summaryrefslogtreecommitdiff
path: root/torch/optim/rmsprop.py
blob: 5f760fd624a1eb67e2bde72a01e32cc516ec1434 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
import torch
from .optimizer import Optimizer


class RMSprop(Optimizer):
    """Implements RMSprop algorithm.

    Proposed by G. Hinton in his
    `course <http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf>`_.

    The centered version first appears in `Generating Sequences
    With Recurrent Neural Networks <https://arxiv.org/pdf/1308.0850v5.pdf>`_.

    Arguments:
        params (iterable): iterable of parameters to optimize or dicts defining
            parameter groups
        lr (float, optional): learning rate (default: 1e-2)
        momentum (float, optional): momentum factor (default: 0)
        alpha (float, optional): smoothing constant (default: 0.99)
        eps (float, optional): term added to the denominator to improve
            numerical stability (default: 1e-8)
        centered (bool, optional) : if True, compute the centered RMSProp,
            the gradient is normalized by an estimation of its variance
        weight_decay (float, optional): weight decay (L2 penalty) (default: 0)

    """

    def __init__(self, params, lr=1e-2, alpha=0.99, eps=1e-8, weight_decay=0, momentum=0, centered=False):
        defaults = dict(lr=lr, momentum=momentum, alpha=alpha, eps=eps, centered=centered, weight_decay=weight_decay)
        super(RMSprop, self).__init__(params, defaults)

    def __setstate__(self, state):
        super(RMSprop, self).__setstate__(state)
        for group in self.param_groups:
            group.setdefault('momentum', 0)
            group.setdefault('centered', False)

    def step(self, closure=None):
        """Performs a single optimization step.

        Arguments:
            closure (callable, optional): A closure that reevaluates the model
                and returns the loss.
        """
        loss = None
        if closure is not None:
            loss = closure()

        for group in self.param_groups:
            for p in group['params']:
                if p.grad is None:
                    continue
                grad = p.grad.data
                if grad.is_sparse:
                    raise RuntimeError('RMSprop does not support sparse gradients')
                state = self.state[p]

                # State initialization
                if len(state) == 0:
                    state['step'] = 0
                    state['square_avg'] = torch.zeros_like(p.data)
                    if group['momentum'] > 0:
                        state['momentum_buffer'] = torch.zeros_like(p.data)
                    if group['centered']:
                        state['grad_avg'] = torch.zeros_like(p.data)

                square_avg = state['square_avg']
                alpha = group['alpha']

                state['step'] += 1

                if group['weight_decay'] != 0:
                    grad = grad.add(group['weight_decay'], p.data)

                square_avg.mul_(alpha).addcmul_(1 - alpha, grad, grad)

                if group['centered']:
                    grad_avg = state['grad_avg']
                    grad_avg.mul_(alpha).add_(1 - alpha, grad)
                    avg = square_avg.addcmul(-1, grad_avg, grad_avg).sqrt().add_(group['eps'])
                else:
                    avg = square_avg.sqrt().add_(group['eps'])

                if group['momentum'] > 0:
                    buf = state['momentum_buffer']
                    buf.mul_(group['momentum']).addcdiv_(grad, avg)
                    p.data.add_(-group['lr'], buf)
                else:
                    p.data.addcdiv_(-group['lr'], grad, avg)

        return loss