp; \
+ }} while(0)
+#define NEON_FN(dest, src1, src2) NEON_USAT(dest, src1, src2, uint8_t)
+NEON_VOP_ENV(qadd_u8, neon_u8, 4)
+#undef NEON_FN
+#define NEON_FN(dest, src1, src2) NEON_USAT(dest, src1, src2, uint16_t)
+NEON_VOP_ENV(qadd_u16, neon_u16, 2)
+#undef NEON_FN
+#undef NEON_USAT
+
+uint32_t HELPER(neon_qadd_u32)(CPUARMState *env, uint32_t a, uint32_t b)
+{
+ uint32_t res = a + b;
+ if (res < a) {
+ SET_QC();
+ res = ~0;
+ }
+ return res;
+}
+
+uint64_t HELPER(neon_qadd_u64)(CPUARMState *env, uint64_t src1, uint64_t src2)
+{
+ uint64_t res;
+
+ res = src1 + src2;
+ if (res < src1) {
+ SET_QC();
+ res = ~(uint64_t)0;
+ }
+ return res;
+}
+
+#define NEON_SSAT(dest, src1, src2, type) do { \
+ int32_t tmp = (uint32_t)src1 + (uint32_t)src2; \
+ if (tmp != (type)tmp) { \
+ SET_QC(); \
+ if (src2 > 0) { \
+ tmp = (1 << (sizeof(type) * 8 - 1)) - 1; \
+ } else { \
+ tmp = 1 << (sizeof(type) * 8 - 1); \
+ } \
+ } \
+ dest = tmp; \
+ } while(0)
+#define NEON_FN(dest, src1, src2) NEON_SSAT(dest, src1, src2, int8_t)
+NEON_VOP_ENV(qadd_s8, neon_s8, 4)
+#undef NEON_FN
+#define NEON_FN(dest, src1, src2) NEON_SSAT(dest, src1, src2, int16_t)
+NEON_VOP_ENV(qadd_s16, neon_s16, 2)
+#undef NEON_FN
+#undef NEON_SSAT
+
+uint32_t HELPER(neon_qadd_s32)(CPUARMState *env, uint32_t a, uint32_t b)
+{
+ uint32_t res = a + b;
+ if (((res ^ a) & SIGNBIT) && !((a ^ b) & SIGNBIT)) {
+ SET_QC();
+ res = ~(((int32_t)a >> 31) ^ SIGNBIT);
+ }
+ return res;
+}
+
+uint64_t HELPER(neon_qadd_s64)(CPUARMState *env, uint64_t src1, uint64_t src2)
+{
+ uint64_t res;
+
+ res = src1 + src2;
+ if (((res ^ src1) & SIGNBIT64) && !((src1 ^ src2) & SIGNBIT64)) {
+ SET_QC();
+ res = ((int64_t)src1 >> 63) ^ ~SIGNBIT64;
+ }
+ return res;
+}
+
+#define NEON_USAT(dest, src1, src2, type) do { \
+ uint32_t tmp = (uint32_t)src1 - (uint32_t)src2; \
+ if (tmp != (type)tmp) { \
+ SET_QC(); \
+ dest = 0; \
+ } else { \
+ dest = tmp; \
+ }} while(0)
+#define NEON_FN(dest, src1, src2) NEON_USAT(dest, src1, src2, uint8_t)
+NEON_VOP_ENV(qsub_u8, neon_u8, 4)
+#undef NEON_FN
+#define NEON_FN(dest, src1, src2) NEON_USAT(dest, src1, src2, uint16_t)
+NEON_VOP_ENV(qsub_u16, neon_u16, 2)
+#undef NEON_FN
+#undef NEON_USAT
+
+uint32_t HELPER(neon_qsub_u32)(CPUARMState *env, uint32_t a, uint32_t b)
+{
+ uint32_t res = a - b;
+ if (res > a) {
+ SET_QC();
+ res = 0;
+ }
+ return res;
+}
+
+uint64_t HELPER(neon_qsub_u64)(CPUARMState *env, uint64_t src1, uint64_t src2)
+{
+ uint64_t res;
+
+ if (src1 < src2) {
+ SET_QC();
+ res = 0;
+ } else {
+ res = src1 - src2;
+ }
+ return res;
+}
+
+#define NEON_SSAT(dest, src1, src2, type) do { \
+ int32_t tmp = (uint32_t)src1 - (uint32_t)src2; \
+ if (tmp != (type)tmp) { \
+ SET_QC(); \
+ if (src2 < 0) { \
+ tmp = (1 << (sizeof(type) * 8 - 1)) - 1; \
+ } else { \
+ tmp = 1 << (sizeof(type) * 8 - 1); \
+ } \
+ } \
+ dest = tmp; \
+ } while(0)
+#define NEON_FN(dest, src1, src2) NEON_SSAT(dest, src1, src2, int8_t)
+NEON_VOP_ENV(qsub_s8, neon_s8, 4)
+#undef NEON_FN
+#define NEON_FN(dest, src1, src2) NEON_SSAT(dest, src1, src2, int16_t)
+NEON_VOP_ENV(qsub_s16, neon_s16, 2)
+#undef NEON_FN
+#undef NEON_SSAT
+
+uint32_t HELPER(neon_qsub_s32)(CPUARMState *env, uint32_t a, uint32_t b)
+{
+ uint32_t res = a - b;
+ if (((res ^ a) & SIGNBIT) && ((a ^ b) & SIGNBIT)) {
+ SET_QC();
+ res = ~(((int32_t)a >> 31) ^ SIGNBIT);
+ }
+ return res;
+}
+
+uint64_t HELPER(neon_qsub_s64)(CPUARMState *env, uint64_t src1, uint64_t src2)
+{
+ uint64_t res;
+
+ res = src1 - src2;
+ if (((res ^ src1) & SIGNBIT64) && ((src1 ^ src2) & SIGNBIT64)) {
+ SET_QC();
+ res = ((int64_t)src1 >> 63) ^ ~SIGNBIT64;
+ }
+ return res;
+}
+
+#define NEON_FN(dest, src1, src2) dest = (src1 + src2) >> 1
+NEON_VOP(hadd_s8, neon_s8, 4)
+NEON_VOP(hadd_u8, neon_u8, 4)
+NEON_VOP(hadd_s16, neon_s16, 2)
+NEON_VOP(hadd_u16, neon_u16, 2)
+#undef NEON_FN
+
+int32_t HELPER(neon_hadd_s32)(int32_t src1, int32_t src2)
+{
+ int32_t dest;
+
+ dest = (src1 >> 1) + (src2 >> 1);
+ if (src1 & src2 & 1)
+ dest++;
+ return dest;
+}
+
+uint32_t HELPER(neon_hadd_u32)(uint32_t src1, uint32_t src2)
+{
+ uint32_t dest;
+
+ dest = (src1 >> 1) + (src2 >> 1);
+ if (src1 & src2 & 1)
+ dest++;
+ return dest;
+}
+
+#define NEON_FN(dest, src1, src2) dest = (src1 + src2 + 1) >> 1
+NEON_VOP(rhadd_s8, neon_s8, 4)
+NEON_VOP(rhadd_u8, neon_u8, 4)
+NEON_VOP(rhadd_s16, neon_s16, 2)
+NEON_VOP(rhadd_u16, neon_u16, 2)
+#undef NEON_FN
+
+int32_t HELPER(neon_rhadd_s32)(int32_t src1, int32_t src2)
+{
+ int32_t dest;
+
+ dest = (src1 >> 1) + (src2 >> 1);
+ if ((src1 | src2) & 1)
+ dest++;
+ return dest;
+}
+
+uint32_t HELPER(neon_rhadd_u32)(uint32_t src1, uint32_t src2)
+{
+ uint32_t dest;
+
+ dest = (src1 >> 1) + (src2 >> 1);
+ if ((src1 | src2) & 1)
+ dest++;
+ return dest;
+}
+
+#define NEON_FN(dest, src1, src2) dest = (src1 - src2) >> 1
+NEON_VOP(hsub_s8, neon_s8, 4)
+NEON_VOP(hsub_u8, neon_u8, 4)
+NEON_VOP(hsub_s16, neon_s16, 2)
+NEON_VOP(hsub_u16, neon_u16, 2)
+#undef NEON_FN
+
+int32_t HELPER(neon_hsub_s32)(int32_t src1, int32_t src2)
+{
+ int32_t dest;
+
+ dest = (src1 >> 1) - (src2 >> 1);
+ if ((~src1) & src2 & 1)
+ dest--;
+ return dest;
+}
+
+uint32_t HELPER(neon_hsub_u32)(uint32_t src1, uint32_t src2)
+{
+ uint32_t dest;
+
+ dest = (src1 >> 1) - (src2 >> 1);
+ if ((~src1) & src2 & 1)
+ dest--;
+ return dest;
+}
+
+#define NEON_FN(dest, src1, src2) dest = (src1 > src2) ? ~0 : 0
+NEON_VOP(cgt_s8, neon_s8, 4)
+NEON_VOP(cgt_u8, neon_u8, 4)
+NEON_VOP(cgt_s16, neon_s16, 2)
+NEON_VOP(cgt_u16, neon_u16, 2)
+NEON_VOP(cgt_s32, neon_s32, 1)
+NEON_VOP(cgt_u32, neon_u32, 1)
+#undef NEON_FN
+
+#define NEON_FN(dest, src1, src2) dest = (src1 >= src2) ? ~0 : 0
+NEON_VOP(cge_s8, neon_s8, 4)
+NEON_VOP(cge_u8, neon_u8, 4)
+NEON_VOP(cge_s16, neon_s16, 2)
+NEON_VOP(cge_u16, neon_u16, 2)
+NEON_VOP(cge_s32, neon_s32, 1)
+NEON_VOP(cge_u32, neon_u32, 1)
+#undef NEON_FN
+
+#define NEON_FN(dest, src1, src2) dest = (src1 < src2) ? src1 : src2
+NEON_VOP(min_s8, neon_s8, 4)
+NEON_VOP(min_u8, neon_u8, 4)
+NEON_VOP(min_s16, neon_s16, 2)
+NEON_VOP(min_u16, neon_u16, 2)
+NEON_VOP(min_s32, neon_s32, 1)
+NEON_VOP(min_u32, neon_u32, 1)
+NEON_POP(pmin_s8, neon_s8, 4)
+NEON_POP(pmin_u8, neon_u8, 4)
+NEON_POP(pmin_s16, neon_s16, 2)
+NEON_POP(pmin_u16, neon_u16, 2)
+#undef NEON_FN
+
+#define NEON_FN(dest, src1, src2) dest = (src1 > src2) ? src1 : src2
+NEON_VOP(max_s8, neon_s8, 4)
+NEON_VOP(max_u8, neon_u8, 4)
+NEON_VOP(max_s16, neon_s16, 2)
+NEON_VOP(max_u16, neon_u16, 2)
+NEON_VOP(max_s32, neon_s32, 1)
+NEON_VOP(max_u32, neon_u32, 1)
+NEON_POP(pmax_s8, neon_s8, 4)
+NEON_POP(pmax_u8, neon_u8, 4)
+NEON_POP(pmax_s16, neon_s16, 2)
+NEON_POP(pmax_u16, neon_u16, 2)
+#undef NEON_FN
+
+#define NEON_FN(dest, src1, src2) \
+ dest = (src1 > src2) ? (src1 - src2) : (src2 - src1)
+NEON_VOP(abd_s8, neon_s8, 4)
+NEON_VOP(abd_u8, neon_u8, 4)
+NEON_VOP(abd_s16, neon_s16, 2)
+NEON_VOP(abd_u16, neon_u16, 2)
+NEON_VOP(abd_s32, neon_s32, 1)
+NEON_VOP(abd_u32, neon_u32, 1)
+#undef NEON_FN
+
+#define NEON_FN(dest, src1, src2) do { \
+ int8_t tmp; \
+ tmp = (int8_t)src2; \
+ if (tmp >= (ssize_t)sizeof(src1) * 8 || \
+ tmp <= -(ssize_t)sizeof(src1) * 8) { \
+ dest = 0; \
+ } else if (tmp < 0) { \
+ dest = src1 >> -tmp; \
+ } else { \
+ dest = src1 << tmp; \
+ }} while (0)
+NEON_VOP(shl_u8, neon_u8, 4)
+NEON_VOP(shl_u16, neon_u16, 2)
+NEON_VOP(shl_u32, neon_u32, 1)
+#undef NEON_FN
+
+uint64_t HELPER(neon_shl_u64)(uint64_t val, uint64_t shiftop)
+{
+ int8_t shift = (int8_t)shiftop;
+ if (shift >= 64 || shift <= -64) {
+ val = 0;
+ } else if (shift < 0) {
+ val >>= -shift;
+ } else {
+ val <<= shift;
+ }
+ return val;
+}
+
+#define NEON_FN(dest, src1, src2) do { \
+ int8_t tmp; \
+ tmp = (int8_t)src2; \
+ if (tmp >= (ssize_t)sizeof(src1) * 8) { \
+ dest = 0; \
+ } else if (tmp <= -(ssize_t)sizeof(src1) * 8) { \
+ dest = src1 >> (sizeof(src1) * 8 - 1); \
+ } else if (tmp < 0) { \
+ dest = src1 >> -tmp; \
+ } else { \
+ dest = src1 << tmp; \
+ }} while (0)
+NEON_VOP(shl_s8, neon_s8, 4)
+NEON_VOP(shl_s16, neon_s16, 2)
+NEON_VOP(shl_s32, neon_s32, 1)
+#undef NEON_FN
+
+uint64_t HELPER(neon_shl_s64)(uint64_t valop, uint64_t shiftop)
+{
+ int8_t shift = (int8_t)shiftop;
+ int64_t val = valop;
+ if (shift >= 64) {
+ val = 0;
+ } else if (shift <= -64) {
+ val >>= 63;
+ } else if (shift < 0) {
+ val >>= -shift;
+ } else {
+ val <<= shift;
+ }
+ return val;
+}
+
+#define NEON_FN(dest, src1, src2) do { \
+ int8_t tmp; \
+ tmp = (int8_t)src2; \
+ if ((tmp >= (ssize_t)sizeof(src1) * 8) \
+ || (tmp <= -(ssize_t)sizeof(src1) * 8)) { \
+ dest = 0; \
+ } else if (tmp < 0) { \
+ dest = (src1 + (1 << (-1 - tmp))) >> -tmp; \
+ } else { \
+ dest = src1 << tmp; \
+ }} while (0)
+NEON_VOP(rshl_s8, neon_s8, 4)
+NEON_VOP(rshl_s16, neon_s16, 2)
+#undef NEON_FN
+
+/* The addition of the rounding constant may overflow, so we use an
+ * intermediate 64 bit accumulator. */
+uint32_t HELPER(neon_rshl_s32)(uint32_t valop, uint32_t shiftop)
+{
+ int32_t dest;
+ int32_t val = (int32_t)valop;
+ int8_t shift = (int8_t)shiftop;
+ if ((shift >= 32) || (shift <= -32)) {
+ dest = 0;
+ } else if (shift < 0) {
+ int64_t big_dest = ((int64_t)val + (1 << (-1 - shift)));
+ dest = big_dest >> -shift;
+ } else {
+ dest = val << shift;
+ }
+ return dest;
+}
+
+/* Handling addition overflow with 64 bit input values is more
+ * tricky than with 32 bit values. */
+uint64_t HELPER(neon_rshl_s64)(uint64_t valop, uint64_t shiftop)
+{
+ int8_t shift = (int8_t)shiftop;
+ int64_t val = valop;
+ if ((shift >= 64) || (shift <= -64)) {
+ val = 0;
+ } else if (shift < 0) {
+ val >>= (-shift - 1);
+ if (val == INT64_MAX) {
+ /* In this case, it means that the rounding constant is 1,
+ * and the addition would overflow. Return the actual
+ * result directly. */
+ val = 0x4000000000000000LL;
+ } else {
+ val++;
+ val >>= 1;
+ }
+ } else {
+ val <<= shift;
+ }
+ return val;
+}
+
+#define NEON_FN(dest, src1, src2) do { \
+ int8_t tmp; \
+ tmp = (int8_t)src2; \
+ if (tmp >= (ssize_t)sizeof(src1) * 8 || \
+ tmp < -(ssize_t)sizeof(src1) * 8) { \
+ dest = 0; \
+ } else if (tmp == -(ssize_t)sizeof(src1) * 8) { \
+ dest = src1 >> (-tmp - 1); \
+ } else if (tmp < 0) { \
+ dest = (src1 + (1 << (-1 - tmp))) >> -tmp; \
+ } else { \
+ dest = src1 << tmp; \
+ }} while (0)
+NEON_VOP(rshl_u8, neon_u8, 4)
+NEON_VOP(rshl_u16, neon_u16, 2)
+#undef NEON_FN
+
+/* The addition of the rounding constant may overflow, so we use an
+ * intermediate 64 bit accumulator. */
+uint32_t HELPER(neon_rshl_u32)(uint32_t val, uint32_t shiftop)
+{
+ uint32_t dest;
+ int8_t shift = (int8_t)shiftop;
+ if (shift >= 32 || shift < -32) {
+ dest = 0;
+ } else if (shift == -32) {
+ dest = val >> 31;
+ } else if (shift < 0) {
+ uint64_t big_dest = ((uint64_t)val + (1 << (-1 - shift)));
+ dest = big_dest >> -shift;
+ } else {
+ dest = val << shift;
+ }
+ return dest;
+}
+
+/* Handling addition overflow with 64 bit input values is more
+ * tricky than with 32 bit values. */
+uint64_t HELPER(neon_rshl_u64)(uint64_t val, uint64_t shiftop)
+{
+ int8_t shift = (uint8_t)shiftop;
+ if (shift >= 64 || shift < -64) {
+ val = 0;
+ } else if (shift == -64) {
+ /* Rounding a 1-bit result just preserves that bit. */
+ val >>= 63;
+ } else if (shift < 0) {
+ val >>= (-shift - 1);
+ if (val == UINT64_MAX) {
+ /* In this case, it means that the rounding constant is 1,
+ * and the addition would overflow. Return the actual
+ * result directly. */
+ val = 0x8000000000000000ULL;
+ } else {
+ val++;
+ val >>= 1;
+ }
+ } else {
+ val <<= shift;
+ }
+ return val;
+}
+
+#define NEON_FN(dest, src1, src2) do { \
+ int8_t tmp; \
+ tmp = (int8_t)src2; \
+ if (tmp >= (ssize_t)sizeof(src1) * 8) { \
+ if (src1) { \
+ SET_QC(); \
+ dest = ~0; \
+ } else { \
+ dest = 0; \
+ } \
+ } else if (tmp <= -(ssize_t)sizeof(src1) * 8) { \
+ dest = 0; \
+ } else if (tmp < 0) { \
+ dest = src1 >> -tmp; \
+ } else { \
+ dest = src1 << tmp; \
+ if ((dest >> tmp) != src1) { \
+ SET_QC(); \
+ dest = ~0; \
+ } \
+ }} while (0)
+NEON_VOP_ENV(qshl_u8, neon_u8, 4)
+NEON_VOP_ENV(qshl_u16, neon_u16, 2)
+NEON_VOP_ENV(qshl_u32, neon_u32, 1)
+#undef NEON_FN
+
+uint64_t HELPER(neon_qshl_u64)(CPUARMState *env, uint64_t val, uint64_t shiftop)
+{
+ int8_t shift = (int8_t)shiftop;
+ if (shift >= 64) {
+ if (val) {
+ val = ~(uint64_t)0;
+ SET_QC();
+ }
+ } else if (shift <= -64) {
+ val = 0;
+ } else if (shift < 0) {
+ val >>= -shift;
+ } else {
+ uint64_t tmp = val;
+ val <<= shift;
+ if ((val >> shift) != tmp) {
+ SET_QC();
+ val = ~(uint64_t)0;
+ }
+ }
+ return val;
+}
+
+#define NEON_FN(dest, src1, src2) do { \
+ int8_t tmp; \
+ tmp = (int8_t)src2; \
+ if (tmp >= (ssize_t)sizeof(src1) * 8) { \
+ if (src1) { \
+ SET_QC(); \
+ dest = (uint32_t)(1 << (sizeof(src1) * 8 - 1)); \
+ if (src1 > 0) { \
+ dest--; \
+ } \
+ } else { \
+ dest = src1; \
+ } \
+ } else if (tmp <= -(ssize_t)sizeof(src1) * 8) { \
+ dest = src1 >> 31; \
+ } else if (tmp < 0) { \
+ dest = src1 >> -tmp; \
+ } else { \
+ dest = src1 << tmp; \
+ if ((dest >> tmp) != src1) { \
+ SET_QC(); \
+ dest = (uint32_t)(1 << (sizeof(src1) * 8 - 1)); \
+ if (src1 > 0) { \
+ dest--; \
+ } \
+ } \
+ }} while (0)
+NEON_VOP_ENV(qshl_s8, neon_s8, 4)
+NEON_VOP_ENV(qshl_s16, neon_s16, 2)
+NEON_VOP_ENV(qshl_s32, neon_s32, 1)
+#undef NEON_FN
+
+uint64_t HELPER(neon_qshl_s64)(CPUARMState *env, uint64_t valop, uint64_t shiftop)
+{
+ int8_t shift = (uint8_t)shiftop;
+ int64_t val = valop;
+ if (shift >= 64) {
+ if (val) {
+ SET_QC();
+ val = (val >> 63) ^ ~SIGNBIT64;
+ }
+ } else if (shift <= -64) {
+ val >>= 63;
+ } else if (shift < 0) {
+ val >>= -shift;
+ } else {
+ int64_t tmp = val;
+ val <<= shift;
+ if ((val >> shift) != tmp) {
+ SET_QC();
+ val = (tmp >> 63) ^ ~SIGNBIT64;
+ }
+ }
+ return val;
+}
+
+#define NEON_FN(dest, src1, src2) do { \
+ if (src1 & (1 << (sizeof(src1) * 8 - 1))) { \
+ SET_QC(); \
+ dest = 0; \
+ } else { \
+ int8_t tmp; \
+ tmp = (int8_t)src2; \
+ if (tmp >= (ssize_t)sizeof(src1) * 8) { \
+ if (src1) { \
+ SET_QC(); \
+ dest = ~0; \
+ } else { \
+ dest = 0; \
+ } \
+ } else if (tmp <= -(ssize_t)sizeof(src1) * 8) { \
+ dest = 0; \
+ } else if (tmp < 0) { \
+ dest = src1 >> -tmp; \
+ } else { \
+ dest = src1 << tmp; \
+ if ((dest >> tmp) != src1) { \
+ SET_QC(); \
+ dest = ~0; \
+ } \
+ } \
+ }} while (0)
+NEON_VOP_ENV(qshlu_s8, neon_u8, 4)
+NEON_VOP_ENV(qshlu_s16, neon_u16, 2)
+#undef NEON_FN
+
+uint32_t HELPER(neon_qshlu_s32)(CPUARMState *env, uint32_t valop, uint32_t shiftop)
+{
+ if ((int32_t)valop < 0) {
+ SET_QC();
+ return 0;
+ }
+ return helper_neon_qshl_u32(env, valop, shiftop);
+}
+
+uint64_t HELPER(neon_qshlu_s64)(CPUARMState *env, uint64_t valop, uint64_t shiftop)
+{
+ if ((int64_t)valop < 0) {
+ SET_QC();
+ return 0;
+ }
+ return helper_neon_qshl_u64(env, valop, shiftop);
+}
+
+/* FIXME: This is wrong. */
+#define NEON_FN(dest, src1, src2) do { \
+ int8_t tmp; \
+ tmp = (int8_t)src2; \
+ if (tmp >= (ssize_t)sizeof(src1) * 8) { \
+ if (src1) { \
+ SET_QC(); \
+ dest = ~0; \
+ } else { \
+ dest = 0; \
+ } \
+ } else if (tmp < -(ssize_t)sizeof(src1) * 8) { \
+ dest = 0; \
+ } else if (tmp == -(ssize_t)sizeof(src1) * 8) { \
+ dest = src1 >> (sizeof(src1) * 8 - 1); \
+ } else if (tmp < 0) { \
+ dest = (src1 + (1 << (-1 - tmp))) >> -tmp; \
+ } else { \
+ dest = src1 << tmp; \
+ if ((dest >> tmp) != src1) { \
+ SET_QC(); \
+ dest = ~0; \
+ } \
+ }} while (0)
+NEON_VOP_ENV(qrshl_u8, neon_u8, 4)
+NEON_VOP_ENV(qrshl_u16, neon_u16, 2)
+#undef NEON_FN
+
+/* The addition of the rounding constant may overflow, so we use an
+ * intermediate 64 bit accumulator. */
+uint32_t HELPER(neon_qrshl_u32)(CPUARMState *env, uint32_t val, uint32_t shiftop)
+{
+ uint32_t dest;
+ int8_t shift = (int8_t)shiftop;
+ if (shift >= 32) {
+ if (val) {
+ SET_QC();
+ dest = ~0;
+ } else {
+ dest = 0;
+ }
+ } else if (shift < -32) {
+ dest = 0;
+ } else if (shift == -32) {
+ dest = val >> 31;
+ } else if (shift < 0) {
+ uint64_t big_dest = ((uint64_t)val + (1 << (-1 - shift)));
+ dest = big_dest >> -shift;
+ } else {
+ dest = val << shift;
+ if ((dest >> shift) != val) {
+ SET_QC();
+ dest = ~0;
+ }
+ }
+ return dest;
+}
+
+/* Handling addition overflow with 64 bit input values is more
+ * tricky than with 32 bit values. */
+uint64_t HELPER(neon_qrshl_u64)(CPUARMState *env, uint64_t val, uint64_t shiftop)
+{
+ int8_t shift = (int8_t)shiftop;
+ if (shift >= 64) {
+ if (val) {
+ SET_QC();
+ val = ~0;
+ }
+ } else if (shift < -64) {
+ val = 0;
+ } else if (shift == -64) {
+ val >>= 63;
+ } else if (shift < 0) {
+ val >>= (-shift - 1);
+ if (val == UINT64_MAX) {
+ /* In this case, it means that the rounding constant is 1,
+ * and the addition would overflow. Return the actual
+ * result directly. */
+ val = 0x8000000000000000ULL;
+ } else {
+ val++;
+ val >>= 1;
+ }
+ } else { \
+ uint64_t tmp = val;
+ val <<= shift;
+ if ((val >> shift) != tmp) {
+ SET_QC();
+ val = ~0;
+ }
+ }
+ return val;
+}
+
+#define NEON_FN(dest, src1, src2) do { \
+ int8_t tmp; \
+ tmp = (int8_t)src2; \
+ if (tmp >= (ssize_t)sizeof(src1) * 8) { \
+ if (src1) { \
+ SET_QC(); \
+ dest = (1 << (sizeof(src1) * 8 - 1)); \
+ if (src1 > 0) { \
+ dest--; \
+ } \
+ } else { \
+ dest = 0; \
+ } \
+ } else if (tmp <= -(ssize_t)sizeof(src1) * 8) { \
+ dest = 0; \
+ } else if (tmp < 0) { \
+ dest = (src1 + (1 << (-1 - tmp))) >> -tmp; \
+ } else { \
+ dest = src1 << tmp; \
+ if ((dest >> tmp) != src1) { \
+ SET_QC(); \
+ dest = (uint32_t)(1 << (sizeof(src1) * 8 - 1)); \
+ if (src1 > 0) { \
+ dest--; \
+ } \
+ } \
+ }} while (0)
+NEON_VOP_ENV(qrshl_s8, neon_s8, 4)
+NEON_VOP_ENV(qrshl_s16, neon_s16, 2)
+#undef NEON_FN
+
+/* The addition of the rounding constant may overflow, so we use an
+ * intermediate 64 bit accumulator. */
+uint32_t HELPER(neon_qrshl_s32)(CPUARMState *env, uint32_t valop, uint32_t shiftop)
+{
+ int32_t dest;
+ int32_t val = (int32_t)valop;
+ int8_t shift = (int8_t)shiftop;
+ if (shift >= 32) {
+ if (val) {
+ SET_QC();
+ dest = (val >> 31) ^ ~SIGNBIT;
+ } else {
+ dest = 0;
+ }
+ } else if (shift <= -32) {
+ dest = 0;
+ } else if (shift < 0) {
+ int64_t big_dest = ((int64_t)val + (1 << (-1 - shift)));
+ dest = big_dest >> -shift;
+ } else {
+ dest = val << shift;
+ if ((dest >> shift) != val) {
+ SET_QC();
+ dest = (val >> 31) ^ ~SIGNBIT;
+ }
+ }
+ return dest;
+}
+
+/* Handling addition overflow with 64 bit input values is more
+ * tricky than with 32 bit values. */
+uint64_t HELPER(neon_qrshl_s64)(CPUARMState *env, uint64_t valop, uint64_t shiftop)
+{
+ int8_t shift = (uint8_t)shiftop;
+ int64_t val = valop;
+
+ if (shift >= 64) {
+ if (val) {
+ SET_QC();
+ val = (val >> 63) ^ ~SIGNBIT64;
+ }
+ } else if (shift <= -64) {
+ val = 0;
+ } else if (shift < 0) {
+ val >>= (-shift - 1);
+ if (val == INT64_MAX) {
+ /* In this case, it means that the rounding constant is 1,
+ * and the addition would overflow. Return the actual
+ * result directly. */
+ val = 0x4000000000000000ULL;
+ } else {
+ val++;
+ val >>= 1;
+ }
+ } else {
+ int64_t tmp = val;
+ val <<= shift;
+ if ((val >> shift) != tmp) {
+ SET_QC();
+ val = (tmp >> 63) ^ ~SIGNBIT64;
+ }
+ }
+ return val;
+}
+
+uint32_t HELPER(neon_add_u8)(uint32_t a, uint32_t b)
+{
+ uint32_t mask;
+ mask = (a ^ b) & 0x80808080u;
+ a &= ~0x80808080u;
+ b &= ~0x80808080u;
+ return (a + b) ^ mask;
+}
+
+uint32_t HELPER(neon_add_u16)(uint32_t a, uint32_t b)
+{
+ uint32_t mask;
+ mask = (a ^ b) & 0x80008000u;
+ a &= ~0x80008000u;
+ b &= ~0x80008000u;
+ return (a + b) ^ mask;
+}
+
+#define NEON_FN(dest, src1, src2) dest = src1 + src2
+NEON_POP(padd_u8, neon_u8, 4)
+NEON_POP(padd_u16, neon_u16, 2)
+#undef NEON_FN
+
+#define NEON_FN(dest, src1, src2) dest = src1 - src2
+NEON_VOP(sub_u8, neon_u8, 4)
+NEON_VOP(sub_u16, neon_u16, 2)
+#undef NEON_FN
+
+#define NEON_FN(dest, src1, src2) dest = src1 * src2
+NEON_VOP(mul_u8, neon_u8, 4)
+NEON_VOP(mul_u16, neon_u16, 2)
+#undef NEON_FN
+
+/* Polynomial multiplication is like integer multiplication except the
+ partial products are XORed, not added. */
+uint32_t HELPER(neon_mul_p8)(uint32_t op1, uint32_t op2)
+{
+ uint32_t mask;
+ uint32_t result;
+ result = 0;
+ while (op1) {
+ mask = 0;
+ if (op1 & 1)
+ mask |= 0xff;
+ if (op1 & (1 << 8))
+ mask |= (0xff << 8);
+ if (op1 & (1 << 16))
+ mask |= (0xff << 16);
+ if (op1 & (1 << 24))
+ mask |= (0xff << 24);
+ result ^= op2 & mask;
+ op1 = (op1 >> 1) & 0x7f7f7f7f;
+ op2 = (op2 << 1) & 0xfefefefe;
+ }
+ return result;
+}
+
+uint64_t HELPER(neon_mull_p8)(uint32_t op1, uint32_t op2)
+{
+ uint64_t result = 0;
+ uint64_t mask;
+ uint64_t op2ex = op2;
+ op2ex = (op2ex & 0xff) |
+ ((op2ex & 0xff00) << 8) |
+ ((op2ex & 0xff0000) << 16) |
+ ((op2ex & 0xff000000) << 24);
+ while (op1) {
+ mask = 0;
+ if (op1 & 1) {
+ mask |= 0xffff;
+ }
+ if (op1 & (1 << 8)) {
+ mask |= (0xffffU << 16);
+ }
+ if (op1 & (1 << 16)) {
+ mask |= (0xffffULL << 32);
+ }
+ if (op1 & (1 << 24)) {
+ mask |= (0xffffULL << 48);
+ }
+ result ^= op2ex & mask;
+ op1 = (op1 >> 1) & 0x7f7f7f7f;
+ op2ex <<= 1;
+ }
+ return result;
+}
+
+#define NEON_FN(dest, src1, src2) dest = (src1 & src2) ? -1 : 0
+NEON_VOP(tst_u8, neon_u8, 4)
+NEON_VOP(tst_u16, neon_u16, 2)
+NEON_VOP(tst_u32, neon_u32, 1)
+#undef NEON_FN
+
+#define NEON_FN(dest, src1, src2) dest = (src1 == src2) ? -1 : 0
+NEON_VOP(ceq_u8, neon_u8, 4)
+NEON_VOP(ceq_u16, neon_u16, 2)
+NEON_VOP(ceq_u32, neon_u32, 1)
+#undef NEON_FN
+
+#define NEON_FN(dest, src, dummy) dest = (src < 0) ? -src : src
+NEON_VOP1(abs_s8, neon_s8, 4)
+NEON_VOP1(abs_s16, neon_s16, 2)
+#undef NEON_FN
+
+/* Count Leading Sign/Zero Bits. */
+static inline int do_clz8(uint8_t x)
+{
+ int n;
+ for (n = 8; x; n--)
+ x >>= 1;
+ return n;
+}
+
+static inline int do_clz16(uint16_t x)
+{
+ int n;
+ for (n = 16; x; n--)
+ x >>= 1;
+ return n;
+}
+
+#define NEON_FN(dest, src, dummy) dest = do_clz8(src)
+NEON_VOP1(clz_u8, neon_u8, 4)
+#undef NEON_FN
+
+#define NEON_FN(dest, src, dummy) dest = do_clz16(src)
+NEON_VOP1(clz_u16, neon_u16, 2)
+#undef NEON_FN
+
+#define NEON_FN(dest, src, dummy) dest = do_clz8((src < 0) ? ~src : src) - 1
+NEON_VOP1(cls_s8, neon_s8, 4)
+#undef NEON_FN
+
+#define NEON_FN(dest, src, dummy) dest = do_clz16((src < 0) ? ~src : src) - 1
+NEON_VOP1(cls_s16, neon_s16, 2)
+#undef NEON_FN
+
+uint32_t HELPER(neon_cls_s32)(uint32_t x)
+{
+ int count;
+ if ((int32_t)x < 0)
+ x = ~x;
+ for (count = 32; x; count--)
+ x = x >> 1;
+ return count - 1;
+}
+
+/* Bit count. */
+uint32_t HELPER(neon_cnt_u8)(uint32_t x)
+{
+ x = (x & 0x55555555) + ((x >> 1) & 0x55555555);
+ x = (x & 0x33333333) + ((x >> 2) & 0x33333333);
+ x = (x & 0x0f0f0f0f) + ((x >> 4) & 0x0f0f0f0f);
+ return x;
+}
+
+#define NEON_QDMULH16(dest, src1, src2, round) do { \
+ uint32_t tmp = (int32_t)(int16_t) src1 * (int16_t) src2; \
+ if ((tmp ^ (tmp << 1)) & SIGNBIT) { \
+ SET_QC(); \
+ tmp = (tmp >> 31) ^ ~SIGNBIT; \
+ } else { \
+ tmp <<= 1; \
+ } \
+ if (round) { \
+ int32_t old = tmp; \
+ tmp += 1 << 15; \
+ if ((int32_t)tmp < old) { \
+ SET_QC(); \
+ tmp = SIGNBIT - 1; \
+ } \
+ } \
+ dest = tmp >> 16; \
+ } while(0)
+#define NEON_FN(dest, src1, src2) NEON_QDMULH16(dest, src1, src2, 0)
+NEON_VOP_ENV(qdmulh_s16, neon_s16, 2)
+#undef NEON_FN
+#define NEON_FN(dest, src1, src2) NEON_QDMULH16(dest, src1, src2, 1)
+NEON_VOP_ENV(qrdmulh_s16, neon_s16, 2)
+#undef NEON_FN
+#undef NEON_QDMULH16
+
+#define NEON_QDMULH32(dest, src1, src2, round) do { \
+ uint64_t tmp = (int64_t)(int32_t) src1 * (int32_t) src2; \
+ if ((tmp ^ (tmp << 1)) & SIGNBIT64) { \
+ SET_QC(); \
+ tmp = (tmp >> 63) ^ ~SIGNBIT64; \
+ } else { \
+ tmp <<= 1; \
+ } \
+ if (round) { \
+ int64_t old = tmp; \
+ tmp += (int64_t)1 << 31; \
+ if ((int64_t)tmp < old) { \
+ SET_QC(); \
+ tmp = SIGNBIT64 - 1; \
+ } \
+ } \
+ dest = tmp >> 32; \
+ } while(0)
+#define NEON_FN(dest, src1, src2) NEON_QDMULH32(dest, src1, src2, 0)
+NEON_VOP_ENV(qdmulh_s32, neon_s32, 1)
+#undef NEON_FN
+#define NEON_FN(dest, src1, src2) NEON_QDMULH32(dest, src1, src2, 1)
+NEON_VOP_ENV(qrdmulh_s32, neon_s32, 1)
+#undef NEON_FN
+#undef NEON_QDMULH32
+
+uint32_t HELPER(neon_narrow_u8)(uint64_t x)
+{
+ return (x & 0xffu) | ((x >> 8) & 0xff00u) | ((x >> 16) & 0xff0000u)
+ | ((x >> 24) & 0xff000000u);
+}
+
+uint32_t HELPER(neon_narrow_u16)(uint64_t x)
+{
+ return (x & 0xffffu) | ((x >> 16) & 0xffff0000u);
+}
+
+uint32_t HELPER(neon_narrow_high_u8)(uint64_t x)
+{
+ return ((x >> 8) & 0xff) | ((x >> 16) & 0xff00)
+ | ((x >> 24) & 0xff0000) | ((x >> 32) & 0xff000000);
+}
+
+uint32_t HELPER(neon_narrow_high_u16)(uint64_t x)
+{
+ return ((x >> 16) & 0xffff) | ((x >> 32) & 0xffff0000);
+}
+
+uint32_t HELPER(neon_narrow_round_high_u8)(uint64_t x)
+{
+ x &= 0xff80ff80ff80ff80ull;
+ x += 0x0080008000800080ull;
+ return ((x >> 8) & 0xff) | ((x >> 16) & 0xff00)
+ | ((x >> 24) & 0xff0000) | ((x >> 32) & 0xff000000);
+}
+
+uint32_t HELPER(neon_narrow_round_high_u16)(uint64_t x)
+{
+ x &= 0xffff8000ffff8000ull;
+ x += 0x0000800000008000ull;
+ return ((x >> 16) & 0xffff) | ((x >> 32) & 0xffff0000);
+}
+
+uint32_t HELPER(neon_unarrow_sat8)(CPUARMState *env, uint64_t x)
+{
+ uint16_t s;
+ uint8_t d;
+ uint32_t res = 0;
+#define SAT8(n) \
+ s = x >> n; \
+ if (s & 0x8000) { \
+ SET_QC(); \
+ } else { \
+ if (s > 0xff) { \
+ d = 0xff; \
+ SET_QC(); \
+ } else { \
+ d = s; \
+ } \
+ res |= (uint32_t)d << (n / 2); \
+ }
+
+ SAT8(0);
+ SAT8(16);
+ SAT8(32);
+ SAT8(48);
+#undef SAT8
+ return res;
+}
+
+uint32_t HELPER(neon_narrow_sat_u8)(CPUARMState *env, uint64_t x)
+{
+ uint16_t s;
+ uint8_t d;
+ uint32_t res = 0;
+#define SAT8(n) \
+ s = x >> n; \
+ if (s > 0xff) { \
+ d = 0xff; \
+ SET_QC(); \
+ } else { \
+ d = s; \
+ } \
+ res |= (uint32_t)d << (n / 2);
+
+ SAT8(0);
+ SAT8(16);
+ SAT8(32);
+ SAT8(48);
+#undef SAT8
+ return res;
+}
+
+uint32_t HELPER(neon_narrow_sat_s8)(CPUARMState *env, uint64_t x)
+{
+ int16_t s;
+ uint8_t d;
+ uint32_t res = 0;
+#define SAT8(n) \
+ s = x >> n; \
+ if (s != (int8_t)s) { \
+ d = (s >> 15) ^ 0x7f; \
+ SET_QC(); \
+ } else { \
+ d = s; \
+ } \
+ res |= (uint32_t)d << (n / 2);
+
+ SAT8(0);
+ SAT8(16);
+ SAT8(32);
+ SAT8(48);
+#undef SAT8
+ return res;
+}
+
+uint32_t HELPER(neon_unarrow_sat16)(CPUARMState *env, uint64_t x)
+{
+ uint32_t high;
+ uint32_t low;
+ low = x;
+ if (low & 0x80000000) {
+ low = 0;
+ SET_QC();
+ } else if (low > 0xffff) {
+ low = 0xffff;
+ SET_QC();
+ }
+ high = x >> 32;
+ if (high & 0x80000000) {
+ high = 0;
+ SET_QC();
+ } else if (high > 0xffff) {
+ high = 0xffff;
+ SET_QC();
+ }
+ return low | (high << 16);
+}
+
+uint32_t HELPER(neon_narrow_sat_u16)(CPUARMState *env, uint64_t x)
+{
+ uint32_t high;
+ uint32_t low;
+ low = x;
+ if (low > 0xffff) {
+ low = 0xffff;
+ SET_QC();
+ }
+ high = x >> 32;
+ if (high > 0xffff) {
+ high = 0xffff;
+ SET_QC();
+ }
+ return low | (high << 16);
+}
+
+uint32_t HELPER(neon_narrow_sat_s16)(CPUARMState *env, uint64_t x)
+{
+ int32_t low;
+ int32_t high;
+ low = x;
+ if (low != (int16_t)low) {
+ low = (low >> 31) ^ 0x7fff;
+ SET_QC();
+ }
+ high = x >> 32;
+ if (high != (int16_t)high) {
+ high = (high >> 31) ^ 0x7fff;
+ SET_QC();
+ }
+ return (uint16_t)low | (high << 16);
+}
+
+uint32_t HELPER(neon_unarrow_sat32)(CPUARMState *env, uint64_t x)
+{
+ if (x & 0x8000000000000000ull) {
+ SET_QC();
+ return 0;
+ }
+ if (x > 0xffffffffu) {
+ SET_QC();
+ return 0xffffffffu;
+ }
+ return x;
+}
+
+uint32_t HELPER(neon_narrow_sat_u32)(CPUARMState *env, uint64_t x)
+{
+ if (x > 0xffffffffu) {
+ SET_QC();
+ return 0xffffffffu;
+ }
+ return x;
+}
+
+uint32_t HELPER(neon_narrow_sat_s32)(CPUARMState *env, uint64_t x)
+{
+ if ((int64_t)x != (int32_t)x) {
+ SET_QC();
+ return ((int64_t)x >> 63) ^ 0x7fffffff;
+ }
+ return x;
+}
+
+uint64_t HELPER(neon_widen_u8)(uint32_t x)
+{
+ uint64_t tmp;
+ uint64_t ret;
+ ret = (uint8_t)x;
+ tmp = (uint8_t)(x >> 8);
+ ret |= tmp << 16;
+ tmp = (uint8_t)(x >> 16);
+ ret |= tmp << 32;
+ tmp = (uint8_t)(x >> 24);
+ ret |= tmp << 48;
+ return ret;
+}
+
+uint64_t HELPER(neon_widen_s8)(uint32_t x)
+{
+ uint64_t tmp;
+ uint64_t ret;
+ ret = (uint16_t)(int8_t)x;
+ tmp = (uint16_t)(int8_t)(x >> 8);
+ ret |= tmp << 16;
+ tmp = (uint16_t)(int8_t)(x >> 16);
+ ret |= tmp << 32;
+ tmp = (uint16_t)(int8_t)(x >> 24);
+ ret |= tmp << 48;
+ return ret;
+}
+
+uint64_t HELPER(neon_widen_u16)(uint32_t x)
+{
+ uint64_t high = (uint16_t)(x >> 16);
+ return ((uint16_t)x) | (high << 32);
+}
+
+uint64_t HELPER(neon_widen_s16)(uint32_t x)
+{
+ uint64_t high = (int16_t)(x >> 16);
+ return ((uint32_t)(int16_t)x) | (high << 32);
+}
+
+uint64_t HELPER(neon_addl_u16)(uint64_t a, uint64_t b)
+{
+ uint64_t mask;
+ mask = (a ^ b) & 0x8000800080008000ull;
+ a &= ~0x8000800080008000ull;
+ b &= ~0x8000800080008000ull;
+ return (a + b) ^ mask;
+}
+
+uint64_t HELPER(neon_addl_u32)(uint64_t a, uint64_t b)
+{
+ uint64_t mask;
+ mask = (a ^ b) & 0x8000000080000000ull;
+ a &= ~0x8000000080000000ull;
+ b &= ~0x8000000080000000ull;
+ return (a + b) ^ mask;
+}
+
+uint64_t HELPER(neon_paddl_u16)(uint64_t a, uint64_t b)
+{
+ uint64_t tmp;
+ uint64_t tmp2;
+
+ tmp = a & 0x0000ffff0000ffffull;
+ tmp += (a >> 16) & 0x0000ffff0000ffffull;
+ tmp2 = b & 0xffff0000ffff0000ull;
+ tmp2 += (b << 16) & 0xffff0000ffff0000ull;
+ return ( tmp & 0xffff)
+ | ((tmp >> 16) & 0xffff0000ull)
+ | ((tmp2 << 16) & 0xffff00000000ull)
+ | ( tmp2 & 0xffff000000000000ull);
+}
+
+uint64_t HELPER(neon_paddl_u32)(uint64_t a, uint64_t b)
+{
+ uint32_t low = a + (a >> 32);
+ uint32_t high = b + (b >> 32);
+ return low + ((uint64_t)high << 32);
+}
+
+uint64_t HELPER(neon_subl_u16)(uint64_t a, uint64_t b)
+{
+ uint64_t mask;
+ mask = (a ^ ~b) & 0x8000800080008000ull;
+ a |= 0x8000800080008000ull;
+ b &= ~0x8000800080008000ull;
+ return (a - b) ^ mask;
+}
+
+uint64_t HELPER(neon_subl_u32)(uint64_t a, uint64_t b)
+{
+ uint64_t mask;
+ mask = (a ^ ~b) & 0x8000000080000000ull;
+ a |= 0x8000000080000000ull;
+ b &= ~0x8000000080000000ull;
+ return (a - b) ^ mask;
+}
+
+uint64_t HELPER(neon_addl_saturate_s32)(CPUARMState *env, uint64_t a, uint64_t b)
+{
+ uint32_t x, y;
+ uint32_t low, high;
+
+ x = a;
+ y = b;
+ low = x + y;
+ if (((low ^ x) & SIGNBIT) && !((x ^ y) & SIGNBIT)) {
+ SET_QC();
+ low = ((int32_t)x >> 31) ^ ~SIGNBIT;
+ }
+ x = a >> 32;
+ y = b >> 32;
+ high = x + y;
+ if (((high ^ x) & SIGNBIT) && !((x ^ y) & SIGNBIT)) {
+ SET_QC();
+ high = ((int32_t)x >> 31) ^ ~SIGNBIT;
+ }
+ return low | ((uint64_t)high << 32);
+}
+
+uint64_t HELPER(neon_addl_saturate_s64)(CPUARMState *env, uint64_t a, uint64_t b)
+{
+ uint64_t result;
+
+ result = a + b;
+ if (((result ^ a) & SIGNBIT64) && !((a ^ b) & SIGNBIT64)) {
+ SET_QC();
+ result = ((int64_t)a >> 63) ^ ~SIGNBIT64;
+ }
+ return result;
+}
+
+/* We have to do the arithmetic in a larger type than
+ * the input type, because for example with a signed 32 bit
+ * op the absolute difference can overflow a signed 32 bit value.
+ */
+#define DO_ABD(dest, x, y, intype, arithtype) do { \
+ arithtype tmp_x = (intype)(x); \
+ arithtype tmp_y = (intype)(y); \
+ dest = ((tmp_x > tmp_y) ? tmp_x - tmp_y : tmp_y - tmp_x); \
+ } while(0)
+
+uint64_t HELPER(neon_abdl_u16)(uint32_t a, uint32_t b)
+{
+ uint64_t tmp;
+ uint64_t result;
+ DO_ABD(result, a, b, uint8_t, uint32_t);
+ DO_ABD(tmp, a >> 8, b >> 8, uint8_t, uint32_t);
+ result |= tmp << 16;
+ DO_ABD(tmp, a >> 16, b >> 16, uint8_t, uint32_t);
+ result |= tmp << 32;
+ DO_ABD(tmp, a >> 24, b >> 24, uint8_t, uint32_t);
+ result |= tmp << 48;
+ return result;
+}
+
+uint64_t HELPER(neon_abdl_s16)(uint32_t a, uint32_t b)
+{
+ uint64_t tmp;
+ uint64_t result;
+ DO_ABD(result, a, b, int8_t, int32_t);
+ DO_ABD(tmp, a >> 8, b >> 8, int8_t, int32_t);
+ result |= tmp << 16;
+ DO_ABD(tmp, a >> 16, b >> 16, int8_t, int32_t);
+ result |= tmp << 32;
+ DO_ABD(tmp, a >> 24, b >> 24, int8_t, int32_t);
+ result |= tmp << 48;
+ return result;
+}
+
+uint64_t HELPER(neon_abdl_u32)(uint32_t a, uint32_t b)
+{
+ uint64_t tmp;
+ uint64_t result;
+ DO_ABD(result, a, b, uint16_t, uint32_t);
+ DO_ABD(tmp, a >> 16, b >> 16, uint16_t, uint32_t);
+ return result | (tmp << 32);
+}
+
+uint64_t HELPER(neon_abdl_s32)(uint32_t a, uint32_t b)
+{
+ uint64_t tmp;
+ uint64_t result;
+ DO_ABD(result, a, b, int16_t, int32_t);
+ DO_ABD(tmp, a >> 16, b >> 16, int16_t, int32_t);
+ return result | (tmp << 32);
+}
+
+uint64_t HELPER(neon_abdl_u64)(uint32_t a, uint32_t b)
+{
+ uint64_t result;
+ DO_ABD(result, a, b, uint32_t, uint64_t);
+ return result;
+}
+
+uint64_t HELPER(neon_abdl_s64)(uint32_t a, uint32_t b)
+{
+ uint64_t result;
+ DO_ABD(result, a, b, int32_t, int64_t);
+ return result;
+}
+#undef DO_ABD
+
+/* Widening multiply. Named type is the source type. */
+#define DO_MULL(dest, x, y, type1, type2) do { \
+ type1 tmp_x = x; \
+ type1 tmp_y = y; \
+ dest = (type2)((type2)tmp_x * (type2)tmp_y); \
+ } while(0)
+
+uint64_t HELPER(neon_mull_u8)(uint32_t a, uint32_t b)
+{
+ uint64_t tmp;
+ uint64_t result;
+
+ DO_MULL(result, a, b, uint8_t, uint16_t);
+ DO_MULL(tmp, a >> 8, b >> 8, uint8_t, uint16_t);
+ result |= tmp << 16;
+ DO_MULL(tmp, a >> 16, b >> 16, uint8_t, uint16_t);
+ result |= tmp << 32;
+ DO_MULL(tmp, a >> 24, b >> 24, uint8_t, uint16_t);
+ result |= tmp << 48;
+ return result;
+}
+
+uint64_t HELPER(neon_mull_s8)(uint32_t a, uint32_t b)
+{
+ uint64_t tmp;
+ uint64_t result;
+
+ DO_MULL(result, a, b, int8_t, uint16_t);
+ DO_MULL(tmp, a >> 8, b >> 8, int8_t, uint16_t);
+ result |= tmp << 16;
+ DO_MULL(tmp, a >> 16, b >> 16, int8_t, uint16_t);
+ result |= tmp << 32;
+ DO_MULL(tmp, a >> 24, b >> 24, int8_t, uint16_t);
+ result |= tmp << 48;
+ return result;
+}
+
+uint64_t HELPER(neon_mull_u16)(uint32_t a, uint32_t b)
+{
+ uint64_t tmp;
+ uint64_t result;
+
+ DO_MULL(result, a, b, uint16_t, uint32_t);
+ DO_MULL(tmp, a >> 16, b >> 16, uint16_t, uint32_t);
+ return result | (tmp << 32);
+}
+
+uint64_t HELPER(neon_mull_s16)(uint32_t a, uint32_t b)
+{
+ uint64_t tmp;
+ uint64_t result;
+
+ DO_MULL(result, a, b, int16_t, uint32_t);
+ DO_MULL(tmp, a >> 16, b >> 16, int16_t, uint32_t);
+ return result | (tmp << 32);
+}
+
+uint64_t HELPER(neon_negl_u16)(uint64_t x)
+{
+ uint16_t tmp;
+ uint64_t result;
+ result = (uint16_t)-x;
+ tmp = -(x >> 16);
+ result |= (uint64_t)tmp << 16;
+ tmp = -(x >> 32);
+ result |= (uint64_t)tmp << 32;
+ tmp = -(x >> 48);
+ result |= (uint64_t)tmp << 48;
+ return result;
+}
+
+uint64_t HELPER(neon_negl_u32)(uint64_t x)
+{
+ uint32_t low = -x;
+ uint32_t high = -(x >> 32);
+ return low | ((uint64_t)high << 32);
+}
+
+/* FIXME: There should be a native op for this. */
+uint64_t HELPER(neon_negl_u64)(uint64_t x)
+{
+ return -x;
+}
+
+/* Saturating sign manipulation. */
+/* ??? Make these use NEON_VOP1 */
+#define DO_QABS8(x) do { \
+ if (x == (int8_t)0x80) { \
+ x = 0x7f; \
+ SET_QC(); \
+ } else if (x < 0) { \
+ x = -x; \
+ }} while (0)
+uint32_t HELPER(neon_qabs_s8)(CPUARMState *env, uint32_t x)
+{
+ neon_s8 vec;
+ NEON_UNPACK(neon_s8, vec, x);
+ DO_QABS8(vec.v1);
+ DO_QABS8(vec.v2);
+ DO_QABS8(vec.v3);
+ DO_QABS8(vec.v4);
+ NEON_PACK(neon_s8, x, vec);
+ return x;
+}
+#undef DO_QABS8
+
+#define DO_QNEG8(x) do { \
+ if (x == (int8_t)0x80) { \
+ x = 0x7f; \
+ SET_QC(); \
+ } else { \
+ x = -x; \
+ }} while (0)
+uint32_t HELPER(neon_qneg_s8)(CPUARMState *env, uint32_t x)
+{
+ neon_s8 vec;
+ NEON_UNPACK(neon_s8, vec, x);
+ DO_QNEG8(vec.v1);
+ DO_QNEG8(vec.v2);
+ DO_QNEG8(vec.v3);
+ DO_QNEG8(vec.v4);
+ NEON_PACK(neon_s8, x, vec);
+ return x;
+}
+#undef DO_QNEG8
+
+#define DO_QABS16(x) do { \
+ if (x == (int16_t)0x8000) { \
+ x = 0x7fff; \
+ SET_QC(); \
+ } else if (x < 0) { \
+ x = -x; \
+ }} while (0)
+uint32_t HELPER(neon_qabs_s16)(CPUARMState *env, uint32_t x)
+{
+ neon_s16 vec;
+ NEON_UNPACK(neon_s16, vec, x);
+ DO_QABS16(vec.v1);
+ DO_QABS16(vec.v2);
+ NEON_PACK(neon_s16, x, vec);
+ return x;
+}
+#undef DO_QABS16
+
+#define DO_QNEG16(x) do { \
+ if (x == (int16_t)0x8000) { \
+ x = 0x7fff; \
+ SET_QC(); \
+ } else { \
+ x = -x; \
+ }} while (0)
+uint32_t HELPER(neon_qneg_s16)(CPUARMState *env, uint32_t x)
+{
+ neon_s16 vec;
+ NEON_UNPACK(neon_s16, vec, x);
+ DO_QNEG16(vec.v1);
+ DO_QNEG16(vec.v2);
+ NEON_PACK(neon_s16, x, vec);
+ return x;
+}
+#undef DO_QNEG16
+
+uint32_t HELPER(neon_qabs_s32)(CPUARMState *env, uint32_t x)
+{
+ if (x == SIGNBIT) {
+ SET_QC();
+ x = ~SIGNBIT;
+ } else if ((int32_t)x < 0) {
+ x = -x;
+ }
+ return x;
+}
+
+uint32_t HELPER(neon_qneg_s32)(CPUARMState *env, uint32_t x)
+{
+ if (x == SIGNBIT) {
+ SET_QC();
+ x = ~SIGNBIT;
+ } else {
+ x = -x;
+ }
+ return x;
+}
+
+/* NEON Float helpers. */
+uint32_t HELPER(neon_min_f32)(uint32_t a, uint32_t b, void *fpstp)
+{
+ float_status *fpst = fpstp;
+ return float32_val(float32_min(make_float32(a), make_float32(b), fpst));
+}
+
+uint32_t HELPER(neon_max_f32)(uint32_t a, uint32_t b, void *fpstp)
+{
+ float_status *fpst = fpstp;
+ return float32_val(float32_max(make_float32(a), make_float32(b), fpst));
+}
+
+uint32_t HELPER(neon_abd_f32)(uint32_t a, uint32_t b, void *fpstp)
+{
+ float_status *fpst = fpstp;
+ float32 f0 = make_float32(a);
+ float32 f1 = make_float32(b);
+ return float32_val(float32_abs(float32_sub(f0, f1, fpst)));
+}
+
+/* Floating point comparisons produce an integer result.
+ * Note that EQ doesn't signal InvalidOp for QNaNs but GE and GT do.
+ * Softfloat routines return 0/1, which we convert to the 0/-1 Neon requires.
+ */
+uint32_t HELPER(neon_ceq_f32)(uint32_t a, uint32_t b, void *fpstp)
+{
+ float_status *fpst = fpstp;
+ return -float32_eq_quiet(make_float32(a), make_float32(b), fpst);
+}
+
+uint32_t HELPER(neon_cge_f32)(uint32_t a, uint32_t b, void *fpstp)
+{
+ float_status *fpst = fpstp;
+ return -float32_le(make_float32(b), make_float32(a), fpst);
+}
+
+uint32_t HELPER(neon_cgt_f32)(uint32_t a, uint32_t b, void *fpstp)
+{
+ float_status *fpst = fpstp;
+ return -float32_lt(make_float32(b), make_float32(a), fpst);
+}
+
+uint32_t HELPER(neon_acge_f32)(uint32_t a, uint32_t b, void *fpstp)
+{
+ float_status *fpst = fpstp;
+ float32 f0 = float32_abs(make_float32(a));
+ float32 f1 = float32_abs(make_float32(b));
+ return -float32_le(f1, f0, fpst);
+}
+
+uint32_t HELPER(neon_acgt_f32)(uint32_t a, uint32_t b, void *fpstp)
+{
+ float_status *fpst = fpstp;
+ float32 f0 = float32_abs(make_float32(a));
+ float32 f1 = float32_abs(make_float32(b));
+ return -float32_lt(f1, f0, fpst);
+}
+
+#define ELEM(V, N, SIZE) (((V) >> ((N) * (SIZE))) & ((1ull << (SIZE)) - 1))
+
+void HELPER(neon_qunzip8)(CPUARMState *env, uint32_t rd, uint32_t rm)
+{
+ uint64_t zm0 = float64_val(env->vfp.regs[rm]);
+ uint64_t zm1 = float64_val(env->vfp.regs[rm + 1]);
+ uint64_t zd0 = float64_val(env->vfp.regs[rd]);
+ uint64_t zd1 = float64_val(env->vfp.regs[rd + 1]);
+ uint64_t d0 = ELEM(zd0, 0, 8) | (ELEM(zd0, 2, 8) << 8)
+ | (ELEM(zd0, 4, 8) << 16) | (ELEM(zd0, 6, 8) << 24)
+ | (ELEM(zd1, 0, 8) << 32) | (ELEM(zd1, 2, 8) << 40)
+ | (ELEM(zd1, 4, 8) << 48) | (ELEM(zd1, 6, 8) << 56);
+ uint64_t d1 = ELEM(zm0, 0, 8) | (ELEM(zm0, 2, 8) << 8)
+ | (ELEM(zm0, 4, 8) << 16) | (ELEM(zm0, 6, 8) << 24)
+ | (ELEM(zm1, 0, 8) << 32) | (ELEM(zm1, 2, 8) << 40)
+ | (ELEM(zm1, 4, 8) << 48) | (ELEM(zm1, 6, 8) << 56);
+ uint64_t m0 = ELEM(zd0, 1, 8) | (ELEM(zd0, 3, 8) << 8)
+ | (ELEM(zd0, 5, 8) << 16) | (ELEM(zd0, 7, 8) << 24)
+ | (ELEM(zd1, 1, 8) << 32) | (ELEM(zd1, 3, 8) << 40)
+ | (ELEM(zd1, 5, 8) << 48) | (ELEM(zd1, 7, 8) << 56);
+ uint64_t m1 = ELEM(zm0, 1, 8) | (ELEM(zm0, 3, 8) << 8)
+ | (ELEM(zm0, 5, 8) << 16) | (ELEM(zm0, 7, 8) << 24)
+ | (ELEM(zm1, 1, 8) << 32) | (ELEM(zm1, 3, 8) << 40)
+ | (ELEM(zm1, 5, 8) << 48) | (ELEM(zm1, 7, 8) << 56);
+ env->vfp.regs[rm] = make_float64(m0);
+ env->vfp.regs[rm + 1] = make_float64(m1);
+ env->vfp.regs[rd] = make_float64(d0);
+ env->vfp.regs[rd + 1] = make_float64(d1);
+}
+
+void HELPER(neon_qunzip16)(CPUARMState *env, uint32_t rd, uint32_t rm)
+{
+ uint64_t zm0 = float64_val(env->vfp.regs[rm]);
+ uint64_t zm1 = float64_val(env->vfp.regs[rm + 1]);
+ uint64_t zd0 = float64_val(env->vfp.regs[rd]);
+ uint64_t zd1 = float64_val(env->vfp.regs[rd + 1]);
+ uint64_t d0 = ELEM(zd0, 0, 16) | (ELEM(zd0, 2, 16) << 16)
+ | (ELEM(zd1, 0, 16) << 32) | (ELEM(zd1, 2, 16) << 48);
+ uint64_t d1 = ELEM(zm0, 0, 16) | (ELEM(zm0, 2, 16) << 16)
+ | (ELEM(zm1, 0, 16) << 32) | (ELEM(zm1, 2, 16) << 48);
+ uint64_t m0 = ELEM(zd0, 1, 16) | (ELEM(zd0, 3, 16) << 16)
+ | (ELEM(zd1, 1, 16) << 32) | (ELEM(zd1, 3, 16) << 48);
+ uint64_t m1 = ELEM(zm0, 1, 16) | (ELEM(zm0, 3, 16) << 16)
+ | (ELEM(zm1, 1, 16) << 32) | (ELEM(zm1, 3, 16) << 48);
+ env->vfp.regs[rm] = make_float64(m0);
+ env->vfp.regs[rm + 1] = make_float64(m1);
+ env->vfp.regs[rd] = make_float64(d0);
+ env->vfp.regs[rd + 1] = make_float64(d1);
+}
+
+void HELPER(neon_qunzip32)(CPUARMState *env, uint32_t rd, uint32_t rm)
+{
+ uint64_t zm0 = float64_val(env->vfp.regs[rm]);
+ uint64_t zm1 = float64_val(env->vfp.regs[rm + 1]);
+ uint64_t zd0 = float64_val(env->vfp.regs[rd]);
+ uint64_t zd1 = float64_val(env->vfp.regs[rd + 1]);
+ uint64_t d0 = ELEM(zd0, 0, 32) | (ELEM(zd1, 0, 32) << 32);
+ uint64_t d1 = ELEM(zm0, 0, 32) | (ELEM(zm1, 0, 32) << 32);
+ uint64_t m0 = ELEM(zd0, 1, 32) | (ELEM(zd1, 1, 32) << 32);
+ uint64_t m1 = ELEM(zm0, 1, 32) | (ELEM(zm1, 1, 32) << 32);
+ env->vfp.regs[rm] = make_float64(m0);
+ env->vfp.regs[rm + 1] = make_float64(m1);
+ env->vfp.regs[rd] = make_float64(d0);
+ env->vfp.regs[rd + 1] = make_float64(d1);
+}
+
+void HELPER(neon_unzip8)(CPUARMState *env, uint32_t rd, uint32_t rm)
+{
+ uint64_t zm = float64_val(env->vfp.regs[rm]);
+ uint64_t zd = float64_val(env->vfp.regs[rd]);
+ uint64_t d0 = ELEM(zd, 0, 8) | (ELEM(zd, 2, 8) << 8)
+ | (ELEM(zd, 4, 8) << 16) | (ELEM(zd, 6, 8) << 24)
+ | (ELEM(zm, 0, 8) << 32) | (ELEM(zm, 2, 8) << 40)
+ | (ELEM(zm, 4, 8) << 48) | (ELEM(zm, 6, 8) << 56);
+ uint64_t m0 = ELEM(zd, 1, 8) | (ELEM(zd, 3, 8) << 8)
+ | (ELEM(zd, 5, 8) << 16) | (ELEM(zd, 7, 8) << 24)
+ | (ELEM(zm, 1, 8) << 32) | (ELEM(zm, 3, 8) << 40)
+ | (ELEM(zm, 5, 8) << 48) | (ELEM(zm, 7, 8) << 56);
+ env->vfp.regs[rm] = make_float64(m0);
+ env->vfp.regs[rd] = make_float64(d0);
+}
+
+void HELPER(neon_unzip16)(CPUARMState *env, uint32_t rd, uint32_t rm)
+{
+ uint64_t zm = float64_val(env->vfp.regs[rm]);
+ uint64_t zd = float64_val(env->vfp.regs[rd]);
+ uint64_t d0 = ELEM(zd, 0, 16) | (ELEM(zd, 2, 16) << 16)
+ | (ELEM(zm, 0, 16) << 32) | (ELEM(zm, 2, 16) << 48);
+ uint64_t m0 = ELEM(zd, 1, 16) | (ELEM(zd, 3, 16) << 16)
+ | (ELEM(zm, 1, 16) << 32) | (ELEM(zm, 3, 16) << 48);
+ env->vfp.regs[rm] = make_float64(m0);
+ env->vfp.regs[rd] = make_float64(d0);
+}
+
+void HELPER(neon_qzip8)(CPUARMState *env, uint32_t rd, uint32_t rm)
+{
+ uint64_t zm0 = float64_val(env->vfp.regs[rm]);
+ uint64_t zm1 = float64_val(env->vfp.regs[rm + 1]);
+ uint64_t zd0 = float64_val(env->vfp.regs[rd]);
+ uint64_t zd1 = float64_val(env->vfp.regs[rd + 1]);
+ uint64_t d0 = ELEM(zd0, 0, 8) | (ELEM(zm0, 0, 8) << 8)
+ | (ELEM(zd0, 1, 8) << 16) | (ELEM(zm0, 1, 8) << 24)
+ | (ELEM(zd0, 2, 8) << 32) | (ELEM(zm0, 2, 8) << 40)
+ | (ELEM(zd0, 3, 8) << 48) | (ELEM(zm0, 3, 8) << 56);
+ uint64_t d1 = ELEM(zd0, 4, 8) | (ELEM(zm0, 4, 8) << 8)
+ | (ELEM(zd0, 5, 8) << 16) | (ELEM(zm0, 5, 8) << 24)
+ | (ELEM(zd0, 6, 8) << 32) | (ELEM(zm0, 6, 8) << 40)
+ | (ELEM(zd0, 7, 8) << 48) | (ELEM(zm0, 7, 8) << 56);
+ uint64_t m0 = ELEM(zd1, 0, 8) | (ELEM(zm1, 0, 8) << 8)
+ | (ELEM(zd1, 1, 8) << 16) | (ELEM(zm1, 1, 8) << 24)
+ | (ELEM(zd1, 2, 8) << 32) | (ELEM(zm1, 2, 8) << 40)
+ | (ELEM(zd1, 3, 8) << 48) | (ELEM(zm1, 3, 8) << 56);
+ uint64_t m1 = ELEM(zd1, 4, 8) | (ELEM(zm1, 4, 8) << 8)
+ | (ELEM(zd1, 5, 8) << 16) | (ELEM(zm1, 5, 8) << 24)
+ | (ELEM(zd1, 6, 8) << 32) | (ELEM(zm1, 6, 8) << 40)
+ | (ELEM(zd1, 7, 8) << 48) | (ELEM(zm1, 7, 8) << 56);
+ env->vfp.regs[rm] = make_float64(m0);
+ env->vfp.regs[rm + 1] = make_float64(m1);
+ env->vfp.regs[rd] = make_float64(d0);
+ env->vfp.regs[rd + 1] = make_float64(d1);
+}
+
+void HELPER(neon_qzip16)(CPUARMState *env, uint32_t rd, uint32_t rm)
+{
+ uint64_t zm0 = float64_val(env->vfp.regs[rm]);
+ uint64_t zm1 = float64_val(env->vfp.regs[rm + 1]);
+ uint64_t zd0 = float64_val(env->vfp.regs[rd]);
+ uint64_t zd1 = float64_val(env->vfp.regs[rd + 1]);
+ uint64_t d0 = ELEM(zd0, 0, 16) | (ELEM(zm0, 0, 16) << 16)
+ | (ELEM(zd0, 1, 16) << 32) | (ELEM(zm0, 1, 16) << 48);
+ uint64_t d1 = ELEM(zd0, 2, 16) | (ELEM(zm0, 2, 16) << 16)
+ | (ELEM(zd0, 3, 16) << 32) | (ELEM(zm0, 3, 16) << 48);
+ uint64_t m0 = ELEM(zd1, 0, 16) | (ELEM(zm1, 0, 16) << 16)
+ | (ELEM(zd1, 1, 16) << 32) | (ELEM(zm1, 1, 16) << 48);
+ uint64_t m1 = ELEM(zd1, 2, 16) | (ELEM(zm1, 2, 16) << 16)
+ | (ELEM(zd1, 3, 16) << 32) | (ELEM(zm1, 3, 16) << 48);
+ env->vfp.regs[rm] = make_float64(m0);
+ env->vfp.regs[rm + 1] = make_float64(m1);
+ env->vfp.regs[rd] = make_float64(d0);
+ env->vfp.regs[rd + 1] = make_float64(d1);
+}
+
+void HELPER(neon_qzip32)(CPUARMState *env, uint32_t rd, uint32_t rm)
+{
+ uint64_t zm0 = float64_val(env->vfp.regs[rm]);
+ uint64_t zm1 = float64_val(env->vfp.regs[rm + 1]);
+ uint64_t zd0 = float64_val(env->vfp.regs[rd]);
+ uint64_t zd1 = float64_val(env->vfp.regs[rd + 1]);
+ uint64_t d0 = ELEM(zd0, 0, 32) | (ELEM(zm0, 0, 32) << 32);
+ uint64_t d1 = ELEM(zd0, 1, 32) | (ELEM(zm0, 1, 32) << 32);
+ uint64_t m0 = ELEM(zd1, 0, 32) | (ELEM(zm1, 0, 32) << 32);
+ uint64_t m1 = ELEM(zd1, 1, 32) | (ELEM(zm1, 1, 32) << 32);
+ env->vfp.regs[rm] = make_float64(m0);
+ env->vfp.regs[rm + 1] = make_float64(m1);
+ env->vfp.regs[rd] = make_float64(d0);
+ env->vfp.regs[rd + 1] = make_float64(d1);
+}
+
+void HELPER(neon_zip8)(CPUARMState *env, uint32_t rd, uint32_t rm)
+{
+ uint64_t zm = float64_val(env->vfp.regs[rm]);
+ uint64_t zd = float64_val(env->vfp.regs[rd]);
+ uint64_t d0 = ELEM(zd, 0, 8) | (ELEM(zm, 0, 8) << 8)
+ | (ELEM(zd, 1, 8) << 16) | (ELEM(zm, 1, 8) << 24)
+ | (ELEM(zd, 2, 8) << 32) | (ELEM(zm, 2, 8) << 40)
+ | (ELEM(zd, 3, 8) << 48) | (ELEM(zm, 3, 8) << 56);
+ uint64_t m0 = ELEM(zd, 4, 8) | (ELEM(zm, 4, 8) << 8)
+ | (ELEM(zd, 5, 8) << 16) | (ELEM(zm, 5, 8) << 24)
+ | (ELEM(zd, 6, 8) << 32) | (ELEM(zm, 6, 8) << 40)
+ | (ELEM(zd, 7, 8) << 48) | (ELEM(zm, 7, 8) << 56);
+ env->vfp.regs[rm] = make_float64(m0);
+ env->vfp.regs[rd] = make_float64(d0);
+}
+
+void HELPER(neon_zip16)(CPUARMState *env, uint32_t rd, uint32_t rm)
+{
+ uint64_t zm = float64_val(env->vfp.regs[rm]);
+ uint64_t zd = float64_val(env->vfp.regs[rd]);
+ uint64_t d0 = ELEM(zd, 0, 16) | (ELEM(zm, 0, 16) << 16)
+ | (ELEM(zd, 1, 16) << 32) | (ELEM(zm, 1, 16) << 48);
+ uint64_t m0 = ELEM(zd, 2, 16) | (ELEM(zm, 2, 16) << 16)
+ | (ELEM(zd, 3, 16) << 32) | (ELEM(zm, 3, 16) << 48);
+ env->vfp.regs[rm] = make_float64(m0);
+ env->vfp.regs[rd] = make_float64(d0);
+}
diff --git a/target-arm/op_addsub.h b/target-arm/op_addsub.h
new file mode 100644
index 000000000..ca4a1893c
--- /dev/null
+++ b/target-arm/op_addsub.h
@@ -0,0 +1,103 @@
+/*
+ * ARMv6 integer SIMD operations.
+ *
+ * Copyright (c) 2007 CodeSourcery.
+ * Written by Paul Brook
+ *
+ * This code is licensed under the GPL.
+ */
+
+#ifdef ARITH_GE
+#define GE_ARG , void *gep
+#define DECLARE_GE uint32_t ge = 0
+#define SET_GE *(uint32_t *)gep = ge
+#else
+#define GE_ARG
+#define DECLARE_GE do{}while(0)
+#define SET_GE do{}while(0)
+#endif
+
+#define RESULT(val, n, width) \
+ res |= ((uint32_t)(glue(glue(uint,width),_t))(val)) << (n * width)
+
+uint32_t HELPER(glue(PFX,add16))(uint32_t a, uint32_t b GE_ARG)
+{
+ uint32_t res = 0;
+ DECLARE_GE;
+
+ ADD16(a, b, 0);
+ ADD16(a >> 16, b >> 16, 1);
+ SET_GE;
+ return res;
+}
+
+uint32_t HELPER(glue(PFX,add8))(uint32_t a, uint32_t b GE_ARG)
+{
+ uint32_t res = 0;
+ DECLARE_GE;
+
+ ADD8(a, b, 0);
+ ADD8(a >> 8, b >> 8, 1);
+ ADD8(a >> 16, b >> 16, 2);
+ ADD8(a >> 24, b >> 24, 3);
+ SET_GE;
+ return res;
+}
+
+uint32_t HELPER(glue(PFX,sub16))(uint32_t a, uint32_t b GE_ARG)
+{
+ uint32_t res = 0;
+ DECLARE_GE;
+
+ SUB16(a, b, 0);
+ SUB16(a >> 16, b >> 16, 1);
+ SET_GE;
+ return res;
+}
+
+uint32_t HELPER(glue(PFX,sub8))(uint32_t a, uint32_t b GE_ARG)
+{
+ uint32_t res = 0;
+ DECLARE_GE;
+
+ SUB8(a, b, 0);
+ SUB8(a >> 8, b >> 8, 1);
+ SUB8(a >> 16, b >> 16, 2);
+ SUB8(a >> 24, b >> 24, 3);
+ SET_GE;
+ return res;
+}
+
+uint32_t HELPER(glue(PFX,subaddx))(uint32_t a, uint32_t b GE_ARG)
+{
+ uint32_t res = 0;
+ DECLARE_GE;
+
+ ADD16(a, b >> 16, 0);
+ SUB16(a >> 16, b, 1);
+ SET_GE;
+ return res;
+}
+
+uint32_t HELPER(glue(PFX,addsubx))(uint32_t a, uint32_t b GE_ARG)
+{
+ uint32_t res = 0;
+ DECLARE_GE;
+
+ SUB16(a, b >> 16, 0);
+ ADD16(a >> 16, b, 1);
+ SET_GE;
+ return res;
+}
+
+#undef GE_ARG
+#undef DECLARE_GE
+#undef SET_GE
+#undef RESULT
+
+#undef ARITH_GE
+#undef PFX
+#undef ADD16
+#undef SUB16
+#undef ADD8
+#undef SUB8
diff --git a/target-arm/op_helper.c b/target-arm/op_helper.c
new file mode 100644
index 000000000..d77bfab77
--- /dev/null
+++ b/target-arm/op_helper.c
@@ -0,0 +1,466 @@
+/*
+ * ARM helper routines
+ *
+ * Copyright (c) 2005-2007 CodeSourcery, LLC
+ *
+ * This library is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU Lesser General Public
+ * License as published by the Free Software Foundation; either
+ * version 2 of the License, or (at your option) any later version.
+ *
+ * This library is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ * Lesser General Public License for more details.
+ *
+ * You should have received a copy of the GNU Lesser General Public
+ * License along with this library; if not, see <http://www.gnu.org/licenses/>.
+ */
+#include "cpu.h"
+#include "dyngen-exec.h"
+#include "helper.h"
+
+#define SIGNBIT (uint32_t)0x80000000
+#define SIGNBIT64 ((uint64_t)1 << 63)
+
+static void raise_exception(int tt)
+{
+ env->exception_index = tt;
+ cpu_loop_exit(env);
+}
+
+uint32_t HELPER(neon_tbl)(uint32_t ireg, uint32_t def,
+ uint32_t rn, uint32_t maxindex)
+{
+ uint32_t val;
+ uint32_t tmp;
+ int index;
+ int shift;
+ uint64_t *table;
+ table = (uint64_t *)&env->vfp.regs[rn];
+ val = 0;
+ for (shift = 0; shift < 32; shift += 8) {
+ index = (ireg >> shift) & 0xff;
+ if (index < maxindex) {
+ tmp = (table[index >> 3] >> ((index & 7) << 3)) & 0xff;
+ val |= tmp << shift;
+ } else {
+ val |= def & (0xff << shift);
+ }
+ }
+ return val;
+}
+
+#if !defined(CONFIG_USER_ONLY)
+
+#include "softmmu_exec.h"
+
+#define MMUSUFFIX _mmu
+
+#define SHIFT 0
+#include "softmmu_template.h"
+
+#define SHIFT 1
+#include "softmmu_template.h"
+
+#define SHIFT 2
+#include "softmmu_template.h"
+
+#define SHIFT 3
+#include "softmmu_template.h"
+
+/* try to fill the TLB and return an exception if error. If retaddr is
+ NULL, it means that the function was called in C code (i.e. not
+ from generated code or from helper.c) */
+/* XXX: fix it to restore all registers */
+void tlb_fill(CPUARMState *env1, target_ulong addr, int is_write, int mmu_idx,
+ uintptr_t retaddr)
+{
+ TranslationBlock *tb;
+ CPUARMState *saved_env;
+ int ret;
+
+ saved_env = env;
+ env = env1;
+ ret = cpu_arm_handle_mmu_fault(env, addr, is_write, mmu_idx);
+ if (unlikely(ret)) {
+ if (retaddr) {
+ /* now we have a real cpu fault */
+ tb = tb_find_pc(retaddr);
+ if (tb) {
+ /* the PC is inside the translated code. It means that we have
+ a virtual CPU fault */
+ cpu_restore_state(tb, env, retaddr);
+ }
+ }
+ raise_exception(env->exception_index);
+ }
+ env = saved_env;
+}
+#endif
+
+/* FIXME: Pass an explicit pointer to QF to CPUARMState, and move saturating
+ instructions into helper.c */
+uint32_t HELPER(add_setq)(uint32_t a, uint32_t b)
+{
+ uint32_t res = a + b;
+ if (((res ^ a) & SIGNBIT) && !((a ^ b) & SIGNBIT))
+ env->QF = 1;
+ return res;
+}
+
+uint32_t HELPER(add_saturate)(uint32_t a, uint32_t b)
+{
+ uint32_t res = a + b;
+ if (((res ^ a) & SIGNBIT) && !((a ^ b) & SIGNBIT)) {
+ env->QF = 1;
+ res = ~(((int32_t)a >> 31) ^ SIGNBIT);
+ }
+ return res;
+}
+
+uint32_t HELPER(sub_saturate)(uint32_t a, uint32_t b)
+{
+ uint32_t res = a - b;
+ if (((res ^ a) & SIGNBIT) && ((a ^ b) & SIGNBIT)) {
+ env->QF = 1;
+ res = ~(((int32_t)a >> 31) ^ SIGNBIT);
+ }
+ return res;
+}
+
+uint32_t HELPER(double_saturate)(int32_t val)
+{
+ uint32_t res;
+ if (val >= 0x40000000) {
+ res = ~SIGNBIT;
+ env->QF = 1;
+ } else if (val <= (int32_t)0xc0000000) {
+ res = SIGNBIT;
+ env->QF = 1;
+ } else {
+ res = val << 1;
+ }
+ return res;
+}
+
+uint32_t HELPER(add_usaturate)(uint32_t a, uint32_t b)
+{
+ uint32_t res = a + b;
+ if (res < a) {
+ env->QF = 1;
+ res = ~0;
+ }
+ return res;
+}
+
+uint32_t HELPER(sub_usaturate)(uint32_t a, uint32_t b)
+{
+ uint32_t res = a - b;
+ if (res > a) {
+ env->QF = 1;
+ res = 0;
+ }
+ return res;
+}
+
+/* Signed saturation. */
+static inline uint32_t do_ssat(int32_t val, int shift)
+{
+ int32_t top;
+ uint32_t mask;
+
+ top = val >> shift;
+ mask = (1u << shift) - 1;
+ if (top > 0) {
+ env->QF = 1;
+ return mask;
+ } else if (top < -1) {
+ env->QF = 1;
+ return ~mask;
+ }
+ return val;
+}
+
+/* Unsigned saturation. */
+static inline uint32_t do_usat(int32_t val, int shift)
+{
+ uint32_t max;
+
+ max = (1u << shift) - 1;
+ if (val < 0) {
+ env->QF = 1;
+ return 0;
+ } else if (val > max) {
+ env->QF = 1;
+ return max;
+ }
+ return val;
+}
+
+/* Signed saturate. */
+uint32_t HELPER(ssat)(uint32_t x, uint32_t shift)
+{
+ return do_ssat(x, shift);
+}
+
+/* Dual halfword signed saturate. */
+uint32_t HELPER(ssat16)(uint32_t x, uint32_t shift)
+{
+ uint32_t res;
+
+ res = (uint16_t)do_ssat((int16_t)x, shift);
+ res |= do_ssat(((int32_t)x) >> 16, shift) << 16;
+ return res;
+}
+
+/* Unsigned saturate. */
+uint32_t HELPER(usat)(uint32_t x, uint32_t shift)
+{
+ return do_usat(x, shift);
+}
+
+/* Dual halfword unsigned saturate. */
+uint32_t HELPER(usat16)(uint32_t x, uint32_t shift)
+{
+ uint32_t res;
+
+ res = (uint16_t)do_usat((int16_t)x, shift);
+ res |= do_usat(((int32_t)x) >> 16, shift) << 16;
+ return res;
+}
+
+void HELPER(wfi)(void)
+{
+ env->exception_index = EXCP_HLT;
+ env->halted = 1;
+ cpu_loop_exit(env);
+}
+
+void HELPER(exception)(uint32_t excp)
+{
+ env->exception_index = excp;
+ cpu_loop_exit(env);
+}
+
+uint32_t HELPER(cpsr_read)(void)
+{
+ return cpsr_read(env) & ~CPSR_EXEC;
+}
+
+void HELPER(cpsr_write)(uint32_t val, uint32_t mask)
+{
+ cpsr_write(env, val, mask);
+}
+
+/* Access to user mode registers from privileged modes. */
+uint32_t HELPER(get_user_reg)(uint32_t regno)
+{
+ uint32_t val;
+
+ if (regno == 13) {
+ val = env->banked_r13[0];
+ } else if (regno == 14) {
+ val = env->banked_r14[0];
+ } else if (regno >= 8
+ && (env->uncached_cpsr & 0x1f) == ARM_CPU_MODE_FIQ) {
+ val = env->usr_regs[regno - 8];
+ } else {
+ val = env->regs[regno];
+ }
+ return val;
+}
+
+void HELPER(set_user_reg)(uint32_t regno, uint32_t val)
+{
+ if (regno == 13) {
+ env->banked_r13[0] = val;
+ } else if (regno == 14) {
+ env->banked_r14[0] = val;
+ } else if (regno >= 8
+ && (env->uncached_cpsr & 0x1f) == ARM_CPU_MODE_FIQ) {
+ env->usr_regs[regno - 8] = val;
+ } else {
+ env->regs[regno] = val;
+ }
+}
+
+void HELPER(set_cp_reg)(CPUARMState *env, void *rip, uint32_t value)
+{
+ const ARMCPRegInfo *ri = rip;
+ int excp = ri->writefn(env, ri, value);
+ if (excp) {
+ raise_exception(excp);
+ }
+}
+
+uint32_t HELPER(get_cp_reg)(CPUARMState *env, void *rip)
+{
+ const ARMCPRegInfo *ri = rip;
+ uint64_t value;
+ int excp = ri->readfn(env, ri, &value);
+ if (excp) {
+ raise_exception(excp);
+ }
+ return value;
+}
+
+void HELPER(set_cp_reg64)(CPUARMState *env, void *rip, uint64_t value)
+{
+ const ARMCPRegInfo *ri = rip;
+ int excp = ri->writefn(env, ri, value);
+ if (excp) {
+ raise_exception(excp);
+ }
+}
+
+uint64_t HELPER(get_cp_reg64)(CPUARMState *env, void *rip)
+{
+ const ARMCPRegInfo *ri = rip;
+ uint64_t value;
+ int excp = ri->readfn(env, ri, &value);
+ if (excp) {
+ raise_exception(excp);
+ }
+ return value;
+}
+
+/* ??? Flag setting arithmetic is awkward because we need to do comparisons.
+ The only way to do that in TCG is a conditional branch, which clobbers
+ all our temporaries. For now implement these as helper functions. */
+
+uint32_t HELPER (add_cc)(uint32_t a, uint32_t b)
+{
+ uint32_t result;
+ result = a + b;
+ env->NF = env->ZF = result;
+ env->CF = result < a;
+ env->VF = (a ^ b ^ -1) & (a ^ result);
+ return result;
+}
+
+uint32_t HELPER(adc_cc)(uint32_t a, uint32_t b)
+{
+ uint32_t result;
+ if (!env->CF) {
+ result = a + b;
+ env->CF = result < a;
+ } else {
+ result = a + b + 1;
+ env->CF = result <= a;
+ }
+ env->VF = (a ^ b ^ -1) & (a ^ result);
+ env->NF = env->ZF = result;
+ return result;
+}
+
+uint32_t HELPER(sub_cc)(uint32_t a, uint32_t b)
+{
+ uint32_t result;
+ result = a - b;
+ env->NF = env->ZF = result;
+ env->CF = a >= b;
+ env->VF = (a ^ b) & (a ^ result);
+ return result;
+}
+
+uint32_t HELPER(sbc_cc)(uint32_t a, uint32_t b)
+{
+ uint32_t result;
+ if (!env->CF) {
+ result = a - b - 1;
+ env->CF = a > b;
+ } else {
+ result = a - b;
+ env->CF = a >= b;
+ }
+ env->VF = (a ^ b) & (a ^ result);
+ env->NF = env->ZF = result;
+ return result;
+}
+
+/* Similarly for variable shift instructions. */
+
+uint32_t HELPER(shl)(uint32_t x, uint32_t i)
+{
+ int shift = i & 0xff;
+ if (shift >= 32)
+ return 0;
+ return x << shift;
+}
+
+uint32_t HELPER(shr)(uint32_t x, uint32_t i)
+{
+ int shift = i & 0xff;
+ if (shift >= 32)
+ return 0;
+ return (uint32_t)x >> shift;
+}
+
+uint32_t HELPER(sar)(uint32_t x, uint32_t i)
+{
+ int shift = i & 0xff;
+ if (shift >= 32)
+ shift = 31;
+ return (int32_t)x >> shift;
+}
+
+uint32_t HELPER(shl_cc)(uint32_t x, uint32_t i)
+{
+ int shift = i & 0xff;
+ if (shift >= 32) {
+ if (shift == 32)
+ env->CF = x & 1;
+ else
+ env->CF = 0;
+ return 0;
+ } else if (shift != 0) {
+ env->CF = (x >> (32 - shift)) & 1;
+ return x << shift;
+ }
+ return x;
+}
+
+uint32_t HELPER(shr_cc)(uint32_t x, uint32_t i)
+{
+ int shift = i & 0xff;
+ if (shift >= 32) {
+ if (shift == 32)
+ env->CF = (x >> 31) & 1;
+ else
+ env->CF = 0;
+ return 0;
+ } else if (shift != 0) {
+ env->CF = (x >> (shift - 1)) & 1;
+ return x >> shift;
+ }
+ return x;
+}
+
+uint32_t HELPER(sar_cc)(uint32_t x, uint32_t i)
+{
+ int shift = i & 0xff;
+ if (shift >= 32) {
+ env->CF = (x >> 31) & 1;
+ return (int32_t)x >> 31;
+ } else if (shift != 0) {
+ env->CF = (x >> (shift - 1)) & 1;
+ return (int32_t)x >> shift;
+ }
+ return x;
+}
+
+uint32_t HELPER(ror_cc)(uint32_t x, uint32_t i)
+{
+ int shift1, shift;
+ shift1 = i & 0xff;
+ shift = shift1 & 0x1f;
+ if (shift == 0) {
+ if (shift1 != 0)
+ env->CF = (x >> 31) & 1;
+ return x;
+ } else {
+ env->CF = (x >> (shift - 1)) & 1;
+ return ((uint32_t)x >> shift) | (x << (32 - shift));
+ }
+}
diff --git a/target-arm/translate.c b/target-arm/translate.c
new file mode 100644
index 000000000..edef79a2c
--- /dev/null
+++ b/target-arm/translate.c
@@ -0,0 +1,10025 @@
+/*
+ * ARM translation
+ *
+ * Copyright (c) 2003 Fabrice Bellard
+ * Copyright (c) 2005-2007 CodeSourcery
+ * Copyright (c) 2007 OpenedHand, Ltd.
+ *
+ * This library is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU Lesser General Public
+ * License as published by the Free Software Foundation; either
+ * version 2 of the License, or (at your option) any later version.
+ *
+ * This library is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ * Lesser General Public License for more details.
+ *
+ * You should have received a copy of the GNU Lesser General Public
+ * License along with this library; if not, see <http://www.gnu.org/licenses/>.
+ */
+#include <stdarg.h>
+#include <stdlib.h>
+#include <stdio.h>
+#include <string.h>
+#include <inttypes.h>
+
+#include "cpu.h"
+#include "disas.h"
+#include "tcg-op.h"
+#include "qemu-log.h"
+
+#include "helper.h"
+#define GEN_HELPER 1
+#include "helper.h"
+
+#define ENABLE_ARCH_4T arm_feature(env, ARM_FEATURE_V4T)
+#define ENABLE_ARCH_5 arm_feature(env, ARM_FEATURE_V5)
+/* currently all emulated v5 cores are also v5TE, so don't bother */
+#define ENABLE_ARCH_5TE arm_feature(env, ARM_FEATURE_V5)
+#define ENABLE_ARCH_5J 0
+#define ENABLE_ARCH_6 arm_feature(env, ARM_FEATURE_V6)
+#define ENABLE_ARCH_6K arm_feature(env, ARM_FEATURE_V6K)
+#define ENABLE_ARCH_6T2 arm_feature(env, ARM_FEATURE_THUMB2)
+#define ENABLE_ARCH_7 arm_feature(env, ARM_FEATURE_V7)
+
+#define ARCH(x) do { if (!ENABLE_ARCH_##x) goto illegal_op; } while(0)
+
+/* internal defines */
+typedef struct DisasContext {
+ target_ulong pc;
+ int is_jmp;
+ /* Nonzero if this instruction has been conditionally skipped. */
+ int condjmp;
+ /* The label that will be jumped to when the instruction is skipped. */
+ int condlabel;
+ /* Thumb-2 conditional execution bits. */
+ int condexec_mask;
+ int condexec_cond;
+ struct TranslationBlock *tb;
+ int singlestep_enabled;
+ int thumb;
+ int bswap_code;
+#if !defined(CONFIG_USER_ONLY)
+ int user;
+#endif
+ int vfp_enabled;
+ int vec_len;
+ int vec_stride;
+} DisasContext;
+
+static uint32_t gen_opc_condexec_bits[OPC_BUF_SIZE];
+
+#if defined(CONFIG_USER_ONLY)
+#define IS_USER(s) 1
+#else
+#define IS_USER(s) (s->user)
+#endif
+
+/* These instructions trap after executing, so defer them until after the
+ conditional execution state has been updated. */
+#define DISAS_WFI 4
+#define DISAS_SWI 5
+
+static TCGv_ptr cpu_env;
+/* We reuse the same 64-bit temporaries for efficiency. */
+static TCGv_i64 cpu_V0, cpu_V1, cpu_M0;
+static TCGv_i32 cpu_R[16];
+static TCGv_i32 cpu_exclusive_addr;
+static TCGv_i32 cpu_exclusive_val;
+static TCGv_i32 cpu_exclusive_high;
+#ifdef CONFIG_USER_ONLY
+static TCGv_i32 cpu_exclusive_test;
+static TCGv_i32 cpu_exclusive_info;
+#endif
+
+/* FIXME: These should be removed. */
+static TCGv cpu_F0s, cpu_F1s;
+static TCGv_i64 cpu_F0d, cpu_F1d;
+
+#include "gen-icount.h"
+
+static const char *regnames[] =
+ { "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
+ "r8", "r9", "r10", "r11", "r12", "r13", "r14", "pc" };
+
+/* initialize TCG globals. */
+void arm_translate_init(void)
+{
+ int i;
+
+ cpu_env = tcg_global_reg_new_ptr(TCG_AREG0, "env");
+
+ for (i = 0; i < 16; i++) {
+ cpu_R[i] = tcg_global_mem_new_i32(TCG_AREG0,
+ offsetof(CPUARMState, regs[i]),
+ regnames[i]);
+ }
+ cpu_exclusive_addr = tcg_global_mem_new_i32(TCG_AREG0,
+ offsetof(CPUARMState, exclusive_addr), "exclusive_addr");
+ cpu_exclusive_val = tcg_global_mem_new_i32(TCG_AREG0,
+ offsetof(CPUARMState, exclusive_val), "exclusive_val");
+ cpu_exclusive_high = tcg_global_mem_new_i32(TCG_AREG0,
+ offsetof(CPUARMState, exclusive_high), "exclusive_high");
+#ifdef CONFIG_USER_ONLY
+ cpu_exclusive_test = tcg_global_mem_new_i32(TCG_AREG0,
+ offsetof(CPUARMState, exclusive_test), "exclusive_test");
+ cpu_exclusive_info = tcg_global_mem_new_i32(TCG_AREG0,
+ offsetof(CPUARMState, exclusive_info), "exclusive_info");
+#endif
+
+#define GEN_HELPER 2
+#include "helper.h"
+}
+
+static inline TCGv load_cpu_offset(int offset)
+{
+ TCGv tmp = tcg_temp_new_i32();
+ tcg_gen_ld_i32(tmp, cpu_env, offset);
+ return tmp;
+}
+
+#define load_cpu_field(name) load_cpu_offset(offsetof(CPUARMState, name))
+
+static inline void store_cpu_offset(TCGv var, int offset)
+{
+ tcg_gen_st_i32(var, cpu_env, offset);
+ tcg_temp_free_i32(var);
+}
+
+#define store_cpu_field(var, name) \
+ store_cpu_offset(var, offsetof(CPUARMState, name))
+
+/* Set a variable to the value of a CPU register. */
+static void load_reg_var(DisasContext *s, TCGv var, int reg)
+{
+ if (reg == 15) {
+ uint32_t addr;
+ /* normally, since we updated PC, we need only to add one insn */
+ if (s->thumb)
+ addr = (long)s->pc + 2;
+ else
+ addr = (long)s->pc + 4;
+ tcg_gen_movi_i32(var, addr);
+ } else {
+ tcg_gen_mov_i32(var, cpu_R[reg]);
+ }
+}
+
+/* Create a new temporary and set it to the value of a CPU register. */
+static inline TCGv load_reg(DisasContext *s, int reg)
+{
+ TCGv tmp = tcg_temp_new_i32();
+ load_reg_var(s, tmp, reg);
+ return tmp;
+}
+
+/* Set a CPU register. The source must be a temporary and will be
+ marked as dead. */
+static void store_reg(DisasContext *s, int reg, TCGv var)
+{
+ if (reg == 15) {
+ tcg_gen_andi_i32(var, var, ~1);
+ s->is_jmp = DISAS_JUMP;
+ }
+ tcg_gen_mov_i32(cpu_R[reg], var);
+ tcg_temp_free_i32(var);
+}
+
+/* Value extensions. */
+#define gen_uxtb(var) tcg_gen_ext8u_i32(var, var)
+#define gen_uxth(var) tcg_gen_ext16u_i32(var, var)
+#define gen_sxtb(var) tcg_gen_ext8s_i32(var, var)
+#define gen_sxth(var) tcg_gen_ext16s_i32(var, var)
+
+#define gen_sxtb16(var) gen_helper_sxtb16(var, var)
+#define gen_uxtb16(var) gen_helper_uxtb16(var, var)
+
+
+static inline void gen_set_cpsr(TCGv var, uint32_t mask)
+{
+ TCGv tmp_mask = tcg_const_i32(mask);
+ gen_helper_cpsr_write(var, tmp_mask);
+ tcg_temp_free_i32(tmp_mask);
+}
+/* Set NZCV flags from the high 4 bits of var. */
+#define gen_set_nzcv(var) gen_set_cpsr(var, CPSR_NZCV)
+
+static void gen_exception(int excp)
+{
+ TCGv tmp = tcg_temp_new_i32();
+ tcg_gen_movi_i32(tmp, excp);
+ gen_helper_exception(tmp);
+ tcg_temp_free_i32(tmp);
+}
+
+static void gen_smul_dual(TCGv a, TCGv b)
+{
+ TCGv tmp1 = tcg_temp_new_i32();
+ TCGv tmp2 = tcg_temp_new_i32();
+ tcg_gen_ext16s_i32(tmp1, a);
+ tcg_gen_ext16s_i32(tmp2, b);
+ tcg_gen_mul_i32(tmp1, tmp1, tmp2);
+ tcg_temp_free_i32(tmp2);
+ tcg_gen_sari_i32(a, a, 16);
+ tcg_gen_sari_i32(b, b, 16);
+ tcg_gen_mul_i32(b, b, a);
+ tcg_gen_mov_i32(a, tmp1);
+ tcg_temp_free_i32(tmp1);
+}
+
+/* Byteswap each halfword. */
+static void gen_rev16(TCGv var)
+{
+ TCGv tmp = tcg_temp_new_i32();
+ tcg_gen_shri_i32(tmp, var, 8);
+ tcg_gen_andi_i32(tmp, tmp, 0x00ff00ff);
+ tcg_gen_shli_i32(var, var, 8);
+ tcg_gen_andi_i32(var, var, 0xff00ff00);
+ tcg_gen_or_i32(var, var, tmp);
+ tcg_temp_free_i32(tmp);
+}
+
+/* Byteswap low halfword and sign extend. */
+static void gen_revsh(TCGv var)
+{
+ tcg_gen_ext16u_i32(var, var);
+ tcg_gen_bswap16_i32(var, var);
+ tcg_gen_ext16s_i32(var, var);
+}
+
+/* Unsigned bitfield extract. */
+static void gen_ubfx(TCGv var, int shift, uint32_t mask)
+{
+ if (shift)
+ tcg_gen_shri_i32(var, var, shift);
+ tcg_gen_andi_i32(var, var, mask);
+}
+
+/* Signed bitfield extract. */
+static void gen_sbfx(TCGv var, int shift, int width)
+{
+ uint32_t signbit;
+
+ if (shift)
+ tcg_gen_sari_i32(var, var, shift);
+ if (shift + width < 32) {
+ signbit = 1u << (width - 1);
+ tcg_gen_andi_i32(var, var, (1u << width) - 1);
+ tcg_gen_xori_i32(var, var, signbit);
+ tcg_gen_subi_i32(var, var, signbit);
+ }
+}
+
+/* Bitfield insertion. Insert val into base. Clobbers base and val. */
+static void gen_bfi(TCGv dest, TCGv base, TCGv val, int shift, uint32_t mask)
+{
+ tcg_gen_andi_i32(val, val, mask);
+ tcg_gen_shli_i32(val, val, shift);
+ tcg_gen_andi_i32(base, base, ~(mask << shift));
+ tcg_gen_or_i32(dest, base, val);
+}
+
+/* Return (b << 32) + a. Mark inputs as dead */
+static TCGv_i64 gen_addq_msw(TCGv_i64 a, TCGv b)
+{
+ TCGv_i64 tmp64 = tcg_temp_new_i64();
+
+ tcg_gen_extu_i32_i64(tmp64, b);
+ tcg_temp_free_i32(b);
+ tcg_gen_shli_i64(tmp64, tmp64, 32);
+ tcg_gen_add_i64(a, tmp64, a);
+
+ tcg_temp_free_i64(tmp64);
+ return a;
+}
+
+/* Return (b << 32) - a. Mark inputs as dead. */
+static TCGv_i64 gen_subq_msw(TCGv_i64 a, TCGv b)
+{
+ TCGv_i64 tmp64 = tcg_temp_new_i64();
+
+ tcg_gen_extu_i32_i64(tmp64, b);
+ tcg_temp_free_i32(b);
+ tcg_gen_shli_i64(tmp64, tmp64, 32);
+ tcg_gen_sub_i64(a, tmp64, a);
+
+ tcg_temp_free_i64(tmp64);
+ return a;
+}
+
+/* FIXME: Most targets have native widening multiplication.
+ It would be good to use that instead of a full wide multiply. */
+/* 32x32->64 multiply. Marks inputs as dead. */
+static TCGv_i64 gen_mulu_i64_i32(TCGv a, TCGv b)
+{
+ TCGv_i64 tmp1 = tcg_temp_new_i64();
+ TCGv_i64 tmp2 = tcg_temp_new_i64();
+
+ tcg_gen_extu_i32_i64(tmp1, a);
+ tcg_temp_free_i32(a);
+ tcg_gen_extu_i32_i64(tmp2, b);
+ tcg_temp_free_i32(b);
+ tcg_gen_mul_i64(tmp1, tmp1, tmp2);
+ tcg_temp_free_i64(tmp2);
+ return tmp1;
+}
+
+static TCGv_i64 gen_muls_i64_i32(TCGv a, TCGv b)
+{
+ TCGv_i64 tmp1 = tcg_temp_new_i64();
+ TCGv_i64 tmp2 = tcg_temp_new_i64();
+
+ tcg_gen_ext_i32_i64(tmp1, a);
+ tcg_temp_free_i32(a);
+ tcg_gen_ext_i32_i64(tmp2, b);
+ tcg_temp_free_i32(b);
+ tcg_gen_mul_i64(tmp1, tmp1, tmp2);
+ tcg_temp_free_i64(tmp2);
+ return tmp1;
+}
+
+/* Swap low and high halfwords. */
+static void gen_swap_half(TCGv var)
+{
+ TCGv tmp = tcg_temp_new_i32();
+ tcg_gen_shri_i32(tmp, var, 16);
+ tcg_gen_shli_i32(var, var, 16);
+ tcg_gen_or_i32(var, var, tmp);
+ tcg_temp_free_i32(tmp);
+}
+
+/* Dual 16-bit add. Result placed in t0 and t1 is marked as dead.
+ tmp = (t0 ^ t1) & 0x8000;
+ t0 &= ~0x8000;
+ t1 &= ~0x8000;
+ t0 = (t0 + t1) ^ tmp;
+ */
+
+static void gen_add16(TCGv t0, TCGv t1)
+{
+ TCGv tmp = tcg_temp_new_i32();
+ tcg_gen_xor_i32(tmp, t0, t1);
+ tcg_gen_andi_i32(tmp, tmp, 0x8000);
+ tcg_gen_andi_i32(t0, t0, ~0x8000);
+ tcg_gen_andi_i32(t1, t1, ~0x8000);
+ tcg_gen_add_i32(t0, t0, t1);
+ tcg_gen_xor_i32(t0, t0, tmp);
+ tcg_temp_free_i32(tmp);
+ tcg_temp_free_i32(t1);
+}
+
+#define gen_set_CF(var) tcg_gen_st_i32(var, cpu_env, offsetof(CPUARMState, CF))
+
+/* Set CF to the top bit of var. */
+static void gen_set_CF_bit31(TCGv var)
+{
+ TCGv tmp = tcg_temp_new_i32();
+ tcg_gen_shri_i32(tmp, var, 31);
+ gen_set_CF(tmp);
+ tcg_temp_free_i32(tmp);
+}
+
+/* Set N and Z flags from var. */
+static inline void gen_logic_CC(TCGv var)
+{
+ tcg_gen_st_i32(var, cpu_env, offsetof(CPUARMState, NF));
+ tcg_gen_st_i32(var, cpu_env, offsetof(CPUARMState, ZF));
+}
+
+/* T0 += T1 + CF. */
+static void gen_adc(TCGv t0, TCGv t1)
+{
+ TCGv tmp;
+ tcg_gen_add_i32(t0, t0, t1);
+ tmp = load_cpu_field(CF);
+ tcg_gen_add_i32(t0, t0, tmp);
+ tcg_temp_free_i32(tmp);
+}
+
+/* dest = T0 + T1 + CF. */
+static void gen_add_carry(TCGv dest, TCGv t0, TCGv t1)
+{
+ TCGv tmp;
+ tcg_gen_add_i32(dest, t0, t1);
+ tmp = load_cpu_field(CF);
+ tcg_gen_add_i32(dest, dest, tmp);
+ tcg_temp_free_i32(tmp);
+}
+
+/* dest = T0 - T1 + CF - 1. */
+static void gen_sub_carry(TCGv dest, TCGv t0, TCGv t1)
+{
+ TCGv tmp;
+ tcg_gen_sub_i32(dest, t0, t1);
+ tmp = load_cpu_field(CF);
+ tcg_gen_add_i32(dest, dest, tmp);
+ tcg_gen_subi_i32(dest, dest, 1);
+ tcg_temp_free_i32(tmp);
+}
+
+/* FIXME: Implement this natively. */
+#define tcg_gen_abs_i32(t0, t1) gen_helper_abs(t0, t1)
+
+static void shifter_out_im(TCGv var, int shift)
+{
+ TCGv tmp = tcg_temp_new_i32();
+ if (shift == 0) {
+ tcg_gen_andi_i32(tmp, var, 1);
+ } else {
+ tcg_gen_shri_i32(tmp, var, shift);
+ if (shift != 31)
+ tcg_gen_andi_i32(tmp, tmp, 1);
+ }
+ gen_set_CF(tmp);
+ tcg_temp_free_i32(tmp);
+}
+
+/* Shift by immediate. Includes special handling for shift == 0. */
+static inline void gen_arm_shift_im(TCGv var, int shiftop, int shift, int flags)
+{
+ switch (shiftop) {
+ case 0: /* LSL */
+ if (shift != 0) {
+ if (flags)
+ shifter_out_im(var, 32 - shift);
+ tcg_gen_shli_i32(var, var, shift);
+ }
+ break;
+ case 1: /* LSR */
+ if (shift == 0) {
+ if (flags) {
+ tcg_gen_shri_i32(var, var, 31);
+ gen_set_CF(var);
+ }
+ tcg_gen_movi_i32(var, 0);
+ } else {
+ if (flags)
+ shifter_out_im(var, shift - 1);
+ tcg_gen_shri_i32(var, var, shift);
+ }
+ break;
+ case 2: /* ASR */
+ if (shift == 0)
+ shift = 32;
+ if (flags)
+ shifter_out_im(var, shift - 1);
+ if (shift == 32)
+ shift = 31;
+ tcg_gen_sari_i32(var, var, shift);
+ break;
+ case 3: /* ROR/RRX */
+ if (shift != 0) {
+ if (flags)
+ shifter_out_im(var, shift - 1);
+ tcg_gen_rotri_i32(var, var, shift); break;
+ } else {
+ TCGv tmp = load_cpu_field(CF);
+ if (flags)
+ shifter_out_im(var, 0);
+ tcg_gen_shri_i32(var, var, 1);
+ tcg_gen_shli_i32(tmp, tmp, 31);
+ tcg_gen_or_i32(var, var, tmp);
+ tcg_temp_free_i32(tmp);
+ }
+ }
+};
+
+static inline void gen_arm_shift_reg(TCGv var, int shiftop,
+ TCGv shift, int flags)
+{
+ if (flags) {
+ switch (shiftop) {
+ case 0: gen_helper_shl_cc(var, var, shift); break;
+ case 1: gen_helper_shr_cc(var, var, shift); break;
+ case 2: gen_helper_sar_cc(var, var, shift); break;
+ case 3: gen_helper_ror_cc(var, var, shift); break;
+ }
+ } else {
+ switch (shiftop) {
+ case 0: gen_helper_shl(var, var, shift); break;
+ case 1: gen_helper_shr(var, var, shift); break;
+ case 2: gen_helper_sar(var, var, shift); break;
+ case 3: tcg_gen_andi_i32(shift, shift, 0x1f);
+ tcg_gen_rotr_i32(var, var, shift); break;
+ }
+ }
+ tcg_temp_free_i32(shift);
+}
+
+#define PAS_OP(pfx) \
+ switch (op2) { \
+ case 0: gen_pas_helper(glue(pfx,add16)); break; \
+ case 1: gen_pas_helper(glue(pfx,addsubx)); break; \
+ case 2: gen_pas_helper(glue(pfx,subaddx)); break; \
+ case 3: gen_pas_helper(glue(pfx,sub16)); break; \
+ case 4: gen_pas_helper(glue(pfx,add8)); break; \
+ case 7: gen_pas_helper(glue(pfx,sub8)); break; \
+ }
+static void gen_arm_parallel_addsub(int op1, int op2, TCGv a, TCGv b)
+{
+ TCGv_ptr tmp;
+
+ switch (op1) {
+#define gen_pas_helper(name) glue(gen_helper_,name)(a, a, b, tmp)
+ case 1:
+ tmp = tcg_temp_new_ptr();
+ tcg_gen_addi_ptr(tmp, cpu_env, offsetof(CPUARMState, GE));
+ PAS_OP(s)
+ tcg_temp_free_ptr(tmp);
+ break;
+ case 5:
+ tmp = tcg_temp_new_ptr();
+ tcg_gen_addi_ptr(tmp, cpu_env, offsetof(CPUARMState, GE));
+ PAS_OP(u)
+ tcg_temp_free_ptr(tmp);
+ break;
+#undef gen_pas_helper
+#define gen_pas_helper(name) glue(gen_helper_,name)(a, a, b)
+ case 2:
+ PAS_OP(q);
+ break;
+ case 3:
+ PAS_OP(sh);
+ break;
+ case 6:
+ PAS_OP(uq);
+ break;
+ case 7:
+ PAS_OP(uh);
+ break;
+#undef gen_pas_helper
+ }
+}
+#undef PAS_OP
+
+/* For unknown reasons Arm and Thumb-2 use arbitrarily different encodings. */
+#define PAS_OP(pfx) \
+ switch (op1) { \
+ case 0: gen_pas_helper(glue(pfx,add8)); break; \
+ case 1: gen_pas_helper(glue(pfx,add16)); break; \
+ case 2: gen_pas_helper(glue(pfx,addsubx)); break; \
+ case 4: gen_pas_helper(glue(pfx,sub8)); break; \
+ case 5: gen_pas_helper(glue(pfx,sub16)); break; \
+ case 6: gen_pas_helper(glue(pfx,subaddx)); break; \
+ }
+static void gen_thumb2_parallel_addsub(int op1, int op2, TCGv a, TCGv b)
+{
+ TCGv_ptr tmp;
+
+ switch (op2) {
+#define gen_pas_helper(name) glue(gen_helper_,name)(a, a, b, tmp)
+ case 0:
+ tmp = tcg_temp_new_ptr();
+ tcg_gen_addi_ptr(tmp, cpu_env, offsetof(CPUARMState, GE));
+ PAS_OP(s)
+ tcg_temp_free_ptr(tmp);
+ break;
+ case 4:
+ tmp = tcg_temp_new_ptr();
+ tcg_gen_addi_ptr(tmp, cpu_env, offsetof(CPUARMState, GE));
+ PAS_OP(u)
+ tcg_temp_free_ptr(tmp);
+ break;
+#undef gen_pas_helper
+#define gen_pas_helper(name) glue(gen_helper_,name)(a, a, b)
+ case 1:
+ PAS_OP(q);
+ break;
+ case 2:
+ PAS_OP(sh);
+ break;
+ case 5:
+ PAS_OP(uq);
+ break;
+ case 6:
+ PAS_OP(uh);
+ break;
+#undef gen_pas_helper
+ }
+}
+#undef PAS_OP
+
+static void gen_test_cc(int cc, int label)
+{
+ TCGv tmp;
+ TCGv tmp2;
+ int inv;
+
+ switch (cc) {
+ case 0: /* eq: Z */
+ tmp = load_cpu_field(ZF);
+ tcg_gen_brcondi_i32(TCG_COND_EQ, tmp, 0, label);
+ break;
+ case 1: /* ne: !Z */
+ tmp = load_cpu_field(ZF);
+ tcg_gen_brcondi_i32(TCG_COND_NE, tmp, 0, label);
+ break;
+ case 2: /* cs: C */
+ tmp = load_cpu_field(CF);
+ tcg_gen_brcondi_i32(TCG_COND_NE, tmp, 0, label);
+ break;
+ case 3: /* cc: !C */
+ tmp = load_cpu_field(CF);
+ tcg_gen_brcondi_i32(TCG_COND_EQ, tmp, 0, label);
+ break;
+ case 4: /* mi: N */
+ tmp = load_cpu_field(NF);
+ tcg_gen_brcondi_i32(TCG_COND_LT, tmp, 0, label);
+ break;
+ case 5: /* pl: !N */
+ tmp = load_cpu_field(NF);
+ tcg_gen_brcondi_i32(TCG_COND_GE, tmp, 0, label);
+ break;
+ case 6: /* vs: V */
+ tmp = load_cpu_field(VF);
+ tcg_gen_brcondi_i32(TCG_COND_LT, tmp, 0, label);
+ break;
+ case 7: /* vc: !V */
+ tmp = load_cpu_field(VF);
+ tcg_gen_brcondi_i32(TCG_COND_GE, tmp, 0, label);
+ break;
+ case 8: /* hi: C && !Z */
+ inv = gen_new_label();
+ tmp = load_cpu_field(CF);
+ tcg_gen_brcondi_i32(TCG_COND_EQ, tmp, 0, inv);
+ tcg_temp_free_i32(tmp);
+ tmp = load_cpu_field(ZF);
+ tcg_gen_brcondi_i32(TCG_COND_NE, tmp, 0, label);
+ gen_set_label(inv);
+ break;
+ case 9: /* ls: !C || Z */
+ tmp = load_cpu_field(CF);
+ tcg_gen_brcondi_i32(TCG_COND_EQ, tmp, 0, label);
+ tcg_temp_free_i32(tmp);
+ tmp = load_cpu_field(ZF);
+ tcg_gen_brcondi_i32(TCG_COND_EQ, tmp, 0, label);
+ break;
+ case 10: /* ge: N == V -> N ^ V == 0 */
+ tmp = load_cpu_field(VF);
+ tmp2 = load_cpu_field(NF);
+ tcg_gen_xor_i32(tmp, tmp, tmp2);
+ tcg_temp_free_i32(tmp2);
+ tcg_gen_brcondi_i32(TCG_COND_GE, tmp, 0, label);
+ break;
+ case 11: /* lt: N != V -> N ^ V != 0 */
+ tmp = load_cpu_field(VF);
+ tmp2 = load_cpu_field(NF);
+ tcg_gen_xor_i32(tmp, tmp, tmp2);
+ tcg_temp_free_i32(tmp2);
+ tcg_gen_brcondi_i32(TCG_COND_LT, tmp, 0, label);
+ break;
+ case 12: /* gt: !Z && N == V */
+ inv = gen_new_label();
+ tmp = load_cpu_field(ZF);
+ tcg_gen_brcondi_i32(TCG_COND_EQ, tmp, 0, inv);
+ tcg_temp_free_i32(tmp);
+ tmp = load_cpu_field(VF);
+ tmp2 = load_cpu_field(NF);
+ tcg_gen_xor_i32(tmp, tmp, tmp2);
+ tcg_temp_free_i32(tmp2);
+ tcg_gen_brcondi_i32(TCG_COND_GE, tmp, 0, label);
+ gen_set_label(inv);
+ break;
+ case 13: /* le: Z || N != V */
+ tmp = load_cpu_field(ZF);
+ tcg_gen_brcondi_i32(TCG_COND_EQ, tmp, 0, label);
+ tcg_temp_free_i32(tmp);
+ tmp = load_cpu_field(VF);
+ tmp2 = load_cpu_field(NF);
+ tcg_gen_xor_i32(tmp, tmp, tmp2);
+ tcg_temp_free_i32(tmp2);
+ tcg_gen_brcondi_i32(TCG_COND_LT, tmp, 0, label);
+ break;
+ default:
+ fprintf(stderr, "Bad condition code 0x%x\n", cc);
+ abort();
+ }
+ tcg_temp_free_i32(tmp);
+}
+
+static const uint8_t table_logic_cc[16] = {
+ 1, /* and */
+ 1, /* xor */
+ 0, /* sub */
+ 0, /* rsb */
+ 0, /* add */
+ 0, /* adc */
+ 0, /* sbc */
+ 0, /* rsc */
+ 1, /* andl */
+ 1, /* xorl */
+ 0, /* cmp */
+ 0, /* cmn */
+ 1, /* orr */
+ 1, /* mov */
+ 1, /* bic */
+ 1, /* mvn */
+};
+
+/* Set PC and Thumb state from an immediate address. */
+static inline void gen_bx_im(DisasContext *s, uint32_t addr)
+{
+ TCGv tmp;
+
+ s->is_jmp = DISAS_UPDATE;
+ if (s->thumb != (addr & 1)) {
+ tmp = tcg_temp_new_i32();
+ tcg_gen_movi_i32(tmp, addr & 1);
+ tcg_gen_st_i32(tmp, cpu_env, offsetof(CPUARMState, thumb));
+ tcg_temp_free_i32(tmp);
+ }
+ tcg_gen_movi_i32(cpu_R[15], addr & ~1);
+}
+
+/* Set PC and Thumb state from var. var is marked as dead. */
+static inline void gen_bx(DisasContext *s, TCGv var)
+{
+ s->is_jmp = DISAS_UPDATE;
+ tcg_gen_andi_i32(cpu_R[15], var, ~1);
+ tcg_gen_andi_i32(var, var, 1);
+ store_cpu_field(var, thumb);
+}
+
+/* Variant of store_reg which uses branch&exchange logic when storing
+ to r15 in ARM architecture v7 and above. The source must be a temporary
+ and will be marked as dead. */
+static inline void store_reg_bx(CPUARMState *env, DisasContext *s,
+ int reg, TCGv var)
+{
+ if (reg == 15 && ENABLE_ARCH_7) {
+ gen_bx(s, var);
+ } else {
+ store_reg(s, reg, var);
+ }
+}
+
+/* Variant of store_reg which uses branch&exchange logic when storing
+ * to r15 in ARM architecture v5T and above. This is used for storing
+ * the results of a LDR/LDM/POP into r15, and corresponds to the cases
+ * in the ARM ARM which use the LoadWritePC() pseudocode function. */
+static inline void store_reg_from_load(CPUARMState *env, DisasContext *s,
+ int reg, TCGv var)
+{
+ if (reg == 15 && ENABLE_ARCH_5) {
+ gen_bx(s, var);
+ } else {
+ store_reg(s, reg, var);
+ }
+}
+
+static inline TCGv gen_ld8s(TCGv addr, int index)
+{
+ TCGv tmp = tcg_temp_new_i32();
+ tcg_gen_qemu_ld8s(tmp, addr, index);
+ return tmp;
+}
+static inline TCGv gen_ld8u(TCGv addr, int index)
+{
+ TCGv tmp = tcg_temp_new_i32();
+ tcg_gen_qemu_ld8u(tmp, addr, index);
+ return tmp;
+}
+static inline TCGv gen_ld16s(TCGv addr, int index)
+{
+ TCGv tmp = tcg_temp_new_i32();
+ tcg_gen_qemu_ld16s(tmp, addr, index);
+ return tmp;
+}
+static inline TCGv gen_ld16u(TCGv addr, int index)
+{
+ TCGv tmp = tcg_temp_new_i32();
+ tcg_gen_qemu_ld16u(tmp, addr, index);
+ return tmp;
+}
+static inline TCGv gen_ld32(TCGv addr, int index)
+{
+ TCGv tmp = tcg_temp_new_i32();
+ tcg_gen_qemu_ld32u(tmp, addr, index);
+ return tmp;
+}
+static inline TCGv_i64 gen_ld64(TCGv addr, int index)
+{
+ TCGv_i64 tmp = tcg_temp_new_i64();
+ tcg_gen_qemu_ld64(tmp, addr, index);
+ return tmp;
+}
+static inline void gen_st8(TCGv val, TCGv addr, int index)
+{
+ tcg_gen_qemu_st8(val, addr, index);
+ tcg_temp_free_i32(val);
+}
+static inline void gen_st16(TCGv val, TCGv addr, int index)
+{
+ tcg_gen_qemu_st16(val, addr, index);
+ tcg_temp_free_i32(val);
+}
+static inline void gen_st32(TCGv val, TCGv addr, int index)
+{
+ tcg_gen_qemu_st32(val, addr, index);
+ tcg_temp_free_i32(val);
+}
+static inline void gen_st64(TCGv_i64 val, TCGv addr, int index)
+{
+ tcg_gen_qemu_st64(val, addr, index);
+ tcg_temp_free_i64(val);
+}
+
+static inline void gen_set_pc_im(uint32_t val)
+{
+ tcg_gen_movi_i32(cpu_R[15], val);
+}
+
+/* Force a TB lookup after an instruction that changes the CPU state. */
+static inline void gen_lookup_tb(DisasContext *s)
+{
+ tcg_gen_movi_i32(cpu_R[15], s->pc & ~1);
+ s->is_jmp = DISAS_UPDATE;
+}
+
+static inline void gen_add_data_offset(DisasContext *s, unsigned int insn,
+ TCGv var)
+{
+ int val, rm, shift, shiftop;
+ TCGv offset;
+
+ if (!(insn & (1 << 25))) {
+ /* immediate */
+ val = insn & 0xfff;
+ if (!(insn & (1 << 23)))
+ val = -val;
+ if (val != 0)
+ tcg_gen_addi_i32(var, var, val);
+ } else {
+ /* shift/register */
+ rm = (insn) & 0xf;
+ shift = (insn >> 7) & 0x1f;
+ shiftop = (insn >> 5) & 3;
+ offset = load_reg(s, rm);
+ gen_arm_shift_im(offset, shiftop, shift, 0);
+ if (!(insn & (1 << 23)))
+ tcg_gen_sub_i32(var, var, offset);
+ else
+ tcg_gen_add_i32(var, var, offset);
+ tcg_temp_free_i32(offset);
+ }
+}
+
+static inline void gen_add_datah_offset(DisasContext *s, unsigned int insn,
+ int extra, TCGv var)
+{
+ int val, rm;
+ TCGv offset;
+
+ if (insn & (1 << 22)) {
+ /* immediate */
+ val = (insn & 0xf) | ((insn >> 4) & 0xf0);
+ if (!(insn & (1 << 23)))
+ val = -val;
+ val += extra;
+ if (val != 0)
+ tcg_gen_addi_i32(var, var, val);
+ } else {
+ /* register */
+ if (extra)
+ tcg_gen_addi_i32(var, var, extra);
+ rm = (insn) & 0xf;
+ offset = load_reg(s, rm);
+ if (!(insn & (1 << 23)))
+ tcg_gen_sub_i32(var, var, offset);
+ else
+ tcg_gen_add_i32(var, var, offset);
+ tcg_temp_free_i32(offset);
+ }
+}
+
+static TCGv_ptr get_fpstatus_ptr(int neon)
+{
+ TCGv_ptr statusptr = tcg_temp_new_ptr();
+ int offset;
+ if (neon) {
+ offset = offsetof(CPUARMState, vfp.standard_fp_status);
+ } else {
+ offset = offsetof(CPUARMState, vfp.fp_status);
+ }
+ tcg_gen_addi_ptr(statusptr, cpu_env, offset);
+ return statusptr;
+}
+
+#define VFP_OP2(name) \
+static inline void gen_vfp_##name(int dp) \
+{ \
+ TCGv_ptr fpst = get_fpstatus_ptr(0); \
+ if (dp) { \
+ gen_helper_vfp_##name##d(cpu_F0d, cpu_F0d, cpu_F1d, fpst); \
+ } else { \
+ gen_helper_vfp_##name##s(cpu_F0s, cpu_F0s, cpu_F1s, fpst); \
+ } \
+ tcg_temp_free_ptr(fpst); \
+}
+
+VFP_OP2(add)
+VFP_OP2(sub)
+VFP_OP2(mul)
+VFP_OP2(div)
+
+#undef VFP_OP2
+
+static inline void gen_vfp_F1_mul(int dp)
+{
+ /* Like gen_vfp_mul() but put result in F1 */
+ TCGv_ptr fpst = get_fpstatus_ptr(0);
+ if (dp) {
+ gen_helper_vfp_muld(cpu_F1d, cpu_F0d, cpu_F1d, fpst);
+ } else {
+ gen_helper_vfp_muls(cpu_F1s, cpu_F0s, cpu_F1s, fpst);
+ }
+ tcg_temp_free_ptr(fpst);
+}
+
+static inline void gen_vfp_F1_neg(int dp)
+{
+ /* Like gen_vfp_neg() but put result in F1 */
+ if (dp) {
+ gen_helper_vfp_negd(cpu_F1d, cpu_F0d);
+ } else {
+ gen_helper_vfp_negs(cpu_F1s, cpu_F0s);
+ }
+}
+
+static inline void gen_vfp_abs(int dp)
+{
+ if (dp)
+ gen_helper_vfp_absd(cpu_F0d, cpu_F0d);
+ else
+ gen_helper_vfp_abss(cpu_F0s, cpu_F0s);
+}
+
+static inline void gen_vfp_neg(int dp)
+{
+ if (dp)
+ gen_helper_vfp_negd(cpu_F0d, cpu_F0d);
+ else
+ gen_helper_vfp_negs(cpu_F0s, cpu_F0s);
+}
+
+static inline void gen_vfp_sqrt(int dp)
+{
+ if (dp)
+ gen_helper_vfp_sqrtd(cpu_F0d, cpu_F0d, cpu_env);
+ else
+ gen_helper_vfp_sqrts(cpu_F0s, cpu_F0s, cpu_env);
+}
+
+static inline void gen_vfp_cmp(int dp)
+{
+ if (dp)
+ gen_helper_vfp_cmpd(cpu_F0d, cpu_F1d, cpu_env);
+ else
+ gen_helper_vfp_cmps(cpu_F0s, cpu_F1s, cpu_env);
+}
+
+static inline void gen_vfp_cmpe(int dp)
+{
+ if (dp)
+ gen_helper_vfp_cmped(cpu_F0d, cpu_F1d, cpu_env);
+ else
+ gen_helper_vfp_cmpes(cpu_F0s, cpu_F1s, cpu_env);
+}
+
+static inline void gen_vfp_F1_ld0(int dp)
+{
+ if (dp)
+ tcg_gen_movi_i64(cpu_F1d, 0);
+ else
+ tcg_gen_movi_i32(cpu_F1s, 0);
+}
+
+#define VFP_GEN_ITOF(name) \
+static inline void gen_vfp_##name(int dp, int neon) \
+{ \
+ TCGv_ptr statusptr = get_fpstatus_ptr(neon); \
+ if (dp) { \
+ gen_helper_vfp_##name##d(cpu_F0d, cpu_F0s, statusptr); \
+ } else { \
+ gen_helper_vfp_##name##s(cpu_F0s, cpu_F0s, statusptr); \
+ } \
+ tcg_temp_free_ptr(statusptr); \
+}
+
+VFP_GEN_ITOF(uito)
+VFP_GEN_ITOF(sito)
+#undef VFP_GEN_ITOF
+
+#define VFP_GEN_FTOI(name) \
+static inline void gen_vfp_##name(int dp, int neon) \
+{ \
+ TCGv_ptr statusptr = get_fpstatus_ptr(neon); \
+ if (dp) { \
+ gen_helper_vfp_##name##d(cpu_F0s, cpu_F0d, statusptr); \
+ } else { \
+ gen_helper_vfp_##name##s(cpu_F0s, cpu_F0s, statusptr); \
+ } \
+ tcg_temp_free_ptr(statusptr); \
+}
+
+VFP_GEN_FTOI(toui)
+VFP_GEN_FTOI(touiz)
+VFP_GEN_FTOI(tosi)
+VFP_GEN_FTOI(tosiz)
+#undef VFP_GEN_FTOI
+
+#define VFP_GEN_FIX(name) \
+static inline void gen_vfp_##name(int dp, int shift, int neon) \
+{ \
+ TCGv tmp_shift = tcg_const_i32(shift); \
+ TCGv_ptr statusptr = get_fpstatus_ptr(neon); \
+ if (dp) { \
+ gen_helper_vfp_##name##d(cpu_F0d, cpu_F0d, tmp_shift, statusptr); \
+ } else { \
+ gen_helper_vfp_##name##s(cpu_F0s, cpu_F0s, tmp_shift, statusptr); \
+ } \
+ tcg_temp_free_i32(tmp_shift); \
+ tcg_temp_free_ptr(statusptr); \
+}
+VFP_GEN_FIX(tosh)
+VFP_GEN_FIX(tosl)
+VFP_GEN_FIX(touh)
+VFP_GEN_FIX(toul)
+VFP_GEN_FIX(shto)
+VFP_GEN_FIX(slto)
+VFP_GEN_FIX(uhto)
+VFP_GEN_FIX(ulto)
+#undef VFP_GEN_FIX
+
+static inline void gen_vfp_ld(DisasContext *s, int dp, TCGv addr)
+{
+ if (dp)
+ tcg_gen_qemu_ld64(cpu_F0d, addr, IS_USER(s));
+ else
+ tcg_gen_qemu_ld32u(cpu_F0s, addr, IS_USER(s));
+}
+
+static inline void gen_vfp_st(DisasContext *s, int dp, TCGv addr)
+{
+ if (dp)
+ tcg_gen_qemu_st64(cpu_F0d, addr, IS_USER(s));
+ else
+ tcg_gen_qemu_st32(cpu_F0s, addr, IS_USER(s));
+}
+
+static inline long
+vfp_reg_offset (int dp, int reg)
+{
+ if (dp)
+ return offsetof(CPUARMState, vfp.regs[reg]);
+ else if (reg & 1) {
+ return offsetof(CPUARMState, vfp.regs[reg >> 1])
+ + offsetof(CPU_DoubleU, l.upper);
+ } else {
+ return offsetof(CPUARMState, vfp.regs[reg >> 1])
+ + offsetof(CPU_DoubleU, l.lower);
+ }
+}
+
+/* Return the offset of a 32-bit piece of a NEON register.
+ zero is the least significant end of the register. */
+static inline long
+neon_reg_offset (int reg, int n)
+{
+ int sreg;
+ sreg = reg * 2 + n;
+ return vfp_reg_offset(0, sreg);
+}
+
+static TCGv neon_load_reg(int reg, int pass)
+{
+ TCGv tmp = tcg_temp_new_i32();
+ tcg_gen_ld_i32(tmp, cpu_env, neon_reg_offset(reg, pass));
+ return tmp;
+}
+
+static void neon_store_reg(int reg, int pass, TCGv var)
+{
+ tcg_gen_st_i32(var, cpu_env, neon_reg_offset(reg, pass));
+ tcg_temp_free_i32(var);
+}
+
+static inline void neon_load_reg64(TCGv_i64 var, int reg)
+{
+ tcg_gen_ld_i64(var, cpu_env, vfp_reg_offset(1, reg));
+}
+
+static inline void neon_store_reg64(TCGv_i64 var, int reg)
+{
+ tcg_gen_st_i64(var, cpu_env, vfp_reg_offset(1, reg));
+}
+
+#define tcg_gen_ld_f32 tcg_gen_ld_i32
+#define tcg_gen_ld_f64 tcg_gen_ld_i64
+#define tcg_gen_st_f32 tcg_gen_st_i32
+#define tcg_gen_st_f64 tcg_gen_st_i64
+
+static inline void gen_mov_F0_vreg(int dp, int reg)
+{
+ if (dp)
+ tcg_gen_ld_f64(cpu_F0d, cpu_env, vfp_reg_offset(dp, reg));
+ else
+ tcg_gen_ld_f32(cpu_F0s, cpu_env, vfp_reg_offset(dp, reg));
+}
+
+static inline void gen_mov_F1_vreg(int dp, int reg)
+{
+ if (dp)
+ tcg_gen_ld_f64(cpu_F1d, cpu_env, vfp_reg_offset(dp, reg));
+ else
+ tcg_gen_ld_f32(cpu_F1s, cpu_env, vfp_reg_offset(dp, reg));
+}
+
+static inline void gen_mov_vreg_F0(int dp, int reg)
+{
+ if (dp)
+ tcg_gen_st_f64(cpu_F0d, cpu_env, vfp_reg_offset(dp, reg));
+ else
+ tcg_gen_st_f32(cpu_F0s, cpu_env, vfp_reg_offset(dp, reg));
+}
+
+#define ARM_CP_RW_BIT (1 << 20)
+
+static inline void iwmmxt_load_reg(TCGv_i64 var, int reg)
+{
+ tcg_gen_ld_i64(var, cpu_env, offsetof(CPUARMState, iwmmxt.regs[reg]));
+}
+
+static inline void iwmmxt_store_reg(TCGv_i64 var, int reg)
+{
+ tcg_gen_st_i64(var, cpu_env, offsetof(CPUARMState, iwmmxt.regs[reg]));
+}
+
+static inline TCGv iwmmxt_load_creg(int reg)
+{
+ TCGv var = tcg_temp_new_i32();
+ tcg_gen_ld_i32(var, cpu_env, offsetof(CPUARMState, iwmmxt.cregs[reg]));
+ return var;
+}
+
+static inline void iwmmxt_store_creg(int reg, TCGv var)
+{
+ tcg_gen_st_i32(var, cpu_env, offsetof(CPUARMState, iwmmxt.cregs[reg]));
+ tcg_temp_free_i32(var);
+}
+
+static inline void gen_op_iwmmxt_movq_wRn_M0(int rn)
+{
+ iwmmxt_store_reg(cpu_M0, rn);
+}
+
+static inline void gen_op_iwmmxt_movq_M0_wRn(int rn)
+{
+ iwmmxt_load_reg(cpu_M0, rn);
+}
+
+static inline void gen_op_iwmmxt_orq_M0_wRn(int rn)
+{
+ iwmmxt_load_reg(cpu_V1, rn);
+ tcg_gen_or_i64(cpu_M0, cpu_M0, cpu_V1);
+}
+
+static inline void gen_op_iwmmxt_andq_M0_wRn(int rn)
+{
+ iwmmxt_load_reg(cpu_V1, rn);
+ tcg_gen_and_i64(cpu_M0, cpu_M0, cpu_V1);
+}
+
+static inline void gen_op_iwmmxt_xorq_M0_wRn(int rn)
+{
+ iwmmxt_load_reg(cpu_V1, rn);
+ tcg_gen_xor_i64(cpu_M0, cpu_M0, cpu_V1);
+}
+
+#define IWMMXT_OP(name) \
+static inline void gen_op_iwmmxt_##name##_M0_wRn(int rn) \
+{ \
+ iwmmxt_load_reg(cpu_V1, rn); \
+ gen_helper_iwmmxt_##name(cpu_M0, cpu_M0, cpu_V1); \
+}
+
+#define IWMMXT_OP_ENV(name) \
+static inline void gen_op_iwmmxt_##name##_M0_wRn(int rn) \
+{ \
+ iwmmxt_load_reg(cpu_V1, rn); \
+ gen_helper_iwmmxt_##name(cpu_M0, cpu_env, cpu_M0, cpu_V1); \
+}
+
+#define IWMMXT_OP_ENV_SIZE(name) \
+IWMMXT_OP_ENV(name##b) \
+IWMMXT_OP_ENV(name##w) \
+IWMMXT_OP_ENV(name##l)
+
+#define IWMMXT_OP_ENV1(name) \
+static inline void gen_op_iwmmxt_##name##_M0(void) \
+{ \
+ gen_helper_iwmmxt_##name(cpu_M0, cpu_env, cpu_M0); \
+}
+
+IWMMXT_OP(maddsq)
+IWMMXT_OP(madduq)
+IWMMXT_OP(sadb)
+IWMMXT_OP(sadw)
+IWMMXT_OP(mulslw)
+IWMMXT_OP(mulshw)
+IWMMXT_OP(mululw)
+IWMMXT_OP(muluhw)
+IWMMXT_OP(macsw)
+IWMMXT_OP(macuw)
+
+IWMMXT_OP_ENV_SIZE(unpackl)
+IWMMXT_OP_ENV_SIZE(unpackh)
+
+IWMMXT_OP_ENV1(unpacklub)
+IWMMXT_OP_ENV1(unpackluw)
+IWMMXT_OP_ENV1(unpacklul)
+IWMMXT_OP_ENV1(unpackhub)
+IWMMXT_OP_ENV1(unpackhuw)
+IWMMXT_OP_ENV1(unpackhul)
+IWMMXT_OP_ENV1(unpacklsb)
+IWMMXT_OP_ENV1(unpacklsw)
+IWMMXT_OP_ENV1(unpacklsl)
+IWMMXT_OP_ENV1(unpackhsb)
+IWMMXT_OP_ENV1(unpackhsw)
+IWMMXT_OP_ENV1(unpackhsl)
+
+IWMMXT_OP_ENV_SIZE(cmpeq)
+IWMMXT_OP_ENV_SIZE(cmpgtu)
+IWMMXT_OP_ENV_SIZE(cmpgts)
+
+IWMMXT_OP_ENV_SIZE(mins)
+IWMMXT_OP_ENV_SIZE(minu)
+IWMMXT_OP_ENV_SIZE(maxs)
+IWMMXT_OP_ENV_SIZE(maxu)
+
+IWMMXT_OP_ENV_SIZE(subn)
+IWMMXT_OP_ENV_SIZE(addn)
+IWMMXT_OP_ENV_SIZE(subu)
+IWMMXT_OP_ENV_SIZE(addu)
+IWMMXT_OP_ENV_SIZE(subs)
+IWMMXT_OP_ENV_SIZE(adds)
+
+IWMMXT_OP_ENV(avgb0)
+IWMMXT_OP_ENV(avgb1)
+IWMMXT_OP_ENV(avgw0)
+IWMMXT_OP_ENV(avgw1)
+
+IWMMXT_OP(msadb)
+
+IWMMXT_OP_ENV(packuw)
+IWMMXT_OP_ENV(packul)
+IWMMXT_OP_ENV(packuq)
+IWMMXT_OP_ENV(packsw)
+IWMMXT_OP_ENV(packsl)
+IWMMXT_OP_ENV(packsq)
+
+static void gen_op_iwmmxt_set_mup(void)
+{
+ TCGv tmp;
+ tmp = load_cpu_field(iwmmxt.cregs[ARM_IWMMXT_wCon]);
+ tcg_gen_ori_i32(tmp, tmp, 2);
+ store_cpu_field(tmp, iwmmxt.cregs[ARM_IWMMXT_wCon]);
+}
+
+static void gen_op_iwmmxt_set_cup(void)
+{
+ TCGv tmp;
+ tmp = load_cpu_field(iwmmxt.cregs[ARM_IWMMXT_wCon]);
+ tcg_gen_ori_i32(tmp, tmp, 1);
+ store_cpu_field(tmp, iwmmxt.cregs[ARM_IWMMXT_wCon]);
+}
+
+static void gen_op_iwmmxt_setpsr_nz(void)
+{
+ TCGv tmp = tcg_temp_new_i32();
+ gen_helper_iwmmxt_setpsr_nz(tmp, cpu_M0);
+ store_cpu_field(tmp, iwmmxt.cregs[ARM_IWMMXT_wCASF]);
+}
+
+static inline void gen_op_iwmmxt_addl_M0_wRn(int rn)
+{
+ iwmmxt_load_reg(cpu_V1, rn);
+ tcg_gen_ext32u_i64(cpu_V1, cpu_V1);
+ tcg_gen_add_i64(cpu_M0, cpu_M0, cpu_V1);
+}
+
+static inline int gen_iwmmxt_address(DisasContext *s, uint32_t insn, TCGv dest)
+{
+ int rd;
+ uint32_t offset;
+ TCGv tmp;
+
+ rd = (insn >> 16) & 0xf;
+ tmp = load_reg(s, rd);
+
+ offset = (insn & 0xff) << ((insn >> 7) & 2);
+ if (insn & (1 << 24)) {
+ /* Pre indexed */
+ if (insn & (1 << 23))
+ tcg_gen_addi_i32(tmp, tmp, offset);
+ else
+ tcg_gen_addi_i32(tmp, tmp, -offset);
+ tcg_gen_mov_i32(dest, tmp);
+ if (insn & (1 << 21))
+ store_reg(s, rd, tmp);
+ else
+ tcg_temp_free_i32(tmp);
+ } else if (insn & (1 << 21)) {
+ /* Post indexed */
+ tcg_gen_mov_i32(dest, tmp);
+ if (insn & (1 << 23))
+ tcg_gen_addi_i32(tmp, tmp, offset);
+ else
+ tcg_gen_addi_i32(tmp, tmp, -offset);
+ store_reg(s, rd, tmp);
+ } else if (!(insn & (1 << 23)))
+ return 1;
+ return 0;
+}
+
+static inline int gen_iwmmxt_shift(uint32_t insn, uint32_t mask, TCGv dest)
+{
+ int rd = (insn >> 0) & 0xf;
+ TCGv tmp;
+
+ if (insn & (1 << 8)) {
+ if (rd < ARM_IWMMXT_wCGR0 || rd > ARM_IWMMXT_wCGR3) {
+ return 1;
+ } else {
+ tmp = iwmmxt_load_creg(rd);
+ }
+ } else {
+ tmp = tcg_temp_new_i32();
+ iwmmxt_load_reg(cpu_V0, rd);
+ tcg_gen_trunc_i64_i32(tmp, cpu_V0);
+ }
+ tcg_gen_andi_i32(tmp, tmp, mask);
+ tcg_gen_mov_i32(dest, tmp);
+ tcg_temp_free_i32(tmp);
+ return 0;
+}
+
+/* Disassemble an iwMMXt instruction. Returns nonzero if an error occurred
+ (ie. an undefined instruction). */
+static int disas_iwmmxt_insn(CPUARMState *env, DisasContext *s, uint32_t insn)
+{
+ int rd, wrd;
+ int rdhi, rdlo, rd0, rd1, i;
+ TCGv addr;
+ TCGv tmp, tmp2, tmp3;
+
+ if ((insn & 0x0e000e00) == 0x0c000000) {
+ if ((insn & 0x0fe00ff0) == 0x0c400000) {
+ wrd = insn & 0xf;
+ rdlo = (insn >> 12) & 0xf;
+ rdhi = (insn >> 16) & 0xf;
+ if (insn & ARM_CP_RW_BIT) { /* TMRRC */
+ iwmmxt_load_reg(cpu_V0, wrd);
+ tcg_gen_trunc_i64_i32(cpu_R[rdlo], cpu_V0);
+ tcg_gen_shri_i64(cpu_V0, cpu_V0, 32);
+ tcg_gen_trunc_i64_i32(cpu_R[rdhi], cpu_V0);
+ } else { /* TMCRR */
+ tcg_gen_concat_i32_i64(cpu_V0, cpu_R[rdlo], cpu_R[rdhi]);
+ iwmmxt_store_reg(cpu_V0, wrd);
+ gen_op_iwmmxt_set_mup();
+ }
+ return 0;
+ }
+
+ wrd = (insn >> 12) & 0xf;
+ addr = tcg_temp_new_i32();
+ if (gen_iwmmxt_address(s, insn, addr)) {
+ tcg_temp_free_i32(addr);
+ return 1;
+ }
+ if (insn & ARM_CP_RW_BIT) {
+ if ((insn >> 28) == 0xf) { /* WLDRW wCx */
+ tmp = tcg_temp_new_i32();
+ tcg_gen_qemu_ld32u(tmp, addr, IS_USER(s));
+ iwmmxt_store_creg(wrd, tmp);
+ } else {
+ i = 1;
+ if (insn & (1 << 8)) {
+ if (insn & (1 << 22)) { /* WLDRD */
+ tcg_gen_qemu_ld64(cpu_M0, addr, IS_USER(s));
+ i = 0;
+ } else { /* WLDRW wRd */
+ tmp = gen_ld32(addr, IS_USER(s));
+ }
+ } else {
+ if (insn & (1 << 22)) { /* WLDRH */
+ tmp = gen_ld16u(addr, IS_USER(s));
+ } else { /* WLDRB */
+ tmp = gen_ld8u(addr, IS_USER(s));
+ }
+ }
+ if (i) {
+ tcg_gen_extu_i32_i64(cpu_M0, tmp);
+ tcg_temp_free_i32(tmp);
+ }
+ gen_op_iwmmxt_movq_wRn_M0(wrd);
+ }
+ } else {
+ if ((insn >> 28) == 0xf) { /* WSTRW wCx */
+ tmp = iwmmxt_load_creg(wrd);
+ gen_st32(tmp, addr, IS_USER(s));
+ } else {
+ gen_op_iwmmxt_movq_M0_wRn(wrd);
+ tmp = tcg_temp_new_i32();
+ if (insn & (1 << 8)) {
+ if (insn & (1 << 22)) { /* WSTRD */
+ tcg_temp_free_i32(tmp);
+ tcg_gen_qemu_st64(cpu_M0, addr, IS_USER(s));
+ } else { /* WSTRW wRd */
+ tcg_gen_trunc_i64_i32(tmp, cpu_M0);
+ gen_st32(tmp, addr, IS_USER(s));
+ }
+ } else {
+ if (insn & (1 << 22)) { /* WSTRH */
+ tcg_gen_trunc_i64_i32(tmp, cpu_M0);
+ gen_st16(tmp, addr, IS_USER(s));
+ } else { /* WSTRB */
+ tcg_gen_trunc_i64_i32(tmp, cpu_M0);
+ gen_st8(tmp, addr, IS_USER(s));
+ }
+ }
+ }
+ }
+ tcg_temp_free_i32(addr);
+ return 0;
+ }
+
+ if ((insn & 0x0f000000) != 0x0e000000)
+ return 1;
+
+ switch (((insn >> 12) & 0xf00) | ((insn >> 4) & 0xff)) {
+ case 0x000: /* WOR */
+ wrd = (insn >> 12) & 0xf;
+ rd0 = (insn >> 0) & 0xf;
+ rd1 = (insn >> 16) & 0xf;
+ gen_op_iwmmxt_movq_M0_wRn(rd0);
+ gen_op_iwmmxt_orq_M0_wRn(rd1);
+ gen_op_iwmmxt_setpsr_nz();
+ gen_op_iwmmxt_movq_wRn_M0(wrd);
+ gen_op_iwmmxt_set_mup();
+ gen_op_iwmmxt_set_cup();
+ break;
+ case 0x011: /* TMCR */
+ if (insn & 0xf)
+ return 1;
+ rd = (insn >> 12) & 0xf;
+ wrd = (insn >> 16) & 0xf;
+ switch (wrd) {
+ case ARM_IWMMXT_wCID:
+ case ARM_IWMMXT_wCASF:
+ break;
+ case ARM_IWMMXT_wCon:
+ gen_op_iwmmxt_set_cup();
+ /* Fall through. */
+ case ARM_IWMMXT_wCSSF:
+ tmp = iwmmxt_load_creg(wrd);
+ tmp2 = load_reg(s, rd);
+ tcg_gen_andc_i32(tmp, tmp, tmp2);
+ tcg_temp_free_i32(tmp2);
+ iwmmxt_store_creg(wrd, tmp);
+ break;
+ case ARM_IWMMXT_wCGR0:
+ case ARM_IWMMXT_wCGR1:
+ case ARM_IWMMXT_wCGR2:
+ case ARM_IWMMXT_wCGR3:
+ gen_op_iwmmxt_set_cup();
+ tmp = load_reg(s, rd);
+ iwmmxt_store_creg(wrd, tmp);
+ break;
+ default:
+ return 1;
+ }
+ break;
+ case 0x100: /* WXOR */
+ wrd = (insn >> 12) & 0xf;
+ rd0 = (insn >> 0) & 0xf;
+ rd1 = (insn >> 16) & 0xf;
+ gen_op_iwmmxt_movq_M0_wRn(rd0);
+ gen_op_iwmmxt_xorq_M0_wRn(rd1);
+ gen_op_iwmmxt_setpsr_nz();
+ gen_op_iwmmxt_movq_wRn_M0(wrd);
+ gen_op_iwmmxt_set_mup();
+ gen_op_iwmmxt_set_cup();
+ break;
+ case 0x111: /* TMRC */
+ if (insn & 0xf)
+ return 1;
+ rd = (insn >> 12) & 0xf;
+ wrd = (insn >> 16) & 0xf;
+ tmp = iwmmxt_load_creg(wrd);
+ store_reg(s, rd, tmp);
+ break;
+ case 0x300: /* WANDN */
+ wrd = (insn >> 12) & 0xf;
+ rd0 = (insn >> 0) & 0xf;
+ rd1 = (insn >> 16) & 0xf;
+ gen_op_iwmmxt_movq_M0_wRn(rd0);
+ tcg_gen_neg_i64(cpu_M0, cpu_M0);
+ gen_op_iwmmxt_andq_M0_wRn(rd1);
+ gen_op_iwmmxt_setpsr_nz();
+ gen_op_iwmmxt_movq_wRn_M0(wrd);
+ gen_op_iwmmxt_set_mup();
+ gen_op_iwmmxt_set_cup();
+ break;
+ case 0x200: /* WAND */
+ wrd = (insn >> 12) & 0xf;
+ rd0 = (insn >> 0) & 0xf;
+ rd1 = (insn >> 16) & 0xf;
+ gen_op_iwmmxt_movq_M0_wRn(rd0);
+ gen_op_iwmmxt_andq_M0_wRn(rd1);
+ gen_op_iwmmxt_setpsr_nz();
+ gen_op_iwmmxt_movq_wRn_M0(wrd);
+ gen_op_iwmmxt_set_mup();
+ gen_op_iwmmxt_set_cup();
+ break;
+ case 0x810: case 0xa10: /* WMADD */
+ wrd = (insn >> 12) & 0xf;
+ rd0 = (insn >> 0) & 0xf;
+ rd1 = (insn >> 16) & 0xf;
+ gen_op_iwmmxt_movq_M0_wRn(rd0);
+ if (insn & (1 << 21))
+ gen_op_iwmmxt_maddsq_M0_wRn(rd1);
+ else
+ gen_op_iwmmxt_madduq_M0_wRn(rd1);
+ gen_op_iwmmxt_movq_wRn_M0(wrd);
+ gen_op_iwmmxt_set_mup();
+ break;
+ case 0x10e: case 0x50e: case 0x90e: case 0xd0e: /* WUNPCKIL */
+ wrd = (insn >> 12) & 0xf;
+ rd0 = (insn >> 16) & 0xf;
+ rd1 = (insn >> 0) & 0xf;
+ gen_op_iwmmxt_movq_M0_wRn(rd0);
+ switch ((insn >> 22) & 3) {
+ case 0:
+ gen_op_iwmmxt_unpacklb_M0_wRn(rd1);
+ break;
+ case 1:
+ gen_op_iwmmxt_unpacklw_M0_wRn(rd1);
+ break;
+ case 2:
+ gen_op_iwmmxt_unpackll_M0_wRn(rd1);
+ break;
+ case 3:
+ return 1;
+ }
+ gen_op_iwmmxt_movq_wRn_M0(wrd);
+ gen_op_iwmmxt_set_mup();
+ gen_op_iwmmxt_set_cup();
+ break;
+ case 0x10c: case 0x50c: case 0x90c: case 0xd0c: /* WUNPCKIH */
+ wrd = (insn >> 12) & 0xf;
+ rd0 = (insn >> 16) & 0xf;
+ rd1 = (insn >> 0) & 0xf;
+ gen_op_iwmmxt_movq_M0_wRn(rd0);
+ switch ((insn >> 22) & 3) {
+ case 0:
+ gen_op_iwmmxt_unpackhb_M0_wRn(rd1);
+ break;
+ case 1:
+ gen_op_iwmmxt_unpackhw_M0_wRn(rd1);
+ break;
+ case 2:
+ gen_op_iwmmxt_unpackhl_M0_wRn(rd1);
+ break;
+ case 3:
+ return 1;
+ }
+ gen_op_iwmmxt_movq_wRn_M0(wrd);
+ gen_op_iwmmxt_set_mup();
+ gen_op_iwmmxt_set_cup();
+ break;
+ case 0x012: case 0x112: case 0x412: case 0x512: /* WSAD */
+ wrd = (insn >> 12) & 0xf;
+ rd0 = (insn >> 16) & 0xf;
+ rd1 = (insn >> 0) & 0xf;
+ gen_op_iwmmxt_movq_M0_wRn(rd0);
+ if (insn & (1 << 22))
+ gen_op_iwmmxt_sadw_M0_wRn(rd1);
+ else
+ gen_op_iwmmxt_sadb_M0_wRn(rd1);
+ if (!(insn & (1 << 20)))
+ gen_op_iwmmxt_addl_M0_wRn(wrd);
+ gen_op_iwmmxt_movq_wRn_M0(wrd);
+ gen_op_iwmmxt_set_mup();
+ break;
+ case 0x010: case 0x110: case 0x210: case 0x310: /* WMUL */
+ wrd = (insn >> 12) & 0xf;
+ rd0 = (insn >> 16) & 0xf;
+ rd1 = (insn >> 0) & 0xf;
+ gen_op_iwmmxt_movq_M0_wRn(rd0);
+ if (insn & (1 << 21)) {
+ if (insn & (1 << 20))
+ gen_op_iwmmxt_mulshw_M0_wRn(rd1);
+ else
+ gen_op_iwmmxt_mulslw_M0_wRn(rd1);
+ } else {
+ if (insn & (1 << 20))
+ gen_op_iwmmxt_muluhw_M0_wRn(rd1);
+ else
+ gen_op_iwmmxt_mululw_M0_wRn(rd1);
+ }
+ gen_op_iwmmxt_movq_wRn_M0(wrd);
+ gen_op_iwmmxt_set_mup();
+ break;
+ case 0x410: case 0x510: case 0x610: case 0x710: /* WMAC */
+ wrd = (insn >> 12) & 0xf;
+ rd0 = (insn >> 16) & 0xf;
+ rd1 = (insn >> 0) & 0xf;
+ gen_op_iwmmxt_movq_M0_wRn(rd0);
+ if (insn & (1 << 21))
+ gen_op_iwmmxt_macsw_M0_wRn(rd1);
+ else
+ gen_op_iwmmxt_macuw_M0_wRn(rd1);
+ if (!(insn & (1 << 20))) {
+ iwmmxt_load_reg(cpu_V1, wrd);
+ tcg_gen_add_i64(cpu_M0, cpu_M0, cpu_V1);
+ }
+ gen_op_iwmmxt_movq_wRn_M0(wrd);
+ gen_op_iwmmxt_set_mup();
+ break;
+ case 0x006: case 0x406: case 0x806: case 0xc06: /* WCMPEQ */
+ wrd = (insn >> 12) & 0xf;
+ rd0 = (insn >> 16) & 0xf;
+ rd1 = (insn >> 0) & 0xf;
+ gen_op_iwmmxt_movq_M0_wRn(rd0);
+ switch ((insn >> 22) & 3) {
+ case 0:
+ gen_op_iwmmxt_cmpeqb_M0_wRn(rd1);
+ break;
+ case 1:
+ gen_op_iwmmxt_cmpeqw_M0_wRn(rd1);
+ break;
+ case 2:
+ gen_op_iwmmxt_cmpeql_M0_wRn(rd1);
+ break;
+ case 3:
+ return 1;
+ }
+ gen_op_iwmmxt_movq_wRn_M0(wrd);
+ gen_op_iwmmxt_set_mup();
+ gen_op_iwmmxt_set_cup();
+ break;
+ case 0x800: case 0x900: case 0xc00: case 0xd00: /* WAVG2 */
+ wrd = (insn >> 12) & 0xf;
+ rd0 = (insn >> 16) & 0xf;
+ rd1 = (insn >> 0) & 0xf;
+ gen_op_iwmmxt_movq_M0_wRn(rd0);
+ if (insn & (1 << 22)) {
+ if (insn & (1 << 20))
+ gen_op_iwmmxt_avgw1_M0_wRn(rd1);
+ else
+ gen_op_iwmmxt_avgw0_M0_wRn(rd1);
+ } else {
+ if (insn & (1 << 20))
+ gen_op_iwmmxt_avgb1_M0_wRn(rd1);
+ else
+ gen_op_iwmmxt_avgb0_M0_wRn(rd1);
+ }
+ gen_op_iwmmxt_movq_wRn_M0(wrd);
+ gen_op_iwmmxt_set_mup();
+ gen_op_iwmmxt_set_cup();
+ break;
+ case 0x802: case 0x902: case 0xa02: case 0xb02: /* WALIGNR */
+ wrd = (insn >> 12) & 0xf;
+ rd0 = (insn >> 16) & 0xf;
+ rd1 = (insn >> 0) & 0xf;
+ gen_op_iwmmxt_movq_M0_wRn(rd0);
+ tmp = iwmmxt_load_creg(ARM_IWMMXT_wCGR0 + ((insn >> 20) & 3));
+ tcg_gen_andi_i32(tmp, tmp, 7);
+ iwmmxt_load_reg(cpu_V1, rd1);
+ gen_helper_iwmmxt_align(cpu_M0, cpu_M0, cpu_V1, tmp);
+ tcg_temp_free_i32(tmp);
+ gen_op_iwmmxt_movq_wRn_M0(wrd);
+ gen_op_iwmmxt_set_mup();
+ break;
+ case 0x601: case 0x605: case 0x609: case 0x60d: /* TINSR */
+ if (((insn >> 6) & 3) == 3)
+ return 1;
+ rd = (insn >> 12) & 0xf;
+ wrd = (insn >> 16) & 0xf;
+ tmp = load_reg(s, rd);
+ gen_op_iwmmxt_movq_M0_wRn(wrd);
+ switch ((insn >> 6) & 3) {
+ case 0:
+ tmp2 = tcg_const_i32(0xff);
+ tmp3 = tcg_const_i32((insn & 7) << 3);
+ break;
+ case 1:
+ tmp2 = tcg_const_i32(0xffff);
+ tmp3 = tcg_const_i32((insn & 3) << 4);
+ break;
+ case 2:
+ tmp2 = tcg_const_i32(0xffffffff);
+ tmp3 = tcg_const_i32((insn & 1) << 5);
+ break;
+ default:
+ TCGV_UNUSED(tmp2);
+ TCGV_UNUSED(tmp3);
+ }
+ gen_helper_iwmmxt_insr(cpu_M0, cpu_M0, tmp, tmp2, tmp3);
+ tcg_temp_free(tmp3);
+ tcg_temp_free(tmp2);
+ tcg_temp_free_i32(tmp);
+ gen_op_iwmmxt_movq_wRn_M0(wrd);
+ gen_op_iwmmxt_set_mup();
+ break;
+ case 0x107: case 0x507: case 0x907: case 0xd07: /* TEXTRM */
+ rd = (insn >> 12) & 0xf;
+ wrd = (insn >> 16) & 0xf;
+ if (rd == 15 || ((insn >> 22) & 3) == 3)
+ return 1;
+ gen_op_iwmmxt_movq_M0_wRn(wrd);
+ tmp = tcg_temp_new_i32();
+ switch ((insn >> 22) & 3) {
+ case 0:
+ tcg_gen_shri_i64(cpu_M0, cpu_M0, (insn & 7) << 3);
+ tcg_gen_trunc_i64_i32(tmp, cpu_M0);
+ if (insn & 8) {
+ tcg_gen_ext8s_i32(tmp, tmp);
+ } else {
+ tcg_gen_andi_i32(tmp, tmp, 0xff);
+ }
+ break;
+ case 1:
+ tcg_gen_shri_i64(cpu_M0, cpu_M0, (insn & 3) << 4);
+ tcg_gen_trunc_i64_i32(tmp, cpu_M0);
+ if (insn & 8) {
+ tcg_gen_ext16s_i32(tmp, tmp);
+ } else {
+ tcg_gen_andi_i32(tmp, tmp, 0xffff);
+ }
+ break;
+ case 2:
+ tcg_gen_shri_i64(cpu_M0, cpu_M0, (insn & 1) << 5);
+ tcg_gen_trunc_i64_i32(tmp, cpu_M0);
+ break;
+ }
+ store_reg(s, rd, tmp);
+ break;
+ case 0x117: case 0x517: case 0x917: case 0xd17: /* TEXTRC */
+ if ((insn & 0x000ff008) != 0x0003f000 || ((insn >> 22) & 3) == 3)
+ return 1;
+ tmp = iwmmxt_load_creg(ARM_IWMMXT_wCASF);
+ switch ((insn >> 22) & 3) {
+ case 0:
+ tcg_gen_shri_i32(tmp, tmp, ((insn & 7) << 2) + 0);
+ break;
+ case 1:
+ tcg_gen_shri_i32(tmp, tmp, ((insn & 3) << 3) + 4);
+ break;
+ case 2:
+ tcg_gen_shri_i32(tmp, tmp, ((insn & 1) << 4) + 12);
+ break;
+ }
+ tcg_gen_shli_i32(tmp, tmp, 28);
+ gen_set_nzcv(tmp);
+ tcg_temp_free_i32(tmp);
+ break;
+ case 0x401: case 0x405: case 0x409: case 0x40d: /* TBCST */
+ if (((insn >> 6) & 3) == 3)
+ return 1;
+ rd = (insn >> 12) & 0xf;
+ wrd = (insn >> 16) & 0xf;
+ tmp = load_reg(s, rd);
+ switch ((insn >> 6) & 3) {
+ case 0:
+ gen_helper_iwmmxt_bcstb(cpu_M0, tmp);
+ break;
+ case 1:
+ gen_helper_iwmmxt_bcstw(cpu_M0, tmp);
+ break;
+ case 2:
+ gen_helper_iwmmxt_bcstl(cpu_M0, tmp);
+ break;
+ }
+ tcg_temp_free_i32(tmp);
+ gen_op_iwmmxt_movq_wRn_M0(wrd);
+ gen_op_iwmmxt_set_mup();
+ break;
+ case 0x113: case 0x513: case 0x913: case 0xd13: /* TANDC */
+ if ((insn & 0x000ff00f) != 0x0003f000 || ((insn >> 22) & 3) == 3)
+ return 1;
+ tmp = iwmmxt_load_creg(ARM_IWMMXT_wCASF);
+ tmp2 = tcg_temp_new_i32();
+ tcg_gen_mov_i32(tmp2, tmp);
+ switch ((insn >> 22) & 3) {
+ case 0:
+ for (i = 0; i < 7; i ++) {
+ tcg_gen_shli_i32(tmp2, tmp2, 4);
+ tcg_gen_and_i32(tmp, tmp, tmp2);
+ }
+ break;
+ case 1:
+ for (i = 0; i < 3; i ++) {
+ tcg_gen_shli_i32(tmp2, tmp2, 8);
+ tcg_gen_and_i32(tmp, tmp, tmp2);
+ }
+ break;
+ case 2:
+ tcg_gen_shli_i32(tmp2, tmp2, 16);
+ tcg_gen_and_i32(tmp, tmp, tmp2);
+ break;
+ }
+ gen_set_nzcv(tmp);
+ tcg_temp_free_i32(tmp2);
+ tcg_temp_free_i32(tmp);
+ break;
+ case 0x01c: case 0x41c: case 0x81c: case 0xc1c: /* WACC */
+ wrd = (insn >> 12) & 0xf;
+ rd0 = (insn >> 16) & 0xf;
+ gen_op_iwmmxt_movq_M0_wRn(rd0);
+ switch ((insn >> 22) & 3) {
+ case 0:
+ gen_helper_iwmmxt_addcb(cpu_M0, cpu_M0);
+ break;
+ case 1:
+ gen_helper_iwmmxt_addcw(cpu_M0, cpu_M0);
+ break;
+ case 2:
+ gen_helper_iwmmxt_addcl(cpu_M0, cpu_M0);
+ break;
+ case 3:
+ return 1;
+ }
+ gen_op_iwmmxt_movq_wRn_M0(wrd);
+ gen_op_iwmmxt_set_mup();
+ break;
+ case 0x115: case 0x515: case 0x915: case 0xd15: /* TORC */
+ if ((insn & 0x000ff00f) != 0x0003f000 || ((insn >> 22) & 3) == 3)
+ return 1;
+ tmp = iwmmxt_load_creg(ARM_IWMMXT_wCASF);
+ tmp2 = tcg_temp_new_i32();
+ tcg_gen_mov_i32(tmp2, tmp);
+ switch ((insn >> 22) & 3) {
+ case 0:
+ for (i = 0; i < 7; i ++) {
+ tcg_gen_shli_i32(tmp2, tmp2, 4);
+ tcg_gen_or_i32(tmp, tmp, tmp2);
+ }
+ break;
+ case 1:
+ for (i = 0; i < 3; i ++) {
+ tcg_gen_shli_i32(tmp2, tmp2, 8);
+ tcg_gen_or_i32(tmp, tmp, tmp2);
+ }
+ break;
+ case 2:
+ tcg_gen_shli_i32(tmp2, tmp2, 16);
+ tcg_gen_or_i32(tmp, tmp, tmp2);
+ break;
+ }
+ gen_set_nzcv(tmp);
+ tcg_temp_free_i32(tmp2);
+ tcg_temp_free_i32(tmp);
+ break;
+ case 0x103: case 0x503: case 0x903: case 0xd03: /* TMOVMSK */
+ rd = (insn >> 12) & 0xf;
+ rd0 = (insn >> 16) & 0xf;
+ if ((insn & 0xf) != 0 || ((insn >> 22) & 3) == 3)
+ return 1;
+ gen_op_iwmmxt_movq_M0_wRn(rd0);
+ tmp = tcg_temp_new_i32();
+ switch ((insn >> 22) & 3) {
+ case 0:
+ gen_helper_iwmmxt_msbb(tmp, cpu_M0);
+ break;
+ case 1:
+ gen_helper_iwmmxt_msbw(tmp, cpu_M0);
+ break;
+ case 2:
+ gen_helper_iwmmxt_msbl(tmp, cpu_M0);
+ break;
+ }
+ store_reg(s, rd, tmp);
+ break;
+ case 0x106: case 0x306: case 0x506: case 0x706: /* WCMPGT */
+ case 0x906: case 0xb06: case 0xd06: case 0xf06:
+ wrd = (insn >> 12) & 0xf;
+ rd0 = (insn >> 16) & 0xf;
+ rd1 = (insn >> 0) & 0xf;
+ gen_op_iwmmxt_movq_M0_wRn(rd0);
+ switch ((insn >> 22) & 3) {
+ case 0:
+ if (insn & (1 << 21))
+ gen_op_iwmmxt_cmpgtsb_M0_wRn(rd1);
+ else
+ gen_op_iwmmxt_cmpgtub_M0_wRn(rd1);
+ break;
+ case 1:
+ if (insn & (1 << 21))
+ gen_op_iwmmxt_cmpgtsw_M0_wRn(rd1);
+ else
+ gen_op_iwmmxt_cmpgtuw_M0_wRn(rd1);
+ break;
+ case 2:
+ if (insn & (1 << 21))
+ gen_op_iwmmxt_cmpgtsl_M0_wRn(rd1);
+ else
+ gen_op_iwmmxt_cmpgtul_M0_wRn(rd1);
+ break;
+ case 3:
+ return 1;
+ }
+ gen_op_iwmmxt_movq_wRn_M0(wrd);
+ gen_op_iwmmxt_set_mup();
+ gen_op_iwmmxt_set_cup();
+ break;
+ case 0x00e: case 0x20e: case 0x40e: case 0x60e: /* WUNPCKEL */
+ case 0x80e: case 0xa0e: case 0xc0e: case 0xe0e:
+ wrd = (insn >> 12) & 0xf;
+ rd0 = (insn >> 16) & 0xf;
+ gen_op_iwmmxt_movq_M0_wRn(rd0);
+ switch ((insn >> 22) & 3) {
+ case 0:
+ if (insn & (1 << 21))
+ gen_op_iwmmxt_unpacklsb_M0();
+ else
+ gen_op_iwmmxt_unpacklub_M0();
+ break;
+ case 1:
+ if (insn & (1 << 21))
+ gen_op_iwmmxt_unpacklsw_M0();
+ else
+ gen_op_iwmmxt_unpackluw_M0();
+ break;
+ case 2:
+ if (insn & (1 << 21))
+ gen_op_iwmmxt_unpacklsl_M0();
+ else
+ gen_op_iwmmxt_unpacklul_M0();
+ break;
+ case 3:
+ return 1;
+ }
+ gen_op_iwmmxt_movq_wRn_M0(wrd);
+ gen_op_iwmmxt_set_mup();
+ gen_op_iwmmxt_set_cup();
+ break;
+ case 0x00c: case 0x20c: case 0x40c: case 0x60c: /* WUNPCKEH */
+ case 0x80c: case 0xa0c: case 0xc0c: case 0xe0c:
+ wrd = (insn >> 12) & 0xf;
+ rd0 = (insn >> 16) & 0xf;
+ gen_op_iwmmxt_movq_M0_wRn(rd0);
+ switch ((insn >> 22) & 3) {
+ case 0:
+ if (insn & (1 << 21))
+ gen_op_iwmmxt_unpackhsb_M0();
+ else
+ gen_op_iwmmxt_unpackhub_M0();
+ break;
+ case 1:
+ if (insn & (1 << 21))
+ gen_op_iwmmxt_unpackhsw_M0();
+ else
+ gen_op_iwmmxt_unpackhuw_M0();
+ break;
+ case 2:
+ if (insn & (1 << 21))
+ gen_op_iwmmxt_unpackhsl_M0();
+ else
+ gen_op_iwmmxt_unpackhul_M0();
+ break;
+ case 3:
+ return 1;
+ }
+ gen_op_iwmmxt_movq_wRn_M0(wrd);
+ gen_op_iwmmxt_set_mup();
+ gen_op_iwmmxt_set_cup();
+ break;
+ case 0x204: case 0x604: case 0xa04: case 0xe04: /* WSRL */
+ case 0x214: case 0x614: case 0xa14: case 0xe14:
+ if (((insn >> 22) & 3) == 0)
+ return 1;
+ wrd = (insn >> 12) & 0xf;
+ rd0 = (insn >> 16) & 0xf;
+ gen_op_iwmmxt_movq_M0_wRn(rd0);
+ tmp = tcg_temp_new_i32();
+ if (gen_iwmmxt_shift(insn, 0xff, tmp)) {
+ tcg_temp_free_i32(tmp);
+ return 1;
+ }
+ switch ((insn >> 22) & 3) {
+ case 1:
+ gen_helper_iwmmxt_srlw(cpu_M0, cpu_env, cpu_M0, tmp);
+ break;
+ case 2:
+ gen_helper_iwmmxt_srll(cpu_M0, cpu_env, cpu_M0, tmp);
+ break;
+ case 3:
+ gen_helper_iwmmxt_srlq(cpu_M0, cpu_env, cpu_M0, tmp);
+ break;
+ }
+ tcg_temp_free_i32(tmp);
+ gen_op_iwmmxt_movq_wRn_M0(wrd);
+ gen_op_iwmmxt_set_mup();
+ gen_op_iwmmxt_set_cup();
+ break;
+ case 0x004: case 0x404: case 0x804: case 0xc04: /* WSRA */
+ case 0x014: case 0x414: case 0x814: case 0xc14:
+ if (((insn >> 22) & 3) == 0)
+ return 1;
+ wrd = (insn >> 12) & 0xf;
+ rd0 = (insn >> 16) & 0xf;
+ gen_op_iwmmxt_movq_M0_wRn(rd0);
+ tmp = tcg_temp_new_i32();
+ if (gen_iwmmxt_shift(insn, 0xff, tmp)) {
+ tcg_temp_free_i32(tmp);
+ return 1;
+ }
+ switch ((insn >> 22) & 3) {
+ case 1:
+ gen_helper_iwmmxt_sraw(cpu_M0, cpu_env, cpu_M0, tmp);
+ break;
+ case 2:
+ gen_helper_iwmmxt_sral(cpu_M0, cpu_env, cpu_M0, tmp);
+ break;
+ case 3:
+ gen_helper_iwmmxt_sraq(cpu_M0, cpu_env, cpu_M0, tmp);
+ break;
+ }
+ tcg_temp_free_i32(tmp);
+ gen_op_iwmmxt_movq_wRn_M0(wrd);
+ gen_op_iwmmxt_set_mup();
+ gen_op_iwmmxt_set_cup();
+ break;
+ case 0x104: case 0x504: case 0x904: case 0xd04: /* WSLL */
+ case 0x114: case 0x514: case 0x914: case 0xd14:
+ if (((insn >> 22) & 3) == 0)
+ return 1;
+ wrd = (insn >> 12) & 0xf;
+ rd0 = (insn >> 16) & 0xf;
+ gen_op_iwmmxt_movq_M0_wRn(rd0);
+ tmp = tcg_temp_new_i32();
+ if (gen_iwmmxt_shift(insn, 0xff, tmp)) {
+ tcg_temp_free_i32(tmp);
+ return 1;
+ }
+ switch ((insn >> 22) & 3) {
+ case 1:
+ gen_helper_iwmmxt_sllw(cpu_M0, cpu_env, cpu_M0, tmp);
+ break;
+ case 2:
+ gen_helper_iwmmxt_slll(cpu_M0, cpu_env, cpu_M0, tmp);
+ break;
+ case 3:
+ gen_helper_iwmmxt_sllq(cpu_M0, cpu_env, cpu_M0, tmp);
+ break;
+ }
+ tcg_temp_free_i32(tmp);
+ gen_op_iwmmxt_movq_wRn_M0(wrd);
+ gen_op_iwmmxt_set_mup();
+ gen_op_iwmmxt_set_cup();
+ break;
+ case 0x304: case 0x704: case 0xb04: case 0xf04: /* WROR */
+ case 0x314: case 0x714: case 0xb14: case 0xf14:
+ if (((insn >> 22) & 3) == 0)
+ return 1;
+ wrd = (insn >> 12) & 0xf;
+ rd0 = (insn >> 16) & 0xf;
+ gen_op_iwmmxt_movq_M0_wRn(rd0);
+ tmp = tcg_temp_new_i32();
+ switch ((insn >> 22) & 3) {
+ case 1:
+ if (gen_iwmmxt_shift(insn, 0xf, tmp)) {
+ tcg_temp_free_i32(tmp);
+ return 1;
+ }
+ gen_helper_iwmmxt_rorw(cpu_M0, cpu_env, cpu_M0, tmp);
+ break;
+ case 2:
+ if (gen_iwmmxt_shift(insn, 0x1f, tmp)) {
+ tcg_temp_free_i32(tmp);
+ return 1;
+ }
+ gen_helper_iwmmxt_rorl(cpu_M0, cpu_env, cpu_M0, tmp);
+ break;
+ case 3:
+ if (gen_iwmmxt_shift(insn, 0x3f, tmp)) {
+ tcg_temp_free_i32(tmp);
+ return 1;
+ }
+ gen_helper_iwmmxt_rorq(cpu_M0, cpu_env, cpu_M0, tmp);
+ break;
+ }
+ tcg_temp_free_i32(tmp);
+ gen_op_iwmmxt_movq_wRn_M0(wrd);
+ gen_op_iwmmxt_set_mup();
+ gen_op_iwmmxt_set_cup();
+ break;
+ case 0x116: case 0x316: case 0x516: case 0x716: /* WMIN */
+ case 0x916: case 0xb16: case 0xd16: case 0xf16:
+ wrd = (insn >> 12) & 0xf;
+ rd0 = (insn >> 16) & 0xf;
+ rd1 = (insn >> 0) & 0xf;
+ gen_op_iwmmxt_movq_M0_wRn(rd0);
+ switch ((insn >> 22) & 3) {
+ case 0:
+ if (insn & (1 << 21))
+ gen_op_iwmmxt_minsb_M0_wRn(rd1);
+ else
+ gen_op_iwmmxt_minub_M0_wRn(rd1);
+ break;
+ case 1:
+ if (insn & (1 << 21))
+ gen_op_iwmmxt_minsw_M0_wRn(rd1);
+ else
+ gen_op_iwmmxt_minuw_M0_wRn(rd1);
+ break;
+ case 2:
+ if (insn & (1 << 21))
+ gen_op_iwmmxt_minsl_M0_wRn(rd1);
+ else
+ gen_op_iwmmxt_minul_M0_wRn(rd1);
+ break;
+ case 3:
+ return 1;
+ }
+ gen_op_iwmmxt_movq_wRn_M0(wrd);
+ gen_op_iwmmxt_set_mup();
+ break;
+ case 0x016: case 0x216: case 0x416: case 0x616: /* WMAX */
+ case 0x816: case 0xa16: case 0xc16: case 0xe16:
+ wrd = (insn >> 12) & 0xf;
+ rd0 = (insn >> 16) & 0xf;
+ rd1 = (insn >> 0) & 0xf;
+ gen_op_iwmmxt_movq_M0_wRn(rd0);
+ switch ((insn >> 22) & 3) {
+ case 0:
+ if (insn & (1 << 21))
+ gen_op_iwmmxt_maxsb_M0_wRn(rd1);
+ else
+ gen_op_iwmmxt_maxub_M0_wRn(rd1);
+ break;
+ case 1:
+ if (insn & (1 << 21))
+ gen_op_iwmmxt_maxsw_M0_wRn(rd1);
+ else
+ gen_op_iwmmxt_maxuw_M0_wRn(rd1);
+ break;
+ case 2:
+ if (insn & (1 << 21))
+ gen_op_iwmmxt_maxsl_M0_wRn(rd1);
+ else
+ gen_op_iwmmxt_maxul_M0_wRn(rd1);
+ break;
+ case 3:
+ return 1;
+ }
+ gen_op_iwmmxt_movq_wRn_M0(wrd);
+ gen_op_iwmmxt_set_mup();
+ break;
+ case 0x002: case 0x102: case 0x202: case 0x302: /* WALIGNI */
+ case 0x402: case 0x502: case 0x602: case 0x702:
+ wrd = (insn >> 12) & 0xf;
+ rd0 = (insn >> 16) & 0xf;
+ rd1 = (insn >> 0) & 0xf;
+ gen_op_iwmmxt_movq_M0_wRn(rd0);
+ tmp = tcg_const_i32((insn >> 20) & 3);
+ iwmmxt_load_reg(cpu_V1, rd1);
+ gen_helper_iwmmxt_align(cpu_M0, cpu_M0, cpu_V1, tmp);
+ tcg_temp_free(tmp);
+ gen_op_iwmmxt_movq_wRn_M0(wrd);
+ gen_op_iwmmxt_set_mup();
+ break;
+ case 0x01a: case 0x11a: case 0x21a: case 0x31a: /* WSUB */
+ case 0x41a: case 0x51a: case 0x61a: case 0x71a:
+ case 0x81a: case 0x91a: case 0xa1a: case 0xb1a:
+ case 0xc1a: case 0xd1a: case 0xe1a: case 0xf1a:
+ wrd = (insn >> 12) & 0xf;
+ rd0 = (insn >> 16) & 0xf;
+ rd1 = (insn >> 0) & 0xf;
+ gen_op_iwmmxt_movq_M0_wRn(rd0);
+ switch ((insn >> 20) & 0xf) {
+ case 0x0:
+ gen_op_iwmmxt_subnb_M0_wRn(rd1);
+ break;
+ case 0x1:
+ gen_op_iwmmxt_subub_M0_wRn(rd1);
+ break;
+ case 0x3:
+ gen_op_iwmmxt_subsb_M0_wRn(rd1);
+ break;
+ case 0x4:
+ gen_op_iwmmxt_subnw_M0_wRn(rd1);
+ break;
+ case 0x5:
+ gen_op_iwmmxt_subuw_M0_wRn(rd1);
+ break;
+ case 0x7:
+ gen_op_iwmmxt_subsw_M0_wRn(rd1);
+ break;
+ case 0x8:
+ gen_op_iwmmxt_subnl_M0_wRn(rd1);
+ break;
+ case 0x9:
+ gen_op_iwmmxt_subul_M0_wRn(rd1);
+ break;
+ case 0xb:
+ gen_op_iwmmxt_subsl_M0_wRn(rd1);
+ break;
+ default:
+ return 1;
+ }
+ gen_op_iwmmxt_movq_wRn_M0(wrd);
+ gen_op_iwmmxt_set_mup();
+ gen_op_iwmmxt_set_cup();
+ break;
+ case 0x01e: case 0x11e: case 0x21e: case 0x31e: /* WSHUFH */
+ case 0x41e: case 0x51e: case 0x61e: case 0x71e:
+ case 0x81e: case 0x91e: case 0xa1e: case 0xb1e:
+ case 0xc1e: case 0xd1e: case 0xe1e: case 0xf1e:
+ wrd = (insn >> 12) & 0xf;
+ rd0 = (insn >> 16) & 0xf;
+ gen_op_iwmmxt_movq_M0_wRn(rd0);
+ tmp = tcg_const_i32(((insn >> 16) & 0xf0) | (insn & 0x0f));
+ gen_helper_iwmmxt_shufh(cpu_M0, cpu_env, cpu_M0, tmp);
+ tcg_temp_free(tmp);
+ gen_op_iwmmxt_movq_wRn_M0(wrd);
+ gen_op_iwmmxt_set_mup();
+ gen_op_iwmmxt_set_cup();
+ break;
+ case 0x018: case 0x118: case 0x218: case 0x318: /* WADD */
+ case 0x418: case 0x518: case 0x618: case 0x718:
+ case 0x818: case 0x918: case 0xa18: case 0xb18:
+ case 0xc18: case 0xd18: case 0xe18: case 0xf18:
+ wrd = (insn >> 12) & 0xf;
+ rd0 = (insn >> 16) & 0xf;
+ rd1 = (insn >> 0) & 0xf;
+ gen_op_iwmmxt_movq_M0_wRn(rd0);
+ switch ((insn >> 20) & 0xf) {
+ case 0x0:
+ gen_op_iwmmxt_addnb_M0_wRn(rd1);
+ break;
+ case 0x1:
+ gen_op_iwmmxt_addub_M0_wRn(rd1);
+ break;
+ case 0x3:
+ gen_op_iwmmxt_addsb_M0_wRn(rd1);
+ break;
+ case 0x4:
+ gen_op_iwmmxt_addnw_M0_wRn(rd1);
+ break;
+ case 0x5:
+ gen_op_iwmmxt_adduw_M0_wRn(rd1);
+ break;
+ case 0x7:
+ gen_op_iwmmxt_addsw_M0_wRn(rd1);
+ break;
+ case 0x8:
+ gen_op_iwmmxt_addnl_M0_wRn(rd1);
+ break;
+ case 0x9:
+ gen_op_iwmmxt_addul_M0_wRn(rd1);
+ break;
+ case 0xb:
+ gen_op_iwmmxt_addsl_M0_wRn(rd1);
+ break;
+ default:
+ return 1;
+ }
+ gen_op_iwmmxt_movq_wRn_M0(wrd);
+ gen_op_iwmmxt_set_mup();
+ gen_op_iwmmxt_set_cup();
+ break;
+ case 0x008: case 0x108: case 0x208: case 0x308: /* WPACK */
+ case 0x408: case 0x508: case 0x608: case 0x708:
+ case 0x808: case 0x908: case 0xa08: case 0xb08:
+ case 0xc08: case 0xd08: case 0xe08: case 0xf08:
+ if (!(insn & (1 << 20)) || ((insn >> 22) & 3) == 0)
+ return 1;
+ wrd = (insn >> 12) & 0xf;
+ rd0 = (insn >> 16) & 0xf;
+ rd1 = (insn >> 0) & 0xf;
+ gen_op_iwmmxt_movq_M0_wRn(rd0);
+ switch ((insn >> 22) & 3) {
+ case 1:
+ if (insn & (1 << 21))
+ gen_op_iwmmxt_packsw_M0_wRn(rd1);
+ else
+ gen_op_iwmmxt_packuw_M0_wRn(rd1);
+ break;
+ case 2:
+ if (insn & (1 << 21))
+ gen_op_iwmmxt_packsl_M0_wRn(rd1);
+ else
+ gen_op_iwmmxt_packul_M0_wRn(rd1);
+ break;
+ case 3:
+ if (insn & (1 << 21))
+ gen_op_iwmmxt_packsq_M0_wRn(rd1);
+ else
+ gen_op_iwmmxt_packuq_M0_wRn(rd1);
+ break;
+ }
+ gen_op_iwmmxt_movq_wRn_M0(wrd);
+ gen_op_iwmmxt_set_mup();
+ gen_op_iwmmxt_set_cup();
+ break;
+ case 0x201: case 0x203: case 0x205: case 0x207:
+ case 0x209: case 0x20b: case 0x20d: case 0x20f:
+ case 0x211: case 0x213: case 0x215: case 0x217:
+ case 0x219: case 0x21b: case 0x21d: case 0x21f:
+ wrd = (insn >> 5) & 0xf;
+ rd0 = (insn >> 12) & 0xf;
+ rd1 = (insn >> 0) & 0xf;
+ if (rd0 == 0xf || rd1 == 0xf)
+ return 1;
+ gen_op_iwmmxt_movq_M0_wRn(wrd);
+ tmp = load_reg(s, rd0);
+ tmp2 = load_reg(s, rd1);
+ switch ((insn >> 16) & 0xf) {
+ case 0x0: /* TMIA */
+ gen_helper_iwmmxt_muladdsl(cpu_M0, cpu_M0, tmp, tmp2);
+ break;
+ case 0x8: /* TMIAPH */
+ gen_helper_iwmmxt_muladdsw(cpu_M0, cpu_M0, tmp, tmp2);
+ break;
+ case 0xc: case 0xd: case 0xe: case 0xf: /* TMIAxy */
+ if (insn & (1 << 16))
+ tcg_gen_shri_i32(tmp, tmp, 16);
+ if (insn & (1 << 17))
+ tcg_gen_shri_i32(tmp2, tmp2, 16);
+ gen_helper_iwmmxt_muladdswl(cpu_M0, cpu_M0, tmp, tmp2);
+ break;
+ default:
+ tcg_temp_free_i32(tmp2);
+ tcg_temp_free_i32(tmp);
+ return 1;
+ }
+ tcg_temp_free_i32(tmp2);
+ tcg_temp_free_i32(tmp);
+ gen_op_iwmmxt_movq_wRn_M0(wrd);
+ gen_op_iwmmxt_set_mup();
+ break;
+ default:
+ return 1;
+ }
+
+ return 0;
+}
+
+/* Disassemble an XScale DSP instruction. Returns nonzero if an error occurred
+ (ie. an undefined instruction). */
+static int disas_dsp_insn(CPUARMState *env, DisasContext *s, uint32_t insn)
+{
+ int acc, rd0, rd1, rdhi, rdlo;
+ TCGv tmp, tmp2;
+
+ if ((insn & 0x0ff00f10) == 0x0e200010) {
+ /* Multiply with Internal Accumulate Format */
+ rd0 = (insn >> 12) & 0xf;
+ rd1 = insn & 0xf;
+ acc = (insn >> 5) & 7;
+
+ if (acc != 0)
+ return 1;
+
+ tmp = load_reg(s, rd0);
+ tmp2 = load_reg(s, rd1);
+ switch ((insn >> 16) & 0xf) {
+ case 0x0: /* MIA */
+ gen_helper_iwmmxt_muladdsl(cpu_M0, cpu_M0, tmp, tmp2);
+ break;
+ case 0x8: /* MIAPH */
+ gen_helper_iwmmxt_muladdsw(cpu_M0, cpu_M0, tmp, tmp2);
+ break;
+ case 0xc: /* MIABB */
+ case 0xd: /* MIABT */
+ case 0xe: /* MIATB */
+ case 0xf: /* MIATT */
+ if (insn & (1 << 16))
+ tcg_gen_shri_i32(tmp, tmp, 16);
+ if (insn & (1 << 17))
+ tcg_gen_shri_i32(tmp2, tmp2, 16);
+ gen_helper_iwmmxt_muladdswl(cpu_M0, cpu_M0, tmp, tmp2);
+ break;
+ default:
+ return 1;
+ }
+ tcg_temp_free_i32(tmp2);
+ tcg_temp_free_i32(tmp);
+
+ gen_op_iwmmxt_movq_wRn_M0(acc);
+ return 0;
+ }
+
+ if ((insn & 0x0fe00ff8) == 0x0c400000) {
+ /* Internal Accumulator Access Format */
+ rdhi = (insn >> 16) & 0xf;
+ rdlo = (insn >> 12) & 0xf;
+ acc = insn & 7;
+
+ if (acc != 0)
+ return 1;
+
+ if (insn & ARM_CP_RW_BIT) { /* MRA */
+ iwmmxt_load_reg(cpu_V0, acc);
+ tcg_gen_trunc_i64_i32(cpu_R[rdlo], cpu_V0);
+ tcg_gen_shri_i64(cpu_V0, cpu_V0, 32);
+ tcg_gen_trunc_i64_i32(cpu_R[rdhi], cpu_V0);
+ tcg_gen_andi_i32(cpu_R[rdhi], cpu_R[rdhi], (1 << (40 - 32)) - 1);
+ } else { /* MAR */
+ tcg_gen_concat_i32_i64(cpu_V0, cpu_R[rdlo], cpu_R[rdhi]);
+ iwmmxt_store_reg(cpu_V0, acc);
+ }
+ return 0;
+ }
+
+ return 1;
+}
+
+#define VFP_REG_SHR(x, n) (((n) > 0) ? (x) >> (n) : (x) << -(n))
+#define VFP_SREG(insn, bigbit, smallbit) \
+ ((VFP_REG_SHR(insn, bigbit - 1) & 0x1e) | (((insn) >> (smallbit)) & 1))
+#define VFP_DREG(reg, insn, bigbit, smallbit) do { \
+ if (arm_feature(env, ARM_FEATURE_VFP3)) { \
+ reg = (((insn) >> (bigbit)) & 0x0f) \
+ | (((insn) >> ((smallbit) - 4)) & 0x10); \
+ } else { \
+ if (insn & (1 << (smallbit))) \
+ return 1; \
+ reg = ((insn) >> (bigbit)) & 0x0f; \
+ }} while (0)
+
+#define VFP_SREG_D(insn) VFP_SREG(insn, 12, 22)
+#define VFP_DREG_D(reg, insn) VFP_DREG(reg, insn, 12, 22)
+#define VFP_SREG_N(insn) VFP_SREG(insn, 16, 7)
+#define VFP_DREG_N(reg, insn) VFP_DREG(reg, insn, 16, 7)
+#define VFP_SREG_M(insn) VFP_SREG(insn, 0, 5)
+#define VFP_DREG_M(reg, insn) VFP_DREG(reg, insn, 0, 5)
+
+/* Move between integer and VFP cores. */
+static TCGv gen_vfp_mrs(void)
+{
+ TCGv tmp = tcg_temp_new_i32();
+ tcg_gen_mov_i32(tmp, cpu_F0s);
+ return tmp;
+}
+
+static void gen_vfp_msr(TCGv tmp)
+{
+ tcg_gen_mov_i32(cpu_F0s, tmp);
+ tcg_temp_free_i32(tmp);
+}
+
+static void gen_neon_dup_u8(TCGv var, int shift)
+{
+ TCGv tmp = tcg_temp_new_i32();
+ if (shift)
+ tcg_gen_shri_i32(var, var, shift);
+ tcg_gen_ext8u_i32(var, var);
+ tcg_gen_shli_i32(tmp, var, 8);
+ tcg_gen_or_i32(var, var, tmp);
+ tcg_gen_shli_i32(tmp, var, 16);
+ tcg_gen_or_i32(var, var, tmp);
+ tcg_temp_free_i32(tmp);
+}
+
+static void gen_neon_dup_low16(TCGv var)
+{
+ TCGv tmp = tcg_temp_new_i32();
+ tcg_gen_ext16u_i32(var, var);
+ tcg_gen_shli_i32(tmp, var, 16);
+ tcg_gen_or_i32(var, var, tmp);
+ tcg_temp_free_i32(tmp);
+}
+
+static void gen_neon_dup_high16(TCGv var)
+{
+ TCGv tmp = tcg_temp_new_i32();
+ tcg_gen_andi_i32(var, var, 0xffff0000);
+ tcg_gen_shri_i32(tmp, var, 16);
+ tcg_gen_or_i32(var, var, tmp);
+ tcg_temp_free_i32(tmp);
+}
+
+static TCGv gen_load_and_replicate(DisasContext *s, TCGv addr, int size)
+{
+ /* Load a single Neon element and replicate into a 32 bit TCG reg */
+ TCGv tmp;
+ switch (size) {
+ case 0:
+ tmp = gen_ld8u(addr, IS_USER(s));
+ gen_neon_dup_u8(tmp, 0);
+ break;
+ case 1:
+ tmp = gen_ld16u(addr, IS_USER(s));
+ gen_neon_dup_low16(tmp);
+ break;
+ case 2:
+ tmp = gen_ld32(addr, IS_USER(s));
+ break;
+ default: /* Avoid compiler warnings. */
+ abort();
+ }
+ return tmp;
+}
+
+/* Disassemble a VFP instruction. Returns nonzero if an error occurred
+ (ie. an undefined instruction). */
+static int disas_vfp_insn(CPUARMState * env, DisasContext *s, uint32_t insn)
+{
+ uint32_t rd, rn, rm, op, i, n, offset, delta_d, delta_m, bank_mask;
+ int dp, veclen;
+ TCGv addr;
+ TCGv tmp;
+ TCGv tmp2;
+
+ if (!arm_feature(env, ARM_FEATURE_VFP))
+ return 1;
+
+ if (!s->vfp_enabled) {
+ /* VFP disabled. Only allow fmxr/fmrx to/from some control regs. */
+ if ((insn & 0x0fe00fff) != 0x0ee00a10)
+ return 1;
+ rn = (insn >> 16) & 0xf;
+ if (rn != ARM_VFP_FPSID && rn != ARM_VFP_FPEXC
+ && rn != ARM_VFP_MVFR1 && rn != ARM_VFP_MVFR0)
+ return 1;
+ }
+ dp = ((insn & 0xf00) == 0xb00);
+ switch ((insn >> 24) & 0xf) {
+ case 0xe:
+ if (insn & (1 << 4)) {
+ /* single register transfer */
+ rd = (insn >> 12) & 0xf;
+ if (dp) {
+ int size;
+ int pass;
+
+ VFP_DREG_N(rn, insn);
+ if (insn & 0xf)
+ return 1;
+ if (insn & 0x00c00060
+ && !arm_feature(env, ARM_FEATURE_NEON))
+ return 1;
+
+ pass = (insn >> 21) & 1;
+ if (insn & (1 << 22)) {
+ size = 0;
+ offset = ((insn >> 5) & 3) * 8;
+ } else if (insn & (1 << 5)) {
+ size = 1;
+ offset = (insn & (1 << 6)) ? 16 : 0;
+ } else {
+ size = 2;
+ offset = 0;
+ }
+ if (insn & ARM_CP_RW_BIT) {
+ /* vfp->arm */
+ tmp = neon_load_reg(rn, pass);
+ switch (size) {
+ case 0:
+ if (offset)
+ tcg_gen_shri_i32(tmp, tmp, offset);
+ if (insn & (1 << 23))
+ gen_uxtb(tmp);
+ else
+ gen_sxtb(tmp);
+ break;
+ case 1:
+ if (insn & (1 << 23)) {
+ if (offset) {
+ tcg_gen_shri_i32(tmp, tmp, 16);
+ } else {
+ gen_uxth(tmp);
+ }
+ } else {
+ if (offset) {
+ tcg_gen_sari_i32(tmp, tmp, 16);
+ } else {
+ gen_sxth(tmp);
+ }
+ }
+ break;
+ case 2:
+ break;
+ }
+ store_reg(s, rd, tmp);
+ } else {
+ /* arm->vfp */
+ tmp = load_reg(s, rd);
+ if (insn & (1 << 23)) {
+ /* VDUP */
+ if (size == 0) {
+ gen_neon_dup_u8(tmp, 0);
+ } else if (size == 1) {
+ gen_neon_dup_low16(tmp);
+ }
+ for (n = 0; n <= pass * 2; n++) {
+ tmp2 = tcg_temp_new_i32();
+ tcg_gen_mov_i32(tmp2, tmp);
+ neon_store_reg(rn, n, tmp2);
+ }
+ neon_store_reg(rn, n, tmp);
+ } else {
+ /* VMOV */
+ switch (size) {
+ case 0:
+ tmp2 = neon_load_reg(rn, pass);
+ gen_bfi(tmp, tmp2, tmp, offset, 0xff);
+ tcg_temp_free_i32(tmp2);
+ break;
+ case 1:
+ tmp2 = neon_load_reg(rn, pass);
+ gen_bfi(tmp, tmp2, tmp, offset, 0xffff);
+ tcg_temp_free_i32(tmp2);
+ break;
+ case 2:
+ break;
+ }
+ neon_store_reg(rn, pass, tmp);
+ }
+ }
+ } else { /* !dp */
+ if ((insn & 0x6f) != 0x00)
+ return 1;
+ rn = VFP_SREG_N(insn);
+ if (insn & ARM_CP_RW_BIT) {
+ /* vfp->arm */
+ if (insn & (1 << 21)) {
+ /* system register */
+ rn >>= 1;
+
+ switch (rn) {
+ case ARM_VFP_FPSID:
+ /* VFP2 allows access to FSID from userspace.
+ VFP3 restricts all id registers to privileged
+ accesses. */
+ if (IS_USER(s)
+ && arm_feature(env, ARM_FEATURE_VFP3))
+ return 1;
+ tmp = load_cpu_field(vfp.xregs[rn]);
+ break;
+ case ARM_VFP_FPEXC:
+ if (IS_USER(s))
+ return 1;
+ tmp = load_cpu_field(vfp.xregs[rn]);
+ break;
+ case ARM_VFP_FPINST:
+ case ARM_VFP_FPINST2:
+ /* Not present in VFP3. */
+ if (IS_USER(s)
+ || arm_feature(env, ARM_FEATURE_VFP3))
+ return 1;
+ tmp = load_cpu_field(vfp.xregs[rn]);
+ break;
+ case ARM_VFP_FPSCR:
+ if (rd == 15) {
+ tmp = load_cpu_field(vfp.xregs[ARM_VFP_FPSCR]);
+ tcg_gen_andi_i32(tmp, tmp, 0xf0000000);
+ } else {
+ tmp = tcg_temp_new_i32();
+ gen_helper_vfp_get_fpscr(tmp, cpu_env);
+ }
+ break;
+ case ARM_VFP_MVFR0:
+ case ARM_VFP_MVFR1:
+ if (IS_USER(s)
+ || !arm_feature(env, ARM_FEATURE_MVFR))
+ return 1;
+ tmp = load_cpu_field(vfp.xregs[rn]);
+ break;
+ default:
+ return 1;
+ }
+ } else {
+ gen_mov_F0_vreg(0, rn);
+ tmp = gen_vfp_mrs();
+ }
+ if (rd == 15) {
+ /* Set the 4 flag bits in the CPSR. */
+ gen_set_nzcv(tmp);
+ tcg_temp_free_i32(tmp);
+ } else {
+ store_reg(s, rd, tmp);
+ }
+ } else {
+ /* arm->vfp */
+ tmp = load_reg(s, rd);
+ if (insn & (1 << 21)) {
+ rn >>= 1;
+ /* system register */
+ switch (rn) {
+ case ARM_VFP_FPSID:
+ case ARM_VFP_MVFR0:
+ case ARM_VFP_MVFR1:
+ /* Writes are ignored. */
+ break;
+ case ARM_VFP_FPSCR:
+ gen_helper_vfp_set_fpscr(cpu_env, tmp);
+ tcg_temp_free_i32(tmp);
+ gen_lookup_tb(s);
+ break;
+ case ARM_VFP_FPEXC:
+ if (IS_USER(s))
+ return 1;
+ /* TODO: VFP subarchitecture support.
+ * For now, keep the EN bit only */
+ tcg_gen_andi_i32(tmp, tmp, 1 << 30);
+ store_cpu_field(tmp, vfp.xregs[rn]);
+ gen_lookup_tb(s);
+ break;
+ case ARM_VFP_FPINST:
+ case ARM_VFP_FPINST2:
+ store_cpu_field(tmp, vfp.xregs[rn]);
+ break;
+ default:
+ return 1;
+ }
+ } else {
+ gen_vfp_msr(tmp);
+ gen_mov_vreg_F0(0, rn);
+ }
+ }
+ }
+ } else {
+ /* data processing */
+ /* The opcode is in bits 23, 21, 20 and 6. */
+ op = ((insn >> 20) & 8) | ((insn >> 19) & 6) | ((insn >> 6) & 1);
+ if (dp) {
+ if (op == 15) {
+ /* rn is opcode */
+ rn = ((insn >> 15) & 0x1e) | ((insn >> 7) & 1);
+ } else {
+ /* rn is register number */
+ VFP_DREG_N(rn, insn);
+ }
+
+ if (op == 15 && (rn == 15 || ((rn & 0x1c) == 0x18))) {
+ /* Integer or single precision destination. */
+ rd = VFP_SREG_D(insn);
+ } else {
+ VFP_DREG_D(rd, insn);
+ }
+ if (op == 15 &&
+ (((rn & 0x1c) == 0x10) || ((rn & 0x14) == 0x14))) {
+ /* VCVT from int is always from S reg regardless of dp bit.
+ * VCVT with immediate frac_bits has same format as SREG_M
+ */
+ rm = VFP_SREG_M(insn);
+ } else {
+ VFP_DREG_M(rm, insn);
+ }
+ } else {
+ rn = VFP_SREG_N(insn);
+ if (op == 15 && rn == 15) {
+ /* Double precision destination. */
+ VFP_DREG_D(rd, insn);
+ } else {
+ rd = VFP_SREG_D(insn);
+ }
+ /* NB that we implicitly rely on the encoding for the frac_bits
+ * in VCVT of fixed to float being the same as that of an SREG_M
+ */
+ rm = VFP_SREG_M(insn);
+ }
+
+ veclen = s->vec_len;
+ if (op == 15 && rn > 3)
+ veclen = 0;
+
+ /* Shut up compiler warnings. */
+ delta_m = 0;
+ delta_d = 0;
+ bank_mask = 0;
+
+ if (veclen > 0) {
+ if (dp)
+ bank_mask = 0xc;
+ else
+ bank_mask = 0x18;
+
+ /* Figure out what type of vector operation this is. */
+ if ((rd & bank_mask) == 0) {
+ /* scalar */
+ veclen = 0;
+ } else {
+ if (dp)
+ delta_d = (s->vec_stride >> 1) + 1;
+ else
+ delta_d = s->vec_stride + 1;
+
+ if ((rm & bank_mask) == 0) {
+ /* mixed scalar/vector */
+ delta_m = 0;
+ } else {
+ /* vector */
+ delta_m = delta_d;
+ }
+ }
+ }
+
+ /* Load the initial operands. */
+ if (op == 15) {
+ switch (rn) {
+ case 16:
+ case 17:
+ /* Integer source */
+ gen_mov_F0_vreg(0, rm);
+ break;
+ case 8:
+ case 9:
+ /* Compare */
+ gen_mov_F0_vreg(dp, rd);
+ gen_mov_F1_vreg(dp, rm);
+ break;
+ case 10:
+ case 11:
+ /* Compare with zero */
+ gen_mov_F0_vreg(dp, rd);
+ gen_vfp_F1_ld0(dp);
+ break;
+ case 20:
+ case 21:
+ case 22:
+ case 23:
+ case 28:
+ case 29:
+ case 30:
+ case 31:
+ /* Source and destination the same. */
+ gen_mov_F0_vreg(dp, rd);
+ break;
+ case 4:
+ case 5:
+ case 6:
+ case 7:
+ /* VCVTB, VCVTT: only present with the halfprec extension,
+ * UNPREDICTABLE if bit 8 is set (we choose to UNDEF)
+ */
+ if (dp || !arm_feature(env, ARM_FEATURE_VFP_FP16)) {
+ return 1;
+ }
+ /* Otherwise fall through */
+ default:
+ /* One source operand. */
+ gen_mov_F0_vreg(dp, rm);
+ break;
+ }
+ } else {
+ /* Two source operands. */
+ gen_mov_F0_vreg(dp, rn);
+ gen_mov_F1_vreg(dp, rm);
+ }
+
+ for (;;) {
+ /* Perform the calculation. */
+ switch (op) {
+ case 0: /* VMLA: fd + (fn * fm) */
+ /* Note that order of inputs to the add matters for NaNs */
+ gen_vfp_F1_mul(dp);
+ gen_mov_F0_vreg(dp, rd);
+ gen_vfp_add(dp);
+ break;
+ case 1: /* VMLS: fd + -(fn * fm) */
+ gen_vfp_mul(dp);
+ gen_vfp_F1_neg(dp);
+ gen_mov_F0_vreg(dp, rd);
+ gen_vfp_add(dp);
+ break;
+ case 2: /* VNMLS: -fd + (fn * fm) */
+ /* Note that it isn't valid to replace (-A + B) with (B - A)
+ * or similar plausible looking simplifications
+ * because this will give wrong results for NaNs.
+ */
+ gen_vfp_F1_mul(dp);
+ gen_mov_F0_vreg(dp, rd);
+ gen_vfp_neg(dp);
+ gen_vfp_add(dp);
+ break;
+ case 3: /* VNMLA: -fd + -(fn * fm) */
+ gen_vfp_mul(dp);
+ gen_vfp_F1_neg(dp);
+ gen_mov_F0_vreg(dp, rd);
+ gen_vfp_neg(dp);
+ gen_vfp_add(dp);
+ break;
+ case 4: /* mul: fn * fm */
+ gen_vfp_mul(dp);
+ break;
+ case 5: /* nmul: -(fn * fm) */
+ gen_vfp_mul(dp);
+ gen_vfp_neg(dp);
+ break;
+ case 6: /* add: fn + fm */
+ gen_vfp_add(dp);
+ break;
+ case 7: /* sub: fn - fm */
+ gen_vfp_sub(dp);
+ break;
+ case 8: /* div: fn / fm */
+ gen_vfp_div(dp);
+ break;
+ case 10: /* VFNMA : fd = muladd(-fd, fn, fm) */
+ case 11: /* VFNMS : fd = muladd(-fd, -fn, fm) */
+ case 12: /* VFMA : fd = muladd( fd, fn, fm) */
+ case 13: /* VFMS : fd = muladd( fd, -fn, fm) */
+ /* These are fused multiply-add, and must be done as one
+ * floating point operation with no rounding between the
+ * multiplication and addition steps.
+ * NB that doing the negations here as separate steps is
+ * correct : an input NaN should come out with its sign bit
+ * flipped if it is a negated-input.
+ */
+ if (!arm_feature(env, ARM_FEATURE_VFP4)) {
+ return 1;
+ }
+ if (dp) {
+ TCGv_ptr fpst;
+ TCGv_i64 frd;
+ if (op & 1) {
+ /* VFNMS, VFMS */
+ gen_helper_vfp_negd(cpu_F0d, cpu_F0d);
+ }
+ frd = tcg_temp_new_i64();
+ tcg_gen_ld_f64(frd, cpu_env, vfp_reg_offset(dp, rd));
+ if (op & 2) {
+ /* VFNMA, VFNMS */
+ gen_helper_vfp_negd(frd, frd);
+ }
+ fpst = get_fpstatus_ptr(0);
+ gen_helper_vfp_muladdd(cpu_F0d, cpu_F0d,
+ cpu_F1d, frd, fpst);
+ tcg_temp_free_ptr(fpst);
+ tcg_temp_free_i64(frd);
+ } else {
+ TCGv_ptr fpst;
+ TCGv_i32 frd;
+ if (op & 1) {
+ /* VFNMS, VFMS */
+ gen_helper_vfp_negs(cpu_F0s, cpu_F0s);
+ }
+ frd = tcg_temp_new_i32();
+ tcg_gen_ld_f32(frd, cpu_env, vfp_reg_offset(dp, rd));
+ if (op & 2) {
+ gen_helper_vfp_negs(frd, frd);
+ }
+ fpst = get_fpstatus_ptr(0);
+ gen_helper_vfp_muladds(cpu_F0s, cpu_F0s,
+ cpu_F1s, frd, fpst);
+ tcg_temp_free_ptr(fpst);
+ tcg_temp_free_i32(frd);
+ }
+ break;
+ case 14: /* fconst */
+ if (!arm_feature(env, ARM_FEATURE_VFP3))
+ return 1;
+
+ n = (insn << 12) & 0x80000000;
+ i = ((insn >> 12) & 0x70) | (insn & 0xf);
+ if (dp) {
+ if (i & 0x40)
+ i |= 0x3f80;
+ else
+ i |= 0x4000;
+ n |= i << 16;
+ tcg_gen_movi_i64(cpu_F0d, ((uint64_t)n) << 32);
+ } else {
+ if (i & 0x40)
+ i |= 0x780;
+ else
+ i |= 0x800;
+ n |= i << 19;
+ tcg_gen_movi_i32(cpu_F0s, n);
+ }
+ break;
+ case 15: /* extension space */
+ switch (rn) {
+ case 0: /* cpy */
+ /* no-op */
+ break;
+ case 1: /* abs */
+ gen_vfp_abs(dp);
+ break;
+ case 2: /* neg */
+ gen_vfp_neg(dp);
+ break;
+ case 3: /* sqrt */
+ gen_vfp_sqrt(dp);
+ break;
+ case 4: /* vcvtb.f32.f16 */
+ tmp = gen_vfp_mrs();
+ tcg_gen_ext16u_i32(tmp, tmp);
+ gen_helper_vfp_fcvt_f16_to_f32(cpu_F0s, tmp, cpu_env);
+ tcg_temp_free_i32(tmp);
+ break;
+ case 5: /* vcvtt.f32.f16 */
+ tmp = gen_vfp_mrs();
+ tcg_gen_shri_i32(tmp, tmp, 16);
+ gen_helper_vfp_fcvt_f16_to_f32(cpu_F0s, tmp, cpu_env);
+ tcg_temp_free_i32(tmp);
+ break;
+ case 6: /* vcvtb.f16.f32 */
+ tmp = tcg_temp_new_i32();
+ gen_helper_vfp_fcvt_f32_to_f16(tmp, cpu_F0s, cpu_env);
+ gen_mov_F0_vreg(0, rd);
+ tmp2 = gen_vfp_mrs();
+ tcg_gen_andi_i32(tmp2, tmp2, 0xffff0000);
+ tcg_gen_or_i32(tmp, tmp, tmp2);
+ tcg_temp_free_i32(tmp2);
+ gen_vfp_msr(tmp);
+ break;
+ case 7: /* vcvtt.f16.f32 */
+ tmp = tcg_temp_new_i32();
+ gen_helper_vfp_fcvt_f32_to_f16(tmp, cpu_F0s, cpu_env);
+ tcg_gen_shli_i32(tmp, tmp, 16);
+ gen_mov_F0_vreg(0, rd);
+ tmp2 = gen_vfp_mrs();
+ tcg_gen_ext16u_i32(tmp2, tmp2);
+ tcg_gen_or_i32(tmp, tmp, tmp2);
+ tcg_temp_free_i32(tmp2);
+ gen_vfp_msr(tmp);
+ break;
+ case 8: /* cmp */
+ gen_vfp_cmp(dp);
+ break;
+ case 9: /* cmpe */
+ gen_vfp_cmpe(dp);
+ break;
+ case 10: /* cmpz */
+ gen_vfp_cmp(dp);
+ break;
+ case 11: /* cmpez */
+ gen_vfp_F1_ld0(dp);
+ gen_vfp_cmpe(dp);
+ break;
+ case 15: /* single<->double conversion */
+ if (dp)
+ gen_helper_vfp_fcvtsd(cpu_F0s, cpu_F0d, cpu_env);
+ else
+ gen_helper_vfp_fcvtds(cpu_F0d, cpu_F0s, cpu_env);
+ break;
+ case 16: /* fuito */
+ gen_vfp_uito(dp, 0);
+ break;
+ case 17: /* fsito */
+ gen_vfp_sito(dp, 0);
+ break;
+ case 20: /* fshto */
+ if (!arm_feature(env, ARM_FEATURE_VFP3))
+ return 1;
+ gen_vfp_shto(dp, 16 - rm, 0);
+ break;
+ case 21: /* fslto */
+ if (!arm_feature(env, ARM_FEATURE_VFP3))
+ return 1;
+ gen_vfp_slto(dp, 32 - rm, 0);
+ break;
+ case 22: /* fuhto */
+ if (!arm_feature(env, ARM_FEATURE_VFP3))
+ return 1;
+ gen_vfp_uhto(dp, 16 - rm, 0);
+ break;
+ case 23: /* fulto */
+ if (!arm_feature(env, ARM_FEATURE_VFP3))
+ return 1;
+ gen_vfp_ulto(dp, 32 - rm, 0);
+ break;
+ case 24: /* ftoui */
+ gen_vfp_toui(dp, 0);
+ break;
+ case 25: /* ftouiz */
+ gen_vfp_touiz(dp, 0);
+ break;
+ case 26: /* ftosi */
+ gen_vfp_tosi(dp, 0);
+ break;
+ case 27: /* ftosiz */
+ gen_vfp_tosiz(dp, 0);
+ break;
+ case 28: /* ftosh */
+ if (!arm_feature(env, ARM_FEATURE_VFP3))
+ return 1;
+ gen_vfp_tosh(dp, 16 - rm, 0);
+ break;
+ case 29: /* ftosl */
+ if (!arm_feature(env, ARM_FEATURE_VFP3))
+ return 1;
+ gen_vfp_tosl(dp, 32 - rm, 0);
+ break;
+ case 30: /* ftouh */
+ if (!arm_feature(env, ARM_FEATURE_VFP3))
+ return 1;
+ gen_vfp_touh(dp, 16 - rm, 0);
+ break;
+ case 31: /* ftoul */
+ if (!arm_feature(env, ARM_FEATURE_VFP3))
+ return 1;
+ gen_vfp_toul(dp, 32 - rm, 0);
+ break;
+ default: /* undefined */
+ return 1;
+ }
+ break;
+ default: /* undefined */
+ return 1;
+ }
+
+ /* Write back the result. */
+ if (op == 15 && (rn >= 8 && rn <= 11))
+ ; /* Comparison, do nothing. */
+ else if (op == 15 && dp && ((rn & 0x1c) == 0x18))
+ /* VCVT double to int: always integer result. */
+ gen_mov_vreg_F0(0, rd);
+ else if (op == 15 && rn == 15)
+ /* conversion */
+ gen_mov_vreg_F0(!dp, rd);
+ else
+ gen_mov_vreg_F0(dp, rd);
+
+ /* break out of the loop if we have finished */
+ if (veclen == 0)
+ break;
+
+ if (op == 15 && delta_m == 0) {
+ /* single source one-many */
+ while (veclen--) {
+ rd = ((rd + delta_d) & (bank_mask - 1))
+ | (rd & bank_mask);
+ gen_mov_vreg_F0(dp, rd);
+ }
+ break;
+ }
+ /* Setup the next operands. */
+ veclen--;
+ rd = ((rd + delta_d) & (bank_mask - 1))
+ | (rd & bank_mask);
+
+ if (op == 15) {
+ /* One source operand. */
+ rm = ((rm + delta_m) & (bank_mask - 1))
+ | (rm & bank_mask);
+ gen_mov_F0_vreg(dp, rm);
+ } else {
+ /* Two source operands. */
+ rn = ((rn + delta_d) & (bank_mask - 1))
+ | (rn & bank_mask);
+ gen_mov_F0_vreg(dp, rn);
+ if (delta_m) {
+ rm = ((rm + delta_m) & (bank_mask - 1))
+ | (rm & bank_mask);
+ gen_mov_F1_vreg(dp, rm);
+ }
+ }
+ }
+ }
+ break;
+ case 0xc:
+ case 0xd:
+ if ((insn & 0x03e00000) == 0x00400000) {
+ /* two-register transfer */
+ rn = (insn >> 16) & 0xf;
+ rd = (insn >> 12) & 0xf;
+ if (dp) {
+ VFP_DREG_M(rm, insn);
+ } else {
+ rm = VFP_SREG_M(insn);
+ }
+
+ if (insn & ARM_CP_RW_BIT) {
+ /* vfp->arm */
+ if (dp) {
+ gen_mov_F0_vreg(0, rm * 2);
+ tmp = gen_vfp_mrs();
+ store_reg(s, rd, tmp);
+ gen_mov_F0_vreg(0, rm * 2 + 1);
+ tmp = gen_vfp_mrs();
+ store_reg(s, rn, tmp);
+ } else {
+ gen_mov_F0_vreg(0, rm);
+ tmp = gen_vfp_mrs();
+ store_reg(s, rd, tmp);
+ gen_mov_F0_vreg(0, rm + 1);
+ tmp = gen_vfp_mrs();
+ store_reg(s, rn, tmp);
+ }
+ } else {
+ /* arm->vfp */
+ if (dp) {
+ tmp = load_reg(s, rd);
+ gen_vfp_msr(tmp);
+ gen_mov_vreg_F0(0, rm * 2);
+ tmp = load_reg(s, rn);
+ gen_vfp_msr(tmp);
+ gen_mov_vreg_F0(0, rm * 2 + 1);
+ } else {
+ tmp = load_reg(s, rd);
+ gen_vfp_msr(tmp);
+ gen_mov_vreg_F0(0, rm);
+ tmp = load_reg(s, rn);
+ gen_vfp_msr(tmp);
+ gen_mov_vreg_F0(0, rm + 1);
+ }
+ }
+ } else {
+ /* Load/store */
+ rn = (insn >> 16) & 0xf;
+ if (dp)
+ VFP_DREG_D(rd, insn);
+ else
+ rd = VFP_SREG_D(insn);
+ if ((insn & 0x01200000) == 0x01000000) {
+ /* Single load/store */
+ offset = (insn & 0xff) << 2;
+ if ((insn & (1 << 23)) == 0)
+ offset = -offset;
+ if (s->thumb && rn == 15) {
+ /* This is actually UNPREDICTABLE */
+ addr = tcg_temp_new_i32();
+ tcg_gen_movi_i32(addr, s->pc & ~2);
+ } else {
+ addr = load_reg(s, rn);
+ }
+ tcg_gen_addi_i32(addr, addr, offset);
+ if (insn & (1 << 20)) {
+ gen_vfp_ld(s, dp, addr);
+ gen_mov_vreg_F0(dp, rd);
+ } else {
+ gen_mov_F0_vreg(dp, rd);
+ gen_vfp_st(s, dp, addr);
+ }
+ tcg_temp_free_i32(addr);
+ } else {
+ /* load/store multiple */
+ int w = insn & (1 << 21);
+ if (dp)
+ n = (insn >> 1) & 0x7f;
+ else
+ n = insn & 0xff;
+
+ if (w && !(((insn >> 23) ^ (insn >> 24)) & 1)) {
+ /* P == U , W == 1 => UNDEF */
+ return 1;
+ }
+ if (n == 0 || (rd + n) > 32 || (dp && n > 16)) {
+ /* UNPREDICTABLE cases for bad immediates: we choose to
+ * UNDEF to avoid generating huge numbers of TCG ops
+ */
+ return 1;
+ }
+ if (rn == 15 && w) {
+ /* writeback to PC is UNPREDICTABLE, we choose to UNDEF */
+ return 1;
+ }
+
+ if (s->thumb && rn == 15) {
+ /* This is actually UNPREDICTABLE */
+ addr = tcg_temp_new_i32();
+ tcg_gen_movi_i32(addr, s->pc & ~2);
+ } else {
+ addr = load_reg(s, rn);
+ }
+ if (insn & (1 << 24)) /* pre-decrement */
+ tcg_gen_addi_i32(addr, addr, -((insn & 0xff) << 2));
+
+ if (dp)
+ offset = 8;
+ else
+ offset = 4;
+ for (i = 0; i < n; i++) {
+ if (insn & ARM_CP_RW_BIT) {
+ /* load */
+ gen_vfp_ld(s, dp, addr);
+ gen_mov_vreg_F0(dp, rd + i);
+ } else {
+ /* store */
+ gen_mov_F0_vreg(dp, rd + i);
+ gen_vfp_st(s, dp, addr);
+ }
+ tcg_gen_addi_i32(addr, addr, offset);
+ }
+ if (w) {
+ /* writeback */
+ if (insn & (1 << 24))
+ offset = -offset * n;
+ else if (dp && (insn & 1))
+ offset = 4;
+ else
+ offset = 0;
+
+ if (offset != 0)
+ tcg_gen_addi_i32(addr, addr, offset);
+ store_reg(s, rn, addr);
+ } else {
+ tcg_temp_free_i32(addr);
+ }
+ }
+ }
+ break;
+ default:
+ /* Should never happen. */
+ return 1;
+ }
+ return 0;
+}
+
+static inline void gen_goto_tb(DisasContext *s, int n, uint32_t dest)
+{
+ TranslationBlock *tb;
+
+ tb = s->tb;
+ if ((tb->pc & TARGET_PAGE_MASK) == (dest & TARGET_PAGE_MASK)) {
+ tcg_gen_goto_tb(n);
+ gen_set_pc_im(dest);
+ tcg_gen_exit_tb((tcg_target_long)tb + n);
+ } else {
+ gen_set_pc_im(dest);
+ tcg_gen_exit_tb(0);
+ }
+}
+
+static inline void gen_jmp (DisasContext *s, uint32_t dest)
+{
+ if (unlikely(s->singlestep_enabled)) {
+ /* An indirect jump so that we still trigger the debug exception. */
+ if (s->thumb)
+ dest |= 1;
+ gen_bx_im(s, dest);
+ } else {
+ gen_goto_tb(s, 0, dest);
+ s->is_jmp = DISAS_TB_JUMP;
+ }
+}
+
+static inline void gen_mulxy(TCGv t0, TCGv t1, int x, int y)
+{
+ if (x)
+ tcg_gen_sari_i32(t0, t0, 16);
+ else
+ gen_sxth(t0);
+ if (y)
+ tcg_gen_sari_i32(t1, t1, 16);
+ else
+ gen_sxth(t1);
+ tcg_gen_mul_i32(t0, t0, t1);
+}
+
+/* Return the mask of PSR bits set by a MSR instruction. */
+static uint32_t msr_mask(CPUARMState *env, DisasContext *s, int flags, int spsr) {
+ uint32_t mask;
+
+ mask = 0;
+ if (flags & (1 << 0))
+ mask |= 0xff;
+ if (flags & (1 << 1))
+ mask |= 0xff00;
+ if (flags & (1 << 2))
+ mask |= 0xff0000;
+ if (flags & (1 << 3))
+ mask |= 0xff000000;
+
+ /* Mask out undefined bits. */
+ mask &= ~CPSR_RESERVED;
+ if (!arm_feature(env, ARM_FEATURE_V4T))
+ mask &= ~CPSR_T;
+ if (!arm_feature(env, ARM_FEATURE_V5))
+ mask &= ~CPSR_Q; /* V5TE in reality*/
+ if (!arm_feature(env, ARM_FEATURE_V6))
+ mask &= ~(CPSR_E | CPSR_GE);
+ if (!arm_feature(env, ARM_FEATURE_THUMB2))
+ mask &= ~CPSR_IT;
+ /* Mask out execution state bits. */
+ if (!spsr)
+ mask &= ~CPSR_EXEC;
+ /* Mask out privileged bits. */
+ if (IS_USER(s))
+ mask &= CPSR_USER;
+ return mask;
+}
+
+/* Returns nonzero if access to the PSR is not permitted. Marks t0 as dead. */
+static int gen_set_psr(DisasContext *s, uint32_t mask, int spsr, TCGv t0)
+{
+ TCGv tmp;
+ if (spsr) {
+ /* ??? This is also undefined in system mode. */
+ if (IS_USER(s))
+ return 1;
+
+ tmp = load_cpu_field(spsr);
+ tcg_gen_andi_i32(tmp, tmp, ~mask);
+ tcg_gen_andi_i32(t0, t0, mask);
+ tcg_gen_or_i32(tmp, tmp, t0);
+ store_cpu_field(tmp, spsr);
+ } else {
+ gen_set_cpsr(t0, mask);
+ }
+ tcg_temp_free_i32(t0);
+ gen_lookup_tb(s);
+ return 0;
+}
+
+/* Returns nonzero if access to the PSR is not permitted. */
+static int gen_set_psr_im(DisasContext *s, uint32_t mask, int spsr, uint32_t val)
+{
+ TCGv tmp;
+ tmp = tcg_temp_new_i32();
+ tcg_gen_movi_i32(tmp, val);
+ return gen_set_psr(s, mask, spsr, tmp);
+}
+
+/* Generate an old-style exception return. Marks pc as dead. */
+static void gen_exception_return(DisasContext *s, TCGv pc)
+{
+ TCGv tmp;
+ store_reg(s, 15, pc);
+ tmp = load_cpu_field(spsr);
+ gen_set_cpsr(tmp, 0xffffffff);
+ tcg_temp_free_i32(tmp);
+ s->is_jmp = DISAS_UPDATE;
+}
+
+/* Generate a v6 exception return. Marks both values as dead. */
+static void gen_rfe(DisasContext *s, TCGv pc, TCGv cpsr)
+{
+ gen_set_cpsr(cpsr, 0xffffffff);
+ tcg_temp_free_i32(cpsr);
+ store_reg(s, 15, pc);
+ s->is_jmp = DISAS_UPDATE;
+}
+
+static inline void
+gen_set_condexec (DisasContext *s)
+{
+ if (s->condexec_mask) {
+ uint32_t val = (s->condexec_cond << 4) | (s->condexec_mask >> 1);
+ TCGv tmp = tcg_temp_new_i32();
+ tcg_gen_movi_i32(tmp, val);
+ store_cpu_field(tmp, condexec_bits);
+ }
+}
+
+static void gen_exception_insn(DisasContext *s, int offset, int excp)
+{
+ gen_set_condexec(s);
+ gen_set_pc_im(s->pc - offset);
+ gen_exception(excp);
+ s->is_jmp = DISAS_JUMP;
+}
+
+static void gen_nop_hint(DisasContext *s, int val)
+{
+ switch (val) {
+ case 3: /* wfi */
+ gen_set_pc_im(s->pc);
+ s->is_jmp = DISAS_WFI;
+ break;
+ case 2: /* wfe */
+ case 4: /* sev */
+ /* TODO: Implement SEV and WFE. May help SMP performance. */
+ default: /* nop */
+ break;
+ }
+}
+
+#define CPU_V001 cpu_V0, cpu_V0, cpu_V1
+
+static inline void gen_neon_add(int size, TCGv t0, TCGv t1)
+{
+ switch (size) {
+ case 0: gen_helper_neon_add_u8(t0, t0, t1); break;
+ case 1: gen_helper_neon_add_u16(t0, t0, t1); break;
+ case 2: tcg_gen_add_i32(t0, t0, t1); break;
+ default: abort();
+ }
+}
+
+static inline void gen_neon_rsb(int size, TCGv t0, TCGv t1)
+{
+ switch (size) {
+ case 0: gen_helper_neon_sub_u8(t0, t1, t0); break;
+ case 1: gen_helper_neon_sub_u16(t0, t1, t0); break;
+ case 2: tcg_gen_sub_i32(t0, t1, t0); break;
+ default: return;
+ }
+}
+
+/* 32-bit pairwise ops end up the same as the elementwise versions. */
+#define gen_helper_neon_pmax_s32 gen_helper_neon_max_s32
+#define gen_helper_neon_pmax_u32 gen_helper_neon_max_u32
+#define gen_helper_neon_pmin_s32 gen_helper_neon_min_s32
+#define gen_helper_neon_pmin_u32 gen_helper_neon_min_u32
+
+#define GEN_NEON_INTEGER_OP_ENV(name) do { \
+ switch ((size << 1) | u) { \
+ case 0: \
+ gen_helper_neon_##name##_s8(tmp, cpu_env, tmp, tmp2); \
+ break; \
+ case 1: \
+ gen_helper_neon_##name##_u8(tmp, cpu_env, tmp, tmp2); \
+ break; \
+ case 2: \
+ gen_helper_neon_##name##_s16(tmp, cpu_env, tmp, tmp2); \
+ break; \
+ case 3: \
+ gen_helper_neon_##name##_u16(tmp, cpu_env, tmp, tmp2); \
+ break; \
+ case 4: \
+ gen_helper_neon_##name##_s32(tmp, cpu_env, tmp, tmp2); \
+ break; \
+ case 5: \
+ gen_helper_neon_##name##_u32(tmp, cpu_env, tmp, tmp2); \
+ break; \
+ default: return 1; \
+ }} while (0)
+
+#define GEN_NEON_INTEGER_OP(name) do { \
+ switch ((size << 1) | u) { \
+ case 0: \
+ gen_helper_neon_##name##_s8(tmp, tmp, tmp2); \
+ break; \
+ case 1: \
+ gen_helper_neon_##name##_u8(tmp, tmp, tmp2); \
+ break; \
+ case 2: \
+ gen_helper_neon_##name##_s16(tmp, tmp, tmp2); \
+ break; \
+ case 3: \
+ gen_helper_neon_##name##_u16(tmp, tmp, tmp2); \
+ break; \
+ case 4: \
+ gen_helper_neon_##name##_s32(tmp, tmp, tmp2); \
+ break; \
+ case 5: \
+ gen_helper_neon_##name##_u32(tmp, tmp, tmp2); \
+ break; \
+ default: return 1; \
+ }} while (0)
+
+static TCGv neon_load_scratch(int scratch)
+{
+ TCGv tmp = tcg_temp_new_i32();
+ tcg_gen_ld_i32(tmp, cpu_env, offsetof(CPUARMState, vfp.scratch[scratch]));
+ return tmp;
+}
+
+static void neon_store_scratch(int scratch, TCGv var)
+{
+ tcg_gen_st_i32(var, cpu_env, offsetof(CPUARMState, vfp.scratch[scratch]));
+ tcg_temp_free_i32(var);
+}
+
+static inline TCGv neon_get_scalar(int size, int reg)
+{
+ TCGv tmp;
+ if (size == 1) {
+ tmp = neon_load_reg(reg & 7, reg >> 4);
+ if (reg & 8) {
+ gen_neon_dup_high16(tmp);
+ } else {
+ gen_neon_dup_low16(tmp);
+ }
+ } else {
+ tmp = neon_load_reg(reg & 15, reg >> 4);
+ }
+ return tmp;
+}
+
+static int gen_neon_unzip(int rd, int rm, int size, int q)
+{
+ TCGv tmp, tmp2;
+ if (!q && size == 2) {
+ return 1;
+ }
+ tmp = tcg_const_i32(rd);
+ tmp2 = tcg_const_i32(rm);
+ if (q) {
+ switch (size) {
+ case 0:
+ gen_helper_neon_qunzip8(cpu_env, tmp, tmp2);
+ break;
+ case 1:
+ gen_helper_neon_qunzip16(cpu_env, tmp, tmp2);
+ break;
+ case 2:
+ gen_helper_neon_qunzip32(cpu_env, tmp, tmp2);
+ break;
+ default:
+ abort();
+ }
+ } else {
+ switch (size) {
+ case 0:
+ gen_helper_neon_unzip8(cpu_env, tmp, tmp2);
+ break;
+ case 1:
+ gen_helper_neon_unzip16(cpu_env, tmp, tmp2);
+ break;
+ default:
+ abort();
+ }
+ }
+ tcg_temp_free_i32(tmp);
+ tcg_temp_free_i32(tmp2);
+ return 0;
+}
+
+static int gen_neon_zip(int rd, int rm, int size, int q)
+{
+ TCGv tmp, tmp2;
+ if (!q && size == 2) {
+ return 1;
+ }
+ tmp = tcg_const_i32(rd);
+ tmp2 = tcg_const_i32(rm);
+ if (q) {
+ switch (size) {
+ case 0:
+ gen_helper_neon_qzip8(cpu_env, tmp, tmp2);
+ break;
+ case 1:
+ gen_helper_neon_qzip16(cpu_env, tmp, tmp2);
+ break;
+ case 2:
+ gen_helper_neon_qzip32(cpu_env, tmp, tmp2);
+ break;
+ default:
+ abort();
+ }
+ } else {
+ switch (size) {
+ case 0:
+ gen_helper_neon_zip8(cpu_env, tmp, tmp2);
+ break;
+ case 1:
+ gen_helper_neon_zip16(cpu_env, tmp, tmp2);
+ break;
+ default:
+ abort();
+ }
+ }
+ tcg_temp_free_i32(tmp);
+ tcg_temp_free_i32(tmp2);
+ return 0;
+}
+
+static void gen_neon_trn_u8(TCGv t0, TCGv t1)
+{
+ TCGv rd, tmp;
+
+ rd = tcg_temp_new_i32();
+ tmp = tcg_temp_new_i32();
+
+ tcg_gen_shli_i32(rd, t0, 8);
+ tcg_gen_andi_i32(rd, rd, 0xff00ff00);
+ tcg_gen_andi_i32(tmp, t1, 0x00ff00ff);
+ tcg_gen_or_i32(rd, rd, tmp);
+
+ tcg_gen_shri_i32(t1, t1, 8);
+ tcg_gen_andi_i32(t1, t1, 0x00ff00ff);
+ tcg_gen_andi_i32(tmp, t0, 0xff00ff00);
+ tcg_gen_or_i32(t1, t1, tmp);
+ tcg_gen_mov_i32(t0, rd);
+
+ tcg_temp_free_i32(tmp);
+ tcg_temp_free_i32(rd);
+}
+
+static void gen_neon_trn_u16(TCGv t0, TCGv t1)
+{
+ TCGv rd, tmp;
+
+ rd = tcg_temp_new_i32();
+ tmp = tcg_temp_new_i32();
+
+ tcg_gen_shli_i32(rd, t0, 16);
+ tcg_gen_andi_i32(tmp, t1, 0xffff);
+ tcg_gen_or_i32(rd, rd, tmp);
+ tcg_gen_shri_i32(t1, t1, 16);
+ tcg_gen_andi_i32(tmp, t0, 0xffff0000);
+ tcg_gen_or_i32(t1, t1, tmp);
+ tcg_gen_mov_i32(t0, rd);
+
+ tcg_temp_free_i32(tmp);
+ tcg_temp_free_i32(rd);
+}
+
+
+static struct {
+ int nregs;
+ int interleave;
+ int spacing;
+} neon_ls_element_type[11] = {
+ {4, 4, 1},
+ {4, 4, 2},
+ {4, 1, 1},
+ {4, 2, 1},
+ {3, 3, 1},
+ {3, 3, 2},
+ {3, 1, 1},
+ {1, 1, 1},
+ {2, 2, 1},
+ {2, 2, 2},
+ {2, 1, 1}
+};
+
+/* Translate a NEON load/store element instruction. Return nonzero if the
+ instruction is invalid. */
+static int disas_neon_ls_insn(CPUARMState * env, DisasContext *s, uint32_t insn)
+{
+ int rd, rn, rm;
+ int op;
+ int nregs;
+ int interleave;
+ int spacing;
+ int stride;
+ int size;
+ int reg;
+ int pass;
+ int load;
+ int shift;
+ int n;
+ TCGv addr;
+ TCGv tmp;
+ TCGv tmp2;
+ TCGv_i64 tmp64;
+
+ if (!s->vfp_enabled)
+ return 1;
+ VFP_DREG_D(rd, insn);
+ rn = (insn >> 16) & 0xf;
+ rm = insn & 0xf;
+ load = (insn & (1 << 21)) != 0;
+ if ((insn & (1 << 23)) == 0) {
+ /* Load store all elements. */
+ op = (insn >> 8) & 0xf;
+ size = (insn >> 6) & 3;
+ if (op > 10)
+ return 1;
+ /* Catch UNDEF cases for bad values of align field */
+ switch (op & 0xc) {
+ case 4:
+ if (((insn >> 5) & 1) == 1) {
+ return 1;
+ }
+ break;
+ case 8:
+ if (((insn >> 4) & 3) == 3) {
+ return 1;
+ }
+ break;
+ default:
+ break;
+ }
+ nregs = neon_ls_element_type[op].nregs;
+ interleave = neon_ls_element_type[op].interleave;
+ spacing = neon_ls_element_type[op].spacing;
+ if (size == 3 && (interleave | spacing) != 1)
+ return 1;
+ addr = tcg_temp_new_i32();
+ load_reg_var(s, addr, rn);
+ stride = (1 << size) * interleave;
+ for (reg = 0; reg < nregs; reg++) {
+ if (interleave > 2 || (interleave == 2 && nregs == 2)) {
+ load_reg_var(s, addr, rn);
+ tcg_gen_addi_i32(addr, addr, (1 << size) * reg);
+ } else if (interleave == 2 && nregs == 4 && reg == 2) {
+ load_reg_var(s, addr, rn);
+ tcg_gen_addi_i32(addr, addr, 1 << size);
+ }
+ if (size == 3) {
+ if (load) {
+ tmp64 = gen_ld64(addr, IS_USER(s));
+ neon_store_reg64(tmp64, rd);
+ tcg_temp_free_i64(tmp64);
+ } else {
+ tmp64 = tcg_temp_new_i64();
+ neon_load_reg64(tmp64, rd);
+ gen_st64(tmp64, addr, IS_USER(s));
+ }
+ tcg_gen_addi_i32(addr, addr, stride);
+ } else {
+ for (pass = 0; pass < 2; pass++) {
+ if (size == 2) {
+ if (load) {
+ tmp = gen_ld32(addr, IS_USER(s));
+ neon_store_reg(rd, pass, tmp);
+ } else {
+ tmp = neon_load_reg(rd, pass);
+ gen_st32(tmp, addr, IS_USER(s));
+ }
+ tcg_gen_addi_i32(addr, addr, stride);
+ } else if (size == 1) {
+ if (load) {
+ tmp = gen_ld16u(addr, IS_USER(s));
+ tcg_gen_addi_i32(addr, addr, stride);
+ tmp2 = gen_ld16u(addr, IS_USER(s));
+ tcg_gen_addi_i32(addr, addr, stride);
+ tcg_gen_shli_i32(tmp2, tmp2, 16);
+ tcg_gen_or_i32(tmp, tmp, tmp2);
+ tcg_temp_free_i32(tmp2);
+ neon_store_reg(rd, pass, tmp);
+ } else {
+ tmp = neon_load_reg(rd, pass);
+ tmp2 = tcg_temp_new_i32();
+ tcg_gen_shri_i32(tmp2, tmp, 16);
+ gen_st16(tmp, addr, IS_USER(s));
+ tcg_gen_addi_i32(addr, addr, stride);
+ gen_st16(tmp2, addr, IS_USER(s));
+ tcg_gen_addi_i32(addr, addr, stride);
+ }
+ } else /* size == 0 */ {
+ if (load) {
+ TCGV_UNUSED(tmp2);
+ for (n = 0; n < 4; n++) {
+ tmp = gen_ld8u(addr, IS_USER(s));
+ tcg_gen_addi_i32(addr, addr, stride);
+ if (n == 0) {
+ tmp2 = tmp;
+ } else {
+ tcg_gen_shli_i32(tmp, tmp, n * 8);
+ tcg_gen_or_i32(tmp2, tmp2, tmp);
+ tcg_temp_free_i32(tmp);
+ }
+ }
+ neon_store_reg(rd, pass, tmp2);
+ } else {
+ tmp2 = neon_load_reg(rd, pass);
+ for (n = 0; n < 4; n++) {
+ tmp = tcg_temp_new_i32();
+ if (n == 0) {
+ tcg_gen_mov_i32(tmp, tmp2);
+ } else {
+ tcg_gen_shri_i32(tmp, tmp2, n * 8);
+ }
+ gen_st8(tmp, addr, IS_USER(s));
+ tcg_gen_addi_i32(addr, addr, stride);
+ }
+ tcg_temp_free_i32(tmp2);
+ }
+ }
+ }
+ }
+ rd += spacing;
+ }
+ tcg_temp_free_i32(addr);
+ stride = nregs * 8;
+ } else {
+ size = (insn >> 10) & 3;
+ if (size == 3) {
+ /* Load single element to all lanes. */
+ int a = (insn >> 4) & 1;
+ if (!load) {
+ return 1;
+ }
+ size = (insn >> 6) & 3;
+ nregs = ((insn >> 8) & 3) + 1;
+
+ if (size == 3) {
+ if (nregs != 4 || a == 0) {
+ return 1;
+ }
+ /* For VLD4 size==3 a == 1 means 32 bits at 16 byte alignment */
+ size = 2;
+ }
+ if (nregs == 1 && a == 1 && size == 0) {
+ return 1;
+ }
+ if (nregs == 3 && a == 1) {
+ return 1;
+ }
+ addr = tcg_temp_new_i32();
+ load_reg_var(s, addr, rn);
+ if (nregs == 1) {
+ /* VLD1 to all lanes: bit 5 indicates how many Dregs to write */
+ tmp = gen_load_and_replicate(s, addr, size);
+ tcg_gen_st_i32(tmp, cpu_env, neon_reg_offset(rd, 0));
+ tcg_gen_st_i32(tmp, cpu_env, neon_reg_offset(rd, 1));
+ if (insn & (1 << 5)) {
+ tcg_gen_st_i32(tmp, cpu_env, neon_reg_offset(rd + 1, 0));
+ tcg_gen_st_i32(tmp, cpu_env, neon_reg_offset(rd + 1, 1));
+ }
+ tcg_temp_free_i32(tmp);
+ } else {
+ /* VLD2/3/4 to all lanes: bit 5 indicates register stride */
+ stride = (insn & (1 << 5)) ? 2 : 1;
+ for (reg = 0; reg < nregs; reg++) {
+ tmp = gen_load_and_replicate(s, addr, size);
+ tcg_gen_st_i32(tmp, cpu_env, neon_reg_offset(rd, 0));
+ tcg_gen_st_i32(tmp, cpu_env, neon_reg_offset(rd, 1));
+ tcg_temp_free_i32(tmp);
+ tcg_gen_addi_i32(addr, addr, 1 << size);
+ rd += stride;
+ }
+ }
+ tcg_temp_free_i32(addr);
+ stride = (1 << size) * nregs;
+ } else {
+ /* Single element. */
+ int idx = (insn >> 4) & 0xf;
+ pass = (insn >> 7) & 1;
+ switch (size) {
+ case 0:
+ shift = ((insn >> 5) & 3) * 8;
+ stride = 1;
+ break;
+ case 1:
+ shift = ((insn >> 6) & 1) * 16;
+ stride = (insn & (1 << 5)) ? 2 : 1;
+ break;
+ case 2:
+ shift = 0;
+ stride = (insn & (1 << 6)) ? 2 : 1;
+ break;
+ default:
+ abort();
+ }
+ nregs = ((insn >> 8) & 3) + 1;
+ /* Catch the UNDEF cases. This is unavoidably a bit messy. */
+ switch (nregs) {
+ case 1:
+ if (((idx & (1 << size)) != 0) ||
+ (size == 2 && ((idx & 3) == 1 || (idx & 3) == 2))) {
+ return 1;
+ }
+ break;
+ case 3:
+ if ((idx & 1) != 0) {
+ return 1;
+ }
+ /* fall through */
+ case 2:
+ if (size == 2 && (idx & 2) != 0) {
+ return 1;
+ }
+ break;
+ case 4:
+ if ((size == 2) && ((idx & 3) == 3)) {
+ return 1;
+ }
+ break;
+ default:
+ abort();
+ }
+ if ((rd + stride * (nregs - 1)) > 31) {
+ /* Attempts to write off the end of the register file
+ * are UNPREDICTABLE; we choose to UNDEF because otherwise
+ * the neon_load_reg() would write off the end of the array.
+ */
+ return 1;
+ }
+ addr = tcg_temp_new_i32();
+ load_reg_var(s, addr, rn);
+ for (reg = 0; reg < nregs; reg++) {
+ if (load) {
+ switch (size) {
+ case 0:
+ tmp = gen_ld8u(addr, IS_USER(s));
+ break;
+ case 1:
+ tmp = gen_ld16u(addr, IS_USER(s));
+ break;
+ case 2:
+ tmp = gen_ld32(addr, IS_USER(s));
+ break;
+ default: /* Avoid compiler warnings. */
+ abort();
+ }
+ if (size != 2) {
+ tmp2 = neon_load_reg(rd, pass);
+ gen_bfi(tmp, tmp2, tmp, shift, size ? 0xffff : 0xff);
+ tcg_temp_free_i32(tmp2);
+ }
+ neon_store_reg(rd, pass, tmp);
+ } else { /* Store */
+ tmp = neon_load_reg(rd, pass);
+ if (shift)
+ tcg_gen_shri_i32(tmp, tmp, shift);
+ switch (size) {
+ case 0:
+ gen_st8(tmp, addr, IS_USER(s));
+ break;
+ case 1:
+ gen_st16(tmp, addr, IS_USER(s));
+ break;
+ case 2:
+ gen_st32(tmp, addr, IS_USER(s));
+ break;
+ }
+ }
+ rd += stride;
+ tcg_gen_addi_i32(addr, addr, 1 << size);
+ }
+ tcg_temp_free_i32(addr);
+ stride = nregs * (1 << size);
+ }
+ }
+ if (rm != 15) {
+ TCGv base;
+
+ base = load_reg(s, rn);
+ if (rm == 13) {
+ tcg_gen_addi_i32(base, base, stride);
+ } else {
+ TCGv index;
+ index = load_reg(s, rm);
+ tcg_gen_add_i32(base, base, index);
+ tcg_temp_free_i32(index);
+ }
+ store_reg(s, rn, base);
+ }
+ return 0;
+}
+
+/* Bitwise select. dest = c ? t : f. Clobbers T and F. */
+static void gen_neon_bsl(TCGv dest, TCGv t, TCGv f, TCGv c)
+{
+ tcg_gen_and_i32(t, t, c);
+ tcg_gen_andc_i32(f, f, c);
+ tcg_gen_or_i32(dest, t, f);
+}
+
+static inline void gen_neon_narrow(int size, TCGv dest, TCGv_i64 src)
+{
+ switch (size) {
+ case 0: gen_helper_neon_narrow_u8(dest, src); break;
+ case 1: gen_helper_neon_narrow_u16(dest, src); break;
+ case 2: tcg_gen_trunc_i64_i32(dest, src); break;
+ default: abort();
+ }
+}
+
+static inline void gen_neon_narrow_sats(int size, TCGv dest, TCGv_i64 src)
+{
+ switch (size) {
+ case 0: gen_helper_neon_narrow_sat_s8(dest, cpu_env, src); break;
+ case 1: gen_helper_neon_narrow_sat_s16(dest, cpu_env, src); break;
+ case 2: gen_helper_neon_narrow_sat_s32(dest, cpu_env, src); break;
+ default: abort();
+ }
+}
+
+static inline void gen_neon_narrow_satu(int size, TCGv dest, TCGv_i64 src)
+{
+ switch (size) {
+ case 0: gen_helper_neon_narrow_sat_u8(dest, cpu_env, src); break;
+ case 1: gen_helper_neon_narrow_sat_u16(dest, cpu_env, src); break;
+ case 2: gen_helper_neon_narrow_sat_u32(dest, cpu_env, src); break;
+ default: abort();
+ }
+}
+
+static inline void gen_neon_unarrow_sats(int size, TCGv dest, TCGv_i64 src)
+{
+ switch (size) {
+ case 0: gen_helper_neon_unarrow_sat8(dest, cpu_env, src); break;
+ case 1: gen_helper_neon_unarrow_sat16(dest, cpu_env, src); break;
+ case 2: gen_helper_neon_unarrow_sat32(dest, cpu_env, src); break;
+ default: abort();
+ }
+}
+
+static inline void gen_neon_shift_narrow(int size, TCGv var, TCGv shift,
+ int q, int u)
+{
+ if (q) {
+ if (u) {
+ switch (size) {
+ case 1: gen_helper_neon_rshl_u16(var, var, shift); break;
+ case 2: gen_helper_neon_rshl_u32(var, var, shift); break;
+ default: abort();
+ }
+ } else {
+ switch (size) {
+ case 1: gen_helper_neon_rshl_s16(var, var, shift); break;
+ case 2: gen_helper_neon_rshl_s32(var, var, shift); break;
+ default: abort();
+ }
+ }
+ } else {
+ if (u) {
+ switch (size) {
+ case 1: gen_helper_neon_shl_u16(var, var, shift); break;
+ case 2: gen_helper_neon_shl_u32(var, var, shift); break;
+ default: abort();
+ }
+ } else {
+ switch (size) {
+ case 1: gen_helper_neon_shl_s16(var, var, shift); break;
+ case 2: gen_helper_neon_shl_s32(var, var, shift); break;
+ default: abort();
+ }
+ }
+ }
+}
+
+static inline void gen_neon_widen(TCGv_i64 dest, TCGv src, int size, int u)
+{
+ if (u) {
+ switch (size) {
+ case 0: gen_helper_neon_widen_u8(dest, src); break;
+ case 1: gen_helper_neon_widen_u16(dest, src); break;
+ case 2: tcg_gen_extu_i32_i64(dest, src); break;
+ default: abort();
+ }
+ } else {
+ switch (size) {
+ case 0: gen_helper_neon_widen_s8(dest, src); break;
+ case 1: gen_helper_neon_widen_s16(dest, src); break;
+ case 2: tcg_gen_ext_i32_i64(dest, src); break;
+ default: abort();
+ }
+ }
+ tcg_temp_free_i32(src);
+}
+
+static inline void gen_neon_addl(int size)
+{
+ switch (size) {
+ case 0: gen_helper_neon_addl_u16(CPU_V001); break;
+ case 1: gen_helper_neon_addl_u32(CPU_V001); break;
+ case 2: tcg_gen_add_i64(CPU_V001); break;
+ default: abort();
+ }
+}
+
+static inline void gen_neon_subl(int size)
+{
+ switch (size) {
+ case 0: gen_helper_neon_subl_u16(CPU_V001); break;
+ case 1: gen_helper_neon_subl_u32(CPU_V001); break;
+ case 2: tcg_gen_sub_i64(CPU_V001); break;
+ default: abort();
+ }
+}
+
+static inline void gen_neon_negl(TCGv_i64 var, int size)
+{
+ switch (size) {
+ case 0: gen_helper_neon_negl_u16(var, var); break;
+ case 1: gen_helper_neon_negl_u32(var, var); break;
+ case 2: gen_helper_neon_negl_u64(var, var); break;
+ default: abort();
+ }
+}
+
+static inline void gen_neon_addl_saturate(TCGv_i64 op0, TCGv_i64 op1, int size)
+{
+ switch (size) {
+ case 1: gen_helper_neon_addl_saturate_s32(op0, cpu_env, op0, op1); break;
+ case 2: gen_helper_neon_addl_saturate_s64(op0, cpu_env, op0, op1); break;
+ default: abort();
+ }
+}
+
+static inline void gen_neon_mull(TCGv_i64 dest, TCGv a, TCGv b, int size, int u)
+{
+ TCGv_i64 tmp;
+
+ switch ((size << 1) | u) {
+ case 0: gen_helper_neon_mull_s8(dest, a, b); break;
+ case 1: gen_helper_neon_mull_u8(dest, a, b); break;
+ case 2: gen_helper_neon_mull_s16(dest, a, b); break;
+ case 3: gen_helper_neon_mull_u16(dest, a, b); break;
+ case 4:
+ tmp = gen_muls_i64_i32(a, b);
+ tcg_gen_mov_i64(dest, tmp);
+ tcg_temp_free_i64(tmp);
+ break;
+ case 5:
+ tmp = gen_mulu_i64_i32(a, b);
+ tcg_gen_mov_i64(dest, tmp);
+ tcg_temp_free_i64(tmp);
+ break;
+ default: abort();
+ }
+
+ /* gen_helper_neon_mull_[su]{8|16} do not free their parameters.
+ Don't forget to clean them now. */
+ if (size < 2) {
+ tcg_temp_free_i32(a);
+ tcg_temp_free_i32(b);
+ }
+}
+
+static void gen_neon_narrow_op(int op, int u, int size, TCGv dest, TCGv_i64 src)
+{
+ if (op) {
+ if (u) {
+ gen_neon_unarrow_sats(size, dest, src);
+ } else {
+ gen_neon_narrow(size, dest, src);
+ }
+ } else {
+ if (u) {
+ gen_neon_narrow_satu(size, dest, src);
+ } else {
+ gen_neon_narrow_sats(size, dest, src);
+ }
+ }
+}
+
+/* Symbolic constants for op fields for Neon 3-register same-length.
+ * The values correspond to bits [11:8,4]; see the ARM ARM DDI0406B
+ * table A7-9.
+ */
+#define NEON_3R_VHADD 0
+#define NEON_3R_VQADD 1
+#define NEON_3R_VRHADD 2
+#define NEON_3R_LOGIC 3 /* VAND,VBIC,VORR,VMOV,VORN,VEOR,VBIF,VBIT,VBSL */
+#define NEON_3R_VHSUB 4
+#define NEON_3R_VQSUB 5
+#define NEON_3R_VCGT 6
+#define NEON_3R_VCGE 7
+#define NEON_3R_VSHL 8
+#define NEON_3R_VQSHL 9
+#define NEON_3R_VRSHL 10
+#define NEON_3R_VQRSHL 11
+#define NEON_3R_VMAX 12
+#define NEON_3R_VMIN 13
+#define NEON_3R_VABD 14
+#define NEON_3R_VABA 15
+#define NEON_3R_VADD_VSUB 16
+#define NEON_3R_VTST_VCEQ 17
+#define NEON_3R_VML 18 /* VMLA, VMLAL, VMLS, VMLSL */
+#define NEON_3R_VMUL 19
+#define NEON_3R_VPMAX 20
+#define NEON_3R_VPMIN 21
+#define NEON_3R_VQDMULH_VQRDMULH 22
+#define NEON_3R_VPADD 23
+#define NEON_3R_VFM 25 /* VFMA, VFMS : float fused multiply-add */
+#define NEON_3R_FLOAT_ARITH 26 /* float VADD, VSUB, VPADD, VABD */
+#define NEON_3R_FLOAT_MULTIPLY 27 /* float VMLA, VMLS, VMUL */
+#define NEON_3R_FLOAT_CMP 28 /* float VCEQ, VCGE, VCGT */
+#define NEON_3R_FLOAT_ACMP 29 /* float VACGE, VACGT, VACLE, VACLT */
+#define NEON_3R_FLOAT_MINMAX 30 /* float VMIN, VMAX */
+#define NEON_3R_VRECPS_VRSQRTS 31 /* float VRECPS, VRSQRTS */
+
+static const uint8_t neon_3r_sizes[] = {
+ [NEON_3R_VHADD] = 0x7,
+ [NEON_3R_VQADD] = 0xf,
+ [NEON_3R_VRHADD] = 0x7,
+ [NEON_3R_LOGIC] = 0xf, /* size field encodes op type */
+ [NEON_3R_VHSUB] = 0x7,
+ [NEON_3R_VQSUB] = 0xf,
+ [NEON_3R_VCGT] = 0x7,
+ [NEON_3R_VCGE] = 0x7,
+ [NEON_3R_VSHL] = 0xf,
+ [NEON_3R_VQSHL] = 0xf,
+ [NEON_3R_VRSHL] = 0xf,
+ [NEON_3R_VQRSHL] = 0xf,
+ [NEON_3R_VMAX] = 0x7,
+ [NEON_3R_VMIN] = 0x7,
+ [NEON_3R_VABD] = 0x7,
+ [NEON_3R_VABA] = 0x7,
+ [NEON_3R_VADD_VSUB] = 0xf,
+ [NEON_3R_VTST_VCEQ] = 0x7,
+ [NEON_3R_VML] = 0x7,
+ [NEON_3R_VMUL] = 0x7,
+ [NEON_3R_VPMAX] = 0x7,
+ [NEON_3R_VPMIN] = 0x7,
+ [NEON_3R_VQDMULH_VQRDMULH] = 0x6,
+ [NEON_3R_VPADD] = 0x7,
+ [NEON_3R_VFM] = 0x5, /* size bit 1 encodes op */
+ [NEON_3R_FLOAT_ARITH] = 0x5, /* size bit 1 encodes op */
+ [NEON_3R_FLOAT_MULTIPLY] = 0x5, /* size bit 1 encodes op */
+ [NEON_3R_FLOAT_CMP] = 0x5, /* size bit 1 encodes op */
+ [NEON_3R_FLOAT_ACMP] = 0x5, /* size bit 1 encodes op */
+ [NEON_3R_FLOAT_MINMAX] = 0x5, /* size bit 1 encodes op */
+ [NEON_3R_VRECPS_VRSQRTS] = 0x5, /* size bit 1 encodes op */
+};
+
+/* Symbolic constants for op fields for Neon 2-register miscellaneous.
+ * The values correspond to bits [17:16,10:7]; see the ARM ARM DDI0406B
+ * table A7-13.
+ */
+#define NEON_2RM_VREV64 0
+#define NEON_2RM_VREV32 1
+#define NEON_2RM_VREV16 2
+#define NEON_2RM_VPADDL 4
+#define NEON_2RM_VPADDL_U 5
+#define NEON_2RM_VCLS 8
+#define NEON_2RM_VCLZ 9
+#define NEON_2RM_VCNT 10
+#define NEON_2RM_VMVN 11
+#define NEON_2RM_VPADAL 12
+#define NEON_2RM_VPADAL_U 13
+#define NEON_2RM_VQABS 14
+#define NEON_2RM_VQNEG 15
+#define NEON_2RM_VCGT0 16
+#define NEON_2RM_VCGE0 17
+#define NEON_2RM_VCEQ0 18
+#define NEON_2RM_VCLE0 19
+#define NEON_2RM_VCLT0 20
+#define NEON_2RM_VABS 22
+#define NEON_2RM_VNEG 23
+#define NEON_2RM_VCGT0_F 24
+#define NEON_2RM_VCGE0_F 25
+#define NEON_2RM_VCEQ0_F 26
+#define NEON_2RM_VCLE0_F 27
+#define NEON_2RM_VCLT0_F 28
+#define NEON_2RM_VABS_F 30
+#define NEON_2RM_VNEG_F 31
+#define NEON_2RM_VSWP 32
+#define NEON_2RM_VTRN 33
+#define NEON_2RM_VUZP 34
+#define NEON_2RM_VZIP 35
+#define NEON_2RM_VMOVN 36 /* Includes VQMOVN, VQMOVUN */
+#define NEON_2RM_VQMOVN 37 /* Includes VQMOVUN */
+#define NEON_2RM_VSHLL 38
+#define NEON_2RM_VCVT_F16_F32 44
+#define NEON_2RM_VCVT_F32_F16 46
+#define NEON_2RM_VRECPE 56
+#define NEON_2RM_VRSQRTE 57
+#define NEON_2RM_VRECPE_F 58
+#define NEON_2RM_VRSQRTE_F 59
+#define NEON_2RM_VCVT_FS 60
+#define NEON_2RM_VCVT_FU 61
+#define NEON_2RM_VCVT_SF 62
+#define NEON_2RM_VCVT_UF 63
+
+static int neon_2rm_is_float_op(int op)
+{
+ /* Return true if this neon 2reg-misc op is float-to-float */
+ return (op == NEON_2RM_VABS_F || op == NEON_2RM_VNEG_F ||
+ op >= NEON_2RM_VRECPE_F);
+}
+
+/* Each entry in this array has bit n set if the insn allows
+ * size value n (otherwise it will UNDEF). Since unallocated
+ * op values will have no bits set they always UNDEF.
+ */
+static const uint8_t neon_2rm_sizes[] = {
+ [NEON_2RM_VREV64] = 0x7,
+ [NEON_2RM_VREV32] = 0x3,
+ [NEON_2RM_VREV16] = 0x1,
+ [NEON_2RM_VPADDL] = 0x7,
+ [NEON_2RM_VPADDL_U] = 0x7,
+ [NEON_2RM_VCLS] = 0x7,
+ [NEON_2RM_VCLZ] = 0x7,
+ [NEON_2RM_VCNT] = 0x1,
+ [NEON_2RM_VMVN] = 0x1,
+ [NEON_2RM_VPADAL] = 0x7,
+ [NEON_2RM_VPADAL_U] = 0x7,
+ [NEON_2RM_VQABS] = 0x7,
+ [NEON_2RM_VQNEG] = 0x7,
+ [NEON_2RM_VCGT0] = 0x7,
+ [NEON_2RM_VCGE0] = 0x7,
+ [NEON_2RM_VCEQ0] = 0x7,
+ [NEON_2RM_VCLE0] = 0x7,
+ [NEON_2RM_VCLT0] = 0x7,
+ [NEON_2RM_VABS] = 0x7,
+ [NEON_2RM_VNEG] = 0x7,
+ [NEON_2RM_VCGT0_F] = 0x4,
+ [NEON_2RM_VCGE0_F] = 0x4,
+ [NEON_2RM_VCEQ0_F] = 0x4,
+ [NEON_2RM_VCLE0_F] = 0x4,
+ [NEON_2RM_VCLT0_F] = 0x4,
+ [NEON_2RM_VABS_F] = 0x4,
+ [NEON_2RM_VNEG_F] = 0x4,
+ [NEON_2RM_VSWP] = 0x1,
+ [NEON_2RM_VTRN] = 0x7,
+ [NEON_2RM_VUZP] = 0x7,
+ [NEON_2RM_VZIP] = 0x7,
+ [NEON_2RM_VMOVN] = 0x7,
+ [NEON_2RM_VQMOVN] = 0x7,
+ [NEON_2RM_VSHLL] = 0x7,
+ [NEON_2RM_VCVT_F16_F32] = 0x2,
+ [NEON_2RM_VCVT_F32_F16] = 0x2,
+ [NEON_2RM_VRECPE] = 0x4,
+ [NEON_2RM_VRSQRTE] = 0x4,
+ [NEON_2RM_VRECPE_F] = 0x4,
+ [NEON_2RM_VRSQRTE_F] = 0x4,
+ [NEON_2RM_VCVT_FS] = 0x4,
+ [NEON_2RM_VCVT_FU] = 0x4,
+ [NEON_2RM_VCVT_SF] = 0x4,
+ [NEON_2RM_VCVT_UF] = 0x4,
+};
+
+/* Translate a NEON data processing instruction. Return nonzero if the
+ instruction is invalid.
+ We process data in a mixture of 32-bit and 64-bit chunks.
+ Mostly we use 32-bit chunks so we can use normal scalar instructions. */
+
+static int disas_neon_data_insn(CPUARMState * env, DisasContext *s, uint32_t insn)
+{
+ int op;
+ int q;
+ int rd, rn, rm;
+ int size;
+ int shift;
+ int pass;
+ int count;
+ int pairwise;
+ int u;
+ uint32_t imm, mask;
+ TCGv tmp, tmp2, tmp3, tmp4, tmp5;
+ TCGv_i64 tmp64;
+
+ if (!s->vfp_enabled)
+ return 1;
+ q = (insn & (1 << 6)) != 0;
+ u = (insn >> 24) & 1;
+ VFP_DREG_D(rd, insn);
+ VFP_DREG_N(rn, insn);
+ VFP_DREG_M(rm, insn);
+ size = (insn >> 20) & 3;
+ if ((insn & (1 << 23)) == 0) {
+ /* Three register same length. */
+ op = ((insn >> 7) & 0x1e) | ((insn >> 4) & 1);
+ /* Catch invalid op and bad size combinations: UNDEF */
+ if ((neon_3r_sizes[op] & (1 << size)) == 0) {
+ return 1;
+ }
+ /* All insns of this form UNDEF for either this condition or the
+ * superset of cases "Q==1"; we catch the latter later.
+ */
+ if (q && ((rd | rn | rm) & 1)) {
+ return 1;
+ }
+ if (size == 3 && op != NEON_3R_LOGIC) {
+ /* 64-bit element instructions. */
+ for (pass = 0; pass < (q ? 2 : 1); pass++) {
+ neon_load_reg64(cpu_V0, rn + pass);
+ neon_load_reg64(cpu_V1, rm + pass);
+ switch (op) {
+ case NEON_3R_VQADD:
+ if (u) {
+ gen_helper_neon_qadd_u64(cpu_V0, cpu_env,
+ cpu_V0, cpu_V1);
+ } else {
+ gen_helper_neon_qadd_s64(cpu_V0, cpu_env,
+ cpu_V0, cpu_V1);
+ }
+ break;
+ case NEON_3R_VQSUB:
+ if (u) {
+ gen_helper_neon_qsub_u64(cpu_V0, cpu_env,
+ cpu_V0, cpu_V1);
+ } else {
+ gen_helper_neon_qsub_s64(cpu_V0, cpu_env,
+ cpu_V0, cpu_V1);
+ }
+ break;
+ case NEON_3R_VSHL:
+ if (u) {
+ gen_helper_neon_shl_u64(cpu_V0, cpu_V1, cpu_V0);
+ } else {
+ gen_helper_neon_shl_s64(cpu_V0, cpu_V1, cpu_V0);
+ }
+ break;
+ case NEON_3R_VQSHL:
+ if (u) {
+ gen_helper_neon_qshl_u64(cpu_V0, cpu_env,
+ cpu_V1, cpu_V0);
+ } else {
+ gen_helper_neon_qshl_s64(cpu_V0, cpu_env,
+ cpu_V1, cpu_V0);
+ }
+ break;
+ case NEON_3R_VRSHL:
+ if (u) {
+ gen_helper_neon_rshl_u64(cpu_V0, cpu_V1, cpu_V0);
+ } else {
+ gen_helper_neon_rshl_s64(cpu_V0, cpu_V1, cpu_V0);
+ }
+ break;
+ case NEON_3R_VQRSHL:
+ if (u) {
+ gen_helper_neon_qrshl_u64(cpu_V0, cpu_env,
+ cpu_V1, cpu_V0);
+ } else {
+ gen_helper_neon_qrshl_s64(cpu_V0, cpu_env,
+ cpu_V1, cpu_V0);
+ }
+ break;
+ case NEON_3R_VADD_VSUB:
+ if (u) {
+ tcg_gen_sub_i64(CPU_V001);
+ } else {
+ tcg_gen_add_i64(CPU_V001);
+ }
+ break;
+ default:
+ abort();
+ }
+ neon_store_reg64(cpu_V0, rd + pass);
+ }
+ return 0;
+ }
+ pairwise = 0;
+ switch (op) {
+ case NEON_3R_VSHL:
+ case NEON_3R_VQSHL:
+ case NEON_3R_VRSHL:
+ case NEON_3R_VQRSHL:
+ {
+ int rtmp;
+ /* Shift instruction operands are reversed. */
+ rtmp = rn;
+ rn = rm;
+ rm = rtmp;
+ }
+ break;
+ case NEON_3R_VPADD:
+ if (u) {
+ return 1;
+ }
+ /* Fall through */
+ case NEON_3R_VPMAX:
+ case NEON_3R_VPMIN:
+ pairwise = 1;
+ break;
+ case NEON_3R_FLOAT_ARITH:
+ pairwise = (u && size < 2); /* if VPADD (float) */
+ break;
+ case NEON_3R_FLOAT_MINMAX:
+ pairwise = u; /* if VPMIN/VPMAX (float) */
+ break;
+ case NEON_3R_FLOAT_CMP:
+ if (!u && size) {
+ /* no encoding for U=0 C=1x */
+ return 1;
+ }
+ break;
+ case NEON_3R_FLOAT_ACMP:
+ if (!u) {
+ return 1;
+ }
+ break;
+ case NEON_3R_VRECPS_VRSQRTS:
+ if (u) {
+ return 1;
+ }
+ break;
+ case NEON_3R_VMUL:
+ if (u && (size != 0)) {
+ /* UNDEF on invalid size for polynomial subcase */
+ return 1;
+ }
+ break;
+ case NEON_3R_VFM:
+ if (!arm_feature(env, ARM_FEATURE_VFP4) || u) {
+ return 1;
+ }
+ break;
+ default:
+ break;
+ }
+
+ if (pairwise && q) {
+ /* All the pairwise insns UNDEF if Q is set */
+ return 1;
+ }
+
+ for (pass = 0; pass < (q ? 4 : 2); pass++) {
+
+ if (pairwise) {
+ /* Pairwise. */
+ if (pass < 1) {
+ tmp = neon_load_reg(rn, 0);
+ tmp2 = neon_load_reg(rn, 1);
+ } else {
+ tmp = neon_load_reg(rm, 0);
+ tmp2 = neon_load_reg(rm, 1);
+ }
+ } else {
+ /* Elementwise. */
+ tmp = neon_load_reg(rn, pass);
+ tmp2 = neon_load_reg(rm, pass);
+ }
+ switch (op) {
+ case NEON_3R_VHADD:
+ GEN_NEON_INTEGER_OP(hadd);
+ break;
+ case NEON_3R_VQADD:
+ GEN_NEON_INTEGER_OP_ENV(qadd);
+ break;
+ case NEON_3R_VRHADD:
+ GEN_NEON_INTEGER_OP(rhadd);
+ break;
+ case NEON_3R_LOGIC: /* Logic ops. */
+ switch ((u << 2) | size) {
+ case 0: /* VAND */
+ tcg_gen_and_i32(tmp, tmp, tmp2);
+ break;
+ case 1: /* BIC */
+ tcg_gen_andc_i32(tmp, tmp, tmp2);
+ break;
+ case 2: /* VORR */
+ tcg_gen_or_i32(tmp, tmp, tmp2);
+ break;
+ case 3: /* VORN */
+ tcg_gen_orc_i32(tmp, tmp, tmp2);
+ break;
+ case 4: /* VEOR */
+ tcg_gen_xor_i32(tmp, tmp, tmp2);
+ break;
+ case 5: /* VBSL */
+ tmp3 = neon_load_reg(rd, pass);
+ gen_neon_bsl(tmp, tmp, tmp2, tmp3);
+ tcg_temp_free_i32(tmp3);
+ break;
+ case 6: /* VBIT */
+ tmp3 = neon_load_reg(rd, pass);
+ gen_neon_bsl(tmp, tmp, tmp3, tmp2);
+ tcg_temp_free_i32(tmp3);
+ break;
+ case 7: /* VBIF */
+ tmp3 = neon_load_reg(rd, pass);
+ gen_neon_bsl(tmp, tmp3, tmp, tmp2);
+ tcg_temp_free_i32(tmp3);
+ break;
+ }
+ break;
+ case NEON_3R_VHSUB:
+ GEN_NEON_INTEGER_OP(hsub);
+ break;
+ case NEON_3R_VQSUB:
+ GEN_NEON_INTEGER_OP_ENV(qsub);
+ break;
+ case NEON_3R_VCGT:
+ GEN_NEON_INTEGER_OP(cgt);
+ break;
+ case NEON_3R_VCGE:
+ GEN_NEON_INTEGER_OP(cge);
+ break;
+ case NEON_3R_VSHL:
+ GEN_NEON_INTEGER_OP(shl);
+ break;
+ case NEON_3R_VQSHL:
+ GEN_NEON_INTEGER_OP_ENV(qshl);
+ break;
+ case NEON_3R_VRSHL:
+ GEN_NEON_INTEGER_OP(rshl);
+ break;
+ case NEON_3R_VQRSHL:
+ GEN_NEON_INTEGER_OP_ENV(qrshl);
+ break;
+ case NEON_3R_VMAX:
+ GEN_NEON_INTEGER_OP(max);
+ break;
+ case NEON_3R_VMIN:
+ GEN_NEON_INTEGER_OP(min);
+ break;
+ case NEON_3R_VABD:
+ GEN_NEON_INTEGER_OP(abd);
+ break;
+ case NEON_3R_VABA:
+ GEN_NEON_INTEGER_OP(abd);
+ tcg_temp_free_i32(tmp2);
+ tmp2 = neon_load_reg(rd, pass);
+ gen_neon_add(size, tmp, tmp2);
+ break;
+ case NEON_3R_VADD_VSUB:
+ if (!u) { /* VADD */
+ gen_neon_add(size, tmp, tmp2);
+ } else { /* VSUB */
+ switch (size) {
+ case 0: gen_helper_neon_sub_u8(tmp, tmp, tmp2); break;
+ case 1: gen_helper_neon_sub_u16(tmp, tmp, tmp2); break;
+ case 2: tcg_gen_sub_i32(tmp, tmp, tmp2); break;
+ default: abort();
+ }
+ }
+ break;
+ case NEON_3R_VTST_VCEQ:
+ if (!u) { /* VTST */
+ switch (size) {
+ case 0: gen_helper_neon_tst_u8(tmp, tmp, tmp2); break;
+ case 1: gen_helper_neon_tst_u16(tmp, tmp, tmp2); break;
+ case 2: gen_helper_neon_tst_u32(tmp, tmp, tmp2); break;
+ default: abort();
+ }
+ } else { /* VCEQ */
+ switch (size) {
+ case 0: gen_helper_neon_ceq_u8(tmp, tmp, tmp2); break;
+ case 1: gen_helper_neon_ceq_u16(tmp, tmp, tmp2); break;
+ case 2: gen_helper_neon_ceq_u32(tmp, tmp, tmp2); break;
+ default: abort();
+ }
+ }
+ break;
+ case NEON_3R_VML: /* VMLA, VMLAL, VMLS,VMLSL */
+ switch (size) {
+ case 0: gen_helper_neon_mul_u8(tmp, tmp, tmp2); break;
+ case 1: gen_helper_neon_mul_u16(tmp, tmp, tmp2); break;
+ case 2: tcg_gen_mul_i32(tmp, tmp, tmp2); break;
+ default: abort();
+ }
+ tcg_temp_free_i32(tmp2);
+ tmp2 = neon_load_reg(rd, pass);
+ if (u) { /* VMLS */
+ gen_neon_rsb(size, tmp, tmp2);
+ } else { /* VMLA */
+ gen_neon_add(size, tmp, tmp2);
+ }
+ break;
+ case NEON_3R_VMUL:
+ if (u) { /* polynomial */
+ gen_helper_neon_mul_p8(tmp, tmp, tmp2);
+ } else { /* Integer */
+ switch (size) {
+ case 0: gen_helper_neon_mul_u8(tmp, tmp, tmp2); break;
+ case 1: gen_helper_neon_mul_u16(tmp, tmp, tmp2); break;
+ case 2: tcg_gen_mul_i32(tmp, tmp, tmp2); break;
+ default: abort();
+ }
+ }
+ break;
+ case NEON_3R_VPMAX:
+ GEN_NEON_INTEGER_OP(pmax);
+ break;
+ case NEON_3R_VPMIN:
+ GEN_NEON_INTEGER_OP(pmin);
+ break;
+ case NEON_3R_VQDMULH_VQRDMULH: /* Multiply high. */
+ if (!u) { /* VQDMULH */
+ switch (size) {
+ case 1:
+ gen_helper_neon_qdmulh_s16(tmp, cpu_env, tmp, tmp2);
+ break;
+ case 2:
+ gen_helper_neon_qdmulh_s32(tmp, cpu_env, tmp, tmp2);
+ break;
+ default: abort();
+ }
+ } else { /* VQRDMULH */
+ switch (size) {
+ case 1:
+ gen_helper_neon_qrdmulh_s16(tmp, cpu_env, tmp, tmp2);
+ break;
+ case 2:
+ gen_helper_neon_qrdmulh_s32(tmp, cpu_env, tmp, tmp2);
+ break;
+ default: abort();
+ }
+ }
+ break;
+ case NEON_3R_VPADD:
+ switch (size) {
+ case 0: gen_helper_neon_padd_u8(tmp, tmp, tmp2); break;
+ case 1: gen_helper_neon_padd_u16(tmp, tmp, tmp2); break;
+ case 2: tcg_gen_add_i32(tmp, tmp, tmp2); break;
+ default: abort();
+ }
+ break;
+ case NEON_3R_FLOAT_ARITH: /* Floating point arithmetic. */
+ {
+ TCGv_ptr fpstatus = get_fpstatus_ptr(1);
+ switch ((u << 2) | size) {
+ case 0: /* VADD */
+ case 4: /* VPADD */
+ gen_helper_vfp_adds(tmp, tmp, tmp2, fpstatus);
+ break;
+ case 2: /* VSUB */
+ gen_helper_vfp_subs(tmp, tmp, tmp2, fpstatus);
+ break;
+ case 6: /* VABD */
+ gen_helper_neon_abd_f32(tmp, tmp, tmp2, fpstatus);
+ break;
+ default:
+ abort();
+ }
+ tcg_temp_free_ptr(fpstatus);
+ break;
+ }
+ case NEON_3R_FLOAT_MULTIPLY:
+ {
+ TCGv_ptr fpstatus = get_fpstatus_ptr(1);
+ gen_helper_vfp_muls(tmp, tmp, tmp2, fpstatus);
+ if (!u) {
+ tcg_temp_free_i32(tmp2);
+ tmp2 = neon_load_reg(rd, pass);
+ if (size == 0) {
+ gen_helper_vfp_adds(tmp, tmp, tmp2, fpstatus);
+ } else {
+ gen_helper_vfp_subs(tmp, tmp2, tmp, fpstatus);
+ }
+ }
+ tcg_temp_free_ptr(fpstatus);
+ break;
+ }
+ case NEON_3R_FLOAT_CMP:
+ {
+ TCGv_ptr fpstatus = get_fpstatus_ptr(1);
+ if (!u) {
+ gen_helper_neon_ceq_f32(tmp, tmp, tmp2, fpstatus);
+ } else {
+ if (size == 0) {
+ gen_helper_neon_cge_f32(tmp, tmp, tmp2, fpstatus);
+ } else {
+ gen_helper_neon_cgt_f32(tmp, tmp, tmp2, fpstatus);
+ }
+ }
+ tcg_temp_free_ptr(fpstatus);
+ break;
+ }
+ case NEON_3R_FLOAT_ACMP:
+ {
+ TCGv_ptr fpstatus = get_fpstatus_ptr(1);
+ if (size == 0) {
+ gen_helper_neon_acge_f32(tmp, tmp, tmp2, fpstatus);
+ } else {
+ gen_helper_neon_acgt_f32(tmp, tmp, tmp2, fpstatus);
+ }
+ tcg_temp_free_ptr(fpstatus);
+ break;
+ }
+ case NEON_3R_FLOAT_MINMAX:
+ {
+ TCGv_ptr fpstatus = get_fpstatus_ptr(1);
+ if (size == 0) {
+ gen_helper_neon_max_f32(tmp, tmp, tmp2, fpstatus);
+ } else {
+ gen_helper_neon_min_f32(tmp, tmp, tmp2, fpstatus);
+ }
+ tcg_temp_free_ptr(fpstatus);
+ break;
+ }
+ case NEON_3R_VRECPS_VRSQRTS:
+ if (size == 0)
+ gen_helper_recps_f32(tmp, tmp, tmp2, cpu_env);
+ else
+ gen_helper_rsqrts_f32(tmp, tmp, tmp2, cpu_env);
+ break;
+ case NEON_3R_VFM:
+ {
+ /* VFMA, VFMS: fused multiply-add */
+ TCGv_ptr fpstatus = get_fpstatus_ptr(1);
+ TCGv_i32 tmp3 = neon_load_reg(rd, pass);
+ if (size) {
+ /* VFMS */
+ gen_helper_vfp_negs(tmp, tmp);
+ }
+ gen_helper_vfp_muladds(tmp, tmp, tmp2, tmp3, fpstatus);
+ tcg_temp_free_i32(tmp3);
+ tcg_temp_free_ptr(fpstatus);
+ break;
+ }
+ default:
+ abort();
+ }
+ tcg_temp_free_i32(tmp2);
+
+ /* Save the result. For elementwise operations we can put it
+ straight into the destination register. For pairwise operations
+ we have to be careful to avoid clobbering the source operands. */
+ if (pairwise && rd == rm) {
+ neon_store_scratch(pass, tmp);
+ } else {
+ neon_store_reg(rd, pass, tmp);
+ }
+
+ } /* for pass */
+ if (pairwise && rd == rm) {
+ for (pass = 0; pass < (q ? 4 : 2); pass++) {
+ tmp = neon_load_scratch(pass);
+ neon_store_reg(rd, pass, tmp);
+ }
+ }
+ /* End of 3 register same size operations. */
+ } else if (insn & (1 << 4)) {
+ if ((insn & 0x00380080) != 0) {
+ /* Two registers and shift. */
+ op = (insn >> 8) & 0xf;
+ if (insn & (1 << 7)) {
+ /* 64-bit shift. */
+ if (op > 7) {
+ return 1;
+ }
+ size = 3;
+ } else {
+ size = 2;
+ while ((insn & (1 << (size + 19))) == 0)
+ size--;
+ }
+ shift = (insn >> 16) & ((1 << (3 + size)) - 1);
+ /* To avoid excessive duplication of ops we implement shift
+ by immediate using the variable shift operations. */
+ if (op < 8) {
+ /* Shift by immediate:
+ VSHR, VSRA, VRSHR, VRSRA, VSRI, VSHL, VQSHL, VQSHLU. */
+ if (q && ((rd | rm) & 1)) {
+ return 1;
+ }
+ if (!u && (op == 4 || op == 6)) {
+ return 1;
+ }
+ /* Right shifts are encoded as N - shift, where N is the
+ element size in bits. */
+ if (op <= 4)
+ shift = shift - (1 << (size + 3));
+ if (size == 3) {
+ count = q + 1;
+ } else {
+ count = q ? 4: 2;
+ }
+ switch (size) {
+ case 0:
+ imm = (uint8_t) shift;
+ imm |= imm << 8;
+ imm |= imm << 16;
+ break;
+ case 1:
+ imm = (uint16_t) shift;
+ imm |= imm << 16;
+ break;
+ case 2:
+ case 3:
+ imm = shift;
+ break;
+ default:
+ abort();
+ }
+
+ for (pass = 0; pass < count; pass++) {
+ if (size == 3) {
+ neon_load_reg64(cpu_V0, rm + pass);
+ tcg_gen_movi_i64(cpu_V1, imm);
+ switch (op) {
+ case 0: /* VSHR */
+ case 1: /* VSRA */
+ if (u)
+ gen_helper_neon_shl_u64(cpu_V0, cpu_V0, cpu_V1);
+ else
+ gen_helper_neon_shl_s64(cpu_V0, cpu_V0, cpu_V1);
+ break;
+ case 2: /* VRSHR */
+ case 3: /* VRSRA */
+ if (u)
+ gen_helper_neon_rshl_u64(cpu_V0, cpu_V0, cpu_V1);
+ else
+ gen_helper_neon_rshl_s64(cpu_V0, cpu_V0, cpu_V1);
+ break;
+ case 4: /* VSRI */
+ case 5: /* VSHL, VSLI */
+ gen_helper_neon_shl_u64(cpu_V0, cpu_V0, cpu_V1);
+ break;
+ case 6: /* VQSHLU */
+ gen_helper_neon_qshlu_s64(cpu_V0, cpu_env,
+ cpu_V0, cpu_V1);
+ break;
+ case 7: /* VQSHL */
+ if (u) {
+ gen_helper_neon_qshl_u64(cpu_V0, cpu_env,
+ cpu_V0, cpu_V1);
+ } else {
+ gen_helper_neon_qshl_s64(cpu_V0, cpu_env,
+ cpu_V0, cpu_V1);
+ }
+ break;
+ }
+ if (op == 1 || op == 3) {
+ /* Accumulate. */
+ neon_load_reg64(cpu_V1, rd + pass);
+ tcg_gen_add_i64(cpu_V0, cpu_V0, cpu_V1);
+ } else if (op == 4 || (op == 5 && u)) {
+ /* Insert */
+ neon_load_reg64(cpu_V1, rd + pass);
+ uint64_t mask;
+ if (shift < -63 || shift > 63) {
+ mask = 0;
+ } else {
+ if (op == 4) {
+ mask = 0xffffffffffffffffull >> -shift;
+ } else {
+ mask = 0xffffffffffffffffull << shift;
+ }
+ }
+ tcg_gen_andi_i64(cpu_V1, cpu_V1, ~mask);
+ tcg_gen_or_i64(cpu_V0, cpu_V0, cpu_V1);
+ }
+ neon_store_reg64(cpu_V0, rd + pass);
+ } else { /* size < 3 */
+ /* Operands in T0 and T1. */
+ tmp = neon_load_reg(rm, pass);
+ tmp2 = tcg_temp_new_i32();
+ tcg_gen_movi_i32(tmp2, imm);
+ switch (op) {
+ case 0: /* VSHR */
+ case 1: /* VSRA */
+ GEN_NEON_INTEGER_OP(shl);
+ break;
+ case 2: /* VRSHR */
+ case 3: /* VRSRA */
+ GEN_NEON_INTEGER_OP(rshl);
+ break;
+ case 4: /* VSRI */
+ case 5: /* VSHL, VSLI */
+ switch (size) {
+ case 0: gen_helper_neon_shl_u8(tmp, tmp, tmp2); break;
+ case 1: gen_helper_neon_shl_u16(tmp, tmp, tmp2); break;
+ case 2: gen_helper_neon_shl_u32(tmp, tmp, tmp2); break;
+ default: abort();
+ }
+ break;
+ case 6: /* VQSHLU */
+ switch (size) {
+ case 0:
+ gen_helper_neon_qshlu_s8(tmp, cpu_env,
+ tmp, tmp2);
+ break;
+ case 1:
+ gen_helper_neon_qshlu_s16(tmp, cpu_env,
+ tmp, tmp2);
+ break;
+ case 2:
+ gen_helper_neon_qshlu_s32(tmp, cpu_env,
+ tmp, tmp2);
+ break;
+ default:
+ abort();
+ }
+ break;
+ case 7: /* VQSHL */
+ GEN_NEON_INTEGER_OP_ENV(qshl);
+ break;
+ }
+ tcg_temp_free_i32(tmp2);
+
+ if (op == 1 || op == 3) {
+ /* Accumulate. */
+ tmp2 = neon_load_reg(rd, pass);
+ gen_neon_add(size, tmp, tmp2);
+ tcg_temp_free_i32(tmp2);
+ } else if (op == 4 || (op == 5 && u)) {
+ /* Insert */
+ switch (size) {
+ case 0:
+ if (op == 4)
+ mask = 0xff >> -shift;
+ else
+ mask = (uint8_t)(0xff << shift);
+ mask |= mask << 8;
+ mask |= mask << 16;
+ break;
+ case 1:
+ if (op == 4)
+ mask = 0xffff >> -shift;
+ else
+ mask = (uint16_t)(0xffff << shift);
+ mask |= mask << 16;
+ break;
+ case 2:
+ if (shift < -31 || shift > 31) {
+ mask = 0;
+ } else {
+ if (op == 4)
+ mask = 0xffffffffu >> -shift;
+ else
+ mask = 0xffffffffu << shift;
+ }
+ break;
+ default:
+ abort();
+ }
+ tmp2 = neon_load_reg(rd, pass);
+ tcg_gen_andi_i32(tmp, tmp, mask);
+ tcg_gen_andi_i32(tmp2, tmp2, ~mask);
+ tcg_gen_or_i32(tmp, tmp, tmp2);
+ tcg_temp_free_i32(tmp2);
+ }
+ neon_store_reg(rd, pass, tmp);
+ }
+ } /* for pass */
+ } else if (op < 10) {
+ /* Shift by immediate and narrow:
+ VSHRN, VRSHRN, VQSHRN, VQRSHRN. */
+ int input_unsigned = (op == 8) ? !u : u;
+ if (rm & 1) {
+ return 1;
+ }
+ shift = shift - (1 << (size + 3));
+ size++;
+ if (size == 3) {
+ tmp64 = tcg_const_i64(shift);
+ neon_load_reg64(cpu_V0, rm);
+ neon_load_reg64(cpu_V1, rm + 1);
+ for (pass = 0; pass < 2; pass++) {
+ TCGv_i64 in;
+ if (pass == 0) {
+ in = cpu_V0;
+ } else {
+ in = cpu_V1;
+ }
+ if (q) {
+ if (input_unsigned) {
+ gen_helper_neon_rshl_u64(cpu_V0, in, tmp64);
+ } else {
+ gen_helper_neon_rshl_s64(cpu_V0, in, tmp64);
+ }
+ } else {
+ if (input_unsigned) {
+ gen_helper_neon_shl_u64(cpu_V0, in, tmp64);
+ } else {
+ gen_helper_neon_shl_s64(cpu_V0, in, tmp64);
+ }
+ }
+ tmp = tcg_temp_new_i32();
+ gen_neon_narrow_op(op == 8, u, size - 1, tmp, cpu_V0);
+ neon_store_reg(rd, pass, tmp);
+ } /* for pass */
+ tcg_temp_free_i64(tmp64);
+ } else {
+ if (size == 1) {
+ imm = (uint16_t)shift;
+ imm |= imm << 16;
+ } else {
+ /* size == 2 */
+ imm = (uint32_t)shift;
+ }
+ tmp2 = tcg_const_i32(imm);
+ tmp4 = neon_load_reg(rm + 1, 0);
+ tmp5 = neon_load_reg(rm + 1, 1);
+ for (pass = 0; pass < 2; pass++) {
+ if (pass == 0) {
+ tmp = neon_load_reg(rm, 0);
+ } else {
+ tmp = tmp4;
+ }
+ gen_neon_shift_narrow(size, tmp, tmp2, q,
+ input_unsigned);
+ if (pass == 0) {
+ tmp3 = neon_load_reg(rm, 1);
+ } else {
+ tmp3 = tmp5;
+ }
+ gen_neon_shift_narrow(size, tmp3, tmp2, q,
+ input_unsigned);
+ tcg_gen_concat_i32_i64(cpu_V0, tmp, tmp3);
+ tcg_temp_free_i32(tmp);
+ tcg_temp_free_i32(tmp3);
+ tmp = tcg_temp_new_i32();
+ gen_neon_narrow_op(op == 8, u, size - 1, tmp, cpu_V0);
+ neon_store_reg(rd, pass, tmp);
+ } /* for pass */
+ tcg_temp_free_i32(tmp2);
+ }
+ } else if (op == 10) {
+ /* VSHLL, VMOVL */
+ if (q || (rd & 1)) {
+ return 1;
+ }
+ tmp = neon_load_reg(rm, 0);
+ tmp2 = neon_load_reg(rm, 1);
+ for (pass = 0; pass < 2; pass++) {
+ if (pass == 1)
+ tmp = tmp2;
+
+ gen_neon_widen(cpu_V0, tmp, size, u);
+
+ if (shift != 0) {
+ /* The shift is less than the width of the source
+ type, so we can just shift the whole register. */
+ tcg_gen_shli_i64(cpu_V0, cpu_V0, shift);
+ /* Widen the result of shift: we need to clear
+ * the potential overflow bits resulting from
+ * left bits of the narrow input appearing as
+ * right bits of left the neighbour narrow
+ * input. */
+ if (size < 2 || !u) {
+ uint64_t imm64;
+ if (size == 0) {
+ imm = (0xffu >> (8 - shift));
+ imm |= imm << 16;
+ } else if (size == 1) {
+ imm = 0xffff >> (16 - shift);
+ } else {
+ /* size == 2 */
+ imm = 0xffffffff >> (32 - shift);
+ }
+ if (size < 2) {
+ imm64 = imm | (((uint64_t)imm) << 32);
+ } else {
+ imm64 = imm;
+ }
+ tcg_gen_andi_i64(cpu_V0, cpu_V0, ~imm64);
+ }
+ }
+ neon_store_reg64(cpu_V0, rd + pass);
+ }
+ } else if (op >= 14) {
+ /* VCVT fixed-point. */
+ if (!(insn & (1 << 21)) || (q && ((rd | rm) & 1))) {
+ return 1;
+ }
+ /* We have already masked out the must-be-1 top bit of imm6,
+ * hence this 32-shift where the ARM ARM has 64-imm6.
+ */
+ shift = 32 - shift;
+ for (pass = 0; pass < (q ? 4 : 2); pass++) {
+ tcg_gen_ld_f32(cpu_F0s, cpu_env, neon_reg_offset(rm, pass));
+ if (!(op & 1)) {
+ if (u)
+ gen_vfp_ulto(0, shift, 1);
+ else
+ gen_vfp_slto(0, shift, 1);
+ } else {
+ if (u)
+ gen_vfp_toul(0, shift, 1);
+ else
+ gen_vfp_tosl(0, shift, 1);
+ }
+ tcg_gen_st_f32(cpu_F0s, cpu_env, neon_reg_offset(rd, pass));
+ }
+ } else {
+ return 1;
+ }
+ } else { /* (insn & 0x00380080) == 0 */
+ int invert;
+ if (q && (rd & 1)) {
+ return 1;
+ }
+
+ op = (insn >> 8) & 0xf;
+ /* One register and immediate. */
+ imm = (u << 7) | ((insn >> 12) & 0x70) | (insn & 0xf);
+ invert = (insn & (1 << 5)) != 0;
+ /* Note that op = 2,3,4,5,6,7,10,11,12,13 imm=0 is UNPREDICTABLE.
+ * We choose to not special-case this and will behave as if a
+ * valid constant encoding of 0 had been given.
+ */
+ switch (op) {
+ case 0: case 1:
+ /* no-op */
+ break;
+ case 2: case 3:
+ imm <<= 8;
+ break;
+ case 4: case 5:
+ imm <<= 16;
+ break;
+ case 6: case 7:
+ imm <<= 24;
+ break;
+ case 8: case 9:
+ imm |= imm << 16;
+ break;
+ case 10: case 11:
+ imm = (imm << 8) | (imm << 24);
+ break;
+ case 12:
+ imm = (imm << 8) | 0xff;
+ break;
+ case 13:
+ imm = (imm << 16) | 0xffff;
+ break;
+ case 14:
+ imm |= (imm << 8) | (imm << 16) | (imm << 24);
+ if (invert)
+ imm = ~imm;
+ break;
+ case 15:
+ if (invert) {
+ return 1;
+ }
+ imm = ((imm & 0x80) << 24) | ((imm & 0x3f) << 19)
+ | ((imm & 0x40) ? (0x1f << 25) : (1 << 30));
+ break;
+ }
+ if (invert)
+ imm = ~imm;
+
+ for (pass = 0; pass < (q ? 4 : 2); pass++) {
+ if (op & 1 && op < 12) {
+ tmp = neon_load_reg(rd, pass);
+ if (invert) {
+ /* The immediate value has already been inverted, so
+ BIC becomes AND. */
+ tcg_gen_andi_i32(tmp, tmp, imm);
+ } else {
+ tcg_gen_ori_i32(tmp, tmp, imm);
+ }
+ } else {
+ /* VMOV, VMVN. */
+ tmp = tcg_temp_new_i32();
+ if (op == 14 && invert) {
+ int n;
+ uint32_t val;
+ val = 0;
+ for (n = 0; n < 4; n++) {
+ if (imm & (1 << (n + (pass & 1) * 4)))
+ val |= 0xff << (n * 8);
+ }
+ tcg_gen_movi_i32(tmp, val);
+ } else {
+ tcg_gen_movi_i32(tmp, imm);
+ }
+ }
+ neon_store_reg(rd, pass, tmp);
+ }
+ }
+ } else { /* (insn & 0x00800010 == 0x00800000) */
+ if (size != 3) {
+ op = (insn >> 8) & 0xf;
+ if ((insn & (1 << 6)) == 0) {
+ /* Three registers of different lengths. */
+ int src1_wide;
+ int src2_wide;
+ int prewiden;
+ /* undefreq: bit 0 : UNDEF if size != 0
+ * bit 1 : UNDEF if size == 0
+ * bit 2 : UNDEF if U == 1
+ * Note that [1:0] set implies 'always UNDEF'
+ */
+ int undefreq;
+ /* prewiden, src1_wide, src2_wide, undefreq */
+ static const int neon_3reg_wide[16][4] = {
+ {1, 0, 0, 0}, /* VADDL */
+ {1, 1, 0, 0}, /* VADDW */
+ {1, 0, 0, 0}, /* VSUBL */
+ {1, 1, 0, 0}, /* VSUBW */
+ {0, 1, 1, 0}, /* VADDHN */
+ {0, 0, 0, 0}, /* VABAL */
+ {0, 1, 1, 0}, /* VSUBHN */
+ {0, 0, 0, 0}, /* VABDL */
+ {0, 0, 0, 0}, /* VMLAL */
+ {0, 0, 0, 6}, /* VQDMLAL */
+ {0, 0, 0, 0}, /* VMLSL */
+ {0, 0, 0, 6}, /* VQDMLSL */
+ {0, 0, 0, 0}, /* Integer VMULL */
+ {0, 0, 0, 2}, /* VQDMULL */
+ {0, 0, 0, 5}, /* Polynomial VMULL */
+ {0, 0, 0, 3}, /* Reserved: always UNDEF */
+ };
+
+ prewiden = neon_3reg_wide[op][0];
+ src1_wide = neon_3reg_wide[op][1];
+ src2_wide = neon_3reg_wide[op][2];
+ undefreq = neon_3reg_wide[op][3];
+
+ if (((undefreq & 1) && (size != 0)) ||
+ ((undefreq & 2) && (size == 0)) ||
+ ((undefreq & 4) && u)) {
+ return 1;
+ }
+ if ((src1_wide && (rn & 1)) ||
+ (src2_wide && (rm & 1)) ||
+ (!src2_wide && (rd & 1))) {
+ return 1;
+ }
+
+ /* Avoid overlapping operands. Wide source operands are
+ always aligned so will never overlap with wide
+ destinations in problematic ways. */
+ if (rd == rm && !src2_wide) {
+ tmp = neon_load_reg(rm, 1);
+ neon_store_scratch(2, tmp);
+ } else if (rd == rn && !src1_wide) {
+ tmp = neon_load_reg(rn, 1);
+ neon_store_scratch(2, tmp);
+ }
+ TCGV_UNUSED(tmp3);
+ for (pass = 0; pass < 2; pass++) {
+ if (src1_wide) {
+ neon_load_reg64(cpu_V0, rn + pass);
+ TCGV_UNUSED(tmp);
+ } else {
+ if (pass == 1 && rd == rn) {
+ tmp = neon_load_scratch(2);
+ } else {
+ tmp = neon_load_reg(rn, pass);
+ }
+ if (prewiden) {
+ gen_neon_widen(cpu_V0, tmp, size, u);
+ }
+ }
+ if (src2_wide) {
+ neon_load_reg64(cpu_V1, rm + pass);
+ TCGV_UNUSED(tmp2);
+ } else {
+ if (pass == 1 && rd == rm) {
+ tmp2 = neon_load_scratch(2);
+ } else {
+ tmp2 = neon_load_reg(rm, pass);
+ }
+ if (prewiden) {
+ gen_neon_widen(cpu_V1, tmp2, size, u);
+ }
+ }
+ switch (op) {
+ case 0: case 1: case 4: /* VADDL, VADDW, VADDHN, VRADDHN */
+ gen_neon_addl(size);
+ break;
+ case 2: case 3: case 6: /* VSUBL, VSUBW, VSUBHN, VRSUBHN */
+ gen_neon_subl(size);
+ break;
+ case 5: case 7: /* VABAL, VABDL */
+ switch ((size << 1) | u) {
+ case 0:
+ gen_helper_neon_abdl_s16(cpu_V0, tmp, tmp2);
+ break;
+ case 1:
+ gen_helper_neon_abdl_u16(cpu_V0, tmp, tmp2);
+ break;
+ case 2:
+ gen_helper_neon_abdl_s32(cpu_V0, tmp, tmp2);
+ break;
+ case 3:
+ gen_helper_neon_abdl_u32(cpu_V0, tmp, tmp2);
+ break;
+ case 4:
+ gen_helper_neon_abdl_s64(cpu_V0, tmp, tmp2);
+ break;
+ case 5:
+ gen_helper_neon_abdl_u64(cpu_V0, tmp, tmp2);
+ break;
+ default: abort();
+ }
+ tcg_temp_free_i32(tmp2);
+ tcg_temp_free_i32(tmp);
+ break;
+ case 8: case 9: case 10: case 11: case 12: case 13:
+ /* VMLAL, VQDMLAL, VMLSL, VQDMLSL, VMULL, VQDMULL */
+ gen_neon_mull(cpu_V0, tmp, tmp2, size, u);
+ break;
+ case 14: /* Polynomial VMULL */
+ gen_helper_neon_mull_p8(cpu_V0, tmp, tmp2);
+ tcg_temp_free_i32(tmp2);
+ tcg_temp_free_i32(tmp);
+ break;
+ default: /* 15 is RESERVED: caught earlier */
+ abort();
+ }
+ if (op == 13) {
+ /* VQDMULL */
+ gen_neon_addl_saturate(cpu_V0, cpu_V0, size);
+ neon_store_reg64(cpu_V0, rd + pass);
+ } else if (op == 5 || (op >= 8 && op <= 11)) {
+ /* Accumulate. */
+ neon_load_reg64(cpu_V1, rd + pass);
+ switch (op) {
+ case 10: /* VMLSL */
+ gen_neon_negl(cpu_V0, size);
+ /* Fall through */
+ case 5: case 8: /* VABAL, VMLAL */
+ gen_neon_addl(size);
+ break;
+ case 9: case 11: /* VQDMLAL, VQDMLSL */
+ gen_neon_addl_saturate(cpu_V0, cpu_V0, size);
+ if (op == 11) {
+ gen_neon_negl(cpu_V0, size);
+ }
+ gen_neon_addl_saturate(cpu_V0, cpu_V1, size);
+ break;
+ default:
+ abort();
+ }
+ neon_store_reg64(cpu_V0, rd + pass);
+ } else if (op == 4 || op == 6) {
+ /* Narrowing operation. */
+ tmp = tcg_temp_new_i32();
+ if (!u) {
+ switch (size) {
+ case 0:
+ gen_helper_neon_narrow_high_u8(tmp, cpu_V0);
+ break;
+ case 1:
+ gen_helper_neon_narrow_high_u16(tmp, cpu_V0);
+ break;
+ case 2:
+ tcg_gen_shri_i64(cpu_V0, cpu_V0, 32);
+ tcg_gen_trunc_i64_i32(tmp, cpu_V0);
+ break;
+ default: abort();
+ }
+ } else {
+ switch (size) {
+ case 0:
+ gen_helper_neon_narrow_round_high_u8(tmp, cpu_V0);
+ break;
+ case 1:
+ gen_helper_neon_narrow_round_high_u16(tmp, cpu_V0);
+ break;
+ case 2:
+ tcg_gen_addi_i64(cpu_V0, cpu_V0, 1u << 31);
+ tcg_gen_shri_i64(cpu_V0, cpu_V0, 32);
+ tcg_gen_trunc_i64_i32(tmp, cpu_V0);
+ break;
+ default: abort();
+ }
+ }
+ if (pass == 0) {
+ tmp3 = tmp;
+ } else {
+ neon_store_reg(rd, 0, tmp3);
+ neon_store_reg(rd, 1, tmp);
+ }
+ } else {
+ /* Write back the result. */
+ neon_store_reg64(cpu_V0, rd + pass);
+ }
+ }
+ } else {
+ /* Two registers and a scalar. NB that for ops of this form
+ * the ARM ARM labels bit 24 as Q, but it is in our variable
+ * 'u', not 'q'.
+ */
+ if (size == 0) {
+ return 1;
+ }
+ switch (op) {
+ case 1: /* Float VMLA scalar */
+ case 5: /* Floating point VMLS scalar */
+ case 9: /* Floating point VMUL scalar */
+ if (size == 1) {
+ return 1;
+ }
+ /* fall through */
+ case 0: /* Integer VMLA scalar */
+ case 4: /* Integer VMLS scalar */
+ case 8: /* Integer VMUL scalar */
+ case 12: /* VQDMULH scalar */
+ case 13: /* VQRDMULH scalar */
+ if (u && ((rd | rn) & 1)) {
+ return 1;
+ }
+ tmp = neon_get_scalar(size, rm);
+ neon_store_scratch(0, tmp);
+ for (pass = 0; pass < (u ? 4 : 2); pass++) {
+ tmp = neon_load_scratch(0);
+ tmp2 = neon_load_reg(rn, pass);
+ if (op == 12) {
+ if (size == 1) {
+ gen_helper_neon_qdmulh_s16(tmp, cpu_env, tmp, tmp2);
+ } else {
+ gen_helper_neon_qdmulh_s32(tmp, cpu_env, tmp, tmp2);
+ }
+ } else if (op == 13) {
+ if (size == 1) {
+ gen_helper_neon_qrdmulh_s16(tmp, cpu_env, tmp, tmp2);
+ } else {
+ gen_helper_neon_qrdmulh_s32(tmp, cpu_env, tmp, tmp2);
+ }
+ } else if (op & 1) {
+ TCGv_ptr fpstatus = get_fpstatus_ptr(1);
+ gen_helper_vfp_muls(tmp, tmp, tmp2, fpstatus);
+ tcg_temp_free_ptr(fpstatus);
+ } else {
+ switch (size) {
+ case 0: gen_helper_neon_mul_u8(tmp, tmp, tmp2); break;
+ case 1: gen_helper_neon_mul_u16(tmp, tmp, tmp2); break;
+ case 2: tcg_gen_mul_i32(tmp, tmp, tmp2); break;
+ default: abort();
+ }
+ }
+ tcg_temp_free_i32(tmp2);
+ if (op < 8) {
+ /* Accumulate. */
+ tmp2 = neon_load_reg(rd, pass);
+ switch (op) {
+ case 0:
+ gen_neon_add(size, tmp, tmp2);
+ break;
+ case 1:
+ {
+ TCGv_ptr fpstatus = get_fpstatus_ptr(1);
+ gen_helper_vfp_adds(tmp, tmp, tmp2, fpstatus);
+ tcg_temp_free_ptr(fpstatus);
+ break;
+ }
+ case 4:
+ gen_neon_rsb(size, tmp, tmp2);
+ break;
+ case 5:
+ {
+ TCGv_ptr fpstatus = get_fpstatus_ptr(1);
+ gen_helper_vfp_subs(tmp, tmp2, tmp, fpstatus);
+ tcg_temp_free_ptr(fpstatus);
+ break;
+ }
+ default:
+ abort();
+ }
+ tcg_temp_free_i32(tmp2);
+ }
+ neon_store_reg(rd, pass, tmp);
+ }
+ break;
+ case 3: /* VQDMLAL scalar */
+ case 7: /* VQDMLSL scalar */
+ case 11: /* VQDMULL scalar */
+ if (u == 1) {
+ return 1;
+ }
+ /* fall through */
+ case 2: /* VMLAL sclar */
+ case 6: /* VMLSL scalar */
+ case 10: /* VMULL scalar */
+ if (rd & 1) {
+ return 1;
+ }
+ tmp2 = neon_get_scalar(size, rm);
+ /* We need a copy of tmp2 because gen_neon_mull
+ * deletes it during pass 0. */
+ tmp4 = tcg_temp_new_i32();
+ tcg_gen_mov_i32(tmp4, tmp2);
+ tmp3 = neon_load_reg(rn, 1);
+
+ for (pass = 0; pass < 2; pass++) {
+ if (pass == 0) {
+ tmp = neon_load_reg(rn, 0);
+ } else {
+ tmp = tmp3;
+ tmp2 = tmp4;
+ }
+ gen_neon_mull(cpu_V0, tmp, tmp2, size, u);
+ if (op != 11) {
+ neon_load_reg64(cpu_V1, rd + pass);
+ }
+ switch (op) {
+ case 6:
+ gen_neon_negl(cpu_V0, size);
+ /* Fall through */
+ case 2:
+ gen_neon_addl(size);
+ break;
+ case 3: case 7:
+ gen_neon_addl_saturate(cpu_V0, cpu_V0, size);
+ if (op == 7) {
+ gen_neon_negl(cpu_V0, size);
+ }
+ gen_neon_addl_saturate(cpu_V0, cpu_V1, size);
+ break;
+ case 10:
+ /* no-op */
+ break;
+ case 11:
+ gen_neon_addl_saturate(cpu_V0, cpu_V0, size);
+ break;
+ default:
+ abort();
+ }
+ neon_store_reg64(cpu_V0, rd + pass);
+ }
+
+
+ break;
+ default: /* 14 and 15 are RESERVED */
+ return 1;
+ }
+ }
+ } else { /* size == 3 */
+ if (!u) {
+ /* Extract. */
+ imm = (insn >> 8) & 0xf;
+
+ if (imm > 7 && !q)
+ return 1;
+
+ if (q && ((rd | rn | rm) & 1)) {
+ return 1;
+ }
+
+ if (imm == 0) {
+ neon_load_reg64(cpu_V0, rn);
+ if (q) {
+ neon_load_reg64(cpu_V1, rn + 1);
+ }
+ } else if (imm == 8) {
+ neon_load_reg64(cpu_V0, rn + 1);
+ if (q) {
+ neon_load_reg64(cpu_V1, rm);
+ }
+ } else if (q) {
+ tmp64 = tcg_temp_new_i64();
+ if (imm < 8) {
+ neon_load_reg64(cpu_V0, rn);
+ neon_load_reg64(tmp64, rn + 1);
+ } else {
+ neon_load_reg64(cpu_V0, rn + 1);
+ neon_load_reg64(tmp64, rm);
+ }
+ tcg_gen_shri_i64(cpu_V0, cpu_V0, (imm & 7) * 8);
+ tcg_gen_shli_i64(cpu_V1, tmp64, 64 - ((imm & 7) * 8));
+ tcg_gen_or_i64(cpu_V0, cpu_V0, cpu_V1);
+ if (imm < 8) {
+ neon_load_reg64(cpu_V1, rm);
+ } else {
+ neon_load_reg64(cpu_V1, rm + 1);
+ imm -= 8;
+ }
+ tcg_gen_shli_i64(cpu_V1, cpu_V1, 64 - (imm * 8));
+ tcg_gen_shri_i64(tmp64, tmp64, imm * 8);
+ tcg_gen_or_i64(cpu_V1, cpu_V1, tmp64);
+ tcg_temp_free_i64(tmp64);
+ } else {
+ /* BUGFIX */
+ neon_load_reg64(cpu_V0, rn);
+ tcg_gen_shri_i64(cpu_V0, cpu_V0, imm * 8);
+ neon_load_reg64(cpu_V1, rm);
+ tcg_gen_shli_i64(cpu_V1, cpu_V1, 64 - (imm * 8));
+ tcg_gen_or_i64(cpu_V0, cpu_V0, cpu_V1);
+ }
+ neon_store_reg64(cpu_V0, rd);
+ if (q) {
+ neon_store_reg64(cpu_V1, rd + 1);
+ }
+ } else if ((insn & (1 << 11)) == 0) {
+ /* Two register misc. */
+ op = ((insn >> 12) & 0x30) | ((insn >> 7) & 0xf);
+ size = (insn >> 18) & 3;
+ /* UNDEF for unknown op values and bad op-size combinations */
+ if ((neon_2rm_sizes[op] & (1 << size)) == 0) {
+ return 1;
+ }
+ if ((op != NEON_2RM_VMOVN && op != NEON_2RM_VQMOVN) &&
+ q && ((rm | rd) & 1)) {
+ return 1;
+ }
+ switch (op) {
+ case NEON_2RM_VREV64:
+ for (pass = 0; pass < (q ? 2 : 1); pass++) {
+ tmp = neon_load_reg(rm, pass * 2);
+ tmp2 = neon_load_reg(rm, pass * 2 + 1);
+ switch (size) {
+ case 0: tcg_gen_bswap32_i32(tmp, tmp); break;
+ case 1: gen_swap_half(tmp); break;
+ case 2: /* no-op */ break;
+ default: abort();
+ }
+ neon_store_reg(rd, pass * 2 + 1, tmp);
+ if (size == 2) {
+ neon_store_reg(rd, pass * 2, tmp2);
+ } else {
+ switch (size) {
+ case 0: tcg_gen_bswap32_i32(tmp2, tmp2); break;
+ case 1: gen_swap_half(tmp2); break;
+ default: abort();
+ }
+ neon_store_reg(rd, pass * 2, tmp2);
+ }
+ }
+ break;
+ case NEON_2RM_VPADDL: case NEON_2RM_VPADDL_U:
+ case NEON_2RM_VPADAL: case NEON_2RM_VPADAL_U:
+ for (pass = 0; pass < q + 1; pass++) {
+ tmp = neon_load_reg(rm, pass * 2);
+ gen_neon_widen(cpu_V0, tmp, size, op & 1);
+ tmp = neon_load_reg(rm, pass * 2 + 1);
+ gen_neon_widen(cpu_V1, tmp, size, op & 1);
+ switch (size) {
+ case 0: gen_helper_neon_paddl_u16(CPU_V001); break;
+ case 1: gen_helper_neon_paddl_u32(CPU_V001); break;
+ case 2: tcg_gen_add_i64(CPU_V001); break;
+ default: abort();
+ }
+ if (op >= NEON_2RM_VPADAL) {
+ /* Accumulate. */
+ neon_load_reg64(cpu_V1, rd + pass);
+ gen_neon_addl(size);
+ }
+ neon_store_reg64(cpu_V0, rd + pass);
+ }
+ break;
+ case NEON_2RM_VTRN:
+ if (size == 2) {
+ int n;
+ for (n = 0; n < (q ? 4 : 2); n += 2) {
+ tmp = neon_load_reg(rm, n);
+ tmp2 = neon_load_reg(rd, n + 1);
+ neon_store_reg(rm, n, tmp2);
+ neon_store_reg(rd, n + 1, tmp);
+ }
+ } else {
+ goto elementwise;
+ }
+ break;
+ case NEON_2RM_VUZP:
+ if (gen_neon_unzip(rd, rm, size, q)) {
+ return 1;
+ }
+ break;
+ case NEON_2RM_VZIP:
+ if (gen_neon_zip(rd, rm, size, q)) {
+ return 1;
+ }
+ break;
+ case NEON_2RM_VMOVN: case NEON_2RM_VQMOVN:
+ /* also VQMOVUN; op field and mnemonics don't line up */
+ if (rm & 1) {
+ return 1;
+ }
+ TCGV_UNUSED(tmp2);
+ for (pass = 0; pass < 2; pass++) {
+ neon_load_reg64(cpu_V0, rm + pass);
+ tmp = tcg_temp_new_i32();
+ gen_neon_narrow_op(op == NEON_2RM_VMOVN, q, size,
+ tmp, cpu_V0);
+ if (pass == 0) {
+ tmp2 = tmp;
+ } else {
+ neon_store_reg(rd, 0, tmp2);
+ neon_store_reg(rd, 1, tmp);
+ }
+ }
+ break;
+ case NEON_2RM_VSHLL:
+ if (q || (rd & 1)) {
+ return 1;
+ }
+ tmp = neon_load_reg(rm, 0);
+ tmp2 = neon_load_reg(rm, 1);
+ for (pass = 0; pass < 2; pass++) {
+ if (pass == 1)
+ tmp = tmp2;
+ gen_neon_widen(cpu_V0, tmp, size, 1);
+ tcg_gen_shli_i64(cpu_V0, cpu_V0, 8 << size);
+ neon_store_reg64(cpu_V0, rd + pass);
+ }
+ break;
+ case NEON_2RM_VCVT_F16_F32:
+ if (!arm_feature(env, ARM_FEATURE_VFP_FP16) ||
+ q || (rm & 1)) {
+ return 1;
+ }
+ tmp = tcg_temp_new_i32();
+ tmp2 = tcg_temp_new_i32();
+ tcg_gen_ld_f32(cpu_F0s, cpu_env, neon_reg_offset(rm, 0));
+ gen_helper_neon_fcvt_f32_to_f16(tmp, cpu_F0s, cpu_env);
+ tcg_gen_ld_f32(cpu_F0s, cpu_env, neon_reg_offset(rm, 1));
+ gen_helper_neon_fcvt_f32_to_f16(tmp2, cpu_F0s, cpu_env);
+ tcg_gen_shli_i32(tmp2, tmp2, 16);
+ tcg_gen_or_i32(tmp2, tmp2, tmp);
+ tcg_gen_ld_f32(cpu_F0s, cpu_env, neon_reg_offset(rm, 2));
+ gen_helper_neon_fcvt_f32_to_f16(tmp, cpu_F0s, cpu_env);
+ tcg_gen_ld_f32(cpu_F0s, cpu_env, neon_reg_offset(rm, 3));
+ neon_store_reg(rd, 0, tmp2);
+ tmp2 = tcg_temp_new_i32();
+ gen_helper_neon_fcvt_f32_to_f16(tmp2, cpu_F0s, cpu_env);
+ tcg_gen_shli_i32(tmp2, tmp2, 16);
+ tcg_gen_or_i32(tmp2, tmp2, tmp);
+ neon_store_reg(rd, 1, tmp2);
+ tcg_temp_free_i32(tmp);
+ break;
+ case NEON_2RM_VCVT_F32_F16:
+ if (!arm_feature(env, ARM_FEATURE_VFP_FP16) ||
+ q || (rd & 1)) {
+ return 1;
+ }
+ tmp3 = tcg_temp_new_i32();
+ tmp = neon_load_reg(rm, 0);
+ tmp2 = neon_load_reg(rm, 1);
+ tcg_gen_ext16u_i32(tmp3, tmp);
+ gen_helper_neon_fcvt_f16_to_f32(cpu_F0s, tmp3, cpu_env);
+ tcg_gen_st_f32(cpu_F0s, cpu_env, neon_reg_offset(rd, 0));
+ tcg_gen_shri_i32(tmp3, tmp, 16);
+ gen_helper_neon_fcvt_f16_to_f32(cpu_F0s, tmp3, cpu_env);
+ tcg_gen_st_f32(cpu_F0s, cpu_env, neon_reg_offset(rd, 1));
+ tcg_temp_free_i32(tmp);
+ tcg_gen_ext16u_i32(tmp3, tmp2);
+ gen_helper_neon_fcvt_f16_to_f32(cpu_F0s, tmp3, cpu_env);
+ tcg_gen_st_f32(cpu_F0s, cpu_env, neon_reg_offset(rd, 2));
+ tcg_gen_shri_i32(tmp3, tmp2, 16);
+ gen_helper_neon_fcvt_f16_to_f32(cpu_F0s, tmp3, cpu_env);
+ tcg_gen_st_f32(cpu_F0s, cpu_env, neon_reg_offset(rd, 3));
+ tcg_temp_free_i32(tmp2);
+ tcg_temp_free_i32(tmp3);
+ break;
+ default:
+ elementwise:
+ for (pass = 0; pass < (q ? 4 : 2); pass++) {
+ if (neon_2rm_is_float_op(op)) {
+ tcg_gen_ld_f32(cpu_F0s, cpu_env,
+ neon_reg_offset(rm, pass));
+ TCGV_UNUSED(tmp);
+ } else {
+ tmp = neon_load_reg(rm, pass);
+ }
+ switch (op) {
+ case NEON_2RM_VREV32:
+ switch (size) {
+ case 0: tcg_gen_bswap32_i32(tmp, tmp); break;
+ case 1: gen_swap_half(tmp); break;
+ default: abort();
+ }
+ break;
+ case NEON_2RM_VREV16:
+ gen_rev16(tmp);
+ break;
+ case NEON_2RM_VCLS:
+ switch (size) {
+ case 0: gen_helper_neon_cls_s8(tmp, tmp); break;
+ case 1: gen_helper_neon_cls_s16(tmp, tmp); break;
+ case 2: gen_helper_neon_cls_s32(tmp, tmp); break;
+ default: abort();
+ }
+ break;
+ case NEON_2RM_VCLZ:
+ switch (size) {
+ case 0: gen_helper_neon_clz_u8(tmp, tmp); break;
+ case 1: gen_helper_neon_clz_u16(tmp, tmp); break;
+ case 2: gen_helper_clz(tmp, tmp); break;
+ default: abort();
+ }
+ break;
+ case NEON_2RM_VCNT:
+ gen_helper_neon_cnt_u8(tmp, tmp);
+ break;
+ case NEON_2RM_VMVN:
+ tcg_gen_not_i32(tmp, tmp);
+ break;
+ case NEON_2RM_VQABS:
+ switch (size) {
+ case 0:
+ gen_helper_neon_qabs_s8(tmp, cpu_env, tmp);
+ break;
+ case 1:
+ gen_helper_neon_qabs_s16(tmp, cpu_env, tmp);
+ break;
+ case 2:
+ gen_helper_neon_qabs_s32(tmp, cpu_env, tmp);
+ break;
+ default: abort();
+ }
+ break;
+ case NEON_2RM_VQNEG:
+ switch (size) {
+ case 0:
+ gen_helper_neon_qneg_s8(tmp, cpu_env, tmp);
+ break;
+ case 1:
+ gen_helper_neon_qneg_s16(tmp, cpu_env, tmp);
+ break;
+ case 2:
+ gen_helper_neon_qneg_s32(tmp, cpu_env, tmp);
+ break;
+ default: abort();
+ }
+ break;
+ case NEON_2RM_VCGT0: case NEON_2RM_VCLE0:
+ tmp2 = tcg_const_i32(0);
+ switch(size) {
+ case 0: gen_helper_neon_cgt_s8(tmp, tmp, tmp2); break;
+ case 1: gen_helper_neon_cgt_s16(tmp, tmp, tmp2); break;
+ case 2: gen_helper_neon_cgt_s32(tmp, tmp, tmp2); break;
+ default: abort();
+ }
+ tcg_temp_free(tmp2);
+ if (op == NEON_2RM_VCLE0) {
+ tcg_gen_not_i32(tmp, tmp);
+ }
+ break;
+ case NEON_2RM_VCGE0: case NEON_2RM_VCLT0:
+ tmp2 = tcg_const_i32(0);
+ switch(size) {
+ case 0: gen_helper_neon_cge_s8(tmp, tmp, tmp2); break;
+ case 1: gen_helper_neon_cge_s16(tmp, tmp, tmp2); break;
+ case 2: gen_helper_neon_cge_s32(tmp, tmp, tmp2); break;
+ default: abort();
+ }
+ tcg_temp_free(tmp2);
+ if (op == NEON_2RM_VCLT0) {
+ tcg_gen_not_i32(tmp, tmp);
+ }
+ break;
+ case NEON_2RM_VCEQ0:
+ tmp2 = tcg_const_i32(0);
+ switch(size) {
+ case 0: gen_helper_neon_ceq_u8(tmp, tmp, tmp2); break;
+ case 1: gen_helper_neon_ceq_u16(tmp, tmp, tmp2); break;
+ case 2: gen_helper_neon_ceq_u32(tmp, tmp, tmp2); break;
+ default: abort();
+ }
+ tcg_temp_free(tmp2);
+ break;
+ case NEON_2RM_VABS:
+ switch(size) {
+ case 0: gen_helper_neon_abs_s8(tmp, tmp); break;
+ case 1: gen_helper_neon_abs_s16(tmp, tmp); break;
+ case 2: tcg_gen_abs_i32(tmp, tmp); break;
+ default: abort();
+ }
+ break;
+ case NEON_2RM_VNEG:
+ tmp2 = tcg_const_i32(0);
+ gen_neon_rsb(size, tmp, tmp2);
+ tcg_temp_free(tmp2);
+ break;
+ case NEON_2RM_VCGT0_F:
+ {
+ TCGv_ptr fpstatus = get_fpstatus_ptr(1);
+ tmp2 = tcg_const_i32(0);
+ gen_helper_neon_cgt_f32(tmp, tmp, tmp2, fpstatus);
+ tcg_temp_free(tmp2);
+ tcg_temp_free_ptr(fpstatus);
+ break;
+ }
+ case NEON_2RM_VCGE0_F:
+ {
+ TCGv_ptr fpstatus = get_fpstatus_ptr(1);
+ tmp2 = tcg_const_i32(0);
+ gen_helper_neon_cge_f32(tmp, tmp, tmp2, fpstatus);
+ tcg_temp_free(tmp2);
+ tcg_temp_free_ptr(fpstatus);
+ break;
+ }
+ case NEON_2RM_VCEQ0_F:
+ {
+ TCGv_ptr fpstatus = get_fpstatus_ptr(1);
+ tmp2 = tcg_const_i32(0);
+ gen_helper_neon_ceq_f32(tmp, tmp, tmp2, fpstatus);
+ tcg_temp_free(tmp2);
+ tcg_temp_free_ptr(fpstatus);
+ break;
+ }
+ case NEON_2RM_VCLE0_F:
+ {
+ TCGv_ptr fpstatus = get_fpstatus_ptr(1);
+ tmp2 = tcg_const_i32(0);
+ gen_helper_neon_cge_f32(tmp, tmp2, tmp, fpstatus);
+ tcg_temp_free(tmp2);
+ tcg_temp_free_ptr(fpstatus);
+ break;
+ }
+ case NEON_2RM_VCLT0_F:
+ {
+ TCGv_ptr fpstatus = get_fpstatus_ptr(1);
+ tmp2 = tcg_const_i32(0);
+ gen_helper_neon_cgt_f32(tmp, tmp2, tmp, fpstatus);
+ tcg_temp_free(tmp2);
+ tcg_temp_free_ptr(fpstatus);
+ break;
+ }
+ case NEON_2RM_VABS_F:
+ gen_vfp_abs(0);
+ break;
+ case NEON_2RM_VNEG_F:
+ gen_vfp_neg(0);
+ break;
+ case NEON_2RM_VSWP:
+ tmp2 = neon_load_reg(rd, pass);
+ neon_store_reg(rm, pass, tmp2);
+ break;
+ case NEON_2RM_VTRN:
+ tmp2 = neon_load_reg(rd, pass);
+ switch (size) {
+ case 0: gen_neon_trn_u8(tmp, tmp2); break;
+ case 1: gen_neon_trn_u16(tmp, tmp2); break;
+ default: abort();
+ }
+ neon_store_reg(rm, pass, tmp2);
+ break;
+ case NEON_2RM_VRECPE:
+ gen_helper_recpe_u32(tmp, tmp, cpu_env);
+ break;
+ case NEON_2RM_VRSQRTE:
+ gen_helper_rsqrte_u32(tmp, tmp, cpu_env);
+ break;
+ case NEON_2RM_VRECPE_F:
+ gen_helper_recpe_f32(cpu_F0s, cpu_F0s, cpu_env);
+ break;
+ case NEON_2RM_VRSQRTE_F:
+ gen_helper_rsqrte_f32(cpu_F0s, cpu_F0s, cpu_env);
+ break;
+ case NEON_2RM_VCVT_FS: /* VCVT.F32.S32 */
+ gen_vfp_sito(0, 1);
+ break;
+ case NEON_2RM_VCVT_FU: /* VCVT.F32.U32 */
+ gen_vfp_uito(0, 1);
+ break;
+ case NEON_2RM_VCVT_SF: /* VCVT.S32.F32 */
+ gen_vfp_tosiz(0, 1);
+ break;
+ case NEON_2RM_VCVT_UF: /* VCVT.U32.F32 */
+ gen_vfp_touiz(0, 1);
+ break;
+ default:
+ /* Reserved op values were caught by the
+ * neon_2rm_sizes[] check earlier.
+ */
+ abort();
+ }
+ if (neon_2rm_is_float_op(op)) {
+ tcg_gen_st_f32(cpu_F0s, cpu_env,
+ neon_reg_offset(rd, pass));
+ } else {
+ neon_store_reg(rd, pass, tmp);
+ }
+ }
+ break;
+ }
+ } else if ((insn & (1 << 10)) == 0) {
+ /* VTBL, VTBX. */
+ int n = ((insn >> 8) & 3) + 1;
+ if ((rn + n) > 32) {
+ /* This is UNPREDICTABLE; we choose to UNDEF to avoid the
+ * helper function running off the end of the register file.
+ */
+ return 1;
+ }
+ n <<= 3;
+ if (insn & (1 << 6)) {
+ tmp = neon_load_reg(rd, 0);
+ } else {
+ tmp = tcg_temp_new_i32();
+ tcg_gen_movi_i32(tmp, 0);
+ }
+ tmp2 = neon_load_reg(rm, 0);
+ tmp4 = tcg_const_i32(rn);
+ tmp5 = tcg_const_i32(n);
+ gen_helper_neon_tbl(tmp2, tmp2, tmp, tmp4, tmp5);
+ tcg_temp_free_i32(tmp);
+ if (insn & (1 << 6)) {
+ tmp = neon_load_reg(rd, 1);
+ } else {
+ tmp = tcg_temp_new_i32();
+ tcg_gen_movi_i32(tmp, 0);
+ }
+ tmp3 = neon_load_reg(rm, 1);
+ gen_helper_neon_tbl(tmp3, tmp3, tmp, tmp4, tmp5);
+ tcg_temp_free_i32(tmp5);
+ tcg_temp_free_i32(tmp4);
+ neon_store_reg(rd, 0, tmp2);
+ neon_store_reg(rd, 1, tmp3);
+ tcg_temp_free_i32(tmp);
+ } else if ((insn & 0x380) == 0) {
+ /* VDUP */
+ if ((insn & (7 << 16)) == 0 || (q && (rd & 1))) {
+ return 1;
+ }
+ if (insn & (1 << 19)) {
+ tmp = neon_load_reg(rm, 1);
+ } else {
+ tmp = neon_load_reg(rm, 0);
+ }
+ if (insn & (1 << 16)) {
+ gen_neon_dup_u8(tmp, ((insn >> 17) & 3) * 8);
+ } else if (insn & (1 << 17)) {
+ if ((insn >> 18) & 1)
+ gen_neon_dup_high16(tmp);
+ else
+ gen_neon_dup_low16(tmp);
+ }
+ for (pass = 0; pass < (q ? 4 : 2); pass++) {
+ tmp2 = tcg_temp_new_i32();
+ tcg_gen_mov_i32(tmp2, tmp);
+ neon_store_reg(rd, pass, tmp2);
+ }
+ tcg_temp_free_i32(tmp);
+ } else {
+ return 1;
+ }
+ }
+ }
+ return 0;
+}
+
+static int disas_coproc_insn(CPUARMState * env, DisasContext *s, uint32_t insn)
+{
+ int cpnum, is64, crn, crm, opc1, opc2, isread, rt, rt2;
+ const ARMCPRegInfo *ri;
+ ARMCPU *cpu = arm_env_get_cpu(env);
+
+ cpnum = (insn >> 8) & 0xf;
+ if (arm_feature(env, ARM_FEATURE_XSCALE)
+ && ((env->cp15.c15_cpar ^ 0x3fff) & (1 << cpnum)))
+ return 1;
+
+ /* First check for coprocessor space used for actual instructions */
+ switch (cpnum) {
+ case 0:
+ case 1:
+ if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
+ return disas_iwmmxt_insn(env, s, insn);
+ } else if (arm_feature(env, ARM_FEATURE_XSCALE)) {
+ return disas_dsp_insn(env, s, insn);
+ }
+ return 1;
+ case 10:
+ case 11:
+ return disas_vfp_insn (env, s, insn);
+ default:
+ break;
+ }
+
+ /* Otherwise treat as a generic register access */
+ is64 = (insn & (1 << 25)) == 0;
+ if (!is64 && ((insn & (1 << 4)) == 0)) {
+ /* cdp */
+ return 1;
+ }
+
+ crm = insn & 0xf;
+ if (is64) {
+ crn = 0;
+ opc1 = (insn >> 4) & 0xf;
+ opc2 = 0;
+ rt2 = (insn >> 16) & 0xf;
+ } else {
+ crn = (insn >> 16) & 0xf;
+ opc1 = (insn >> 21) & 7;
+ opc2 = (insn >> 5) & 7;
+ rt2 = 0;
+ }
+ isread = (insn >> 20) & 1;
+ rt = (insn >> 12) & 0xf;
+
+ ri = get_arm_cp_reginfo(cpu,
+ ENCODE_CP_REG(cpnum, is64, crn, crm, opc1, opc2));
+ if (ri) {
+ /* Check access permissions */
+ if (!cp_access_ok(env, ri, isread)) {
+ return 1;
+ }
+
+ /* Handle special cases first */
+ switch (ri->type & ~(ARM_CP_FLAG_MASK & ~ARM_CP_SPECIAL)) {
+ case ARM_CP_NOP:
+ return 0;
+ case ARM_CP_WFI:
+ if (isread) {
+ return 1;
+ }
+ gen_set_pc_im(s->pc);
+ s->is_jmp = DISAS_WFI;
+ return 0;
+ default:
+ break;
+ }
+
+ if (isread) {
+ /* Read */
+ if (is64) {
+ TCGv_i64 tmp64;
+ TCGv_i32 tmp;
+ if (ri->type & ARM_CP_CONST) {
+ tmp64 = tcg_const_i64(ri->resetvalue);
+ } else if (ri->readfn) {
+ TCGv_ptr tmpptr;
+ gen_set_pc_im(s->pc);
+ tmp64 = tcg_temp_new_i64();
+ tmpptr = tcg_const_ptr(ri);
+ gen_helper_get_cp_reg64(tmp64, cpu_env, tmpptr);
+ tcg_temp_free_ptr(tmpptr);
+ } else {
+ tmp64 = tcg_temp_new_i64();
+ tcg_gen_ld_i64(tmp64, cpu_env, ri->fieldoffset);
+ }
+ tmp = tcg_temp_new_i32();
+ tcg_gen_trunc_i64_i32(tmp, tmp64);
+ store_reg(s, rt, tmp);
+ tcg_gen_shri_i64(tmp64, tmp64, 32);
+ tmp = tcg_temp_new_i32();
+ tcg_gen_trunc_i64_i32(tmp, tmp64);
+ tcg_temp_free_i64(tmp64);
+ store_reg(s, rt2, tmp);
+ } else {
+ TCGv tmp;
+ if (ri->type & ARM_CP_CONST) {
+ tmp = tcg_const_i32(ri->resetvalue);
+ } else if (ri->readfn) {
+ TCGv_ptr tmpptr;
+ gen_set_pc_im(s->pc);
+ tmp = tcg_temp_new_i32();
+ tmpptr = tcg_const_ptr(ri);
+ gen_helper_get_cp_reg(tmp, cpu_env, tmpptr);
+ tcg_temp_free_ptr(tmpptr);
+ } else {
+ tmp = load_cpu_offset(ri->fieldoffset);
+ }
+ if (rt == 15) {
+ /* Destination register of r15 for 32 bit loads sets
+ * the condition codes from the high 4 bits of the value
+ */
+ gen_set_nzcv(tmp);
+ tcg_temp_free_i32(tmp);
+ } else {
+ store_reg(s, rt, tmp);
+ }
+ }
+ } else {
+ /* Write */
+ if (ri->type & ARM_CP_CONST) {
+ /* If not forbidden by access permissions, treat as WI */
+ return 0;
+ }
+
+ if (is64) {
+ TCGv tmplo, tmphi;
+ TCGv_i64 tmp64 = tcg_temp_new_i64();
+ tmplo = load_reg(s, rt);
+ tmphi = load_reg(s, rt2);
+ tcg_gen_concat_i32_i64(tmp64, tmplo, tmphi);
+ tcg_temp_free_i32(tmplo);
+ tcg_temp_free_i32(tmphi);
+ if (ri->writefn) {
+ TCGv_ptr tmpptr = tcg_const_ptr(ri);
+ gen_set_pc_im(s->pc);
+ gen_helper_set_cp_reg64(cpu_env, tmpptr, tmp64);
+ tcg_temp_free_ptr(tmpptr);
+ } else {
+ tcg_gen_st_i64(tmp64, cpu_env, ri->fieldoffset);
+ }
+ tcg_temp_free_i64(tmp64);
+ } else {
+ if (ri->writefn) {
+ TCGv tmp;
+ TCGv_ptr tmpptr;
+ gen_set_pc_im(s->pc);
+ tmp = load_reg(s, rt);
+ tmpptr = tcg_const_ptr(ri);
+ gen_helper_set_cp_reg(cpu_env, tmpptr, tmp);
+ tcg_temp_free_ptr(tmpptr);
+ tcg_temp_free_i32(tmp);
+ } else {
+ TCGv tmp = load_reg(s, rt);
+ store_cpu_offset(tmp, ri->fieldoffset);
+ }
+ }
+ /* We default to ending the TB on a coprocessor register write,
+ * but allow this to be suppressed by the register definition
+ * (usually only necessary to work around guest bugs).
+ */
+ if (!(ri->type & ARM_CP_SUPPRESS_TB_END)) {
+ gen_lookup_tb(s);
+ }
+ }
+ return 0;
+ }
+
+ return 1;
+}
+
+
+/* Store a 64-bit value to a register pair. Clobbers val. */
+static void gen_storeq_reg(DisasContext *s, int rlow, int rhigh, TCGv_i64 val)
+{
+ TCGv tmp;
+ tmp = tcg_temp_new_i32();
+ tcg_gen_trunc_i64_i32(tmp, val);
+ store_reg(s, rlow, tmp);
+ tmp = tcg_temp_new_i32();
+ tcg_gen_shri_i64(val, val, 32);
+ tcg_gen_trunc_i64_i32(tmp, val);
+ store_reg(s, rhigh, tmp);
+}
+
+/* load a 32-bit value from a register and perform a 64-bit accumulate. */
+static void gen_addq_lo(DisasContext *s, TCGv_i64 val, int rlow)
+{
+ TCGv_i64 tmp;
+ TCGv tmp2;
+
+ /* Load value and extend to 64 bits. */
+ tmp = tcg_temp_new_i64();
+ tmp2 = load_reg(s, rlow);
+ tcg_gen_extu_i32_i64(tmp, tmp2);
+ tcg_temp_free_i32(tmp2);
+ tcg_gen_add_i64(val, val, tmp);
+ tcg_temp_free_i64(tmp);
+}
+
+/* load and add a 64-bit value from a register pair. */
+static void gen_addq(DisasContext *s, TCGv_i64 val, int rlow, int rhigh)
+{
+ TCGv_i64 tmp;
+ TCGv tmpl;
+ TCGv tmph;
+
+ /* Load 64-bit value rd:rn. */
+ tmpl = load_reg(s, rlow);
+ tmph = load_reg(s, rhigh);
+ tmp = tcg_temp_new_i64();
+ tcg_gen_concat_i32_i64(tmp, tmpl, tmph);
+ tcg_temp_free_i32(tmpl);
+ tcg_temp_free_i32(tmph);
+ tcg_gen_add_i64(val, val, tmp);
+ tcg_temp_free_i64(tmp);
+}
+
+/* Set N and Z flags from a 64-bit value. */
+static void gen_logicq_cc(TCGv_i64 val)
+{
+ TCGv tmp = tcg_temp_new_i32();
+ gen_helper_logicq_cc(tmp, val);
+ gen_logic_CC(tmp);
+ tcg_temp_free_i32(tmp);
+}
+
+/* Load/Store exclusive instructions are implemented by remembering
+ the value/address loaded, and seeing if these are the same
+ when the store is performed. This should be sufficient to implement
+ the architecturally mandated semantics, and avoids having to monitor
+ regular stores.
+
+ In system emulation mode only one CPU will be running at once, so
+ this sequence is effectively atomic. In user emulation mode we
+ throw an exception and handle the atomic operation elsewhere. */
+static void gen_load_exclusive(DisasContext *s, int rt, int rt2,
+ TCGv addr, int size)
+{
+ TCGv tmp;
+
+ switch (size) {
+ case 0:
+ tmp = gen_ld8u(addr, IS_USER(s));
+ break;
+ case 1:
+ tmp = gen_ld16u(addr, IS_USER(s));
+ break;
+ case 2:
+ case 3:
+ tmp = gen_ld32(addr, IS_USER(s));
+ break;
+ default:
+ abort();
+ }
+ tcg_gen_mov_i32(cpu_exclusive_val, tmp);
+ store_reg(s, rt, tmp);
+ if (size == 3) {
+ TCGv tmp2 = tcg_temp_new_i32();
+ tcg_gen_addi_i32(tmp2, addr, 4);
+ tmp = gen_ld32(tmp2, IS_USER(s));
+ tcg_temp_free_i32(tmp2);
+ tcg_gen_mov_i32(cpu_exclusive_high, tmp);
+ store_reg(s, rt2, tmp);
+ }
+ tcg_gen_mov_i32(cpu_exclusive_addr, addr);
+}
+
+static void gen_clrex(DisasContext *s)
+{
+ tcg_gen_movi_i32(cpu_exclusive_addr, -1);
+}
+
+#ifdef CONFIG_USER_ONLY
+static void gen_store_exclusive(DisasContext *s, int rd, int rt, int rt2,
+ TCGv addr, int size)
+{
+ tcg_gen_mov_i32(cpu_exclusive_test, addr);
+ tcg_gen_movi_i32(cpu_exclusive_info,
+ size | (rd << 4) | (rt << 8) | (rt2 << 12));
+ gen_exception_insn(s, 4, EXCP_STREX);
+}
+#else
+static void gen_store_exclusive(DisasContext *s, int rd, int rt, int rt2,
+ TCGv addr, int size)
+{
+ TCGv tmp;
+ int done_label;
+ int fail_label;
+
+ /* if (env->exclusive_addr == addr && env->exclusive_val == [addr]) {
+ [addr] = {Rt};
+ {Rd} = 0;
+ } else {
+ {Rd} = 1;
+ } */
+ fail_label = gen_new_label();
+ done_label = gen_new_label();
+ tcg_gen_brcond_i32(TCG_COND_NE, addr, cpu_exclusive_addr, fail_label);
+ switch (size) {
+ case 0:
+ tmp = gen_ld8u(addr, IS_USER(s));
+ break;
+ case 1:
+ tmp = gen_ld16u(addr, IS_USER(s));
+ break;
+ case 2:
+ case 3:
+ tmp = gen_ld32(addr, IS_USER(s));
+ break;
+ default:
+ abort();
+ }
+ tcg_gen_brcond_i32(TCG_COND_NE, tmp, cpu_exclusive_val, fail_label);
+ tcg_temp_free_i32(tmp);
+ if (size == 3) {
+ TCGv tmp2 = tcg_temp_new_i32();
+ tcg_gen_addi_i32(tmp2, addr, 4);
+ tmp = gen_ld32(tmp2, IS_USER(s));
+ tcg_temp_free_i32(tmp2);
+ tcg_gen_brcond_i32(TCG_COND_NE, tmp, cpu_exclusive_high, fail_label);
+ tcg_temp_free_i32(tmp);
+ }
+ tmp = load_reg(s, rt);
+ switch (size) {
+ case 0:
+ gen_st8(tmp, addr, IS_USER(s));
+ break;
+ case 1:
+ gen_st16(tmp, addr, IS_USER(s));
+ break;
+ case 2:
+ case 3:
+ gen_st32(tmp, addr, IS_USER(s));
+ break;
+ default:
+ abort();
+ }
+ if (size == 3) {
+ tcg_gen_addi_i32(addr, addr, 4);
+ tmp = load_reg(s, rt2);
+ gen_st32(tmp, addr, IS_USER(s));
+ }
+ tcg_gen_movi_i32(cpu_R[rd], 0);
+ tcg_gen_br(done_label);
+ gen_set_label(fail_label);
+ tcg_gen_movi_i32(cpu_R[rd], 1);
+ gen_set_label(done_label);
+ tcg_gen_movi_i32(cpu_exclusive_addr, -1);
+}
+#endif
+
+static void disas_arm_insn(CPUARMState * env, DisasContext *s)
+{
+ unsigned int cond, insn, val, op1, i, shift, rm, rs, rn, rd, sh;
+ TCGv tmp;
+ TCGv tmp2;
+ TCGv tmp3;
+ TCGv addr;
+ TCGv_i64 tmp64;
+
+ insn = arm_ldl_code(s->pc, s->bswap_code);
+ s->pc += 4;
+
+ /* M variants do not implement ARM mode. */
+ if (IS_M(env))
+ goto illegal_op;
+ cond = insn >> 28;
+ if (cond == 0xf){
+ /* In ARMv3 and v4 the NV condition is UNPREDICTABLE; we
+ * choose to UNDEF. In ARMv5 and above the space is used
+ * for miscellaneous unconditional instructions.
+ */
+ ARCH(5);
+
+ /* Unconditional instructions. */
+ if (((insn >> 25) & 7) == 1) {
+ /* NEON Data processing. */
+ if (!arm_feature(env, ARM_FEATURE_NEON))
+ goto illegal_op;
+
+ if (disas_neon_data_insn(env, s, insn))
+ goto illegal_op;
+ return;
+ }
+ if ((insn & 0x0f100000) == 0x04000000) {
+ /* NEON load/store. */
+ if (!arm_feature(env, ARM_FEATURE_NEON))
+ goto illegal_op;
+
+ if (disas_neon_ls_insn(env, s, insn))
+ goto illegal_op;
+ return;
+ }
+ if (((insn & 0x0f30f000) == 0x0510f000) ||
+ ((insn & 0x0f30f010) == 0x0710f000)) {
+ if ((insn & (1 << 22)) == 0) {
+ /* PLDW; v7MP */
+ if (!arm_feature(env, ARM_FEATURE_V7MP)) {
+ goto illegal_op;
+ }
+ }
+ /* Otherwise PLD; v5TE+ */
+ ARCH(5TE);
+ return;
+ }
+ if (((insn & 0x0f70f000) == 0x0450f000) ||
+ ((insn & 0x0f70f010) == 0x0650f000)) {
+ ARCH(7);
+ return; /* PLI; V7 */
+ }
+ if (((insn & 0x0f700000) == 0x04100000) ||
+ ((insn & 0x0f700010) == 0x06100000)) {
+ if (!arm_feature(env, ARM_FEATURE_V7MP)) {
+ goto illegal_op;
+ }
+ return; /* v7MP: Unallocated memory hint: must NOP */
+ }
+
+ if ((insn & 0x0ffffdff) == 0x01010000) {
+ ARCH(6);
+ /* setend */
+ if (((insn >> 9) & 1) != s->bswap_code) {
+ /* Dynamic endianness switching not implemented. */
+ goto illegal_op;
+ }
+ return;
+ } else if ((insn & 0x0fffff00) == 0x057ff000) {
+ switch ((insn >> 4) & 0xf) {
+ case 1: /* clrex */
+ ARCH(6K);
+ gen_clrex(s);
+ return;
+ case 4: /* dsb */
+ case 5: /* dmb */
+ case 6: /* isb */
+ ARCH(7);
+ /* We don't emulate caches so these are a no-op. */
+ return;
+ default:
+ goto illegal_op;
+ }
+ } else if ((insn & 0x0e5fffe0) == 0x084d0500) {
+ /* srs */
+ int32_t offset;
+ if (IS_USER(s))
+ goto illegal_op;
+ ARCH(6);
+ op1 = (insn & 0x1f);
+ addr = tcg_temp_new_i32();
+ tmp = tcg_const_i32(op1);
+ gen_helper_get_r13_banked(addr, cpu_env, tmp);
+ tcg_temp_free_i32(tmp);
+ i = (insn >> 23) & 3;
+ switch (i) {
+ case 0: offset = -4; break; /* DA */
+ case 1: offset = 0; break; /* IA */
+ case 2: offset = -8; break; /* DB */
+ case 3: offset = 4; break; /* IB */
+ default: abort();
+ }
+ if (offset)
+ tcg_gen_addi_i32(addr, addr, offset);
+ tmp = load_reg(s, 14);
+ gen_st32(tmp, addr, 0);
+ tmp = load_cpu_field(spsr);
+ tcg_gen_addi_i32(addr, addr, 4);
+ gen_st32(tmp, addr, 0);
+ if (insn & (1 << 21)) {
+ /* Base writeback. */
+ switch (i) {
+ case 0: offset = -8; break;
+ case 1: offset = 4; break;
+ case 2: offset = -4; break;
+ case 3: offset = 0; break;
+ default: abort();
+ }
+ if (offset)
+ tcg_gen_addi_i32(addr, addr, offset);
+ tmp = tcg_const_i32(op1);
+ gen_helper_set_r13_banked(cpu_env, tmp, addr);
+ tcg_temp_free_i32(tmp);
+ tcg_temp_free_i32(addr);
+ } else {
+ tcg_temp_free_i32(addr);
+ }
+ return;
+ } else if ((insn & 0x0e50ffe0) == 0x08100a00) {
+ /* rfe */
+ int32_t offset;
+ if (IS_USER(s))
+ goto illegal_op;
+ ARCH(6);
+ rn = (insn >> 16) & 0xf;
+ addr = load_reg(s, rn);
+ i = (insn >> 23) & 3;
+ switch (i) {
+ case 0: offset = -4; break; /* DA */
+ case 1: offset = 0; break; /* IA */
+ case 2: offset = -8; break; /* DB */
+ case 3: offset = 4; break; /* IB */
+ default: abort();
+ }
+ if (offset)
+ tcg_gen_addi_i32(addr, addr, offset);
+ /* Load PC into tmp and CPSR into tmp2. */
+ tmp = gen_ld32(addr, 0);
+ tcg_gen_addi_i32(addr, addr, 4);
+ tmp2 = gen_ld32(addr, 0);
+ if (insn & (1 << 21)) {
+ /* Base writeback. */
+ switch (i) {
+ case 0: offset = -8; break;
+ case 1: offset = 4; break;
+ case 2: offset = -4; break;
+ case 3: offset = 0; break;
+ default: abort();
+ }
+ if (offset)
+ tcg_gen_addi_i32(addr, addr, offset);
+ store_reg(s, rn, addr);
+ } else {
+ tcg_temp_free_i32(addr);
+ }
+ gen_rfe(s, tmp, tmp2);
+ return;
+ } else if ((insn & 0x0e000000) == 0x0a000000) {
+ /* branch link and change to thumb (blx <offset>) */
+ int32_t offset;
+
+ val = (uint32_t)s->pc;
+ tmp = tcg_temp_new_i32();
+ tcg_gen_movi_i32(tmp, val);
+ store_reg(s, 14, tmp);
+ /* Sign-extend the 24-bit offset */
+ offset = (((int32_t)insn) << 8) >> 8;
+ /* offset * 4 + bit24 * 2 + (thumb bit) */
+ val += (offset << 2) | ((insn >> 23) & 2) | 1;
+ /* pipeline offset */
+ val += 4;
+ /* protected by ARCH(5); above, near the start of uncond block */
+ gen_bx_im(s, val);
+ return;
+ } else if ((insn & 0x0e000f00) == 0x0c000100) {
+ if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
+ /* iWMMXt register transfer. */
+ if (env->cp15.c15_cpar & (1 << 1))
+ if (!disas_iwmmxt_insn(env, s, insn))
+ return;
+ }
+ } else if ((insn & 0x0fe00000) == 0x0c400000) {
+ /* Coprocessor double register transfer. */
+ ARCH(5TE);
+ } else if ((insn & 0x0f000010) == 0x0e000010) {
+ /* Additional coprocessor register transfer. */
+ } else if ((insn & 0x0ff10020) == 0x01000000) {
+ uint32_t mask;
+ uint32_t val;
+ /* cps (privileged) */
+ if (IS_USER(s))
+ return;
+ mask = val = 0;
+ if (insn & (1 << 19)) {
+ if (insn & (1 << 8))
+ mask |= CPSR_A;
+ if (insn & (1 << 7))
+ mask |= CPSR_I;
+ if (insn & (1 << 6))
+ mask |= CPSR_F;
+ if (insn & (1 << 18))
+ val |= mask;
+ }
+ if (insn & (1 << 17)) {
+ mask |= CPSR_M;
+ val |= (insn & 0x1f);
+ }
+ if (mask) {
+ gen_set_psr_im(s, mask, 0, val);
+ }
+ return;
+ }
+ goto illegal_op;
+ }
+ if (cond != 0xe) {
+ /* if not always execute, we generate a conditional jump to
+ next instruction */
+ s->condlabel = gen_new_label();
+ gen_test_cc(cond ^ 1, s->condlabel);
+ s->condjmp = 1;
+ }
+ if ((insn & 0x0f900000) == 0x03000000) {
+ if ((insn & (1 << 21)) == 0) {
+ ARCH(6T2);
+ rd = (insn >> 12) & 0xf;
+ val = ((insn >> 4) & 0xf000) | (insn & 0xfff);
+ if ((insn & (1 << 22)) == 0) {
+ /* MOVW */
+ tmp = tcg_temp_new_i32();
+ tcg_gen_movi_i32(tmp, val);
+ } else {
+ /* MOVT */
+ tmp = load_reg(s, rd);
+ tcg_gen_ext16u_i32(tmp, tmp);
+ tcg_gen_ori_i32(tmp, tmp, val << 16);
+ }
+ store_reg(s, rd, tmp);
+ } else {
+ if (((insn >> 12) & 0xf) != 0xf)
+ goto illegal_op;
+ if (((insn >> 16) & 0xf) == 0) {
+ gen_nop_hint(s, insn & 0xff);
+ } else {
+ /* CPSR = immediate */
+ val = insn & 0xff;
+ shift = ((insn >> 8) & 0xf) * 2;
+ if (shift)
+ val = (val >> shift) | (val << (32 - shift));
+ i = ((insn & (1 << 22)) != 0);
+ if (gen_set_psr_im(s, msr_mask(env, s, (insn >> 16) & 0xf, i), i, val))
+ goto illegal_op;
+ }
+ }
+ } else if ((insn & 0x0f900000) == 0x01000000
+ && (insn & 0x00000090) != 0x00000090) {
+ /* miscellaneous instructions */
+ op1 = (insn >> 21) & 3;
+ sh = (insn >> 4) & 0xf;
+ rm = insn & 0xf;
+ switch (sh) {
+ case 0x0: /* move program status register */
+ if (op1 & 1) {
+ /* PSR = reg */
+ tmp = load_reg(s, rm);
+ i = ((op1 & 2) != 0);
+ if (gen_set_psr(s, msr_mask(env, s, (insn >> 16) & 0xf, i), i, tmp))
+ goto illegal_op;
+ } else {
+ /* reg = PSR */
+ rd = (insn >> 12) & 0xf;
+ if (op1 & 2) {
+ if (IS_USER(s))
+ goto illegal_op;
+ tmp = load_cpu_field(spsr);
+ } else {
+ tmp = tcg_temp_new_i32();
+ gen_helper_cpsr_read(tmp);
+ }
+ store_reg(s, rd, tmp);
+ }
+ break;
+ case 0x1:
+ if (op1 == 1) {
+ /* branch/exchange thumb (bx). */
+ ARCH(4T);
+ tmp = load_reg(s, rm);
+ gen_bx(s, tmp);
+ } else if (op1 == 3) {
+ /* clz */
+ ARCH(5);
+ rd = (insn >> 12) & 0xf;
+ tmp = load_reg(s, rm);
+ gen_helper_clz(tmp, tmp);
+ store_reg(s, rd, tmp);
+ } else {
+ goto illegal_op;
+ }
+ break;
+ case 0x2:
+ if (op1 == 1) {
+ ARCH(5J); /* bxj */
+ /* Trivial implementation equivalent to bx. */
+ tmp = load_reg(s, rm);
+ gen_bx(s, tmp);
+ } else {
+ goto illegal_op;
+ }
+ break;
+ case 0x3:
+ if (op1 != 1)
+ goto illegal_op;
+
+ ARCH(5);
+ /* branch link/exchange thumb (blx) */
+ tmp = load_reg(s, rm);
+ tmp2 = tcg_temp_new_i32();
+ tcg_gen_movi_i32(tmp2, s->pc);
+ store_reg(s, 14, tmp2);
+ gen_bx(s, tmp);
+ break;
+ case 0x5: /* saturating add/subtract */
+ ARCH(5TE);
+ rd = (insn >> 12) & 0xf;
+ rn = (insn >> 16) & 0xf;
+ tmp = load_reg(s, rm);
+ tmp2 = load_reg(s, rn);
+ if (op1 & 2)
+ gen_helper_double_saturate(tmp2, tmp2);
+ if (op1 & 1)
+ gen_helper_sub_saturate(tmp, tmp, tmp2);
+ else
+ gen_helper_add_saturate(tmp, tmp, tmp2);
+ tcg_temp_free_i32(tmp2);
+ store_reg(s, rd, tmp);
+ break;
+ case 7:
+ /* SMC instruction (op1 == 3)
+ and undefined instructions (op1 == 0 || op1 == 2)
+ will trap */
+ if (op1 != 1) {
+ goto illegal_op;
+ }
+ /* bkpt */
+ ARCH(5);
+ gen_exception_insn(s, 4, EXCP_BKPT);
+ break;
+ case 0x8: /* signed multiply */
+ case 0xa:
+ case 0xc:
+ case 0xe:
+ ARCH(5TE);
+ rs = (insn >> 8) & 0xf;
+ rn = (insn >> 12) & 0xf;
+ rd = (insn >> 16) & 0xf;
+ if (op1 == 1) {
+ /* (32 * 16) >> 16 */
+ tmp = load_reg(s, rm);
+ tmp2 = load_reg(s, rs);
+ if (sh & 4)
+ tcg_gen_sari_i32(tmp2, tmp2, 16);
+ else
+ gen_sxth(tmp2);
+ tmp64 = gen_muls_i64_i32(tmp, tmp2);
+ tcg_gen_shri_i64(tmp64, tmp64, 16);
+ tmp = tcg_temp_new_i32();
+ tcg_gen_trunc_i64_i32(tmp, tmp64);
+ tcg_temp_free_i64(tmp64);
+ if ((sh & 2) == 0) {
+ tmp2 = load_reg(s, rn);
+ gen_helper_add_setq(tmp, tmp, tmp2);
+ tcg_temp_free_i32(tmp2);
+ }
+ store_reg(s, rd, tmp);
+ } else {
+ /* 16 * 16 */
+ tmp = load_reg(s, rm);
+ tmp2 = load_reg(s, rs);
+ gen_mulxy(tmp, tmp2, sh & 2, sh & 4);
+ tcg_temp_free_i32(tmp2);
+ if (op1 == 2) {
+ tmp64 = tcg_temp_new_i64();
+ tcg_gen_ext_i32_i64(tmp64, tmp);
+ tcg_temp_free_i32(tmp);
+ gen_addq(s, tmp64, rn, rd);
+ gen_storeq_reg(s, rn, rd, tmp64);
+ tcg_temp_free_i64(tmp64);
+ } else {
+ if (op1 == 0) {
+ tmp2 = load_reg(s, rn);
+ gen_helper_add_setq(tmp, tmp, tmp2);
+ tcg_temp_free_i32(tmp2);
+ }
+ store_reg(s, rd, tmp);
+ }
+ }
+ break;
+ default:
+ goto illegal_op;
+ }
+ } else if (((insn & 0x0e000000) == 0 &&
+ (insn & 0x00000090) != 0x90) ||
+ ((insn & 0x0e000000) == (1 << 25))) {
+ int set_cc, logic_cc, shiftop;
+
+ op1 = (insn >> 21) & 0xf;
+ set_cc = (insn >> 20) & 1;
+ logic_cc = table_logic_cc[op1] & set_cc;
+
+ /* data processing instruction */
+ if (insn & (1 << 25)) {
+ /* immediate operand */
+ val = insn & 0xff;
+ shift = ((insn >> 8) & 0xf) * 2;
+ if (shift) {
+ val = (val >> shift) | (val << (32 - shift));
+ }
+ tmp2 = tcg_temp_new_i32();
+ tcg_gen_movi_i32(tmp2, val);
+ if (logic_cc && shift) {
+ gen_set_CF_bit31(tmp2);
+ }
+ } else {
+ /* register */
+ rm = (insn) & 0xf;
+ tmp2 = load_reg(s, rm);
+ shiftop = (insn >> 5) & 3;
+ if (!(insn & (1 << 4))) {
+ shift = (insn >> 7) & 0x1f;
+ gen_arm_shift_im(tmp2, shiftop, shift, logic_cc);
+ } else {
+ rs = (insn >> 8) & 0xf;
+ tmp = load_reg(s, rs);
+ gen_arm_shift_reg(tmp2, shiftop, tmp, logic_cc);
+ }
+ }
+ if (op1 != 0x0f && op1 != 0x0d) {
+ rn = (insn >> 16) & 0xf;
+ tmp = load_reg(s, rn);
+ } else {
+ TCGV_UNUSED(tmp);
+ }
+ rd = (insn >> 12) & 0xf;
+ switch(op1) {
+ case 0x00:
+ tcg_gen_and_i32(tmp, tmp, tmp2);
+ if (logic_cc) {
+ gen_logic_CC(tmp);
+ }
+ store_reg_bx(env, s, rd, tmp);
+ break;
+ case 0x01:
+ tcg_gen_xor_i32(tmp, tmp, tmp2);
+ if (logic_cc) {
+ gen_logic_CC(tmp);
+ }
+ store_reg_bx(env, s, rd, tmp);
+ break;
+ case 0x02:
+ if (set_cc && rd == 15) {
+ /* SUBS r15, ... is used for exception return. */
+ if (IS_USER(s)) {
+ goto illegal_op;
+ }
+ gen_helper_sub_cc(tmp, tmp, tmp2);
+ gen_exception_return(s, tmp);
+ } else {
+ if (set_cc) {
+ gen_helper_sub_cc(tmp, tmp, tmp2);
+ } else {
+ tcg_gen_sub_i32(tmp, tmp, tmp2);
+ }
+ store_reg_bx(env, s, rd, tmp);
+ }
+ break;
+ case 0x03:
+ if (set_cc) {
+ gen_helper_sub_cc(tmp, tmp2, tmp);
+ } else {
+ tcg_gen_sub_i32(tmp, tmp2, tmp);
+ }
+ store_reg_bx(env, s, rd, tmp);
+ break;
+ case 0x04:
+ if (set_cc) {
+ gen_helper_add_cc(tmp, tmp, tmp2);
+ } else {
+ tcg_gen_add_i32(tmp, tmp, tmp2);
+ }
+ store_reg_bx(env, s, rd, tmp);
+ break;
+ case 0x05:
+ if (set_cc) {
+ gen_helper_adc_cc(tmp, tmp, tmp2);
+ } else {
+ gen_add_carry(tmp, tmp, tmp2);
+ }
+ store_reg_bx(env, s, rd, tmp);
+ break;
+ case 0x06:
+ if (set_cc) {
+ gen_helper_sbc_cc(tmp, tmp, tmp2);
+ } else {
+ gen_sub_carry(tmp, tmp, tmp2);
+ }
+ store_reg_bx(env, s, rd, tmp);
+ break;
+ case 0x07:
+ if (set_cc) {
+ gen_helper_sbc_cc(tmp, tmp2, tmp);
+ } else {
+ gen_sub_carry(tmp, tmp2, tmp);
+ }
+ store_reg_bx(env, s, rd, tmp);
+ break;
+ case 0x08:
+ if (set_cc) {
+ tcg_gen_and_i32(tmp, tmp, tmp2);
+ gen_logic_CC(tmp);
+ }
+ tcg_temp_free_i32(tmp);
+ break;
+ case 0x09:
+ if (set_cc) {
+ tcg_gen_xor_i32(tmp, tmp, tmp2);
+ gen_logic_CC(tmp);
+ }
+ tcg_temp_free_i32(tmp);
+ break;
+ case 0x0a:
+ if (set_cc) {
+ gen_helper_sub_cc(tmp, tmp, tmp2);
+ }
+ tcg_temp_free_i32(tmp);
+ break;
+ case 0x0b:
+ if (set_cc) {
+ gen_helper_add_cc(tmp, tmp, tmp2);
+ }
+ tcg_temp_free_i32(tmp);
+ break;
+ case 0x0c:
+ tcg_gen_or_i32(tmp, tmp, tmp2);
+ if (logic_cc) {
+ gen_logic_CC(tmp);
+ }
+ store_reg_bx(env, s, rd, tmp);
+ break;
+ case 0x0d:
+ if (logic_cc && rd == 15) {
+ /* MOVS r15, ... is used for exception return. */
+ if (IS_USER(s)) {
+ goto illegal_op;
+ }
+ gen_exception_return(s, tmp2);
+ } else {
+ if (logic_cc) {
+ gen_logic_CC(tmp2);
+ }
+ store_reg_bx(env, s, rd, tmp2);
+ }
+ break;
+ case 0x0e:
+ tcg_gen_andc_i32(tmp, tmp, tmp2);
+ if (logic_cc) {
+ gen_logic_CC(tmp);
+ }
+ store_reg_bx(env, s, rd, tmp);
+ break;
+ default:
+ case 0x0f:
+ tcg_gen_not_i32(tmp2, tmp2);
+ if (logic_cc) {
+ gen_logic_CC(tmp2);
+ }
+ store_reg_bx(env, s, rd, tmp2);
+ break;
+ }
+ if (op1 != 0x0f && op1 != 0x0d) {
+ tcg_temp_free_i32(tmp2);
+ }
+ } else {
+ /* other instructions */
+ op1 = (insn >> 24) & 0xf;
+ switch(op1) {
+ case 0x0:
+ case 0x1:
+ /* multiplies, extra load/stores */
+ sh = (insn >> 5) & 3;
+ if (sh == 0) {
+ if (op1 == 0x0) {
+ rd = (insn >> 16) & 0xf;
+ rn = (insn >> 12) & 0xf;
+ rs = (insn >> 8) & 0xf;
+ rm = (insn) & 0xf;
+ op1 = (insn >> 20) & 0xf;
+ switch (op1) {
+ case 0: case 1: case 2: case 3: case 6:
+ /* 32 bit mul */
+ tmp = load_reg(s, rs);
+ tmp2 = load_reg(s, rm);
+ tcg_gen_mul_i32(tmp, tmp, tmp2);
+ tcg_temp_free_i32(tmp2);
+ if (insn & (1 << 22)) {
+ /* Subtract (mls) */
+ ARCH(6T2);
+ tmp2 = load_reg(s, rn);
+ tcg_gen_sub_i32(tmp, tmp2, tmp);
+ tcg_temp_free_i32(tmp2);
+ } else if (insn & (1 << 21)) {
+ /* Add */
+ tmp2 = load_reg(s, rn);
+ tcg_gen_add_i32(tmp, tmp, tmp2);
+ tcg_temp_free_i32(tmp2);
+ }
+ if (insn & (1 << 20))
+ gen_logic_CC(tmp);
+ store_reg(s, rd, tmp);
+ break;
+ case 4:
+ /* 64 bit mul double accumulate (UMAAL) */
+ ARCH(6);
+ tmp = load_reg(s, rs);
+ tmp2 = load_reg(s, rm);
+ tmp64 = gen_mulu_i64_i32(tmp, tmp2);
+ gen_addq_lo(s, tmp64, rn);
+ gen_addq_lo(s, tmp64, rd);
+ gen_storeq_reg(s, rn, rd, tmp64);
+ tcg_temp_free_i64(tmp64);
+ break;
+ case 8: case 9: case 10: case 11:
+ case 12: case 13: case 14: case 15:
+ /* 64 bit mul: UMULL, UMLAL, SMULL, SMLAL. */
+ tmp = load_reg(s, rs);
+ tmp2 = load_reg(s, rm);
+ if (insn & (1 << 22)) {
+ tmp64 = gen_muls_i64_i32(tmp, tmp2);
+ } else {
+ tmp64 = gen_mulu_i64_i32(tmp, tmp2);
+ }
+ if (insn & (1 << 21)) { /* mult accumulate */
+ gen_addq(s, tmp64, rn, rd);
+ }
+ if (insn & (1 << 20)) {
+ gen_logicq_cc(tmp64);
+ }
+ gen_storeq_reg(s, rn, rd, tmp64);
+ tcg_temp_free_i64(tmp64);
+ break;
+ default:
+ goto illegal_op;
+ }
+ } else {
+ rn = (insn >> 16) & 0xf;
+ rd = (insn >> 12) & 0xf;
+ if (insn & (1 << 23)) {
+ /* load/store exclusive */
+ op1 = (insn >> 21) & 0x3;
+ if (op1)
+ ARCH(6K);
+ else
+ ARCH(6);
+ addr = tcg_temp_local_new_i32();
+ load_reg_var(s, addr, rn);
+ if (insn & (1 << 20)) {
+ switch (op1) {
+ case 0: /* ldrex */
+ gen_load_exclusive(s, rd, 15, addr, 2);
+ break;
+ case 1: /* ldrexd */
+ gen_load_exclusive(s, rd, rd + 1, addr, 3);
+ break;
+ case 2: /* ldrexb */
+ gen_load_exclusive(s, rd, 15, addr, 0);
+ break;
+ case 3: /* ldrexh */
+ gen_load_exclusive(s, rd, 15, addr, 1);
+ break;
+ default:
+ abort();
+ }
+ } else {
+ rm = insn & 0xf;
+ switch (op1) {
+ case 0: /* strex */
+ gen_store_exclusive(s, rd, rm, 15, addr, 2);
+ break;
+ case 1: /* strexd */
+ gen_store_exclusive(s, rd, rm, rm + 1, addr, 3);
+ break;
+ case 2: /* strexb */
+ gen_store_exclusive(s, rd, rm, 15, addr, 0);
+ break;
+ case 3: /* strexh */
+ gen_store_exclusive(s, rd, rm, 15, addr, 1);
+ break;
+ default:
+ abort();
+ }
+ }
+ tcg_temp_free(addr);
+ } else {
+ /* SWP instruction */
+ rm = (insn) & 0xf;
+
+ /* ??? This is not really atomic. However we know
+ we never have multiple CPUs running in parallel,
+ so it is good enough. */
+ addr = load_reg(s, rn);
+ tmp = load_reg(s, rm);
+ if (insn & (1 << 22)) {
+ tmp2 = gen_ld8u(addr, IS_USER(s));
+ gen_st8(tmp, addr, IS_USER(s));
+ } else {
+ tmp2 = gen_ld32(addr, IS_USER(s));
+ gen_st32(tmp, addr, IS_USER(s));
+ }
+ tcg_temp_free_i32(addr);
+ store_reg(s, rd, tmp2);
+ }
+ }
+ } else {
+ int address_offset;
+ int load;
+ /* Misc load/store */
+ rn = (insn >> 16) & 0xf;
+ rd = (insn >> 12) & 0xf;
+ addr = load_reg(s, rn);
+ if (insn & (1 << 24))
+ gen_add_datah_offset(s, insn, 0, addr);
+ address_offset = 0;
+ if (insn & (1 << 20)) {
+ /* load */
+ switch(sh) {
+ case 1:
+ tmp = gen_ld16u(addr, IS_USER(s));
+ break;
+ case 2:
+ tmp = gen_ld8s(addr, IS_USER(s));
+ break;
+ default:
+ case 3:
+ tmp = gen_ld16s(addr, IS_USER(s));
+ break;
+ }
+ load = 1;
+ } else if (sh & 2) {
+ ARCH(5TE);
+ /* doubleword */
+ if (sh & 1) {
+ /* store */
+ tmp = load_reg(s, rd);
+ gen_st32(tmp, addr, IS_USER(s));
+ tcg_gen_addi_i32(addr, addr, 4);
+ tmp = load_reg(s, rd + 1);
+ gen_st32(tmp, addr, IS_USER(s));
+ load = 0;
+ } else {
+ /* load */
+ tmp = gen_ld32(addr, IS_USER(s));
+ store_reg(s, rd, tmp);
+ tcg_gen_addi_i32(addr, addr, 4);
+ tmp = gen_ld32(addr, IS_USER(s));
+ rd++;
+ load = 1;
+ }
+ address_offset = -4;
+ } else {
+ /* store */
+ tmp = load_reg(s, rd);
+ gen_st16(tmp, addr, IS_USER(s));
+ load = 0;
+ }
+ /* Perform base writeback before the loaded value to
+ ensure correct behavior with overlapping index registers.
+ ldrd with base writeback is is undefined if the
+ destination and index registers overlap. */
+ if (!(insn & (1 << 24))) {
+ gen_add_datah_offset(s, insn, address_offset, addr);
+ store_reg(s, rn, addr);
+ } else if (insn & (1 << 21)) {
+ if (address_offset)
+ tcg_gen_addi_i32(addr, addr, address_offset);
+ store_reg(s, rn, addr);
+ } else {
+ tcg_temp_free_i32(addr);
+ }
+ if (load) {
+ /* Complete the load. */
+ store_reg(s, rd, tmp);
+ }
+ }
+ break;
+ case 0x4:
+ case 0x5:
+ goto do_ldst;
+ case 0x6:
+ case 0x7:
+ if (insn & (1 << 4)) {
+ ARCH(6);
+ /* Armv6 Media instructions. */
+ rm = insn & 0xf;
+ rn = (insn >> 16) & 0xf;
+ rd = (insn >> 12) & 0xf;
+ rs = (insn >> 8) & 0xf;
+ switch ((insn >> 23) & 3) {
+ case 0: /* Parallel add/subtract. */
+ op1 = (insn >> 20) & 7;
+ tmp = load_reg(s, rn);
+ tmp2 = load_reg(s, rm);
+ sh = (insn >> 5) & 7;
+ if ((op1 & 3) == 0 || sh == 5 || sh == 6)
+ goto illegal_op;
+ gen_arm_parallel_addsub(op1, sh, tmp, tmp2);
+ tcg_temp_free_i32(tmp2);
+ store_reg(s, rd, tmp);
+ break;
+ case 1:
+ if ((insn & 0x00700020) == 0) {
+ /* Halfword pack. */
+ tmp = load_reg(s, rn);
+ tmp2 = load_reg(s, rm);
+ shift = (insn >> 7) & 0x1f;
+ if (insn & (1 << 6)) {
+ /* pkhtb */
+ if (shift == 0)
+ shift = 31;
+ tcg_gen_sari_i32(tmp2, tmp2, shift);
+ tcg_gen_andi_i32(tmp, tmp, 0xffff0000);
+ tcg_gen_ext16u_i32(tmp2, tmp2);
+ } else {
+ /* pkhbt */
+ if (shift)
+ tcg_gen_shli_i32(tmp2, tmp2, shift);
+ tcg_gen_ext16u_i32(tmp, tmp);
+ tcg_gen_andi_i32(tmp2, tmp2, 0xffff0000);
+ }
+ tcg_gen_or_i32(tmp, tmp, tmp2);
+ tcg_temp_free_i32(tmp2);
+ store_reg(s, rd, tmp);
+ } else if ((insn & 0x00200020) == 0x00200000) {
+ /* [us]sat */
+ tmp = load_reg(s, rm);
+ shift = (insn >> 7) & 0x1f;
+ if (insn & (1 << 6)) {
+ if (shift == 0)
+ shift = 31;
+ tcg_gen_sari_i32(tmp, tmp, shift);
+ } else {
+ tcg_gen_shli_i32(tmp, tmp, shift);
+ }
+ sh = (insn >> 16) & 0x1f;
+ tmp2 = tcg_const_i32(sh);
+ if (insn & (1 << 22))
+ gen_helper_usat(tmp, tmp, tmp2);
+ else
+ gen_helper_ssat(tmp, tmp, tmp2);
+ tcg_temp_free_i32(tmp2);
+ store_reg(s, rd, tmp);
+ } else if ((insn & 0x00300fe0) == 0x00200f20) {
+ /* [us]sat16 */
+ tmp = load_reg(s, rm);
+ sh = (insn >> 16) & 0x1f;
+ tmp2 = tcg_const_i32(sh);
+ if (insn & (1 << 22))
+ gen_helper_usat16(tmp, tmp, tmp2);
+ else
+ gen_helper_ssat16(tmp, tmp, tmp2);
+ tcg_temp_free_i32(tmp2);
+ store_reg(s, rd, tmp);
+ } else if ((insn & 0x00700fe0) == 0x00000fa0) {
+ /* Select bytes. */
+ tmp = load_reg(s, rn);
+ tmp2 = load_reg(s, rm);
+ tmp3 = tcg_temp_new_i32();
+ tcg_gen_ld_i32(tmp3, cpu_env, offsetof(CPUARMState, GE));
+ gen_helper_sel_flags(tmp, tmp3, tmp, tmp2);
+ tcg_temp_free_i32(tmp3);
+ tcg_temp_free_i32(tmp2);
+ store_reg(s, rd, tmp);
+ } else if ((insn & 0x000003e0) == 0x00000060) {
+ tmp = load_reg(s, rm);
+ shift = (insn >> 10) & 3;
+ /* ??? In many cases it's not necessary to do a
+ rotate, a shift is sufficient. */
+ if (shift != 0)
+ tcg_gen_rotri_i32(tmp, tmp, shift * 8);
+ op1 = (insn >> 20) & 7;
+ switch (op1) {
+ case 0: gen_sxtb16(tmp); break;
+ case 2: gen_sxtb(tmp); break;
+ case 3: gen_sxth(tmp); break;
+ case 4: gen_uxtb16(tmp); break;
+ case 6: gen_uxtb(tmp); break;
+ case 7: gen_uxth(tmp); break;
+ default: goto illegal_op;
+ }
+ if (rn != 15) {
+ tmp2 = load_reg(s, rn);
+ if ((op1 & 3) == 0) {
+ gen_add16(tmp, tmp2);
+ } else {
+ tcg_gen_add_i32(tmp, tmp, tmp2);
+ tcg_temp_free_i32(tmp2);
+ }
+ }
+ store_reg(s, rd, tmp);
+ } else if ((insn & 0x003f0f60) == 0x003f0f20) {
+ /* rev */
+ tmp = load_reg(s, rm);
+ if (insn & (1 << 22)) {
+ if (insn & (1 << 7)) {
+ gen_revsh(tmp);
+ } else {
+ ARCH(6T2);
+ gen_helper_rbit(tmp, tmp);
+ }
+ } else {
+ if (insn & (1 << 7))
+ gen_rev16(tmp);
+ else
+ tcg_gen_bswap32_i32(tmp, tmp);
+ }
+ store_reg(s, rd, tmp);
+ } else {
+ goto illegal_op;
+ }
+ break;
+ case 2: /* Multiplies (Type 3). */
+ switch ((insn >> 20) & 0x7) {
+ case 5:
+ if (((insn >> 6) ^ (insn >> 7)) & 1) {
+ /* op2 not 00x or 11x : UNDEF */
+ goto illegal_op;
+ }
+ /* Signed multiply most significant [accumulate].
+ (SMMUL, SMMLA, SMMLS) */
+ tmp = load_reg(s, rm);
+ tmp2 = load_reg(s, rs);
+ tmp64 = gen_muls_i64_i32(tmp, tmp2);
+
+ if (rd != 15) {
+ tmp = load_reg(s, rd);
+ if (insn & (1 << 6)) {
+ tmp64 = gen_subq_msw(tmp64, tmp);
+ } else {
+ tmp64 = gen_addq_msw(tmp64, tmp);
+ }
+ }
+ if (insn & (1 << 5)) {
+ tcg_gen_addi_i64(tmp64, tmp64, 0x80000000u);
+ }
+ tcg_gen_shri_i64(tmp64, tmp64, 32);
+ tmp = tcg_temp_new_i32();
+ tcg_gen_trunc_i64_i32(tmp, tmp64);
+ tcg_temp_free_i64(tmp64);
+ store_reg(s, rn, tmp);
+ break;
+ case 0:
+ case 4:
+ /* SMLAD, SMUAD, SMLSD, SMUSD, SMLALD, SMLSLD */
+ if (insn & (1 << 7)) {
+ goto illegal_op;
+ }
+ tmp = load_reg(s, rm);
+ tmp2 = load_reg(s, rs);
+ if (insn & (1 << 5))
+ gen_swap_half(tmp2);
+ gen_smul_dual(tmp, tmp2);
+ if (insn & (1 << 6)) {
+ /* This subtraction cannot overflow. */
+ tcg_gen_sub_i32(tmp, tmp, tmp2);
+ } else {
+ /* This addition cannot overflow 32 bits;
+ * however it may overflow considered as a signed
+ * operation, in which case we must set the Q flag.
+ */
+ gen_helper_add_setq(tmp, tmp, tmp2);
+ }
+ tcg_temp_free_i32(tmp2);
+ if (insn & (1 << 22)) {
+ /* smlald, smlsld */
+ tmp64 = tcg_temp_new_i64();
+ tcg_gen_ext_i32_i64(tmp64, tmp);
+ tcg_temp_free_i32(tmp);
+ gen_addq(s, tmp64, rd, rn);
+ gen_storeq_reg(s, rd, rn, tmp64);
+ tcg_temp_free_i64(tmp64);
+ } else {
+ /* smuad, smusd, smlad, smlsd */
+ if (rd != 15)
+ {
+ tmp2 = load_reg(s, rd);
+ gen_helper_add_setq(tmp, tmp, tmp2);
+ tcg_temp_free_i32(tmp2);
+ }
+ store_reg(s, rn, tmp);
+ }
+ break;
+ case 1:
+ case 3:
+ /* SDIV, UDIV */
+ if (!arm_feature(env, ARM_FEATURE_ARM_DIV)) {
+ goto illegal_op;
+ }
+ if (((insn >> 5) & 7) || (rd != 15)) {
+ goto illegal_op;
+ }
+ tmp = load_reg(s, rm);
+ tmp2 = load_reg(s, rs);
+ if (insn & (1 << 21)) {
+ gen_helper_udiv(tmp, tmp, tmp2);
+ } else {
+ gen_helper_sdiv(tmp, tmp, tmp2);
+ }
+ tcg_temp_free_i32(tmp2);
+ store_reg(s, rn, tmp);
+ break;
+ default:
+ goto illegal_op;
+ }
+ break;
+ case 3:
+ op1 = ((insn >> 17) & 0x38) | ((insn >> 5) & 7);
+ switch (op1) {
+ case 0: /* Unsigned sum of absolute differences. */
+ ARCH(6);
+ tmp = load_reg(s, rm);
+ tmp2 = load_reg(s, rs);
+ gen_helper_usad8(tmp, tmp, tmp2);
+ tcg_temp_free_i32(tmp2);
+ if (rd != 15) {
+ tmp2 = load_reg(s, rd);
+ tcg_gen_add_i32(tmp, tmp, tmp2);
+ tcg_temp_free_i32(tmp2);
+ }
+ store_reg(s, rn, tmp);
+ break;
+ case 0x20: case 0x24: case 0x28: case 0x2c:
+ /* Bitfield insert/clear. */
+ ARCH(6T2);
+ shift = (insn >> 7) & 0x1f;
+ i = (insn >> 16) & 0x1f;
+ i = i + 1 - shift;
+ if (rm == 15) {
+ tmp = tcg_temp_new_i32();
+ tcg_gen_movi_i32(tmp, 0);
+ } else {
+ tmp = load_reg(s, rm);
+ }
+ if (i != 32) {
+ tmp2 = load_reg(s, rd);
+ gen_bfi(tmp, tmp2, tmp, shift, (1u << i) - 1);
+ tcg_temp_free_i32(tmp2);
+ }
+ store_reg(s, rd, tmp);
+ break;
+ case 0x12: case 0x16: case 0x1a: case 0x1e: /* sbfx */
+ case 0x32: case 0x36: case 0x3a: case 0x3e: /* ubfx */
+ ARCH(6T2);
+ tmp = load_reg(s, rm);
+ shift = (insn >> 7) & 0x1f;
+ i = ((insn >> 16) & 0x1f) + 1;
+ if (shift + i > 32)
+ goto illegal_op;
+ if (i < 32) {
+ if (op1 & 0x20) {
+ gen_ubfx(tmp, shift, (1u << i) - 1);
+ } else {
+ gen_sbfx(tmp, shift, i);
+ }
+ }
+ store_reg(s, rd, tmp);
+ break;
+ default:
+ goto illegal_op;
+ }
+ break;
+ }
+ break;
+ }
+ do_ldst:
+ /* Check for undefined extension instructions
+ * per the ARM Bible IE:
+ * xxxx 0111 1111 xxxx xxxx xxxx 1111 xxxx
+ */
+ sh = (0xf << 20) | (0xf << 4);
+ if (op1 == 0x7 && ((insn & sh) == sh))
+ {
+ goto illegal_op;
+ }
+ /* load/store byte/word */
+ rn = (insn >> 16) & 0xf;
+ rd = (insn >> 12) & 0xf;
+ tmp2 = load_reg(s, rn);
+ i = (IS_USER(s) || (insn & 0x01200000) == 0x00200000);
+ if (insn & (1 << 24))
+ gen_add_data_offset(s, insn, tmp2);
+ if (insn & (1 << 20)) {
+ /* load */
+ if (insn & (1 << 22)) {
+ tmp = gen_ld8u(tmp2, i);
+ } else {
+ tmp = gen_ld32(tmp2, i);
+ }
+ } else {
+ /* store */
+ tmp = load_reg(s, rd);
+ if (insn & (1 << 22))
+ gen_st8(tmp, tmp2, i);
+ else
+ gen_st32(tmp, tmp2, i);
+ }
+ if (!(insn & (1 << 24))) {
+ gen_add_data_offset(s, insn, tmp2);
+ store_reg(s, rn, tmp2);
+ } else if (insn & (1 << 21)) {
+ store_reg(s, rn, tmp2);
+ } else {
+ tcg_temp_free_i32(tmp2);
+ }
+ if (insn & (1 << 20)) {
+ /* Complete the load. */
+ store_reg_from_load(env, s, rd, tmp);
+ }
+ break;
+ case 0x08:
+ case 0x09:
+ {
+ int j, n, user, loaded_base;
+ TCGv loaded_var;
+ /* load/store multiple words */
+ /* XXX: store correct base if write back */
+ user = 0;
+ if (insn & (1 << 22)) {
+ if (IS_USER(s))
+ goto illegal_op; /* only usable in supervisor mode */
+
+ if ((insn & (1 << 15)) == 0)
+ user = 1;
+ }
+ rn = (insn >> 16) & 0xf;
+ addr = load_reg(s, rn);
+
+ /* compute total size */
+ loaded_base = 0;
+ TCGV_UNUSED(loaded_var);
+ n = 0;
+ for(i=0;i<16;i++) {
+ if (insn & (1 << i))
+ n++;
+ }
+ /* XXX: test invalid n == 0 case ? */
+ if (insn & (1 << 23)) {
+ if (insn & (1 << 24)) {
+ /* pre increment */
+ tcg_gen_addi_i32(addr, addr, 4);
+ } else {
+ /* post increment */
+ }
+ } else {
+ if (insn & (1 << 24)) {
+ /* pre decrement */
+ tcg_gen_addi_i32(addr, addr, -(n * 4));
+ } else {
+ /* post decrement */
+ if (n != 1)
+ tcg_gen_addi_i32(addr, addr, -((n - 1) * 4));
+ }
+ }
+ j = 0;
+ for(i=0;i<16;i++) {
+ if (insn & (1 << i)) {
+ if (insn & (1 << 20)) {
+ /* load */
+ tmp = gen_ld32(addr, IS_USER(s));
+ if (user) {
+ tmp2 = tcg_const_i32(i);
+ gen_helper_set_user_reg(tmp2, tmp);
+ tcg_temp_free_i32(tmp2);
+ tcg_temp_free_i32(tmp);
+ } else if (i == rn) {
+ loaded_var = tmp;
+ loaded_base = 1;
+ } else {
+ store_reg_from_load(env, s, i, tmp);
+ }
+ } else {
+ /* store */
+ if (i == 15) {
+ /* special case: r15 = PC + 8 */
+ val = (long)s->pc + 4;
+ tmp = tcg_temp_new_i32();
+ tcg_gen_movi_i32(tmp, val);
+ } else if (user) {
+ tmp = tcg_temp_new_i32();
+ tmp2 = tcg_const_i32(i);
+ gen_helper_get_user_reg(tmp, tmp2);
+ tcg_temp_free_i32(tmp2);
+ } else {
+ tmp = load_reg(s, i);
+ }
+ gen_st32(tmp, addr, IS_USER(s));
+ }
+ j++;
+ /* no need to add after the last transfer */
+ if (j != n)
+ tcg_gen_addi_i32(addr, addr, 4);
+ }
+ }
+ if (insn & (1 << 21)) {
+ /* write back */
+ if (insn & (1 << 23)) {
+ if (insn & (1 << 24)) {
+ /* pre increment */
+ } else {
+ /* post increment */
+ tcg_gen_addi_i32(addr, addr, 4);
+ }
+ } else {
+ if (insn & (1 << 24)) {
+ /* pre decrement */
+ if (n != 1)
+ tcg_gen_addi_i32(addr, addr, -((n - 1) * 4));
+ } else {
+ /* post decrement */
+ tcg_gen_addi_i32(addr, addr, -(n * 4));
+ }
+ }
+ store_reg(s, rn, addr);
+ } else {
+ tcg_temp_free_i32(addr);
+ }
+ if (loaded_base) {
+ store_reg(s, rn, loaded_var);
+ }
+ if ((insn & (1 << 22)) && !user) {
+ /* Restore CPSR from SPSR. */
+ tmp = load_cpu_field(spsr);
+ gen_set_cpsr(tmp, 0xffffffff);
+ tcg_temp_free_i32(tmp);
+ s->is_jmp = DISAS_UPDATE;
+ }
+ }
+ break;
+ case 0xa:
+ case 0xb:
+ {
+ int32_t offset;
+
+ /* branch (and link) */
+ val = (int32_t)s->pc;
+ if (insn & (1 << 24)) {
+ tmp = tcg_temp_new_i32();
+ tcg_gen_movi_i32(tmp, val);
+ store_reg(s, 14, tmp);
+ }
+ offset = (((int32_t)insn << 8) >> 8);
+ val += (offset << 2) + 4;
+ gen_jmp(s, val);
+ }
+ break;
+ case 0xc:
+ case 0xd:
+ case 0xe:
+ /* Coprocessor. */
+ if (disas_coproc_insn(env, s, insn))
+ goto illegal_op;
+ break;
+ case 0xf:
+ /* swi */
+ gen_set_pc_im(s->pc);
+ s->is_jmp = DISAS_SWI;
+ break;
+ default:
+ illegal_op:
+ gen_exception_insn(s, 4, EXCP_UDEF);
+ break;
+ }
+ }
+}
+
+/* Return true if this is a Thumb-2 logical op. */
+static int
+thumb2_logic_op(int op)
+{
+ return (op < 8);
+}
+
+/* Generate code for a Thumb-2 data processing operation. If CONDS is nonzero
+ then set condition code flags based on the result of the operation.
+ If SHIFTER_OUT is nonzero then set the carry flag for logical operations
+ to the high bit of T1.
+ Returns zero if the opcode is valid. */
+
+static int
+gen_thumb2_data_op(DisasContext *s, int op, int conds, uint32_t shifter_out, TCGv t0, TCGv t1)
+{
+ int logic_cc;
+
+ logic_cc = 0;
+ switch (op) {
+ case 0: /* and */
+ tcg_gen_and_i32(t0, t0, t1);
+ logic_cc = conds;
+ break;
+ case 1: /* bic */
+ tcg_gen_andc_i32(t0, t0, t1);
+ logic_cc = conds;
+ break;
+ case 2: /* orr */
+ tcg_gen_or_i32(t0, t0, t1);
+ logic_cc = conds;
+ break;
+ case 3: /* orn */
+ tcg_gen_orc_i32(t0, t0, t1);
+ logic_cc = conds;
+ break;
+ case 4: /* eor */
+ tcg_gen_xor_i32(t0, t0, t1);
+ logic_cc = conds;
+ break;
+ case 8: /* add */
+ if (conds)
+ gen_helper_add_cc(t0, t0, t1);
+ else
+ tcg_gen_add_i32(t0, t0, t1);
+ break;
+ case 10: /* adc */
+ if (conds)
+ gen_helper_adc_cc(t0, t0, t1);
+ else
+ gen_adc(t0, t1);
+ break;
+ case 11: /* sbc */
+ if (conds)
+ gen_helper_sbc_cc(t0, t0, t1);
+ else
+ gen_sub_carry(t0, t0, t1);
+ break;
+ case 13: /* sub */
+ if (conds)
+ gen_helper_sub_cc(t0, t0, t1);
+ else
+ tcg_gen_sub_i32(t0, t0, t1);
+ break;
+ case 14: /* rsb */
+ if (conds)
+ gen_helper_sub_cc(t0, t1, t0);
+ else
+ tcg_gen_sub_i32(t0, t1, t0);
+ break;
+ default: /* 5, 6, 7, 9, 12, 15. */
+ return 1;
+ }
+ if (logic_cc) {
+ gen_logic_CC(t0);
+ if (shifter_out)
+ gen_set_CF_bit31(t1);
+ }
+ return 0;
+}
+
+/* Translate a 32-bit thumb instruction. Returns nonzero if the instruction
+ is not legal. */
+static int disas_thumb2_insn(CPUARMState *env, DisasContext *s, uint16_t insn_hw1)
+{
+ uint32_t insn, imm, shift, offset;
+ uint32_t rd, rn, rm, rs;
+ TCGv tmp;
+ TCGv tmp2;
+ TCGv tmp3;
+ TCGv addr;
+ TCGv_i64 tmp64;
+ int op;
+ int shiftop;
+ int conds;
+ int logic_cc;
+
+ if (!(arm_feature(env, ARM_FEATURE_THUMB2)
+ || arm_feature (env, ARM_FEATURE_M))) {
+ /* Thumb-1 cores may need to treat bl and blx as a pair of
+ 16-bit instructions to get correct prefetch abort behavior. */
+ insn = insn_hw1;
+ if ((insn & (1 << 12)) == 0) {
+ ARCH(5);
+ /* Second half of blx. */
+ offset = ((insn & 0x7ff) << 1);
+ tmp = load_reg(s, 14);
+ tcg_gen_addi_i32(tmp, tmp, offset);
+ tcg_gen_andi_i32(tmp, tmp, 0xfffffffc);
+
+ tmp2 = tcg_temp_new_i32();
+ tcg_gen_movi_i32(tmp2, s->pc | 1);
+ store_reg(s, 14, tmp2);
+ gen_bx(s, tmp);
+ return 0;
+ }
+ if (insn & (1 << 11)) {
+ /* Second half of bl. */
+ offset = ((insn & 0x7ff) << 1) | 1;
+ tmp = load_reg(s, 14);
+ tcg_gen_addi_i32(tmp, tmp, offset);
+
+ tmp2 = tcg_temp_new_i32();
+ tcg_gen_movi_i32(tmp2, s->pc | 1);
+ store_reg(s, 14, tmp2);
+ gen_bx(s, tmp);
+ return 0;
+ }
+ if ((s->pc & ~TARGET_PAGE_MASK) == 0) {
+ /* Instruction spans a page boundary. Implement it as two
+ 16-bit instructions in case the second half causes an
+ prefetch abort. */
+ offset = ((int32_t)insn << 21) >> 9;
+ tcg_gen_movi_i32(cpu_R[14], s->pc + 2 + offset);
+ return 0;
+ }
+ /* Fall through to 32-bit decode. */
+ }
+
+ insn = arm_lduw_code(s->pc, s->bswap_code);
+ s->pc += 2;
+ insn |= (uint32_t)insn_hw1 << 16;
+
+ if ((insn & 0xf800e800) != 0xf000e800) {
+ ARCH(6T2);
+ }
+
+ rn = (insn >> 16) & 0xf;
+ rs = (insn >> 12) & 0xf;
+ rd = (insn >> 8) & 0xf;
+ rm = insn & 0xf;
+ switch ((insn >> 25) & 0xf) {
+ case 0: case 1: case 2: case 3:
+ /* 16-bit instructions. Should never happen. */
+ abort();
+ case 4:
+ if (insn & (1 << 22)) {
+ /* Other load/store, table branch. */
+ if (insn & 0x01200000) {
+ /* Load/store doubleword. */
+ if (rn == 15) {
+ addr = tcg_temp_new_i32();
+ tcg_gen_movi_i32(addr, s->pc & ~3);
+ } else {
+ addr = load_reg(s, rn);
+ }
+ offset = (insn & 0xff) * 4;
+ if ((insn & (1 << 23)) == 0)
+ offset = -offset;
+ if (insn & (1 << 24)) {
+ tcg_gen_addi_i32(addr, addr, offset);
+ offset = 0;
+ }
+ if (insn & (1 << 20)) {
+ /* ldrd */
+ tmp = gen_ld32(addr, IS_USER(s));
+ store_reg(s, rs, tmp);
+ tcg_gen_addi_i32(addr, addr, 4);
+ tmp = gen_ld32(addr, IS_USER(s));
+ store_reg(s, rd, tmp);
+ } else {
+ /* strd */
+ tmp = load_reg(s, rs);
+ gen_st32(tmp, addr, IS_USER(s));
+ tcg_gen_addi_i32(addr, addr, 4);
+ tmp = load_reg(s, rd);
+ gen_st32(tmp, addr, IS_USER(s));
+ }
+ if (insn & (1 << 21)) {
+ /* Base writeback. */
+ if (rn == 15)
+ goto illegal_op;
+ tcg_gen_addi_i32(addr, addr, offset - 4);
+ store_reg(s, rn, addr);
+ } else {
+ tcg_temp_free_i32(addr);
+ }
+ } else if ((insn & (1 << 23)) == 0) {
+ /* Load/store exclusive word. */
+ addr = tcg_temp_local_new();
+ load_reg_var(s, addr, rn);
+ tcg_gen_addi_i32(addr, addr, (insn & 0xff) << 2);
+ if (insn & (1 << 20)) {
+ gen_load_exclusive(s, rs, 15, addr, 2);
+ } else {
+ gen_store_exclusive(s, rd, rs, 15, addr, 2);
+ }
+ tcg_temp_free(addr);
+ } else if ((insn & (1 << 6)) == 0) {
+ /* Table Branch. */
+ if (rn == 15) {
+ addr = tcg_temp_new_i32();
+ tcg_gen_movi_i32(addr, s->pc);
+ } else {
+ addr = load_reg(s, rn);
+ }
+ tmp = load_reg(s, rm);
+ tcg_gen_add_i32(addr, addr, tmp);
+ if (insn & (1 << 4)) {
+ /* tbh */
+ tcg_gen_add_i32(addr, addr, tmp);
+ tcg_temp_free_i32(tmp);
+ tmp = gen_ld16u(addr, IS_USER(s));
+ } else { /* tbb */
+ tcg_temp_free_i32(tmp);
+ tmp = gen_ld8u(addr, IS_USER(s));
+ }
+ tcg_temp_free_i32(addr);
+ tcg_gen_shli_i32(tmp, tmp, 1);
+ tcg_gen_addi_i32(tmp, tmp, s->pc);
+ store_reg(s, 15, tmp);
+ } else {
+ /* Load/store exclusive byte/halfword/doubleword. */
+ ARCH(7);
+ op = (insn >> 4) & 0x3;
+ if (op == 2) {
+ goto illegal_op;
+ }
+ addr = tcg_temp_local_new();
+ load_reg_var(s, addr, rn);
+ if (insn & (1 << 20)) {
+ gen_load_exclusive(s, rs, rd, addr, op);
+ } else {
+ gen_store_exclusive(s, rm, rs, rd, addr, op);
+ }
+ tcg_temp_free(addr);
+ }
+ } else {
+ /* Load/store multiple, RFE, SRS. */
+ if (((insn >> 23) & 1) == ((insn >> 24) & 1)) {
+ /* Not available in user mode. */
+ if (IS_USER(s))
+ goto illegal_op;
+ if (insn & (1 << 20)) {
+ /* rfe */
+ addr = load_reg(s, rn);
+ if ((insn & (1 << 24)) == 0)
+ tcg_gen_addi_i32(addr, addr, -8);
+ /* Load PC into tmp and CPSR into tmp2. */
+ tmp = gen_ld32(addr, 0);
+ tcg_gen_addi_i32(addr, addr, 4);
+ tmp2 = gen_ld32(addr, 0);
+ if (insn & (1 << 21)) {
+ /* Base writeback. */
+ if (insn & (1 << 24)) {
+ tcg_gen_addi_i32(addr, addr, 4);
+ } else {
+ tcg_gen_addi_i32(addr, addr, -4);
+ }
+ store_reg(s, rn, addr);
+ } else {
+ tcg_temp_free_i32(addr);
+ }
+ gen_rfe(s, tmp, tmp2);
+ } else {
+ /* srs */
+ op = (insn & 0x1f);
+ addr = tcg_temp_new_i32();
+ tmp = tcg_const_i32(op);
+ gen_helper_get_r13_banked(addr, cpu_env, tmp);
+ tcg_temp_free_i32(tmp);
+ if ((insn & (1 << 24)) == 0) {
+ tcg_gen_addi_i32(addr, addr, -8);
+ }
+ tmp = load_reg(s, 14);
+ gen_st32(tmp, addr, 0);
+ tcg_gen_addi_i32(addr, addr, 4);
+ tmp = tcg_temp_new_i32();
+ gen_helper_cpsr_read(tmp);
+ gen_st32(tmp, addr, 0);
+ if (insn & (1 << 21)) {
+ if ((insn & (1 << 24)) == 0) {
+ tcg_gen_addi_i32(addr, addr, -4);
+ } else {
+ tcg_gen_addi_i32(addr, addr, 4);
+ }
+ tmp = tcg_const_i32(op);
+ gen_helper_set_r13_banked(cpu_env, tmp, addr);
+ tcg_temp_free_i32(tmp);
+ } else {
+ tcg_temp_free_i32(addr);
+ }
+ }
+ } else {
+ int i, loaded_base = 0;
+ TCGv loaded_var;
+ /* Load/store multiple. */
+ addr = load_reg(s, rn);
+ offset = 0;
+ for (i = 0; i < 16; i++) {
+ if (insn & (1 << i))
+ offset += 4;
+ }
+ if (insn & (1 << 24)) {
+ tcg_gen_addi_i32(addr, addr, -offset);
+ }
+
+ TCGV_UNUSED(loaded_var);
+ for (i = 0; i < 16; i++) {
+ if ((insn & (1 << i)) == 0)
+ continue;
+ if (insn & (1 << 20)) {
+ /* Load. */
+ tmp = gen_ld32(addr, IS_USER(s));
+ if (i == 15) {
+ gen_bx(s, tmp);
+ } else if (i == rn) {
+ loaded_var = tmp;
+ loaded_base = 1;
+ } else {
+ store_reg(s, i, tmp);
+ }
+ } else {
+ /* Store. */
+ tmp = load_reg(s, i);
+ gen_st32(tmp, addr, IS_USER(s));
+ }
+ tcg_gen_addi_i32(addr, addr, 4);
+ }
+ if (loaded_base) {
+ store_reg(s, rn, loaded_var);
+ }
+ if (insn & (1 << 21)) {
+ /* Base register writeback. */
+ if (insn & (1 << 24)) {
+ tcg_gen_addi_i32(addr, addr, -offset);
+ }
+ /* Fault if writeback register is in register list. */
+ if (insn & (1 << rn))
+ goto illegal_op;
+ store_reg(s, rn, addr);
+ } else {
+ tcg_temp_free_i32(addr);
+ }
+ }
+ }
+ break;
+ case 5:
+
+ op = (insn >> 21) & 0xf;
+ if (op == 6) {
+ /* Halfword pack. */
+ tmp = load_reg(s, rn);
+ tmp2 = load_reg(s, rm);
+ shift = ((insn >> 10) & 0x1c) | ((insn >> 6) & 0x3);
+ if (insn & (1 << 5)) {
+ /* pkhtb */
+ if (shift == 0)
+ shift = 31;
+ tcg_gen_sari_i32(tmp2, tmp2, shift);
+ tcg_gen_andi_i32(tmp, tmp, 0xffff0000);
+ tcg_gen_ext16u_i32(tmp2, tmp2);
+ } else {
+ /* pkhbt */
+ if (shift)
+ tcg_gen_shli_i32(tmp2, tmp2, shift);
+ tcg_gen_ext16u_i32(tmp, tmp);
+ tcg_gen_andi_i32(tmp2, tmp2, 0xffff0000);
+ }
+ tcg_gen_or_i32(tmp, tmp, tmp2);
+ tcg_temp_free_i32(tmp2);
+ store_reg(s, rd, tmp);
+ } else {
+ /* Data processing register constant shift. */
+ if (rn == 15) {
+ tmp = tcg_temp_new_i32();
+ tcg_gen_movi_i32(tmp, 0);
+ } else {
+ tmp = load_reg(s, rn);
+ }
+ tmp2 = load_reg(s, rm);
+
+ shiftop = (insn >> 4) & 3;
+ shift = ((insn >> 6) & 3) | ((insn >> 10) & 0x1c);
+ conds = (insn & (1 << 20)) != 0;
+ logic_cc = (conds && thumb2_logic_op(op));
+ gen_arm_shift_im(tmp2, shiftop, shift, logic_cc);
+ if (gen_thumb2_data_op(s, op, conds, 0, tmp, tmp2))
+ goto illegal_op;
+ tcg_temp_free_i32(tmp2);
+ if (rd != 15) {
+ store_reg(s, rd, tmp);
+ } else {
+ tcg_temp_free_i32(tmp);
+ }
+ }
+ break;
+ case 13: /* Misc data processing. */
+ op = ((insn >> 22) & 6) | ((insn >> 7) & 1);
+ if (op < 4 && (insn & 0xf000) != 0xf000)
+ goto illegal_op;
+ switch (op) {
+ case 0: /* Register controlled shift. */
+ tmp = load_reg(s, rn);
+ tmp2 = load_reg(s, rm);
+ if ((insn & 0x70) != 0)
+ goto illegal_op;
+ op = (insn >> 21) & 3;
+ logic_cc = (insn & (1 << 20)) != 0;
+ gen_arm_shift_reg(tmp, op, tmp2, logic_cc);
+ if (logic_cc)
+ gen_logic_CC(tmp);
+ store_reg_bx(env, s, rd, tmp);
+ break;
+ case 1: /* Sign/zero extend. */
+ tmp = load_reg(s, rm);
+ shift = (insn >> 4) & 3;
+ /* ??? In many cases it's not necessary to do a
+ rotate, a shift is sufficient. */
+ if (shift != 0)
+ tcg_gen_rotri_i32(tmp, tmp, shift * 8);
+ op = (insn >> 20) & 7;
+ switch (op) {
+ case 0: gen_sxth(tmp); break;
+ case 1: gen_uxth(tmp); break;
+ case 2: gen_sxtb16(tmp); break;
+ case 3: gen_uxtb16(tmp); break;
+ case 4: gen_sxtb(tmp); break;
+ case 5: gen_uxtb(tmp); break;
+ default: goto illegal_op;
+ }
+ if (rn != 15) {
+ tmp2 = load_reg(s, rn);
+ if ((op >> 1) == 1) {
+ gen_add16(tmp, tmp2);
+ } else {
+ tcg_gen_add_i32(tmp, tmp, tmp2);
+ tcg_temp_free_i32(tmp2);
+ }
+ }
+ store_reg(s, rd, tmp);
+ break;
+ case 2: /* SIMD add/subtract. */
+ op = (insn >> 20) & 7;
+ shift = (insn >> 4) & 7;
+ if ((op & 3) == 3 || (shift & 3) == 3)
+ goto illegal_op;
+ tmp = load_reg(s, rn);
+ tmp2 = load_reg(s, rm);
+ gen_thumb2_parallel_addsub(op, shift, tmp, tmp2);
+ tcg_temp_free_i32(tmp2);
+ store_reg(s, rd, tmp);
+ break;
+ case 3: /* Other data processing. */
+ op = ((insn >> 17) & 0x38) | ((insn >> 4) & 7);
+ if (op < 4) {
+ /* Saturating add/subtract. */
+ tmp = load_reg(s, rn);
+ tmp2 = load_reg(s, rm);
+ if (op & 1)
+ gen_helper_double_saturate(tmp, tmp);
+ if (op & 2)
+ gen_helper_sub_saturate(tmp, tmp2, tmp);
+ else
+ gen_helper_add_saturate(tmp, tmp, tmp2);
+ tcg_temp_free_i32(tmp2);
+ } else {
+ tmp = load_reg(s, rn);
+ switch (op) {
+ case 0x0a: /* rbit */
+ gen_helper_rbit(tmp, tmp);
+ break;
+ case 0x08: /* rev */
+ tcg_gen_bswap32_i32(tmp, tmp);
+ break;
+ case 0x09: /* rev16 */
+ gen_rev16(tmp);
+ break;
+ case 0x0b: /* revsh */
+ gen_revsh(tmp);
+ break;
+ case 0x10: /* sel */
+ tmp2 = load_reg(s, rm);
+ tmp3 = tcg_temp_new_i32();
+ tcg_gen_ld_i32(tmp3, cpu_env, offsetof(CPUARMState, GE));
+ gen_helper_sel_flags(tmp, tmp3, tmp, tmp2);
+ tcg_temp_free_i32(tmp3);
+ tcg_temp_free_i32(tmp2);
+ break;
+ case 0x18: /* clz */
+ gen_helper_clz(tmp, tmp);
+ break;
+ default:
+ goto illegal_op;
+ }
+ }
+ store_reg(s, rd, tmp);
+ break;
+ case 4: case 5: /* 32-bit multiply. Sum of absolute differences. */
+ op = (insn >> 4) & 0xf;
+ tmp = load_reg(s, rn);
+ tmp2 = load_reg(s, rm);
+ switch ((insn >> 20) & 7) {
+ case 0: /* 32 x 32 -> 32 */
+ tcg_gen_mul_i32(tmp, tmp, tmp2);
+ tcg_temp_free_i32(tmp2);
+ if (rs != 15) {
+ tmp2 = load_reg(s, rs);
+ if (op)
+ tcg_gen_sub_i32(tmp, tmp2, tmp);
+ else
+ tcg_gen_add_i32(tmp, tmp, tmp2);
+ tcg_temp_free_i32(tmp2);
+ }
+ break;
+ case 1: /* 16 x 16 -> 32 */
+ gen_mulxy(tmp, tmp2, op & 2, op & 1);
+ tcg_temp_free_i32(tmp2);
+ if (rs != 15) {
+ tmp2 = load_reg(s, rs);
+ gen_helper_add_setq(tmp, tmp, tmp2);
+ tcg_temp_free_i32(tmp2);
+ }
+ break;
+ case 2: /* Dual multiply add. */
+ case 4: /* Dual multiply subtract. */
+ if (op)
+ gen_swap_half(tmp2);
+ gen_smul_dual(tmp, tmp2);
+ if (insn & (1 << 22)) {
+ /* This subtraction cannot overflow. */
+ tcg_gen_sub_i32(tmp, tmp, tmp2);
+ } else {
+ /* This addition cannot overflow 32 bits;
+ * however it may overflow considered as a signed
+ * operation, in which case we must set the Q flag.
+ */
+ gen_helper_add_setq(tmp, tmp, tmp2);
+ }
+ tcg_temp_free_i32(tmp2);
+ if (rs != 15)
+ {
+ tmp2 = load_reg(s, rs);
+ gen_helper_add_setq(tmp, tmp, tmp2);
+ tcg_temp_free_i32(tmp2);
+ }
+ break;
+ case 3: /* 32 * 16 -> 32msb */
+ if (op)
+ tcg_gen_sari_i32(tmp2, tmp2, 16);
+ else
+ gen_sxth(tmp2);
+ tmp64 = gen_muls_i64_i32(tmp, tmp2);
+ tcg_gen_shri_i64(tmp64, tmp64, 16);
+ tmp = tcg_temp_new_i32();
+ tcg_gen_trunc_i64_i32(tmp, tmp64);
+ tcg_temp_free_i64(tmp64);
+ if (rs != 15)
+ {
+ tmp2 = load_reg(s, rs);
+ gen_helper_add_setq(tmp, tmp, tmp2);
+ tcg_temp_free_i32(tmp2);
+ }
+ break;
+ case 5: case 6: /* 32 * 32 -> 32msb (SMMUL, SMMLA, SMMLS) */
+ tmp64 = gen_muls_i64_i32(tmp, tmp2);
+ if (rs != 15) {
+ tmp = load_reg(s, rs);
+ if (insn & (1 << 20)) {
+ tmp64 = gen_addq_msw(tmp64, tmp);
+ } else {
+ tmp64 = gen_subq_msw(tmp64, tmp);
+ }
+ }
+ if (insn & (1 << 4)) {
+ tcg_gen_addi_i64(tmp64, tmp64, 0x80000000u);
+ }
+ tcg_gen_shri_i64(tmp64, tmp64, 32);
+ tmp = tcg_temp_new_i32();
+ tcg_gen_trunc_i64_i32(tmp, tmp64);
+ tcg_temp_free_i64(tmp64);
+ break;
+ case 7: /* Unsigned sum of absolute differences. */
+ gen_helper_usad8(tmp, tmp, tmp2);
+ tcg_temp_free_i32(tmp2);
+ if (rs != 15) {
+ tmp2 = load_reg(s, rs);
+ tcg_gen_add_i32(tmp, tmp, tmp2);
+ tcg_temp_free_i32(tmp2);
+ }
+ break;
+ }
+ store_reg(s, rd, tmp);
+ break;
+ case 6: case 7: /* 64-bit multiply, Divide. */
+ op = ((insn >> 4) & 0xf) | ((insn >> 16) & 0x70);
+ tmp = load_reg(s, rn);
+ tmp2 = load_reg(s, rm);
+ if ((op & 0x50) == 0x10) {
+ /* sdiv, udiv */
+ if (!arm_feature(env, ARM_FEATURE_THUMB_DIV)) {
+ goto illegal_op;
+ }
+ if (op & 0x20)
+ gen_helper_udiv(tmp, tmp, tmp2);
+ else
+ gen_helper_sdiv(tmp, tmp, tmp2);
+ tcg_temp_free_i32(tmp2);
+ store_reg(s, rd, tmp);
+ } else if ((op & 0xe) == 0xc) {
+ /* Dual multiply accumulate long. */
+ if (op & 1)
+ gen_swap_half(tmp2);
+ gen_smul_dual(tmp, tmp2);
+ if (op & 0x10) {
+ tcg_gen_sub_i32(tmp, tmp, tmp2);
+ } else {
+ tcg_gen_add_i32(tmp, tmp, tmp2);
+ }
+ tcg_temp_free_i32(tmp2);
+ /* BUGFIX */
+ tmp64 = tcg_temp_new_i64();
+ tcg_gen_ext_i32_i64(tmp64, tmp);
+ tcg_temp_free_i32(tmp);
+ gen_addq(s, tmp64, rs, rd);
+ gen_storeq_reg(s, rs, rd, tmp64);
+ tcg_temp_free_i64(tmp64);
+ } else {
+ if (op & 0x20) {
+ /* Unsigned 64-bit multiply */
+ tmp64 = gen_mulu_i64_i32(tmp, tmp2);
+ } else {
+ if (op & 8) {
+ /* smlalxy */
+ gen_mulxy(tmp, tmp2, op & 2, op & 1);
+ tcg_temp_free_i32(tmp2);
+ tmp64 = tcg_temp_new_i64();
+ tcg_gen_ext_i32_i64(tmp64, tmp);
+ tcg_temp_free_i32(tmp);
+ } else {
+ /* Signed 64-bit multiply */
+ tmp64 = gen_muls_i64_i32(tmp, tmp2);
+ }
+ }
+ if (op & 4) {
+ /* umaal */
+ gen_addq_lo(s, tmp64, rs);
+ gen_addq_lo(s, tmp64, rd);
+ } else if (op & 0x40) {
+ /* 64-bit accumulate. */
+ gen_addq(s, tmp64, rs, rd);
+ }
+ gen_storeq_reg(s, rs, rd, tmp64);
+ tcg_temp_free_i64(tmp64);
+ }
+ break;
+ }
+ break;
+ case 6: case 7: case 14: case 15:
+ /* Coprocessor. */
+ if (((insn >> 24) & 3) == 3) {
+ /* Translate into the equivalent ARM encoding. */
+ insn = (insn & 0xe2ffffff) | ((insn & (1 << 28)) >> 4) | (1 << 28);
+ if (disas_neon_data_insn(env, s, insn))
+ goto illegal_op;
+ } else {
+ if (insn & (1 << 28))
+ goto illegal_op;
+ if (disas_coproc_insn (env, s, insn))
+ goto illegal_op;
+ }
+ break;
+ case 8: case 9: case 10: case 11:
+ if (insn & (1 << 15)) {
+ /* Branches, misc control. */
+ if (insn & 0x5000) {
+ /* Unconditional branch. */
+ /* signextend(hw1[10:0]) -> offset[:12]. */
+ offset = ((int32_t)insn << 5) >> 9 & ~(int32_t)0xfff;
+ /* hw1[10:0] -> offset[11:1]. */
+ offset |= (insn & 0x7ff) << 1;
+ /* (~hw2[13, 11] ^ offset[24]) -> offset[23,22]
+ offset[24:22] already have the same value because of the
+ sign extension above. */
+ offset ^= ((~insn) & (1 << 13)) << 10;
+ offset ^= ((~insn) & (1 << 11)) << 11;
+
+ if (insn & (1 << 14)) {
+ /* Branch and link. */
+ tcg_gen_movi_i32(cpu_R[14], s->pc | 1);
+ }
+
+ offset += s->pc;
+ if (insn & (1 << 12)) {
+ /* b/bl */
+ gen_jmp(s, offset);
+ } else {
+ /* blx */
+ offset &= ~(uint32_t)2;
+ /* thumb2 bx, no need to check */
+ gen_bx_im(s, offset);
+ }
+ } else if (((insn >> 23) & 7) == 7) {
+ /* Misc control */
+ if (insn & (1 << 13))
+ goto illegal_op;
+
+ if (insn & (1 << 26)) {
+ /* Secure monitor call (v6Z) */
+ goto illegal_op; /* not implemented. */
+ } else {
+ op = (insn >> 20) & 7;
+ switch (op) {
+ case 0: /* msr cpsr. */
+ if (IS_M(env)) {
+ tmp = load_reg(s, rn);
+ addr = tcg_const_i32(insn & 0xff);
+ gen_helper_v7m_msr(cpu_env, addr, tmp);
+ tcg_temp_free_i32(addr);
+ tcg_temp_free_i32(tmp);
+ gen_lookup_tb(s);
+ break;
+ }
+ /* fall through */
+ case 1: /* msr spsr. */
+ if (IS_M(env))
+ goto illegal_op;
+ tmp = load_reg(s, rn);
+ if (gen_set_psr(s,
+ msr_mask(env, s, (insn >> 8) & 0xf, op == 1),
+ op == 1, tmp))
+ goto illegal_op;
+ break;
+ case 2: /* cps, nop-hint. */
+ if (((insn >> 8) & 7) == 0) {
+ gen_nop_hint(s, insn & 0xff);
+ }
+ /* Implemented as NOP in user mode. */
+ if (IS_USER(s))
+ break;
+ offset = 0;
+ imm = 0;
+ if (insn & (1 << 10)) {
+ if (insn & (1 << 7))
+ offset |= CPSR_A;
+ if (insn & (1 << 6))
+ offset |= CPSR_I;
+ if (insn & (1 << 5))
+ offset |= CPSR_F;
+ if (insn & (1 << 9))
+ imm = CPSR_A | CPSR_I | CPSR_F;
+ }
+ if (insn & (1 << 8)) {
+ offset |= 0x1f;
+ imm |= (insn & 0x1f);
+ }
+ if (offset) {
+ gen_set_psr_im(s, offset, 0, imm);
+ }
+ break;
+ case 3: /* Special control operations. */
+ ARCH(7);
+ op = (insn >> 4) & 0xf;
+ switch (op) {
+ case 2: /* clrex */
+ gen_clrex(s);
+ break;
+ case 4: /* dsb */
+ case 5: /* dmb */
+ case 6: /* isb */
+ /* These execute as NOPs. */
+ break;
+ default:
+ goto illegal_op;
+ }
+ break;
+ case 4: /* bxj */
+ /* Trivial implementation equivalent to bx. */
+ tmp = load_reg(s, rn);
+ gen_bx(s, tmp);
+ break;
+ case 5: /* Exception return. */
+ if (IS_USER(s)) {
+ goto illegal_op;
+ }
+ if (rn != 14 || rd != 15) {
+ goto illegal_op;
+ }
+ tmp = load_reg(s, rn);
+ tcg_gen_subi_i32(tmp, tmp, insn & 0xff);
+ gen_exception_return(s, tmp);
+ break;
+ case 6: /* mrs cpsr. */
+ tmp = tcg_temp_new_i32();
+ if (IS_M(env)) {
+ addr = tcg_const_i32(insn & 0xff);
+ gen_helper_v7m_mrs(tmp, cpu_env, addr);
+ tcg_temp_free_i32(addr);
+ } else {
+ gen_helper_cpsr_read(tmp);
+ }
+ store_reg(s, rd, tmp);
+ break;
+ case 7: /* mrs spsr. */
+ /* Not accessible in user mode. */
+ if (IS_USER(s) || IS_M(env))
+ goto illegal_op;
+ tmp = load_cpu_field(spsr);
+ store_reg(s, rd, tmp);
+ break;
+ }
+ }
+ } else {
+ /* Conditional branch. */
+ op = (insn >> 22) & 0xf;
+ /* Generate a conditional jump to next instruction. */
+ s->condlabel = gen_new_label();
+ gen_test_cc(op ^ 1, s->condlabel);
+ s->condjmp = 1;
+
+ /* offset[11:1] = insn[10:0] */
+ offset = (insn & 0x7ff) << 1;
+ /* offset[17:12] = insn[21:16]. */
+ offset |= (insn & 0x003f0000) >> 4;
+ /* offset[31:20] = insn[26]. */
+ offset |= ((int32_t)((insn << 5) & 0x80000000)) >> 11;
+ /* offset[18] = insn[13]. */
+ offset |= (insn & (1 << 13)) << 5;
+ /* offset[19] = insn[11]. */
+ offset |= (insn & (1 << 11)) << 8;
+
+ /* jump to the offset */
+ gen_jmp(s, s->pc + offset);
+ }
+ } else {
+ /* Data processing immediate. */
+ if (insn & (1 << 25)) {
+ if (insn & (1 << 24)) {
+ if (insn & (1 << 20))
+ goto illegal_op;
+ /* Bitfield/Saturate. */
+ op = (insn >> 21) & 7;
+ imm = insn & 0x1f;
+ shift = ((insn >> 6) & 3) | ((insn >> 10) & 0x1c);
+ if (rn == 15) {
+ tmp = tcg_temp_new_i32();
+ tcg_gen_movi_i32(tmp, 0);
+ } else {
+ tmp = load_reg(s, rn);
+ }
+ switch (op) {
+ case 2: /* Signed bitfield extract. */
+ imm++;
+ if (shift + imm > 32)
+ goto illegal_op;
+ if (imm < 32)
+ gen_sbfx(tmp, shift, imm);
+ break;
+ case 6: /* Unsigned bitfield extract. */
+ imm++;
+ if (shift + imm > 32)
+ goto illegal_op;
+ if (imm < 32)
+ gen_ubfx(tmp, shift, (1u << imm) - 1);
+ break;
+ case 3: /* Bitfield insert/clear. */
+ if (imm < shift)
+ goto illegal_op;
+ imm = imm + 1 - shift;
+ if (imm != 32) {
+ tmp2 = load_reg(s, rd);
+ gen_bfi(tmp, tmp2, tmp, shift, (1u << imm) - 1);
+ tcg_temp_free_i32(tmp2);
+ }
+ break;
+ case 7:
+ goto illegal_op;
+ default: /* Saturate. */
+ if (shift) {
+ if (op & 1)
+ tcg_gen_sari_i32(tmp, tmp, shift);
+ else
+ tcg_gen_shli_i32(tmp, tmp, shift);
+ }
+ tmp2 = tcg_const_i32(imm);
+ if (op & 4) {
+ /* Unsigned. */
+ if ((op & 1) && shift == 0)
+ gen_helper_usat16(tmp, tmp, tmp2);
+ else
+ gen_helper_usat(tmp, tmp, tmp2);
+ } else {
+ /* Signed. */
+ if ((op & 1) && shift == 0)
+ gen_helper_ssat16(tmp, tmp, tmp2);
+ else
+ gen_helper_ssat(tmp, tmp, tmp2);
+ }
+ tcg_temp_free_i32(tmp2);
+ break;
+ }
+ store_reg(s, rd, tmp);
+ } else {
+ imm = ((insn & 0x04000000) >> 15)
+ | ((insn & 0x7000) >> 4) | (insn & 0xff);
+ if (insn & (1 << 22)) {
+ /* 16-bit immediate. */
+ imm |= (insn >> 4) & 0xf000;
+ if (insn & (1 << 23)) {
+ /* movt */
+ tmp = load_reg(s, rd);
+ tcg_gen_ext16u_i32(tmp, tmp);
+ tcg_gen_ori_i32(tmp, tmp, imm << 16);
+ } else {
+ /* movw */
+ tmp = tcg_temp_new_i32();
+ tcg_gen_movi_i32(tmp, imm);
+ }
+ } else {
+ /* Add/sub 12-bit immediate. */
+ if (rn == 15) {
+ offset = s->pc & ~(uint32_t)3;
+ if (insn & (1 << 23))
+ offset -= imm;
+ else
+ offset += imm;
+ tmp = tcg_temp_new_i32();
+ tcg_gen_movi_i32(tmp, offset);
+ } else {
+ tmp = load_reg(s, rn);
+ if (insn & (1 << 23))
+ tcg_gen_subi_i32(tmp, tmp, imm);
+ else
+ tcg_gen_addi_i32(tmp, tmp, imm);
+ }
+ }
+ store_reg(s, rd, tmp);
+ }
+ } else {
+ int shifter_out = 0;
+ /* modified 12-bit immediate. */
+ shift = ((insn & 0x04000000) >> 23) | ((insn & 0x7000) >> 12);
+ imm = (insn & 0xff);
+ switch (shift) {
+ case 0: /* XY */
+ /* Nothing to do. */
+ break;
+ case 1: /* 00XY00XY */
+ imm |= imm << 16;
+ break;
+ case 2: /* XY00XY00 */
+ imm |= imm << 16;
+ imm <<= 8;
+ break;
+ case 3: /* XYXYXYXY */
+ imm |= imm << 16;
+ imm |= imm << 8;
+ break;
+ default: /* Rotated constant. */
+ shift = (shift << 1) | (imm >> 7);
+ imm |= 0x80;
+ imm = imm << (32 - shift);
+ shifter_out = 1;
+ break;
+ }
+ tmp2 = tcg_temp_new_i32();
+ tcg_gen_movi_i32(tmp2, imm);
+ rn = (insn >> 16) & 0xf;
+ if (rn == 15) {
+ tmp = tcg_temp_new_i32();
+ tcg_gen_movi_i32(tmp, 0);
+ } else {
+ tmp = load_reg(s, rn);
+ }
+ op = (insn >> 21) & 0xf;
+ if (gen_thumb2_data_op(s, op, (insn & (1 << 20)) != 0,
+ shifter_out, tmp, tmp2))
+ goto illegal_op;
+ tcg_temp_free_i32(tmp2);
+ rd = (insn >> 8) & 0xf;
+ if (rd != 15) {
+ store_reg(s, rd, tmp);
+ } else {
+ tcg_temp_free_i32(tmp);
+ }
+ }
+ }
+ break;
+ case 12: /* Load/store single data item. */
+ {
+ int postinc = 0;
+ int writeback = 0;
+ int user;
+ if ((insn & 0x01100000) == 0x01000000) {
+ if (disas_neon_ls_insn(env, s, insn))
+ goto illegal_op;
+ break;
+ }
+ op = ((insn >> 21) & 3) | ((insn >> 22) & 4);
+ if (rs == 15) {
+ if (!(insn & (1 << 20))) {
+ goto illegal_op;
+ }
+ if (op != 2) {
+ /* Byte or halfword load space with dest == r15 : memory hints.
+ * Catch them early so we don't emit pointless addressing code.
+ * This space is a mix of:
+ * PLD/PLDW/PLI, which we implement as NOPs (note that unlike
+ * the ARM encodings, PLDW space doesn't UNDEF for non-v7MP
+ * cores)
+ * unallocated hints, which must be treated as NOPs
+ * UNPREDICTABLE space, which we NOP or UNDEF depending on
+ * which is easiest for the decoding logic
+ * Some space which must UNDEF
+ */
+ int op1 = (insn >> 23) & 3;
+ int op2 = (insn >> 6) & 0x3f;
+ if (op & 2) {
+ goto illegal_op;
+ }
+ if (rn == 15) {
+ /* UNPREDICTABLE, unallocated hint or
+ * PLD/PLDW/PLI (literal)
+ */
+ return 0;
+ }
+ if (op1 & 1) {
+ return 0; /* PLD/PLDW/PLI or unallocated hint */
+ }
+ if ((op2 == 0) || ((op2 & 0x3c) == 0x30)) {
+ return 0; /* PLD/PLDW/PLI or unallocated hint */
+ }
+ /* UNDEF space, or an UNPREDICTABLE */
+ return 1;
+ }
+ }
+ user = IS_USER(s);
+ if (rn == 15) {
+ addr = tcg_temp_new_i32();
+ /* PC relative. */
+ /* s->pc has already been incremented by 4. */
+ imm = s->pc & 0xfffffffc;
+ if (insn & (1 << 23))
+ imm += insn & 0xfff;
+ else
+ imm -= insn & 0xfff;
+ tcg_gen_movi_i32(addr, imm);
+ } else {
+ addr = load_reg(s, rn);
+ if (insn & (1 << 23)) {
+ /* Positive offset. */
+ imm = insn & 0xfff;
+ tcg_gen_addi_i32(addr, addr, imm);
+ } else {
+ imm = insn & 0xff;
+ switch ((insn >> 8) & 0xf) {
+ case 0x0: /* Shifted Register. */
+ shift = (insn >> 4) & 0xf;
+ if (shift > 3) {
+ tcg_temp_free_i32(addr);
+ goto illegal_op;
+ }
+ tmp = load_reg(s, rm);
+ if (shift)
+ tcg_gen_shli_i32(tmp, tmp, shift);
+ tcg_gen_add_i32(addr, addr, tmp);
+ tcg_temp_free_i32(tmp);
+ break;
+ case 0xc: /* Negative offset. */
+ tcg_gen_addi_i32(addr, addr, -imm);
+ break;
+ case 0xe: /* User privilege. */
+ tcg_gen_addi_i32(addr, addr, imm);
+ user = 1;
+ break;
+ case 0x9: /* Post-decrement. */
+ imm = -imm;
+ /* Fall through. */
+ case 0xb: /* Post-increment. */
+ postinc = 1;
+ writeback = 1;
+ break;
+ case 0xd: /* Pre-decrement. */
+ imm = -imm;
+ /* Fall through. */
+ case 0xf: /* Pre-increment. */
+ tcg_gen_addi_i32(addr, addr, imm);
+ writeback = 1;
+ break;
+ default:
+ tcg_temp_free_i32(addr);
+ goto illegal_op;
+ }
+ }
+ }
+ if (insn & (1 << 20)) {
+ /* Load. */
+ switch (op) {
+ case 0: tmp = gen_ld8u(addr, user); break;
+ case 4: tmp = gen_ld8s(addr, user); break;
+ case 1: tmp = gen_ld16u(addr, user); break;
+ case 5: tmp = gen_ld16s(addr, user); break;
+ case 2: tmp = gen_ld32(addr, user); break;
+ default:
+ tcg_temp_free_i32(addr);
+ goto illegal_op;
+ }
+ if (rs == 15) {
+ gen_bx(s, tmp);
+ } else {
+ store_reg(s, rs, tmp);
+ }
+ } else {
+ /* Store. */
+ tmp = load_reg(s, rs);
+ switch (op) {
+ case 0: gen_st8(tmp, addr, user); break;
+ case 1: gen_st16(tmp, addr, user); break;
+ case 2: gen_st32(tmp, addr, user); break;
+ default:
+ tcg_temp_free_i32(addr);
+ goto illegal_op;
+ }
+ }
+ if (postinc)
+ tcg_gen_addi_i32(addr, addr, imm);
+ if (writeback) {
+ store_reg(s, rn, addr);
+ } else {
+ tcg_temp_free_i32(addr);
+ }
+ }
+ break;
+ default:
+ goto illegal_op;
+ }
+ return 0;
+illegal_op:
+ return 1;
+}
+
+static void disas_thumb_insn(CPUARMState *env, DisasContext *s)
+{
+ uint32_t val, insn, op, rm, rn, rd, shift, cond;
+ int32_t offset;
+ int i;
+ TCGv tmp;
+ TCGv tmp2;
+ TCGv addr;
+
+ if (s->condexec_mask) {
+ cond = s->condexec_cond;
+ if (cond != 0x0e) { /* Skip conditional when condition is AL. */
+ s->condlabel = gen_new_label();
+ gen_test_cc(cond ^ 1, s->condlabel);
+ s->condjmp = 1;
+ }
+ }
+
+ insn = arm_lduw_code(s->pc, s->bswap_code);
+ s->pc += 2;
+
+ switch (insn >> 12) {
+ case 0: case 1:
+
+ rd = insn & 7;
+ op = (insn >> 11) & 3;
+ if (op == 3) {
+ /* add/subtract */
+ rn = (insn >> 3) & 7;
+ tmp = load_reg(s, rn);
+ if (insn & (1 << 10)) {
+ /* immediate */
+ tmp2 = tcg_temp_new_i32();
+ tcg_gen_movi_i32(tmp2, (insn >> 6) & 7);
+ } else {
+ /* reg */
+ rm = (insn >> 6) & 7;
+ tmp2 = load_reg(s, rm);
+ }
+ if (insn & (1 << 9)) {
+ if (s->condexec_mask)
+ tcg_gen_sub_i32(tmp, tmp, tmp2);
+ else
+ gen_helper_sub_cc(tmp, tmp, tmp2);
+ } else {
+ if (s->condexec_mask)
+ tcg_gen_add_i32(tmp, tmp, tmp2);
+ else
+ gen_helper_add_cc(tmp, tmp, tmp2);
+ }
+ tcg_temp_free_i32(tmp2);
+ store_reg(s, rd, tmp);
+ } else {
+ /* shift immediate */
+ rm = (insn >> 3) & 7;
+ shift = (insn >> 6) & 0x1f;
+ tmp = load_reg(s, rm);
+ gen_arm_shift_im(tmp, op, shift, s->condexec_mask == 0);
+ if (!s->condexec_mask)
+ gen_logic_CC(tmp);
+ store_reg(s, rd, tmp);
+ }
+ break;
+ case 2: case 3:
+ /* arithmetic large immediate */
+ op = (insn >> 11) & 3;
+ rd = (insn >> 8) & 0x7;
+ if (op == 0) { /* mov */
+ tmp = tcg_temp_new_i32();
+ tcg_gen_movi_i32(tmp, insn & 0xff);
+ if (!s->condexec_mask)
+ gen_logic_CC(tmp);
+ store_reg(s, rd, tmp);
+ } else {
+ tmp = load_reg(s, rd);
+ tmp2 = tcg_temp_new_i32();
+ tcg_gen_movi_i32(tmp2, insn & 0xff);
+ switch (op) {
+ case 1: /* cmp */
+ gen_helper_sub_cc(tmp, tmp, tmp2);
+ tcg_temp_free_i32(tmp);
+ tcg_temp_free_i32(tmp2);
+ break;
+ case 2: /* add */
+ if (s->condexec_mask)
+ tcg_gen_add_i32(tmp, tmp, tmp2);
+ else
+ gen_helper_add_cc(tmp, tmp, tmp2);
+ tcg_temp_free_i32(tmp2);
+ store_reg(s, rd, tmp);
+ break;
+ case 3: /* sub */
+ if (s->condexec_mask)
+ tcg_gen_sub_i32(tmp, tmp, tmp2);
+ else
+ gen_helper_sub_cc(tmp, tmp, tmp2);
+ tcg_temp_free_i32(tmp2);
+ store_reg(s, rd, tmp);
+ break;
+ }
+ }
+ break;
+ case 4:
+ if (insn & (1 << 11)) {
+ rd = (insn >> 8) & 7;
+ /* load pc-relative. Bit 1 of PC is ignored. */
+ val = s->pc + 2 + ((insn & 0xff) * 4);
+ val &= ~(uint32_t)2;
+ addr = tcg_temp_new_i32();
+ tcg_gen_movi_i32(addr, val);
+ tmp = gen_ld32(addr, IS_USER(s));
+ tcg_temp_free_i32(addr);
+ store_reg(s, rd, tmp);
+ break;
+ }
+ if (insn & (1 << 10)) {
+ /* data processing extended or blx */
+ rd = (insn & 7) | ((insn >> 4) & 8);
+ rm = (insn >> 3) & 0xf;
+ op = (insn >> 8) & 3;
+ switch (op) {
+ case 0: /* add */
+ tmp = load_reg(s, rd);
+ tmp2 = load_reg(s, rm);
+ tcg_gen_add_i32(tmp, tmp, tmp2);
+ tcg_temp_free_i32(tmp2);
+ store_reg(s, rd, tmp);
+ break;
+ case 1: /* cmp */
+ tmp = load_reg(s, rd);
+ tmp2 = load_reg(s, rm);
+ gen_helper_sub_cc(tmp, tmp, tmp2);
+ tcg_temp_free_i32(tmp2);
+ tcg_temp_free_i32(tmp);
+ break;
+ case 2: /* mov/cpy */
+ tmp = load_reg(s, rm);
+ store_reg(s, rd, tmp);
+ break;
+ case 3:/* branch [and link] exchange thumb register */
+ tmp = load_reg(s, rm);
+ if (insn & (1 << 7)) {
+ ARCH(5);
+ val = (uint32_t)s->pc | 1;
+ tmp2 = tcg_temp_new_i32();
+ tcg_gen_movi_i32(tmp2, val);
+ store_reg(s, 14, tmp2);
+ }
+ /* already thumb, no need to check */
+ gen_bx(s, tmp);
+ break;
+ }
+ break;
+ }
+
+ /* data processing register */
+ rd = insn & 7;
+ rm = (insn >> 3) & 7;
+ op = (insn >> 6) & 0xf;
+ if (op == 2 || op == 3 || op == 4 || op == 7) {
+ /* the shift/rotate ops want the operands backwards */
+ val = rm;
+ rm = rd;
+ rd = val;
+ val = 1;
+ } else {
+ val = 0;
+ }
+
+ if (op == 9) { /* neg */
+ tmp = tcg_temp_new_i32();
+ tcg_gen_movi_i32(tmp, 0);
+ } else if (op != 0xf) { /* mvn doesn't read its first operand */
+ tmp = load_reg(s, rd);
+ } else {
+ TCGV_UNUSED(tmp);
+ }
+
+ tmp2 = load_reg(s, rm);
+ switch (op) {
+ case 0x0: /* and */
+ tcg_gen_and_i32(tmp, tmp, tmp2);
+ if (!s->condexec_mask)
+ gen_logic_CC(tmp);
+ break;
+ case 0x1: /* eor */
+ tcg_gen_xor_i32(tmp, tmp, tmp2);
+ if (!s->condexec_mask)
+ gen_logic_CC(tmp);
+ break;
+ case 0x2: /* lsl */
+ if (s->condexec_mask) {
+ gen_helper_shl(tmp2, tmp2, tmp);
+ } else {
+ gen_helper_shl_cc(tmp2, tmp2, tmp);
+ gen_logic_CC(tmp2);
+ }
+ break;
+ case 0x3: /* lsr */
+ if (s->condexec_mask) {
+ gen_helper_shr(tmp2, tmp2, tmp);
+ } else {
+ gen_helper_shr_cc(tmp2, tmp2, tmp);
+ gen_logic_CC(tmp2);
+ }
+ break;
+ case 0x4: /* asr */
+ if (s->condexec_mask) {
+ gen_helper_sar(tmp2, tmp2, tmp);
+ } else {
+ gen_helper_sar_cc(tmp2, tmp2, tmp);
+ gen_logic_CC(tmp2);
+ }
+ break;
+ case 0x5: /* adc */
+ if (s->condexec_mask)
+ gen_adc(tmp, tmp2);
+ else
+ gen_helper_adc_cc(tmp, tmp, tmp2);
+ break;
+ case 0x6: /* sbc */
+ if (s->condexec_mask)
+ gen_sub_carry(tmp, tmp, tmp2);
+ else
+ gen_helper_sbc_cc(tmp, tmp, tmp2);
+ break;
+ case 0x7: /* ror */
+ if (s->condexec_mask) {
+ tcg_gen_andi_i32(tmp, tmp, 0x1f);
+ tcg_gen_rotr_i32(tmp2, tmp2, tmp);
+ } else {
+ gen_helper_ror_cc(tmp2, tmp2, tmp);
+ gen_logic_CC(tmp2);
+ }
+ break;
+ case 0x8: /* tst */
+ tcg_gen_and_i32(tmp, tmp, tmp2);
+ gen_logic_CC(tmp);
+ rd = 16;
+ break;
+ case 0x9: /* neg */
+ if (s->condexec_mask)
+ tcg_gen_neg_i32(tmp, tmp2);
+ else
+ gen_helper_sub_cc(tmp, tmp, tmp2);
+ break;
+ case 0xa: /* cmp */
+ gen_helper_sub_cc(tmp, tmp, tmp2);
+ rd = 16;
+ break;
+ case 0xb: /* cmn */
+ gen_helper_add_cc(tmp, tmp, tmp2);
+ rd = 16;
+ break;
+ case 0xc: /* orr */
+ tcg_gen_or_i32(tmp, tmp, tmp2);
+ if (!s->condexec_mask)
+ gen_logic_CC(tmp);
+ break;
+ case 0xd: /* mul */
+ tcg_gen_mul_i32(tmp, tmp, tmp2);
+ if (!s->condexec_mask)
+ gen_logic_CC(tmp);
+ break;
+ case 0xe: /* bic */
+ tcg_gen_andc_i32(tmp, tmp, tmp2);
+ if (!s->condexec_mask)
+ gen_logic_CC(tmp);
+ break;
+ case 0xf: /* mvn */
+ tcg_gen_not_i32(tmp2, tmp2);
+ if (!s->condexec_mask)
+ gen_logic_CC(tmp2);
+ val = 1;
+ rm = rd;
+ break;
+ }
+ if (rd != 16) {
+ if (val) {
+ store_reg(s, rm, tmp2);
+ if (op != 0xf)
+ tcg_temp_free_i32(tmp);
+ } else {
+ store_reg(s, rd, tmp);
+ tcg_temp_free_i32(tmp2);
+ }
+ } else {
+ tcg_temp_free_i32(tmp);
+ tcg_temp_free_i32(tmp2);
+ }
+ break;
+
+ case 5:
+ /* load/store register offset. */
+ rd = insn & 7;
+ rn = (insn >> 3) & 7;
+ rm = (insn >> 6) & 7;
+ op = (insn >> 9) & 7;
+ addr = load_reg(s, rn);
+ tmp = load_reg(s, rm);
+ tcg_gen_add_i32(addr, addr, tmp);
+ tcg_temp_free_i32(tmp);
+
+ if (op < 3) /* store */
+ tmp = load_reg(s, rd);
+
+ switch (op) {
+ case 0: /* str */
+ gen_st32(tmp, addr, IS_USER(s));
+ break;
+ case 1: /* strh */
+ gen_st16(tmp, addr, IS_USER(s));
+ break;
+ case 2: /* strb */
+ gen_st8(tmp, addr, IS_USER(s));
+ break;
+ case 3: /* ldrsb */
+ tmp = gen_ld8s(addr, IS_USER(s));
+ break;
+ case 4: /* ldr */
+ tmp = gen_ld32(addr, IS_USER(s));
+ break;
+ case 5: /* ldrh */
+ tmp = gen_ld16u(addr, IS_USER(s));
+ break;
+ case 6: /* ldrb */
+ tmp = gen_ld8u(addr, IS_USER(s));
+ break;
+ case 7: /* ldrsh */
+ tmp = gen_ld16s(addr, IS_USER(s));
+ break;
+ }
+ if (op >= 3) /* load */
+ store_reg(s, rd, tmp);
+ tcg_temp_free_i32(addr);
+ break;
+
+ case 6:
+ /* load/store word immediate offset */
+ rd = insn & 7;
+ rn = (insn >> 3) & 7;
+ addr = load_reg(s, rn);
+ val = (insn >> 4) & 0x7c;
+ tcg_gen_addi_i32(addr, addr, val);
+
+ if (insn & (1 << 11)) {
+ /* load */
+ tmp = gen_ld32(addr, IS_USER(s));
+ store_reg(s, rd, tmp);
+ } else {
+ /* store */
+ tmp = load_reg(s, rd);
+ gen_st32(tmp, addr, IS_USER(s));
+ }
+ tcg_temp_free_i32(addr);
+ break;
+
+ case 7:
+ /* load/store byte immediate offset */
+ rd = insn & 7;
+ rn = (insn >> 3) & 7;
+ addr = load_reg(s, rn);
+ val = (insn >> 6) & 0x1f;
+ tcg_gen_addi_i32(addr, addr, val);
+
+ if (insn & (1 << 11)) {
+ /* load */
+ tmp = gen_ld8u(addr, IS_USER(s));
+ store_reg(s, rd, tmp);
+ } else {
+ /* store */
+ tmp = load_reg(s, rd);
+ gen_st8(tmp, addr, IS_USER(s));
+ }
+ tcg_temp_free_i32(addr);
+ break;
+
+ case 8:
+ /* load/store halfword immediate offset */
+ rd = insn & 7;
+ rn = (insn >> 3) & 7;
+ addr = load_reg(s, rn);
+ val = (insn >> 5) & 0x3e;
+ tcg_gen_addi_i32(addr, addr, val);
+
+ if (insn & (1 << 11)) {
+ /* load */
+ tmp = gen_ld16u(addr, IS_USER(s));
+ store_reg(s, rd, tmp);
+ } else {
+ /* store */
+ tmp = load_reg(s, rd);
+ gen_st16(tmp, addr, IS_USER(s));
+ }
+ tcg_temp_free_i32(addr);
+ break;
+
+ case 9:
+ /* load/store from stack */
+ rd = (insn >> 8) & 7;
+ addr = load_reg(s, 13);
+ val = (insn & 0xff) * 4;
+ tcg_gen_addi_i32(addr, addr, val);
+
+ if (insn & (1 << 11)) {
+ /* load */
+ tmp = gen_ld32(addr, IS_USER(s));
+ store_reg(s, rd, tmp);
+ } else {
+ /* store */
+ tmp = load_reg(s, rd);
+ gen_st32(tmp, addr, IS_USER(s));
+ }
+ tcg_temp_free_i32(addr);
+ break;
+
+ case 10:
+ /* add to high reg */
+ rd = (insn >> 8) & 7;
+ if (insn & (1 << 11)) {
+ /* SP */
+ tmp = load_reg(s, 13);
+ } else {
+ /* PC. bit 1 is ignored. */
+ tmp = tcg_temp_new_i32();
+ tcg_gen_movi_i32(tmp, (s->pc + 2) & ~(uint32_t)2);
+ }
+ val = (insn & 0xff) * 4;
+ tcg_gen_addi_i32(tmp, tmp, val);
+ store_reg(s, rd, tmp);
+ break;
+
+ case 11:
+ /* misc */
+ op = (insn >> 8) & 0xf;
+ switch (op) {
+ case 0:
+ /* adjust stack pointer */
+ tmp = load_reg(s, 13);
+ val = (insn & 0x7f) * 4;
+ if (insn & (1 << 7))
+ val = -(int32_t)val;
+ tcg_gen_addi_i32(tmp, tmp, val);
+ store_reg(s, 13, tmp);
+ break;
+
+ case 2: /* sign/zero extend. */
+ ARCH(6);
+ rd = insn & 7;
+ rm = (insn >> 3) & 7;
+ tmp = load_reg(s, rm);
+ switch ((insn >> 6) & 3) {
+ case 0: gen_sxth(tmp); break;
+ case 1: gen_sxtb(tmp); break;
+ case 2: gen_uxth(tmp); break;
+ case 3: gen_uxtb(tmp); break;
+ }
+ store_reg(s, rd, tmp);
+ break;
+ case 4: case 5: case 0xc: case 0xd:
+ /* push/pop */
+ addr = load_reg(s, 13);
+ if (insn & (1 << 8))
+ offset = 4;
+ else
+ offset = 0;
+ for (i = 0; i < 8; i++) {
+ if (insn & (1 << i))
+ offset += 4;
+ }
+ if ((insn & (1 << 11)) == 0) {
+ tcg_gen_addi_i32(addr, addr, -offset);
+ }
+ for (i = 0; i < 8; i++) {
+ if (insn & (1 << i)) {
+ if (insn & (1 << 11)) {
+ /* pop */
+ tmp = gen_ld32(addr, IS_USER(s));
+ store_reg(s, i, tmp);
+ } else {
+ /* push */
+ tmp = load_reg(s, i);
+ gen_st32(tmp, addr, IS_USER(s));
+ }
+ /* advance to the next address. */
+ tcg_gen_addi_i32(addr, addr, 4);
+ }
+ }
+ TCGV_UNUSED(tmp);
+ if (insn & (1 << 8)) {
+ if (insn & (1 << 11)) {
+ /* pop pc */
+ tmp = gen_ld32(addr, IS_USER(s));
+ /* don't set the pc until the rest of the instruction
+ has completed */
+ } else {
+ /* push lr */
+ tmp = load_reg(s, 14);
+ gen_st32(tmp, addr, IS_USER(s));
+ }
+ tcg_gen_addi_i32(addr, addr, 4);
+ }
+ if ((insn & (1 << 11)) == 0) {
+ tcg_gen_addi_i32(addr, addr, -offset);
+ }
+ /* write back the new stack pointer */
+ store_reg(s, 13, addr);
+ /* set the new PC value */
+ if ((insn & 0x0900) == 0x0900) {
+ store_reg_from_load(env, s, 15, tmp);
+ }
+ break;
+
+ case 1: case 3: case 9: case 11: /* czb */
+ rm = insn & 7;
+ tmp = load_reg(s, rm);
+ s->condlabel = gen_new_label();
+ s->condjmp = 1;
+ if (insn & (1 << 11))
+ tcg_gen_brcondi_i32(TCG_COND_EQ, tmp, 0, s->condlabel);
+ else
+ tcg_gen_brcondi_i32(TCG_COND_NE, tmp, 0, s->condlabel);
+ tcg_temp_free_i32(tmp);
+ offset = ((insn & 0xf8) >> 2) | (insn & 0x200) >> 3;
+ val = (uint32_t)s->pc + 2;
+ val += offset;
+ gen_jmp(s, val);
+ break;
+
+ case 15: /* IT, nop-hint. */
+ if ((insn & 0xf) == 0) {
+ gen_nop_hint(s, (insn >> 4) & 0xf);
+ break;
+ }
+ /* If Then. */
+ s->condexec_cond = (insn >> 4) & 0xe;
+ s->condexec_mask = insn & 0x1f;
+ /* No actual code generated for this insn, just setup state. */
+ break;
+
+ case 0xe: /* bkpt */
+ ARCH(5);
+ gen_exception_insn(s, 2, EXCP_BKPT);
+ break;
+
+ case 0xa: /* rev */
+ ARCH(6);
+ rn = (insn >> 3) & 0x7;
+ rd = insn & 0x7;
+ tmp = load_reg(s, rn);
+ switch ((insn >> 6) & 3) {
+ case 0: tcg_gen_bswap32_i32(tmp, tmp); break;
+ case 1: gen_rev16(tmp); break;
+ case 3: gen_revsh(tmp); break;
+ default: goto illegal_op;
+ }
+ store_reg(s, rd, tmp);
+ break;
+
+ case 6:
+ switch ((insn >> 5) & 7) {
+ case 2:
+ /* setend */
+ ARCH(6);
+ if (((insn >> 3) & 1) != s->bswap_code) {
+ /* Dynamic endianness switching not implemented. */
+ goto illegal_op;
+ }
+ break;
+ case 3:
+ /* cps */
+ ARCH(6);
+ if (IS_USER(s)) {
+ break;
+ }
+ if (IS_M(env)) {
+ tmp = tcg_const_i32((insn & (1 << 4)) != 0);
+ /* FAULTMASK */
+ if (insn & 1) {
+ addr = tcg_const_i32(19);
+ gen_helper_v7m_msr(cpu_env, addr, tmp);
+ tcg_temp_free_i32(addr);
+ }
+ /* PRIMASK */
+ if (insn & 2) {
+ addr = tcg_const_i32(16);
+ gen_helper_v7m_msr(cpu_env, addr, tmp);
+ tcg_temp_free_i32(addr);
+ }
+ tcg_temp_free_i32(tmp);
+ gen_lookup_tb(s);
+ } else {
+ if (insn & (1 << 4)) {
+ shift = CPSR_A | CPSR_I | CPSR_F;
+ } else {
+ shift = 0;
+ }
+ gen_set_psr_im(s, ((insn & 7) << 6), 0, shift);
+ }
+ break;
+ default:
+ goto undef;
+ }
+ break;
+
+ default:
+ goto undef;
+ }
+ break;
+
+ case 12:
+ {
+ /* load/store multiple */
+ TCGv loaded_var;
+ TCGV_UNUSED(loaded_var);
+ rn = (insn >> 8) & 0x7;
+ addr = load_reg(s, rn);
+ for (i = 0; i < 8; i++) {
+ if (insn & (1 << i)) {
+ if (insn & (1 << 11)) {
+ /* load */
+ tmp = gen_ld32(addr, IS_USER(s));
+ if (i == rn) {
+ loaded_var = tmp;
+ } else {
+ store_reg(s, i, tmp);
+ }
+ } else {
+ /* store */
+ tmp = load_reg(s, i);
+ gen_st32(tmp, addr, IS_USER(s));
+ }
+ /* advance to the next address */
+ tcg_gen_addi_i32(addr, addr, 4);
+ }
+ }
+ if ((insn & (1 << rn)) == 0) {
+ /* base reg not in list: base register writeback */
+ store_reg(s, rn, addr);
+ } else {
+ /* base reg in list: if load, complete it now */
+ if (insn & (1 << 11)) {
+ store_reg(s, rn, loaded_var);
+ }
+ tcg_temp_free_i32(addr);
+ }
+ break;
+ }
+ case 13:
+ /* conditional branch or swi */
+ cond = (insn >> 8) & 0xf;
+ if (cond == 0xe)
+ goto undef;
+
+ if (cond == 0xf) {
+ /* swi */
+ gen_set_pc_im(s->pc);
+ s->is_jmp = DISAS_SWI;
+ break;
+ }
+ /* generate a conditional jump to next instruction */
+ s->condlabel = gen_new_label();
+ gen_test_cc(cond ^ 1, s->condlabel);
+ s->condjmp = 1;
+
+ /* jump to the offset */
+ val = (uint32_t)s->pc + 2;
+ offset = ((int32_t)insn << 24) >> 24;
+ val += offset << 1;
+ gen_jmp(s, val);
+ break;
+
+ case 14:
+ if (insn & (1 << 11)) {
+ if (disas_thumb2_insn(env, s, insn))
+ goto undef32;
+ break;
+ }
+ /* unconditional branch */
+ val = (uint32_t)s->pc;
+ offset = ((int32_t)insn << 21) >> 21;
+ val += (offset << 1) + 2;
+ gen_jmp(s, val);
+ break;
+
+ case 15:
+ if (disas_thumb2_insn(env, s, insn))
+ goto undef32;
+ break;
+ }
+ return;
+undef32:
+ gen_exception_insn(s, 4, EXCP_UDEF);
+ return;
+illegal_op:
+undef:
+ gen_exception_insn(s, 2, EXCP_UDEF);
+}
+
+/* generate intermediate code in gen_opc_buf and gen_opparam_buf for
+ basic block 'tb'. If search_pc is TRUE, also generate PC
+ information for each intermediate instruction. */
+static inline void gen_intermediate_code_internal(CPUARMState *env,
+ TranslationBlock *tb,
+ int search_pc)
+{
+ DisasContext dc1, *dc = &dc1;
+ CPUBreakpoint *bp;
+ uint16_t *gen_opc_end;
+ int j, lj;
+ target_ulong pc_start;
+ uint32_t next_page_start;
+ int num_insns;
+ int max_insns;
+
+ /* generate intermediate code */
+ pc_start = tb->pc;
+
+ dc->tb = tb;
+
+ gen_opc_end = gen_opc_buf + OPC_MAX_SIZE;
+
+ dc->is_jmp = DISAS_NEXT;
+ dc->pc = pc_start;
+ dc->singlestep_enabled = env->singlestep_enabled;
+ dc->condjmp = 0;
+ dc->thumb = ARM_TBFLAG_THUMB(tb->flags);
+ dc->bswap_code = ARM_TBFLAG_BSWAP_CODE(tb->flags);
+ dc->condexec_mask = (ARM_TBFLAG_CONDEXEC(tb->flags) & 0xf) << 1;
+ dc->condexec_cond = ARM_TBFLAG_CONDEXEC(tb->flags) >> 4;
+#if !defined(CONFIG_USER_ONLY)
+ dc->user = (ARM_TBFLAG_PRIV(tb->flags) == 0);
+#endif
+ dc->vfp_enabled = ARM_TBFLAG_VFPEN(tb->flags);
+ dc->vec_len = ARM_TBFLAG_VECLEN(tb->flags);
+ dc->vec_stride = ARM_TBFLAG_VECSTRIDE(tb->flags);
+ cpu_F0s = tcg_temp_new_i32();
+ cpu_F1s = tcg_temp_new_i32();
+ cpu_F0d = tcg_temp_new_i64();
+ cpu_F1d = tcg_temp_new_i64();
+ cpu_V0 = cpu_F0d;
+ cpu_V1 = cpu_F1d;
+ /* FIXME: cpu_M0 can probably be the same as cpu_V0. */
+ cpu_M0 = tcg_temp_new_i64();
+ next_page_start = (pc_start & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE;
+ lj = -1;
+ num_insns = 0;
+ max_insns = tb->cflags & CF_COUNT_MASK;
+ if (max_insns == 0)
+ max_insns = CF_COUNT_MASK;
+
+ gen_icount_start();
+
+ tcg_clear_temp_count();
+
+ /* A note on handling of the condexec (IT) bits:
+ *
+ * We want to avoid the overhead of having to write the updated condexec
+ * bits back to the CPUARMState for every instruction in an IT block. So:
+ * (1) if the condexec bits are not already zero then we write
+ * zero back into the CPUARMState now. This avoids complications trying
+ * to do it at the end of the block. (For example if we don't do this
+ * it's hard to identify whether we can safely skip writing condexec
+ * at the end of the TB, which we definitely want to do for the case
+ * where a TB doesn't do anything with the IT state at all.)
+ * (2) if we are going to leave the TB then we call gen_set_condexec()
+ * which will write the correct value into CPUARMState if zero is wrong.
+ * This is done both for leaving the TB at the end, and for leaving
+ * it because of an exception we know will happen, which is done in
+ * gen_exception_insn(). The latter is necessary because we need to
+ * leave the TB with the PC/IT state just prior to execution of the
+ * instruction which caused the exception.
+ * (3) if we leave the TB unexpectedly (eg a data abort on a load)
+ * then the CPUARMState will be wrong and we need to reset it.
+ * This is handled in the same way as restoration of the
+ * PC in these situations: we will be called again with search_pc=1
+ * and generate a mapping of the condexec bits for each PC in
+ * gen_opc_condexec_bits[]. restore_state_to_opc() then uses
+ * this to restore the condexec bits.
+ *
+ * Note that there are no instructions which can read the condexec
+ * bits, and none which can write non-static values to them, so
+ * we don't need to care about whether CPUARMState is correct in the
+ * middle of a TB.
+ */
+
+ /* Reset the conditional execution bits immediately. This avoids
+ complications trying to do it at the end of the block. */
+ if (dc->condexec_mask || dc->condexec_cond)
+ {
+ TCGv tmp = tcg_temp_new_i32();
+ tcg_gen_movi_i32(tmp, 0);
+ store_cpu_field(tmp, condexec_bits);
+ }
+ do {
+#ifdef CONFIG_USER_ONLY
+ /* Intercept jump to the magic kernel page. */
+ if (dc->pc >= 0xffff0000) {
+ /* We always get here via a jump, so know we are not in a
+ conditional execution block. */
+ gen_exception(EXCP_KERNEL_TRAP);
+ dc->is_jmp = DISAS_UPDATE;
+ break;
+ }
+#else
+ if (dc->pc >= 0xfffffff0 && IS_M(env)) {
+ /* We always get here via a jump, so know we are not in a
+ conditional execution block. */
+ gen_exception(EXCP_EXCEPTION_EXIT);
+ dc->is_jmp = DISAS_UPDATE;
+ break;
+ }
+#endif
+
+ if (unlikely(!QTAILQ_EMPTY(&env->breakpoints))) {
+ QTAILQ_FOREACH(bp, &env->breakpoints, entry) {
+ if (bp->pc == dc->pc) {
+ gen_exception_insn(dc, 0, EXCP_DEBUG);
+ /* Advance PC so that clearing the breakpoint will
+ invalidate this TB. */
+ dc->pc += 2;
+ goto done_generating;
+ break;
+ }
+ }
+ }
+ if (search_pc) {
+ j = gen_opc_ptr - gen_opc_buf;
+ if (lj < j) {
+ lj++;
+ while (lj < j)
+ gen_opc_instr_start[lj++] = 0;
+ }
+ gen_opc_pc[lj] = dc->pc;
+ gen_opc_condexec_bits[lj] = (dc->condexec_cond << 4) | (dc->condexec_mask >> 1);
+ gen_opc_instr_start[lj] = 1;
+ gen_opc_icount[lj] = num_insns;
+ }
+
+ if (num_insns + 1 == max_insns && (tb->cflags & CF_LAST_IO))
+ gen_io_start();
+
+ if (unlikely(qemu_loglevel_mask(CPU_LOG_TB_OP))) {
+ tcg_gen_debug_insn_start(dc->pc);
+ }
+
+ if (dc->thumb) {
+ disas_thumb_insn(env, dc);
+ if (dc->condexec_mask) {
+ dc->condexec_cond = (dc->condexec_cond & 0xe)
+ | ((dc->condexec_mask >> 4) & 1);
+ dc->condexec_mask = (dc->condexec_mask << 1) & 0x1f;
+ if (dc->condexec_mask == 0) {
+ dc->condexec_cond = 0;
+ }
+ }
+ } else {
+ disas_arm_insn(env, dc);
+ }
+
+ if (dc->condjmp && !dc->is_jmp) {
+ gen_set_label(dc->condlabel);
+ dc->condjmp = 0;
+ }
+
+ if (tcg_check_temp_count()) {
+ fprintf(stderr, "TCG temporary leak before %08x\n", dc->pc);
+ }
+
+ /* Translation stops when a conditional branch is encountered.
+ * Otherwise the subsequent code could get translated several times.
+ * Also stop translation when a page boundary is reached. This
+ * ensures prefetch aborts occur at the right place. */
+ num_insns ++;
+ } while (!dc->is_jmp && gen_opc_ptr < gen_opc_end &&
+ !env->singlestep_enabled &&
+ !singlestep &&
+ dc->pc < next_page_start &&
+ num_insns < max_insns);
+
+ if (tb->cflags & CF_LAST_IO) {
+ if (dc->condjmp) {
+ /* FIXME: This can theoretically happen with self-modifying
+ code. */
+ cpu_abort(env, "IO on conditional branch instruction");
+ }
+ gen_io_end();
+ }
+
+ /* At this stage dc->condjmp will only be set when the skipped
+ instruction was a conditional branch or trap, and the PC has
+ already been written. */
+ if (unlikely(env->singlestep_enabled)) {
+ /* Make sure the pc is updated, and raise a debug exception. */
+ if (dc->condjmp) {
+ gen_set_condexec(dc);
+ if (dc->is_jmp == DISAS_SWI) {
+ gen_exception(EXCP_SWI);
+ } else {
+ gen_exception(EXCP_DEBUG);
+ }
+ gen_set_label(dc->condlabel);
+ }
+ if (dc->condjmp || !dc->is_jmp) {
+ gen_set_pc_im(dc->pc);
+ dc->condjmp = 0;
+ }
+ gen_set_condexec(dc);
+ if (dc->is_jmp == DISAS_SWI && !dc->condjmp) {
+ gen_exception(EXCP_SWI);
+ } else {
+ /* FIXME: Single stepping a WFI insn will not halt
+ the CPU. */
+ gen_exception(EXCP_DEBUG);
+ }
+ } else {
+ /* While branches must always occur at the end of an IT block,
+ there are a few other things that can cause us to terminate
+ the TB in the middle of an IT block:
+ - Exception generating instructions (bkpt, swi, undefined).
+ - Page boundaries.
+ - Hardware watchpoints.
+ Hardware breakpoints have already been handled and skip this code.
+ */
+ gen_set_condexec(dc);
+ switch(dc->is_jmp) {
+ case DISAS_NEXT:
+ gen_goto_tb(dc, 1, dc->pc);
+ break;
+ default:
+ case DISAS_JUMP:
+ case DISAS_UPDATE:
+ /* indicate that the hash table must be used to find the next TB */
+ tcg_gen_exit_tb(0);
+ break;
+ case DISAS_TB_JUMP:
+ /* nothing more to generate */
+ break;
+ case DISAS_WFI:
+ gen_helper_wfi();
+ break;
+ case DISAS_SWI:
+ gen_exception(EXCP_SWI);
+ break;
+ }
+ if (dc->condjmp) {
+ gen_set_label(dc->condlabel);
+ gen_set_condexec(dc);
+ gen_goto_tb(dc, 1, dc->pc);
+ dc->condjmp = 0;
+ }
+ }
+
+done_generating:
+ gen_icount_end(tb, num_insns);
+ *gen_opc_ptr = INDEX_op_end;
+
+#ifdef DEBUG_DISAS
+ if (qemu_loglevel_mask(CPU_LOG_TB_IN_ASM)) {
+ qemu_log("----------------\n");
+ qemu_log("IN: %s\n", lookup_symbol(pc_start));
+ log_target_disas(pc_start, dc->pc - pc_start,
+ dc->thumb | (dc->bswap_code << 1));
+ qemu_log("\n");
+ }
+#endif
+ if (search_pc) {
+ j = gen_opc_ptr - gen_opc_buf;
+ lj++;
+ while (lj <= j)
+ gen_opc_instr_start[lj++] = 0;
+ } else {
+ tb->size = dc->pc - pc_start;
+ tb->icount = num_insns;
+ }
+}
+
+void gen_intermediate_code(CPUARMState *env, TranslationBlock *tb)
+{
+ gen_intermediate_code_internal(env, tb, 0);
+}
+
+void gen_intermediate_code_pc(CPUARMState *env, TranslationBlock *tb)
+{
+ gen_intermediate_code_internal(env, tb, 1);
+}
+
+static const char *cpu_mode_names[16] = {
+ "usr", "fiq", "irq", "svc", "???", "???", "???", "abt",
+ "???", "???", "???", "und", "???", "???", "???", "sys"
+};
+
+void cpu_dump_state(CPUARMState *env, FILE *f, fprintf_function cpu_fprintf,
+ int flags)
+{
+ int i;
+#if 0
+ union {
+ uint32_t i;
+ float s;
+ } s0, s1;
+ CPU_DoubleU d;
+ /* ??? This assumes float64 and double have the same layout.
+ Oh well, it's only debug dumps. */
+ union {
+ float64 f64;
+ double d;
+ } d0;
+#endif
+ uint32_t psr;
+
+ for(i=0;i<16;i++) {
+ cpu_fprintf(f, "R%02d=%08x", i, env->regs[i]);
+ if ((i % 4) == 3)
+ cpu_fprintf(f, "\n");
+ else
+ cpu_fprintf(f, " ");
+ }
+ psr = cpsr_read(env);
+ cpu_fprintf(f, "PSR=%08x %c%c%c%c %c %s%d\n",
+ psr,
+ psr & (1 << 31) ? 'N' : '-',
+ psr & (1 << 30) ? 'Z' : '-',
+ psr & (1 << 29) ? 'C' : '-',
+ psr & (1 << 28) ? 'V' : '-',
+ psr & CPSR_T ? 'T' : 'A',
+ cpu_mode_names[psr & 0xf], (psr & 0x10) ? 32 : 26);
+
+#if 0
+ for (i = 0; i < 16; i++) {
+ d.d = env->vfp.regs[i];
+ s0.i = d.l.lower;
+ s1.i = d.l.upper;
+ d0.f64 = d.d;
+ cpu_fprintf(f, "s%02d=%08x(%8g) s%02d=%08x(%8g) d%02d=%08x%08x(%8g)\n",
+ i * 2, (int)s0.i, s0.s,
+ i * 2 + 1, (int)s1.i, s1.s,
+ i, (int)(uint32_t)d.l.upper, (int)(uint32_t)d.l.lower,
+ d0.d);
+ }
+ cpu_fprintf(f, "FPSCR: %08x\n", (int)env->vfp.xregs[ARM_VFP_FPSCR]);
+#endif
+}
+
+void restore_state_to_opc(CPUARMState *env, TranslationBlock *tb, int pc_pos)
+{
+ env->regs[15] = gen_opc_pc[pc_pos];
+ env->condexec_bits = gen_opc_condexec_bits[pc_pos];
+}