summaryrefslogtreecommitdiff
path: root/torch/optim/lr_scheduler.py
blob: daa0cb2d219bd6edc4d0f76f92974139ae3c1387 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
from bisect import bisect_right
from .optimizer import Optimizer


class _LRScheduler(object):
    def __init__(self, optimizer, last_epoch=-1):
        if not isinstance(optimizer, Optimizer):
            raise TypeError('{} is not an Optimizer'.format(
                type(optimizer).__name__))
        self.optimizer = optimizer
        if last_epoch == -1:
            for group in optimizer.param_groups:
                group.setdefault('initial_lr', group['lr'])
        else:
            for i, group in enumerate(optimizer.param_groups):
                if 'initial_lr' not in group:
                    raise KeyError("param 'initial_lr' is not specified "
                                   "in param_groups[{}] when resuming an optimizer".format(i))
        self.base_lrs = list(map(lambda group: group['initial_lr'], optimizer.param_groups))
        self.step(last_epoch + 1)
        self.last_epoch = last_epoch

    def get_lr(self):
        raise NotImplementedError

    def step(self, epoch=None):
        if epoch is None:
            epoch = self.last_epoch + 1
        self.last_epoch = epoch
        for param_group, lr in zip(self.optimizer.param_groups, self.get_lr()):
            param_group['lr'] = lr


class LambdaLR(_LRScheduler):
    """Sets the learning rate of each parameter group to the initial lr
    times a given function. When last_epoch=-1, sets initial lr as lr.

    Args:
        optimizer (Optimizer): Wrapped optimizer.
        lr_lambda (function or list): A function which computes a multiplicative
            factor given an integer parameter epoch, or a list of such
            functions, one for each group in optimizer.param_groups.
        last_epoch (int): The index of last epoch. Default: -1.

    Example:
        >>> # Assuming optimizer has two groups.
        >>> lambda1 = lambda epoch: epoch // 30
        >>> lambda2 = lambda epoch: 0.95 ** epoch
        >>> scheduler = LambdaLR(optimizer, lr_lambda=[lambda1, lambda2])
        >>> for epoch in range(100):
        >>>     scheduler.step()
        >>>     train(...)
        >>>     validate(...)
    """
    def __init__(self, optimizer, lr_lambda, last_epoch=-1):
        self.optimizer = optimizer
        if not isinstance(lr_lambda, list) and not isinstance(lr_lambda, tuple):
            self.lr_lambdas = [lr_lambda] * len(optimizer.param_groups)
        else:
            if len(lr_lambda) != len(optimizer.param_groups):
                raise ValueError("Expected {} lr_lambdas, but got {}".format(
                    len(optimizer.param_groups), len(lr_lambda)))
            self.lr_lambdas = list(lr_lambda)
        self.last_epoch = last_epoch
        super(LambdaLR, self).__init__(optimizer, last_epoch)

    def get_lr(self):
        return [base_lr * lmbda(self.last_epoch)
                for lmbda, base_lr in zip(self.lr_lambdas, self.base_lrs)]


class StepLR(_LRScheduler):
    """Sets the learning rate of each parameter group to the initial lr
    decayed by gamma every step_size epochs. When last_epoch=-1, sets
    initial lr as lr.

    Args:
        optimizer (Optimizer): Wrapped optimizer.
        step_size (int): Period of learning rate decay.
        gamma (float): Multiplicative factor of learning rate decay.
            Default: 0.1.
        last_epoch (int): The index of last epoch. Default: -1.

    Example:
        >>> # Assuming optimizer uses lr = 0.5 for all groups
        >>> # lr = 0.05     if epoch < 30
        >>> # lr = 0.005    if 30 <= epoch < 60
        >>> # lr = 0.0005   if 60 <= epoch < 90
        >>> # ...
        >>> scheduler = StepLR(optimizer, step_size=30, gamma=0.1)
        >>> for epoch in range(100):
        >>>     scheduler.step()
        >>>     train(...)
        >>>     validate(...)
    """

    def __init__(self, optimizer, step_size, gamma=0.1, last_epoch=-1):
        self.step_size = step_size
        self.gamma = gamma
        super(StepLR, self).__init__(optimizer, last_epoch)

    def get_lr(self):
        return [base_lr * self.gamma ** (self.last_epoch // self.step_size)
                for base_lr in self.base_lrs]


class MultiStepLR(_LRScheduler):
    """Set the learning rate of each parameter group to the initial lr decayed
    by gamma once the number of epoch reaches one of the milestones. When
    last_epoch=-1, sets initial lr as lr.

    Args:
        optimizer (Optimizer): Wrapped optimizer.
        milestones (list): List of epoch indices. Must be increasing.
        gamma (float): Multiplicative factor of learning rate decay.
            Default: 0.1.
        last_epoch (int): The index of last epoch. Default: -1.

    Example:
        >>> # Assuming optimizer uses lr = 0.5 for all groups
        >>> # lr = 0.05     if epoch < 30
        >>> # lr = 0.005    if 30 <= epoch < 80
        >>> # lr = 0.0005   if epoch >= 80
        >>> scheduler = MultiStepLR(optimizer, milestones=[30,80], gamma=0.1)
        >>> for epoch in range(100):
        >>>     scheduler.step()
        >>>     train(...)
        >>>     validate(...)
    """

    def __init__(self, optimizer, milestones, gamma=0.1, last_epoch=-1):
        if not list(milestones) == sorted(milestones):
            raise ValueError('Milestones should be a list of'
                             ' increasing integers. Got {}', milestones)
        self.milestones = milestones
        self.gamma = gamma
        super(MultiStepLR, self).__init__(optimizer, last_epoch)

    def get_lr(self):
        return [base_lr * self.gamma ** bisect_right(self.milestones, self.last_epoch)
                for base_lr in self.base_lrs]


class ExponentialLR(_LRScheduler):
    """Set the learning rate of each parameter group to the initial lr decayed
    by gamma every epoch. When last_epoch=-1, sets initial lr as lr.

    Args:
        optimizer (Optimizer): Wrapped optimizer.
        gamma (float): Multiplicative factor of learning rate decay.
        last_epoch (int): The index of last epoch. Default: -1.
    """

    def __init__(self, optimizer, gamma, last_epoch=-1):
        self.gamma = gamma
        super(ExponentialLR, self).__init__(optimizer, last_epoch)

    def get_lr(self):
        return [base_lr * self.gamma ** self.last_epoch
                for base_lr in self.base_lrs]


class ReduceLROnPlateau(object):
    """Reduce learning rate when a metric has stopped improving.
    Models often benefit from reducing the learning rate by a factor
    of 2-10 once learning stagnates. This scheduler reads a metrics
    quantity and if no improvement is seen for a 'patience' number
    of epochs, the learning rate is reduced.

    Args:
        optimizer (Optimizer): Wrapped optimizer.
        mode (str): One of `min`, `max`. In `min` mode, lr will
            be reduced when the quantity monitored has stopped
            decreasing; in `max` mode it will be reduced when the
            quantity monitored has stopped increasing. Default: 'min'.
        factor (float): Factor by which the learning rate will be
            reduced. new_lr = lr * factor. Default: 0.1.
        patience (int): Number of epochs with no improvement after
            which learning rate will be reduced. Default: 10.
        verbose (bool): If ``True``, prints a message to stdout for
            each update. Default: ``False``.
        threshold (float): Threshold for measuring the new optimum,
            to only focus on significant changes. Default: 1e-4.
        threshold_mode (str): One of `rel`, `abs`. In `rel` mode,
            dynamic_threshold = best * ( 1 + threshold ) in 'max'
            mode or best * ( 1 - threshold ) in `min` mode.
            In `abs` mode, dynamic_threshold = best + threshold in
            `max` mode or best - threshold in `min` mode. Default: 'rel'.
        cooldown (int): Number of epochs to wait before resuming
            normal operation after lr has been reduced. Default: 0.
        min_lr (float or list): A scalar or a list of scalars. A
            lower bound on the learning rate of all param groups
            or each group respectively. Default: 0.
        eps (float): Minimal decay applied to lr. If the difference
            between new and old lr is smaller than eps, the update is
            ignored. Default: 1e-8.

    Example:
        >>> optimizer = torch.optim.SGD(model.parameters(), lr=0.1, momentum=0.9)
        >>> scheduler = ReduceLROnPlateau(optimizer, 'min')
        >>> for epoch in range(10):
        >>>     train(...)
        >>>     val_loss = validate(...)
        >>>     # Note that step should be called after validate()
        >>>     scheduler.step(val_loss)
    """

    def __init__(self, optimizer, mode='min', factor=0.1, patience=10,
                 verbose=False, threshold=1e-4, threshold_mode='rel',
                 cooldown=0, min_lr=0, eps=1e-8):

        if factor >= 1.0:
            raise ValueError('Factor should be < 1.0.')
        self.factor = factor

        if not isinstance(optimizer, Optimizer):
            raise TypeError('{} is not an Optimizer'.format(
                type(optimizer).__name__))
        self.optimizer = optimizer

        if isinstance(min_lr, list) or isinstance(min_lr, tuple):
            if len(min_lr) != len(optimizer.param_groups):
                raise ValueError("expected {} min_lrs, got {}".format(
                    len(optimizer.param_groups), len(min_lr)))
            self.min_lrs = list(min_lr)
        else:
            self.min_lrs = [min_lr] * len(optimizer.param_groups)

        self.patience = patience
        self.verbose = verbose
        self.cooldown = cooldown
        self.cooldown_counter = 0
        self.mode = mode
        self.threshold = threshold
        self.threshold_mode = threshold_mode
        self.best = None
        self.num_bad_epochs = None
        self.mode_worse = None  # the worse value for the chosen mode
        self.is_better = None
        self.eps = eps
        self.last_epoch = -1
        self._init_is_better(mode=mode, threshold=threshold,
                             threshold_mode=threshold_mode)
        self._reset()

    def _reset(self):
        """Resets num_bad_epochs counter and cooldown counter."""
        self.best = self.mode_worse
        self.cooldown_counter = 0
        self.num_bad_epochs = 0

    def step(self, metrics, epoch=None):
        current = metrics
        if epoch is None:
            epoch = self.last_epoch = self.last_epoch + 1
        self.last_epoch = epoch

        if self.is_better(current, self.best):
            self.best = current
            self.num_bad_epochs = 0
        else:
            self.num_bad_epochs += 1

        if self.in_cooldown:
            self.cooldown_counter -= 1
            self.num_bad_epochs = 0  # ignore any bad epochs in cooldown

        if self.num_bad_epochs > self.patience:
            self._reduce_lr(epoch)
            self.cooldown_counter = self.cooldown
            self.num_bad_epochs = 0

    def _reduce_lr(self, epoch):
        for i, param_group in enumerate(self.optimizer.param_groups):
            old_lr = float(param_group['lr'])
            new_lr = max(old_lr * self.factor, self.min_lrs[i])
            if old_lr - new_lr > self.eps:
                param_group['lr'] = new_lr
                if self.verbose:
                    print('Epoch {:5d}: reducing learning rate'
                          ' of group {} to {:.4e}.'.format(epoch, i, new_lr))

    @property
    def in_cooldown(self):
        return self.cooldown_counter > 0

    def _init_is_better(self, mode, threshold, threshold_mode):
        if mode not in {'min', 'max'}:
            raise ValueError('mode ' + mode + ' is unknown!')
        if threshold_mode not in {'rel', 'abs'}:
            raise ValueError('threshold mode ' + mode + ' is unknown!')
        if mode == 'min' and threshold_mode == 'rel':
            rel_epsilon = 1. - threshold
            self.is_better = lambda a, best: a < best * rel_epsilon
            self.mode_worse = float('Inf')
        elif mode == 'min' and threshold_mode == 'abs':
            self.is_better = lambda a, best: a < best - threshold
            self.mode_worse = float('Inf')
        elif mode == 'max' and threshold_mode == 'rel':
            rel_epsilon = threshold + 1.
            self.is_better = lambda a, best: a > best * rel_epsilon
            self.mode_worse = -float('Inf')
        else:  # mode == 'max' and epsilon_mode == 'abs':
            self.is_better = lambda a, best: a > best + threshold
            self.mode_worse = -float('Inf')