summaryrefslogtreecommitdiff
path: root/torch/nn/modules/linear.py
blob: 63aa420839ed378d3a051ae4eccdf320f9be2e77 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
import math

import torch
from torch.nn.parameter import Parameter

from .module import Module


class Linear(Module):
    r"""Applies a linear transformation to the incoming data: :math:`y = Ax + b`

    Args:
        in_features: size of each input sample
        out_features: size of each output sample
        bias: If set to False, the layer will not learn an additive bias. Default: True

    Shape:
        - Input: :math:`(N, in\_features)`
        - Output: :math:`(N, out\_features)`

    Attributes:
        weight: the learnable weights of the module of shape (out_features x in_features)
        bias:   the learnable bias of the module of shape (out_features)

    Examples::

        >>> m = nn.Linear(20, 30)
        >>> input = autograd.Variable(torch.randn(128, 20))
        >>> output = m(input)
        >>> print(output.size())
    """

    def __init__(self, in_features, out_features, bias=True):
        super(Linear, self).__init__()
        self.in_features = in_features
        self.out_features = out_features
        self.weight = Parameter(torch.Tensor(out_features, in_features))
        if bias:
            self.bias = Parameter(torch.Tensor(out_features))
        else:
            self.register_parameter('bias', None)
        self.reset_parameters()

    def reset_parameters(self):
        stdv = 1. / math.sqrt(self.weight.size(1))
        self.weight.data.uniform_(-stdv, stdv)
        if self.bias is not None:
            self.bias.data.uniform_(-stdv, stdv)

    def forward(self, input):
        if self.bias is None:
            return self._backend.Linear()(input, self.weight)
        else:
            return self._backend.Linear()(input, self.weight, self.bias)

    def __repr__(self):
        return self.__class__.__name__ + ' (' \
            + str(self.in_features) + ' -> ' \
            + str(self.out_features) + ')'


# TODO: Bilinear
# TODO: PartialLinear - maybe in sparse?