summaryrefslogtreecommitdiff
path: root/torch/optim/adam.py
blob: 38756edc7328ab9d4fe7f8f516485f1ac55d3285 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
import math
from .optimizer import Optimizer


class Adam(Optimizer):
    """Implements Adam algorithm.

    It has been proposed in `Adam: A Method for Stochastic Optimization`_.

    Arguments:
        params (iterable): iterable of parameters to optimize or dicts defining
            parameter groups
        lr (float, optional): learning rate (default: 1e-2)
        betas (Tuple[float, float], optional): coefficients used for computing
            running averages of gradient and its square (default: (0.9, 0.999))
        eps (float, optional): term added to the denominator to improve
            numerical stability (default: 1e-8)
        weight_decay (float, optional): weight decay (L2 penalty) (default: 0)

    .. _Adam\: A Method for Stochastic Optimization:
        https://arxiv.org/abs/1412.6980
    """

    def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8,
                 weight_decay=0):
        defaults = dict(lr=lr, betas=betas, eps=eps,
                        weight_decay=weight_decay)
        super(Adam, self).__init__(params, defaults)

    def step(self, closure=None):
        """Performs a single optimization step.

        Arguments:
            closure (callable, optional): A closure that reevaluates the model
                and returns the loss.
        """
        loss = None
        if closure is not None:
            loss = closure()

        for group in self.param_groups:
            for p in group['params']:
                grad = p.grad.data
                state = self.state[p]

                # State initialization
                if len(state) == 0:
                    state['step'] = 0
                    # Exponential moving average of gradient values
                    state['exp_avg'] = grad.new().resize_as_(grad).zero_()
                    # Exponential moving average of squared gradient values
                    state['exp_avg_sq'] = grad.new().resize_as_(grad).zero_()

                exp_avg, exp_avg_sq = state['exp_avg'], state['exp_avg_sq']
                beta1, beta2 = group['betas']

                state['step'] += 1

                if group['weight_decay'] != 0:
                    grad = grad.add(group['weight_decay'], p.data)

                # Decay the first and second moment running average coefficient
                exp_avg.mul_(beta1).add_(1 - beta1, grad)
                exp_avg_sq.mul_(beta2).addcmul_(1 - beta2, grad, grad)

                denom = exp_avg_sq.sqrt().add_(group['eps'])

                bias_correction1 = 1 - beta1 ** state['step']
                bias_correction2 = 1 - beta2 ** state['step']
                step_size = group['lr'] * math.sqrt(bias_correction2) / bias_correction1

                p.data.addcdiv_(-step_size, exp_avg, denom)

        return loss