summaryrefslogtreecommitdiff
path: root/torch/serialization.py
blob: 700cb6dda376782bd638731947b0e96324fc385d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
import difflib
import inspect
import os
import shutil
import struct
import sys
import torch
import tarfile
import tempfile
import warnings
from contextlib import closing, contextmanager
from ._utils import _import_dotted_name
if sys.version_info[0] == 2:
    import cPickle as pickle
else:
    import pickle

DEFAULT_PROTOCOL = 2

LONG_SIZE = struct.Struct('=l').size
INT_SIZE = struct.Struct('=i').size
SHORT_SIZE = struct.Struct('=h').size

MAGIC_NUMBER = 0x1950a86a20f9469cfc6c
PROTOCOL_VERSION = 1001
STORAGE_KEY_SEPARATOR = ','


class SourceChangeWarning(Warning):
    pass


@contextmanager
def mkdtemp():
    path = tempfile.mkdtemp()
    yield path
    shutil.rmtree(path)


_package_registry = []


def register_package(priority, tagger, deserializer):
    queue_elem = (priority, tagger, deserializer)
    _package_registry.append(queue_elem)
    _package_registry.sort()


def _cpu_tag(obj):
    if type(obj).__module__ == 'torch':
        return 'cpu'


def _cuda_tag(obj):
    if type(obj).__module__ == 'torch.cuda':
        return 'cuda:' + str(obj.get_device())


def _cpu_deserialize(obj, location):
    if location == 'cpu':
        return obj


def _cuda_deserialize(obj, location):
    if location.startswith('cuda'):
        device_id = max(int(location[5:]), 0)
        return obj.cuda(device_id)


register_package(10, _cpu_tag, _cpu_deserialize)
register_package(20, _cuda_tag, _cuda_deserialize)


def location_tag(storage):
    for _, tagger, _ in _package_registry:
        location = tagger(storage)
        if location:
            return location
    raise RuntimeError("don't know how to determine data location of " +
                       torch.typename(storage))


def default_restore_location(storage, location):
    for _, _, fn in _package_registry:
        result = fn(storage, location)
        if result is not None:
            return result
    raise RuntimeError("don't know how to restore data location of " +
                       torch.typename(storage) + " (tagged with " +
                       location + ")")


def normalize_storage_type(storage_type):
    return getattr(torch, storage_type.__name__)


def storage_to_tensor_type(storage):
    storage_type = type(storage)
    module = _import_dotted_name(storage_type.__module__)
    return getattr(module, storage_type.__name__.replace('Storage', 'Tensor'))


def save(obj, f, pickle_module=pickle, pickle_protocol=DEFAULT_PROTOCOL):
    """Saves an object to a disk file.

    See also: :ref:`recommend-saving-models`

    Args:
        obj: saved object
        f: a file-like object (has to implement fileno that returns a file descriptor)
            or a string containing a file name
        pickle_module: module used for pickling metadata and objects
        pickle_protocol: can be specified to override the default protocol
    """
    new_fd = False
    if isinstance(f, str) or (sys.version_info[0] == 2 and isinstance(f, unicode)):
        new_fd = True
        f = open(f, "wb")
    try:
        return _save(obj, f, pickle_module, pickle_protocol)
    finally:
        if new_fd:
            f.close()


def _save(obj, f, pickle_module, pickle_protocol):
    import torch.nn as nn
    serialized_container_types = {}
    serialized_storages = {}

    def persistent_id(obj):
        # FIXME: the docs say that persistent_id should only return a string
        # but torch store returns tuples. This works only in the binary protocol
        # see
        # https://docs.python.org/2/library/pickle.html#pickling-and-unpickling-external-objects
        # https://github.com/python/cpython/blob/master/Lib/pickle.py#L527-L537
        if isinstance(obj, type) and issubclass(obj, nn.Module):
            if obj in serialized_container_types:
                return None
            serialized_container_types[obj] = True
            source_file = source = None
            try:
                source_file = inspect.getsourcefile(obj)
                source = inspect.getsource(obj)
            except:  # saving the source is optional, so we can ignore any errors
                warnings.warn("Couldn't retrieve source code for container of "
                              "type " + obj.__name__ + ". It won't be checked "
                              "for correctness upon loading.")
            return ('module', obj, source_file, source)
        elif torch.is_storage(obj):
            storage_type = normalize_storage_type(type(obj))
            root, offset = obj._root_storage()
            root_key = str(root._cdata)
            location = location_tag(obj)
            serialized_storages[root_key] = root
            is_view = obj._cdata != root._cdata
            if is_view:
                view_metadata = (str(obj._cdata), offset, obj.size())
            else:
                view_metadata = None

            return ('storage',
                    storage_type,
                    root_key,
                    location,
                    root.size(),
                    view_metadata)

        return None

    sys_info = dict(
        protocol_version=PROTOCOL_VERSION,
        little_endian=sys.byteorder == 'little',
        type_sizes=dict(
            short=SHORT_SIZE,
            int=INT_SIZE,
            long=LONG_SIZE,
        ),
    )

    pickle_module.dump(MAGIC_NUMBER, f, protocol=pickle_protocol)
    pickle_module.dump(PROTOCOL_VERSION, f, protocol=pickle_protocol)
    pickle_module.dump(sys_info, f, protocol=pickle_protocol)
    pickler = pickle_module.Pickler(f, protocol=pickle_protocol)
    pickler.persistent_id = persistent_id
    pickler.dump(obj)

    serialized_storage_keys = sorted(serialized_storages.keys())
    pickle_module.dump(serialized_storage_keys, f, protocol=pickle_protocol)
    f.flush()
    for key in serialized_storage_keys:
        serialized_storages[key]._write_file(f)


def load(f, map_location=None, pickle_module=pickle):
    """Loads an object saved with :func:`torch.save` from a file.

    torch.load can dynamically remap storages to be loaded on a different device
    using the map_location argument. If it's a callable, it will be called with
    two arguments: storage and location tag. It's expected to either return a
    storage that's been moved to a different location, or None (and the location
    will be resolved using the default method). If this argument is a dict it's
    expected to be a mapping from location tags used in a file, to location
    tags of the current system.

    By default the location tags are 'cpu' for host tensors and 'cuda:device_id'
    (e.g. 'cuda:2') for cuda tensors. User extensions can register their own
    tagging and deserialization methods using register_package.

    Args:
        f: a file-like object (has to implement fileno that returns a file descriptor,
            and must implement seek), or a string containing a file name
        map_location: a function or a dict specifying how to remap storage locations
        pickle_module: module used for unpickling metadata and objects (has to match
            the pickle_module used to serialize file)

    Example:
        >>> torch.load('tensors.pt')
        # Load all tensors onto the CPU
        >>> torch.load('tensors.pt', map_location=lambda storage, loc: storage)
        # Map tensors from GPU 1 to GPU 0
        >>> torch.load('tensors.pt', map_location={'cuda:1':'cuda:0'})
    """
    new_fd = False
    if isinstance(f, str) or (sys.version_info[0] == 2 and isinstance(f, unicode)):
        new_fd = True
        f = open(f, 'rb')
    try:
        return _load(f, map_location, pickle_module)
    finally:
        if new_fd:
            f.close()


def _load(f, map_location, pickle_module):
    deserialized_objects = {}

    if map_location is None:
        restore_location = default_restore_location
    elif isinstance(map_location, dict):
        def restore_location(storage, location):
            location = map_location.get(location, location)
            return default_restore_location(storage, location)
    else:
        def restore_location(storage, location):
            result = map_location(storage, location)
            if result is None:
                result = default_restore_location(storage, location)
            return result

    def _check_container_source(container_type, source_file, original_source):
        current_source = inspect.getsource(container_type)
        if original_source != current_source:
            if container_type.dump_patches:
                file_name = container_type.__name__ + '.patch'
                diff = difflib.unified_diff(current_source.split('\n'),
                                            original_source.split('\n'),
                                            source_file,
                                            source_file, lineterm="")
                lines = '\n'.join(diff)
                try:
                    with open(file_name, 'a+') as f:
                        file_size = f.seek(0, 2)
                        f.seek(0)
                        if file_size == 0:
                            f.write(lines)
                        elif file_size != len(lines) or f.read() != lines:
                            raise IOError
                    msg = ("Saved a reverse patch to " + file_name + ". "
                           "Run `patch -p0 < " + file_name + "` to revert your "
                           "changes.")
                except IOError:
                    msg = ("Tried to save a patch, but couldn't create a "
                           "writable file " + file_name + ". Make sure it "
                           "doesn't exist and your working directory is "
                           "writable.")
            else:
                msg = ("you can retrieve the original source code by "
                       "accessing the object's source attribute or set "
                       "`torch.nn.Module.dump_patches = True` and use the "
                       "patch tool to revert the changes.")
            msg = ("source code of class '{}' has changed. {}"
                   .format(torch.typename(container_type), msg))
            warnings.warn(msg, SourceChangeWarning)

    def legacy_load(f):
        deserialized_objects = {}

        def persistent_load(saved_id):
            if isinstance(saved_id, tuple):
                # Ignore containers that don't have any sources saved
                if all(saved_id[1:]):
                    _check_container_source(*saved_id)
                return saved_id[0]
            return deserialized_objects[int(saved_id)]

        with closing(tarfile.open(fileobj=f, mode='r:', format=tarfile.PAX_FORMAT)) as tar, \
                mkdtemp() as tmpdir:

            tar.extract('storages', path=tmpdir)
            with open(os.path.join(tmpdir, 'storages'), 'rb', 0) as f:
                num_storages = pickle_module.load(f)
                for i in range(num_storages):
                    args = pickle_module.load(f)
                    key, location, storage_type = args
                    obj = storage_type._new_with_file(f)
                    obj = restore_location(obj, location)
                    deserialized_objects[key] = obj

                storage_views = pickle_module.load(f)
                for target_cdata, root_cdata, offset, size in storage_views:
                    root = deserialized_objects[root_cdata]
                    deserialized_objects[target_cdata] = root[offset:offset + size]

            tar.extract('tensors', path=tmpdir)
            with open(os.path.join(tmpdir, 'tensors'), 'rb', 0) as f:
                num_tensors = pickle_module.load(f)
                for i in range(num_tensors):
                    args = pickle_module.load(f)
                    key, storage_id, original_tensor_type = args
                    storage = deserialized_objects[storage_id]
                    tensor_type = storage_to_tensor_type(storage)
                    tensor = tensor_type._new_with_metadata_file(f, storage)
                    deserialized_objects[key] = tensor

            pickle_file = tar.extractfile('pickle')
            unpickler = pickle_module.Unpickler(pickle_file)
            unpickler.persistent_load = persistent_load
            result = unpickler.load()
            return result

    deserialized_objects = {}

    def persistent_load(saved_id):
        assert isinstance(saved_id, tuple)
        typename = saved_id[0]
        data = saved_id[1:]

        if typename == 'module':
            # Ignore containers that don't have any sources saved
            if all(data[1:]):
                _check_container_source(*data)
            return data[0]
        elif typename == 'storage':
            data_type, root_key, location, size, view_metadata = data
            if root_key not in deserialized_objects:
                deserialized_objects[root_key] = restore_location(
                    data_type(size), location)
            storage = deserialized_objects[root_key]
            if view_metadata is not None:
                view_key, offset, view_size = view_metadata
                if view_key not in deserialized_objects:
                    deserialized_objects[view_key] = storage[offset:offset + view_size]
                return deserialized_objects[view_key]
            else:
                return storage
        else:
            raise RuntimeError("Unknown saved id type: %s" % saved_id[0])

    # try the legacy loader first, which only works if f is a tarfile
    try:
        return legacy_load(f)
    except tarfile.TarError:
        pass

    f.seek(0)
    magic_number = pickle_module.load(f)
    if magic_number != MAGIC_NUMBER:
        raise RuntimeError("Invalid magic number; corrupt file?")
    protocol_version = pickle_module.load(f)
    if protocol_version != PROTOCOL_VERSION:
        raise RuntimeError("Invalid protocol version: %s" % protocol_version)

    _sys_info = pickle_module.load(f)
    unpickler = pickle_module.Unpickler(f)
    unpickler.persistent_load = persistent_load
    result = unpickler.load()

    deserialized_storage_keys = pickle_module.load(f)

    offset = f.tell()
    for key in deserialized_storage_keys:
        assert key in deserialized_objects
        deserialized_objects[key]._set_from_file(f, offset)
        offset = None

    return result