1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
|
r"""Functional interface"""
from __future__ import division
import warnings
import math
import types
import torch
from torch._C import _infer_size, _add_docstr
from . import _reduction as _Reduction
from . import _functions
from .modules import utils
from ._functions import vision
from .modules.utils import _single, _pair, _triple, _list_with_default
from . import grad
from . import _VF
from .._jit_internal import weak_script, List
conv1d = _add_docstr(torch.conv1d, r"""
conv1d(input, weight, bias=None, stride=1, padding=0, dilation=1, groups=1) -> Tensor
Applies a 1D convolution over an input signal composed of several input
planes.
See :class:`~torch.nn.Conv1d` for details and output shape.
.. include:: cudnn_deterministic.rst
Args:
input: input tensor of shape :math:`(\text{minibatch} \times \text{in\_channels} \times iW)`
weight: filters of shape :math:`(\text{out\_channels} \times \frac{\text{in\_channels}}{\text{groups}} \times kW)`
bias: optional bias of shape :math:`(\text{out\_channels})`. Default: ``None``
stride: the stride of the convolving kernel. Can be a single number or
a one-element tuple `(sW,)`. Default: 1
padding: implicit zero paddings on both sides of the input. Can be a
single number or a one-element tuple `(padW,)`. Default: 0
dilation: the spacing between kernel elements. Can be a single number or
a one-element tuple `(dW,)`. Default: 1
groups: split input into groups, :math:`\text{in\_channels}` should be divisible by
the number of groups. Default: 1
Examples::
>>> filters = torch.randn(33, 16, 3)
>>> inputs = torch.randn(20, 16, 50)
>>> F.conv1d(inputs, filters)
""")
conv2d = _add_docstr(torch.conv2d, r"""
conv2d(input, weight, bias=None, stride=1, padding=0, dilation=1, groups=1) -> Tensor
Applies a 2D convolution over an input image composed of several input
planes.
See :class:`~torch.nn.Conv2d` for details and output shape.
.. include:: cudnn_deterministic.rst
Args:
input: input tensor of shape :math:`(\text{minibatch} \times \text{in\_channels} \times iH \times iW)`
weight: filters of shape :math:`(\text{out\_channels} \times \frac{\text{in\_channels}}{\text{groups}} \times kH \times kW)`
bias: optional bias tensor of shape :math:`(\text{out\_channels})`. Default: ``None``
stride: the stride of the convolving kernel. Can be a single number or a
tuple `(sH, sW)`. Default: 1
padding: implicit zero paddings on both sides of the input. Can be a
single number or a tuple `(padH, padW)`. Default: 0
dilation: the spacing between kernel elements. Can be a single number or
a tuple `(dH, dW)`. Default: 1
groups: split input into groups, :math:`\text{in\_channels}` should be divisible by the
number of groups. Default: 1
Examples::
>>> # With square kernels and equal stride
>>> filters = torch.randn(8,4,3,3)
>>> inputs = torch.randn(1,4,5,5)
>>> F.conv2d(inputs, filters, padding=1)
""") # noqa: E501
conv3d = _add_docstr(torch.conv3d, r"""
conv3d(input, weight, bias=None, stride=1, padding=0, dilation=1, groups=1) -> Tensor
Applies a 3D convolution over an input image composed of several input
planes.
See :class:`~torch.nn.Conv3d` for details and output shape.
.. include:: cudnn_deterministic.rst
Args:
input: input tensor of shape :math:`(\text{minibatch} \times \text{in\_channels} \times iT \times iH \times iW)`
weight: filters of shape :math:`(\text{out\_channels} \times \frac{\text{in\_channels}}{\text{groups}} \times kT \times kH \times kW)`
bias: optional bias tensor of shape :math:`(\text{out\_channels})`. Default: None
stride: the stride of the convolving kernel. Can be a single number or a
tuple `(sT, sH, sW)`. Default: 1
padding: implicit zero paddings on both sides of the input. Can be a
single number or a tuple `(padT, padH, padW)`. Default: 0
dilation: the spacing between kernel elements. Can be a single number or
a tuple `(dT, dH, dW)`. Default: 1
groups: split input into groups, :math:`\text{in\_channels}` should be divisible by
the number of groups. Default: 1
Examples::
>>> filters = torch.randn(33, 16, 3, 3, 3)
>>> inputs = torch.randn(20, 16, 50, 10, 20)
>>> F.conv3d(inputs, filters)
""") # noqa: E501
conv_transpose1d = _add_docstr(torch.conv_transpose1d, r"""
conv_transpose1d(input, weight, bias=None, stride=1, padding=0, output_padding=0, groups=1, dilation=1) -> Tensor
Applies a 1D transposed convolution operator over an input signal
composed of several input planes, sometimes also called "deconvolution".
See :class:`~torch.nn.ConvTranspose1d` for details and output shape.
.. include:: cudnn_deterministic.rst
Args:
input: input tensor of shape :math:`(\text{minibatch} \times \text{in\_channels} \times iW)`
weight: filters of shape :math:`(\text{in\_channels} \times \frac{\text{out\_channels}}{\text{groups}} \times kW)`
bias: optional bias of shape :math:`(\text{out\_channels})`. Default: None
stride: the stride of the convolving kernel. Can be a single number or a
tuple ``(sW,)``. Default: 1
padding: ``kernel_size - 1 - padding`` zero-padding will be added to both
sides of each dimension in the input. Can be a single number or a tuple
``(padW,)``. Default: 0
output_padding: additional size added to one side of each dimension in the
output shape. Can be a single number or a tuple ``(out_padW)``. Default: 0
groups: split input into groups, :math:`\text{in\_channels}` should be divisible by the
number of groups. Default: 1
dilation: the spacing between kernel elements. Can be a single number or
a tuple ``(dW,)``. Default: 1
Examples::
>>> inputs = torch.randn(20, 16, 50)
>>> weights = torch.randn(16, 33, 5)
>>> F.conv_transpose1d(inputs, weights)
""")
conv_transpose2d = _add_docstr(torch.conv_transpose2d, r"""
conv_transpose2d(input, weight, bias=None, stride=1, padding=0, output_padding=0, groups=1, dilation=1) -> Tensor
Applies a 2D transposed convolution operator over an input image
composed of several input planes, sometimes also called "deconvolution".
See :class:`~torch.nn.ConvTranspose2d` for details and output shape.
.. include:: cudnn_deterministic.rst
Args:
input: input tensor of shape :math:`(\text{minibatch} \times \text{in\_channels} \times iH \times iW)`
weight: filters of shape :math:`(\text{in\_channels} \times \frac{\text{out\_channels}}{\text{groups}} \times kH \times kW)`
bias: optional bias of shape :math:`(\text{out\_channels})`. Default: None
stride: the stride of the convolving kernel. Can be a single number or a
tuple ``(sH, sW)``. Default: 1
padding: ``kernel_size - 1 - padding`` zero-padding will be added to both
sides of each dimension in the input. Can be a single number or a tuple
``(padH, padW)``. Default: 0
output_padding: additional size added to one side of each dimension in the
output shape. Can be a single number or a tuple ``(out_padH, out_padW)``.
Default: 0
groups: split input into groups, :math:`\text{in\_channels}` should be divisible by the
number of groups. Default: 1
dilation: the spacing between kernel elements. Can be a single number or
a tuple ``(dH, dW)``. Default: 1
Examples::
>>> # With square kernels and equal stride
>>> inputs = torch.randn(1, 4, 5, 5)
>>> weights = torch.randn(4, 8, 3, 3)
>>> F.conv_transpose2d(inputs, weights, padding=1)
""") # noqa: E501
conv_transpose3d = _add_docstr(torch.conv_transpose3d, r"""
conv_transpose3d(input, weight, bias=None, stride=1, padding=0, output_padding=0, groups=1, dilation=1) -> Tensor
Applies a 3D transposed convolution operator over an input image
composed of several input planes, sometimes also called "deconvolution"
See :class:`~torch.nn.ConvTranspose3d` for details and output shape.
.. include:: cudnn_deterministic.rst
Args:
input: input tensor of shape :math:`(\text{minibatch} \times \text{in\_channels} \times iT \times iH \times iW)`
weight: filters of shape :math:`(\text{in\_channels} \times \frac{\text{out\_channels}}{\text{groups}} \times kT \times kH \times kW)`
bias: optional bias of shape :math:`(\text{out\_channels})`. Default: None
stride: the stride of the convolving kernel. Can be a single number or a
tuple ``(sT, sH, sW)``. Default: 1
padding: ``kernel_size - 1 - padding`` zero-padding will be added to both
sides of each dimension in the input. Can be a single number or a tuple
``(padT, padH, padW)``. Default: 0
output_padding: additional size added to one side of each dimension in the
output shape. Can be a single number or a tuple
``(out_padT, out_padH, out_padW)``. Default: 0
groups: split input into groups, :math:`\text{in\_channels}` should be divisible by the
number of groups. Default: 1
dilation: the spacing between kernel elements. Can be a single number or
a tuple `(dT, dH, dW)`. Default: 1
Examples::
>>> inputs = torch.randn(20, 16, 50, 10, 20)
>>> weights = torch.randn(16, 33, 3, 3, 3)
>>> F.conv_transpose3d(inputs, weights)
""") # noqa: E501
conv_tbc = _add_docstr(torch.conv_tbc, r"""
Applies a 1-dimensional sequence convolution over an input sequence.
Input and output dimensions are (Time, Batch, Channels) - hence TBC.
Args:
input: input tensor of shape :math:`(\text{sequence length} \times batch \times \text{in\_channels})`
weight: filter of shape (:math:`\text{kernel width} \times \text{in\_channels} \times \text{out\_channels}`)
bias: bias of shape (:math:`\text{out\_channels}`)
pad: number of timesteps to pad. Default: 0
""")
# Pooling
avg_pool1d = _add_docstr(torch.avg_pool1d, r"""
avg_pool1d(input, kernel_size, stride=None, padding=0, ceil_mode=False, count_include_pad=True) -> Tensor
Applies a 1D average pooling over an input signal composed of several
input planes.
See :class:`~torch.nn.AvgPool1d` for details and output shape.
Args:
input: input tensor of shape :math:`(\text{minibatch} \times \text{in\_channels} \times iW)`
kernel_size: the size of the window. Can be a single number or a
tuple :math:`(kW,)`
stride: the stride of the window. Can be a single number or a tuple
`(sW,)`. Default: :attr:`kernel_size`
padding: implicit zero paddings on both sides of the input. Can be a
single number or a tuple `(padW,)`. Default: 0
ceil_mode: when True, will use `ceil` instead of `floor` to compute the
output shape. Default: ``False``
count_include_pad: when True, will include the zero-padding in the
averaging calculation. Default: ``True``
Examples::
>>> # pool of square window of size=3, stride=2
>>> input = torch.tensor([[[1,2,3,4,5,6,7]]])
>>> F.avg_pool1d(input, kernel_size=3, stride=2)
tensor([[[ 2., 4., 6.]]])
""")
avg_pool2d = _add_docstr(torch._C._nn.avg_pool2d, r"""
avg_pool2d(input, kernel_size, stride=None, padding=0, ceil_mode=False, count_include_pad=True) -> Tensor
Applies 2D average-pooling operation in :math:`kH \times kW` regions by step size
:math:`sH \times sW` steps. The number of output features is equal to the number of
input planes.
See :class:`~torch.nn.AvgPool2d` for details and output shape.
Args:
input: input tensor :math:`(\text{minibatch} \times \text{in\_channels} \times iH \times iW)`
kernel_size: size of the pooling region. Can be a single number or a
tuple :math:`(kH \times kW)`
stride: stride of the pooling operation. Can be a single number or a
tuple `(sH, sW)`. Default: :attr:`kernel_size`
padding: implicit zero paddings on both sides of the input. Can be a
single number or a tuple `(padH, padW)`. Default: 0
ceil_mode: when True, will use `ceil` instead of `floor` in the formula
to compute the output shape. Default: ``False``
count_include_pad: when True, will include the zero-padding in the
averaging calculation. Default: ``True``
""")
avg_pool3d = _add_docstr(torch._C._nn.avg_pool3d, r"""
avg_pool3d(input, kernel_size, stride=None, padding=0, ceil_mode=False, count_include_pad=True) -> Tensor
Applies 3D average-pooling operation in :math:`kT \times kH \times kW` regions by step
size :math:`sT \times sH \times sW` steps. The number of output features is equal to
:math:`\lfloor\frac{\text{input planes}}{sT}\rfloor`.
See :class:`~torch.nn.AvgPool3d` for details and output shape.
Args:
input: input tensor :math:`(\text{minibatch} \times \text{in\_channels} \times iT \times iH \times iW)`
kernel_size: size of the pooling region. Can be a single number or a
tuple :math:`(kT \times kH \times kW)`
stride: stride of the pooling operation. Can be a single number or a
tuple `(sT, sH, sW)`. Default: :attr:`kernel_size`
padding: implicit zero paddings on both sides of the input. Can be a
single number or a tuple `(padT, padH, padW)`, Default: 0
ceil_mode: when True, will use `ceil` instead of `floor` in the formula
to compute the output shape
count_include_pad: when True, will include the zero-padding in the
averaging calculation
""")
@weak_script
def fractional_max_pool2d_with_indices(input, kernel_size, output_size=None,
output_ratio=None, return_indices=False,
_random_samples=None):
# type: (Tensor, BroadcastingList2[int], Optional[BroadcastingList2[int]], Optional[BroadcastingList2[float]], bool, Optional[Tensor]) -> Tuple[Tensor, Tensor] # noqa
r"""Applies 2D fractional max pooling over an input signal composed of several input planes.
Fractional MaxPooling is described in detail in the paper `Fractional MaxPooling`_ by Ben Graham
The max-pooling operation is applied in :math:`kH \times kW` regions by a stochastic
step size determined by the target output size.
The number of output features is equal to the number of input planes.
Args:
kernel_size: the size of the window to take a max over.
Can be a single number :math:`k` (for a square kernel of :math:`k \times k`)
or a tuple :math:`(kH \times kW)`
output_size: the target output size of the image of the form :math:`oH \times oW`.
Can be a tuple `(oH, oW)` or a single number :math:`oH` for a square image :math:`oH \times oH`
output_ratio: If one wants to have an output size as a ratio of the input size, this option can be given.
This has to be a number or tuple in the range (0, 1)
return_indices: if ``True``, will return the indices along with the outputs.
Useful to pass to :func:`~torch.nn.functional.max_unpool2d`.
Examples::
>>> input = torch.randn(20, 16, 50, 32)
>>> # pool of square window of size=3, and target output size 13x12
>>> F.fractional_max_pool2d(input, 3, output_size=(13, 12))
>>> # pool of square window and target output size being half of input image size
>>> F.fractional_max_pool2d(input, 3, output_ratio=(0.5, 0.5))
.. _Fractional MaxPooling:
http://arxiv.org/abs/1412.6071
"""
if output_size is None and output_ratio is None:
raise ValueError("fractional_max_pool2d requires specifying either "
"an output_size or an output_ratio")
if output_size is None:
_output_ratio = _pair(torch.jit._unwrap_optional(output_ratio))
output_size = [int(input.size(2) * _output_ratio[0]),
int(input.size(3) * _output_ratio[1])]
if _random_samples is None:
_random_samples = torch.rand(input.size(0), input.size(1), 2, dtype=input.dtype, device=input.device)
return torch._C._nn.fractional_max_pool2d(input, kernel_size, output_size, _random_samples)
@weak_script
def _fractional_max_pool2d(input, kernel_size, output_size=None,
output_ratio=None, return_indices=False,
_random_samples=None):
# type: (Tensor, BroadcastingList2[int], Optional[BroadcastingList2[int]], Optional[BroadcastingList2[float]], bool, Optional[Tensor]) -> Tensor # noqa
return fractional_max_pool2d_with_indices(input, kernel_size, output_size,
output_ratio, return_indices,
_random_samples)[0]
fractional_max_pool2d = torch._jit_internal.boolean_dispatch(
arg_name='return_indices',
arg_index=4,
default=False,
if_true=fractional_max_pool2d_with_indices,
if_false=_fractional_max_pool2d)
@weak_script
def fractional_max_pool3d_with_indices(input, kernel_size, output_size=None,
output_ratio=None, return_indices=False,
_random_samples=None):
# type: (Tensor, BroadcastingList3[int], Optional[BroadcastingList3[int]], Optional[BroadcastingList3[float]], bool, Optional[Tensor]) -> Tuple[Tensor, Tensor] # noqa
r"""Applies 3D fractional max pooling over an input signal composed of several input planes.
Fractional MaxPooling is described in detail in the paper `Fractional MaxPooling`_ by Ben Graham
The max-pooling operation is applied in :math:`kT \times kH \times kW` regions by a stochastic
step size determined by the target output size.
The number of output features is equal to the number of input planes.
Args:
kernel_size: the size of the window to take a max over.
Can be a single number :math:`k` (for a square kernel of :math:`k \times k \times k`)
or a tuple :math:`(kT \times kH \times kW)`
output_size: the target output size of the form :math:`oT \times oH \times oW`.
Can be a tuple `(oT, oH, oW)` or a single number :math:`oH` for a cubic output
:math:`oH \times oH \times oH`
output_ratio: If one wants to have an output size as a ratio of the input size, this option can be given.
This has to be a number or tuple in the range (0, 1)
return_indices: if ``True``, will return the indices along with the outputs.
Useful to pass to :func:`~torch.nn.functional.max_unpool3d`.
Examples::
>>> input = torch.randn(20, 16, 50, 32, 16)
>>> # pool of cubic window of size=3, and target output size 13x12x11
>>> F.fractional_max_pool3d(input, 3, output_size=(13, 12, 11))
>>> # pool of cubic window and target output size being half of input size
>>> F.fractional_max_pool3d(input, 3, output_ratio=(0.5, 0.5, 0.5))
.. _Fractional MaxPooling:
http://arxiv.org/abs/1412.6071
"""
if output_size is None and output_ratio is None:
raise ValueError("fractional_max_pool3d requires specifying either "
"an output_size or an output_ratio")
if output_size is None:
_output_ratio = _triple(torch.jit._unwrap_optional(output_ratio))
output_size = [int(input.size(2) * _output_ratio[0]),
int(input.size(3) * _output_ratio[1]),
int(input.size(4) * _output_ratio[2])]
if _random_samples is None:
_random_samples = torch.rand(input.size(0), input.size(1), 3, dtype=input.dtype, device=input.device)
return torch._C._nn.fractional_max_pool3d(input, kernel_size, output_size, _random_samples)
@weak_script
def _fractional_max_pool3d(input, kernel_size, output_size=None,
output_ratio=None, return_indices=False,
_random_samples=None):
# type: (Tensor, BroadcastingList3[int], Optional[BroadcastingList3[int]], Optional[BroadcastingList3[float]], bool, Optional[Tensor]) -> Tensor # noqa
return fractional_max_pool3d_with_indices(input, kernel_size, output_size,
output_ratio, return_indices,
_random_samples)[0]
fractional_max_pool3d = torch._jit_internal.boolean_dispatch(
arg_name='return_indices',
arg_index=4,
default=False,
if_true=fractional_max_pool3d_with_indices,
if_false=_fractional_max_pool3d)
@weak_script
def max_pool1d_with_indices(input, kernel_size, stride=None, padding=0,
dilation=1, ceil_mode=False, return_indices=False):
# type: (Tensor, BroadcastingList1[int], Optional[BroadcastingList1[int]], BroadcastingList1[int], BroadcastingList1[int], bool, bool) -> Tuple[Tensor, Tensor] # noqa
r"""Applies a 1D max pooling over an input signal composed of several input
planes.
See :class:`~torch.nn.MaxPool1d` for details.
"""
if stride is None:
stride = torch.jit.annotate(List[int], [])
return torch.max_pool1d_with_indices(
input, kernel_size, stride, padding, dilation, ceil_mode)
@weak_script
def _max_pool1d(input, kernel_size, stride=None, padding=0, dilation=1,
ceil_mode=False, return_indices=False):
# type: (Tensor, BroadcastingList1[int], Optional[BroadcastingList1[int]], BroadcastingList1[int], BroadcastingList1[int], bool, bool) -> Tensor # noqa
return max_pool1d_with_indices(
input, kernel_size, stride, padding, dilation, ceil_mode)[0]
max_pool1d = torch._jit_internal.boolean_dispatch(
arg_name='return_indices',
arg_index=6,
default=False,
if_true=max_pool1d_with_indices,
if_false=_max_pool1d)
@weak_script
def max_pool2d_with_indices(input, kernel_size, stride=None, padding=0, dilation=1,
ceil_mode=False, return_indices=False):
# type: (Tensor, BroadcastingList2[int], Optional[BroadcastingList2[int]], BroadcastingList2[int], BroadcastingList2[int], bool, bool) -> Tuple[Tensor, Tensor] # noqa
r"""Applies a 2D max pooling over an input signal composed of several input
planes.
See :class:`~torch.nn.MaxPool2d` for details.
"""
if stride is None:
stride = torch.jit.annotate(List[int], [])
return torch._C._nn.max_pool2d_with_indices(input, kernel_size, stride, padding, dilation, ceil_mode)
@weak_script
def _max_pool2d(input, kernel_size, stride=None, padding=0, dilation=1,
ceil_mode=False, return_indices=False):
# type: (Tensor, BroadcastingList2[int], Optional[BroadcastingList2[int]], BroadcastingList2[int], BroadcastingList2[int], bool, bool) -> Tensor # noqa
return max_pool2d_with_indices(
input, kernel_size, stride, padding, dilation, ceil_mode)[0]
max_pool2d = torch._jit_internal.boolean_dispatch(
arg_name='return_indices',
arg_index=6,
default=False,
if_true=max_pool2d_with_indices,
if_false=_max_pool2d)
@weak_script
def max_pool3d_with_indices(input, kernel_size, stride=None, padding=0,
dilation=1, ceil_mode=False, return_indices=False):
# type: (Tensor, BroadcastingList3[int], Optional[BroadcastingList3[int]], BroadcastingList3[int], BroadcastingList3[int], bool, bool) -> Tuple[Tensor, Tensor] # noqa
r"""Applies a 3D max pooling over an input signal composed of several input
planes.
See :class:`~torch.nn.MaxPool3d` for details.
"""
if stride is None:
stride = torch.jit.annotate(List[int], [])
return torch._C._nn.max_pool3d_with_indices(
input, kernel_size, stride, padding, dilation, ceil_mode)
@weak_script
def _max_pool3d(input, kernel_size, stride=None, padding=0, dilation=1,
ceil_mode=False, return_indices=False):
# type: (Tensor, BroadcastingList3[int], Optional[BroadcastingList3[int]], BroadcastingList3[int], BroadcastingList3[int], bool, bool) -> Tensor # noqa
return max_pool3d_with_indices(
input, kernel_size, stride, padding, dilation, ceil_mode)[0]
max_pool3d = torch._jit_internal.boolean_dispatch(
arg_name='return_indices',
arg_index=6,
default=False,
if_true=max_pool3d_with_indices,
if_false=_max_pool3d)
@weak_script
def _unpool_output_size(input, kernel_size, stride, padding, output_size):
# type: (Tensor, List[int], List[int], List[int], Optional[List[int]]) -> List[int]
input_size = input.size()
default_size = torch.jit.annotate(List[int], [])
for d in range(len(kernel_size)):
default_size.append((input_size[d + 2] - 1) * stride[d] +
kernel_size[d] - 2 * padding[d])
if output_size is None:
ret = default_size
else:
if len(output_size) == len(kernel_size) + 2:
output_size = output_size[2:]
if len(output_size) != len(kernel_size):
raise ValueError("output_size should be a sequence containing "
"{} or {} elements, but it has a length of '{}'"
.format(len(kernel_size), len(kernel_size) + 2,
len(output_size)))
for d in range(len(kernel_size)):
min_size = default_size[d] - stride[d]
max_size = default_size[d] + stride[d]
if not (min_size < output_size[d] < max_size):
raise ValueError(
'invalid output_size "{}" (dim {} must be between {} and {})'
.format(output_size, d, min_size, max_size))
ret = output_size
return ret
@weak_script
def max_unpool1d(input, indices, kernel_size, stride=None, padding=0,
output_size=None):
# type: (Tensor, Tensor, BroadcastingList1[int], Optional[BroadcastingList1[int]], BroadcastingList1[int], Optional[BroadcastingList1[int]]) -> Tensor # noqa
r"""Computes a partial inverse of :class:`MaxPool1d`.
See :class:`~torch.nn.MaxUnpool1d` for details.
"""
kernel_size = _single(kernel_size)
if stride is not None:
_stride = _single(stride)
else:
_stride = kernel_size
padding = _single(padding)
output_size = _unpool_output_size(input, kernel_size, _stride, padding,
output_size)
return torch._C._nn.max_unpool2d(input.unsqueeze(3), indices.unsqueeze(3), output_size + [1]).squeeze(3)
@weak_script
def max_unpool2d(input, indices, kernel_size, stride=None, padding=0,
output_size=None):
# type: (Tensor, Tensor, BroadcastingList2[int], Optional[BroadcastingList2[int]], BroadcastingList2[int], Optional[BroadcastingList2[int]]) -> Tensor # noqa
r"""Computes a partial inverse of :class:`MaxPool2d`.
See :class:`~torch.nn.MaxUnpool2d` for details.
"""
kernel_size = _pair(kernel_size)
if stride is not None:
_stride = _pair(stride)
else:
_stride = kernel_size
padding = _pair(padding)
output_size = _unpool_output_size(input, kernel_size, _stride, padding,
output_size)
return torch._C._nn.max_unpool2d(input, indices, output_size)
@weak_script
def max_unpool3d(input, indices, kernel_size, stride=None, padding=0,
output_size=None):
# type: (Tensor, Tensor, BroadcastingList3[int], Optional[BroadcastingList3[int]], BroadcastingList3[int], Optional[BroadcastingList3[int]]) -> Tensor # noqa
r"""Computes a partial inverse of :class:`MaxPool3d`.
See :class:`~torch.nn.MaxUnpool3d` for details.
"""
kernel_size = _triple(kernel_size)
if stride is not None:
_stride = _triple(stride)
else:
_stride = kernel_size
padding = _triple(padding)
output_size = _unpool_output_size(input, kernel_size, _stride, padding,
output_size)
return torch._C._nn.max_unpool3d(
input, indices, output_size, _stride, padding)
@weak_script
def lp_pool2d(input, norm_type, kernel_size, stride=None, ceil_mode=False):
# type: (Tensor, float, int, Optional[BroadcastingList2[int]], bool) -> Tensor
r"""Applies a 2D power-average pooling over an input signal composed of
several input planes. If the sum of all inputs to the power of `p` is
zero, the gradient is set to zero as well.
See :class:`~torch.nn.LPPool2d` for details.
"""
kw, kh = utils._pair(kernel_size)
if stride is not None:
out = avg_pool2d(input.pow(norm_type), kernel_size, stride, 0, ceil_mode)
else:
out = avg_pool2d(input.pow(norm_type), kernel_size, padding=0, ceil_mode=ceil_mode)
return (torch.sign(out) * relu(torch.abs(out))).mul(kw * kh).pow(1. / norm_type)
@weak_script
def lp_pool1d(input, norm_type, kernel_size, stride=None, ceil_mode=False):
# type: (Tensor, float, int, Optional[BroadcastingList1[int]], bool) -> Tensor
r"""Applies a 1D power-average pooling over an input signal composed of
several input planes. If the sum of all inputs to the power of `p` is
zero, the gradient is set to zero as well.
See :class:`~torch.nn.LPPool1d` for details.
"""
if stride is not None:
out = avg_pool1d(input.pow(norm_type), kernel_size, stride, 0, ceil_mode)
else:
out = avg_pool1d(input.pow(norm_type), kernel_size, padding=0, ceil_mode=ceil_mode)
return (torch.sign(out) * relu(torch.abs(out))).mul(kernel_size).pow(1. / norm_type)
@weak_script
def adaptive_max_pool1d_with_indices(input, output_size, return_indices=False):
# type: (Tensor, BroadcastingList1[int], bool) -> Tuple[Tensor, Tensor]
r"""Applies a 1D adaptive max pooling over an input signal composed of
several input planes.
See :class:`~torch.nn.AdaptiveMaxPool1d` for details and output shape.
Args:
output_size: the target output size (single integer)
return_indices: whether to return pooling indices. Default: ``False``
"""
return torch.adaptive_max_pool1d(input, output_size)
@weak_script
def _adaptive_max_pool1d(input, output_size, return_indices=False):
# type: (Tensor, BroadcastingList1[int], bool) -> Tensor
return adaptive_max_pool1d_with_indices(input, output_size)[0]
adaptive_max_pool1d = torch._jit_internal.boolean_dispatch(
arg_name='return_indices',
arg_index=2,
default=False,
if_true=adaptive_max_pool1d_with_indices,
if_false=_adaptive_max_pool1d)
@weak_script
def adaptive_max_pool2d_with_indices(input, output_size, return_indices=False):
# type: (Tensor, BroadcastingList1[int], bool) -> Tuple[Tensor, Tensor]
r"""Applies a 2D adaptive max pooling over an input signal composed of
several input planes.
See :class:`~torch.nn.AdaptiveMaxPool2d` for details and output shape.
Args:
output_size: the target output size (single integer or
double-integer tuple)
return_indices: whether to return pooling indices. Default: ``False``
"""
output_size = _list_with_default(output_size, input.size())
return torch._C._nn.adaptive_max_pool2d(input, output_size)
@weak_script
def _adaptive_max_pool2d(input, output_size, return_indices=False):
# type: (Tensor, BroadcastingList1[int], bool) -> Tensor
return adaptive_max_pool2d_with_indices(input, output_size)[0]
adaptive_max_pool2d = torch._jit_internal.boolean_dispatch(
arg_name='return_indices',
arg_index=2,
default=False,
if_true=adaptive_max_pool2d_with_indices,
if_false=_adaptive_max_pool2d)
@weak_script
def adaptive_max_pool3d_with_indices(input, output_size, return_indices=False):
# type: (Tensor, BroadcastingList1[int], bool) -> Tuple[Tensor, Tensor]
r"""Applies a 3D adaptive max pooling over an input signal composed of
several input planes.
See :class:`~torch.nn.AdaptiveMaxPool3d` for details and output shape.
Args:
output_size: the target output size (single integer or
triple-integer tuple)
return_indices: whether to return pooling indices. Default: ``False``
"""
output_size = _list_with_default(output_size, input.size())
return torch._C._nn.adaptive_max_pool3d(input, output_size)
@weak_script
def _adaptive_max_pool3d(input, output_size, return_indices=False):
# type: (Tensor, BroadcastingList1[int], bool) -> Tensor
return adaptive_max_pool3d_with_indices(input, output_size)[0]
adaptive_max_pool3d = torch._jit_internal.boolean_dispatch(
arg_name='return_indices',
arg_index=2,
default=False,
if_true=adaptive_max_pool3d_with_indices,
if_false=_adaptive_max_pool3d)
adaptive_avg_pool1d = _add_docstr(torch.adaptive_avg_pool1d, r"""
adaptive_avg_pool1d(input, output_size) -> Tensor
Applies a 1D adaptive average pooling over an input signal composed of
several input planes.
See :class:`~torch.nn.AdaptiveAvgPool1d` for details and output shape.
Args:
output_size: the target output size (single integer)
""")
@weak_script
def adaptive_avg_pool2d(input, output_size):
# type: (Tensor, BroadcastingList2[int]) -> Tensor
r"""
Applies a 2D adaptive average pooling over an input signal composed of
several input planes.
See :class:`~torch.nn.AdaptiveAvgPool2d` for details and output shape.
Args:
output_size: the target output size (single integer or
double-integer tuple)
"""
_output_size = _list_with_default(output_size, input.size())
return torch._C._nn.adaptive_avg_pool2d(input, _output_size)
@weak_script
def adaptive_avg_pool3d(input, output_size):
# type: (Tensor, BroadcastingList3[int]) -> Tensor
r"""
Applies a 3D adaptive average pooling over an input signal composed of
several input planes.
See :class:`~torch.nn.AdaptiveAvgPool3d` for details and output shape.
Args:
output_size: the target output size (single integer or
triple-integer tuple)
"""
_output_size = _list_with_default(output_size, input.size())
return torch._C._nn.adaptive_avg_pool3d(input, _output_size)
# Activation functions
@weak_script
def dropout(input, p=0.5, training=True, inplace=False):
# type: (Tensor, float, bool, bool) -> Tensor
r"""
During training, randomly zeroes some of the elements of the input
tensor with probability :attr:`p` using samples from a Bernoulli
distribution.
See :class:`~torch.nn.Dropout` for details.
Args:
p: probability of an element to be zeroed. Default: 0.5
training: apply dropout if is ``True``. Default: ``True``
inplace: If set to ``True``, will do this operation in-place. Default: ``False``
"""
if p < 0. or p > 1.:
raise ValueError("dropout probability has to be between 0 and 1, "
"but got {}".format(p))
return (_VF.dropout_(input, p, training)
if inplace
else _VF.dropout(input, p, training))
@weak_script
def alpha_dropout(input, p=0.5, training=False, inplace=False):
# type: (Tensor, float, bool, bool) -> Tensor
r"""Applies alpha dropout to the input.
See :class:`~torch.nn.AlphaDropout` for details.
"""
if p < 0. or p > 1.:
raise ValueError("dropout probability has to be between 0 and 1, "
"but got {}".format(p))
return (_VF.alpha_dropout_(input, p, training)
if inplace
else _VF.alpha_dropout(input, p, training))
@weak_script
def dropout2d(input, p=0.5, training=True, inplace=False):
# type: (Tensor, float, bool, bool) -> Tensor
r"""
Randomly zero out entire channels (a channel is a 2D feature map,
e.g., the :math:`j`-th channel of the :math:`i`-th sample in the
batched input is a 2D tensor :math:`\text{input}[i, j]`) of the input tensor).
Each channel will be zeroed out independently on every forward call.
with probability :attr:`p` using samples from a Bernoulli distribution.
See :class:`~torch.nn.Dropout2d` for details.
Args:
p: probability of a channel to be zeroed. Default: 0.5
training: apply dropout if is ``True``. Default: ``True``
inplace: If set to ``True``, will do this operation in-place. Default: ``False``
"""
if p < 0. or p > 1.:
raise ValueError("dropout probability has to be between 0 and 1, "
"but got {}".format(p))
return (_VF.feature_dropout_(input, p, training)
if inplace
else _VF.feature_dropout(input, p, training))
@weak_script
def dropout3d(input, p=0.5, training=True, inplace=False):
# type: (Tensor, float, bool, bool) -> Tensor
r"""
Randomly zero out entire channels (a channel is a 3D feature map,
e.g., the :math:`j`-th channel of the :math:`i`-th sample in the
batched input is a 3D tensor :math:`\text{input}[i, j]`) of the input tensor).
Each channel will be zeroed out independently on every forward call.
with probability :attr:`p` using samples from a Bernoulli distribution.
See :class:`~torch.nn.Dropout3d` for details.
Args:
p: probability of a channel to be zeroed. Default: 0.5
training: apply dropout if is ``True``. Default: ``True``
inplace: If set to ``True``, will do this operation in-place. Default: ``False``
"""
# This is 100% the same code as dropout2d. We duplicate this code so that
# stack traces are not confusing.
if p < 0. or p > 1.:
raise ValueError("dropout probability has to be between 0 and 1, "
"but got {}".format(p))
return (_VF.feature_dropout_(input, p, training)
if inplace
else _VF.feature_dropout(input, p, training))
@weak_script
def feature_alpha_dropout(input, p=0.5, training=False, inplace=False):
# type: (Tensor, float, bool, bool) -> Tensor
if p < 0. or p > 1.:
raise ValueError("dropout probability has to be between 0 and 1, "
"but got {}".format(p))
return (_VF.feature_alpha_dropout_(input, p, training)
if inplace
else _VF.feature_alpha_dropout(input, p, training))
@weak_script
def threshold(input, threshold, value, inplace=False):
# type: (Tensor, float, float, bool) -> Tensor
r"""Thresholds each element of the input Tensor.
See :class:`~torch.nn.Threshold` for more details.
"""
if inplace:
result = _VF.threshold_(input, threshold, value)
else:
result = _VF.threshold(input, threshold, value)
return result
threshold_ = _add_docstr(_VF.threshold_, r"""
threshold_(input, threshold, value) -> Tensor
In-place version of :func:`~threshold`.
""")
@weak_script
def relu(input, inplace=False):
# type: (Tensor, bool) -> Tensor
r"""relu(input, inplace=False) -> Tensor
Applies the rectified linear unit function element-wise. See
:class:`~torch.nn.ReLU` for more details.
"""
if inplace:
result = torch.relu_(input)
else:
result = torch.relu(input)
return result
relu_ = _add_docstr(torch.relu_, r"""
relu_(input) -> Tensor
In-place version of :func:`~relu`.
""")
@weak_script
def glu(input, dim=-1):
# type: (Tensor, int) -> Tensor
r"""
glu(input, dim=-1) -> Tensor
The gated linear unit. Computes:
.. math ::
H = A \times \sigma(B)
where `input` is split in half along `dim` to form `A` and `B`.
See `Language Modeling with Gated Convolutional Networks <https://arxiv.org/abs/1612.08083>`_.
Args:
input (Tensor): input tensor
dim (int): dimension on which to split the input
"""
if input.dim() == 0:
raise RuntimeError("glu does not suppport scalars because halving size must be even")
return torch._C._nn.glu(input, dim)
@weak_script
def hardtanh(input, min_val=-1., max_val=1., inplace=False):
# type: (Tensor, float, float, bool) -> Tensor
r"""
hardtanh(input, min_val=-1., max_val=1., inplace=False) -> Tensor
Applies the HardTanh function element-wise. See :class:`~torch.nn.Hardtanh` for more
details.
"""
if inplace:
result = torch._C._nn.hardtanh_(input, min_val, max_val)
else:
result = torch._C._nn.hardtanh(input, min_val, max_val)
return result
hardtanh_ = _add_docstr(torch._C._nn.hardtanh_, r"""
hardtanh_(input, min_val=-1., max_val=1.) -> Tensor
In-place version of :func:`~hardtanh`.
""")
@weak_script
def relu6(input, inplace=False):
# type: (Tensor, bool) -> Tensor
r"""relu6(input, inplace=False) -> Tensor
Applies the element-wise function :math:`\text{ReLU6}(x) = \min(\max(0,x), 6)`.
See :class:`~torch.nn.ReLU6` for more details.
"""
return hardtanh(input, 0., 6., inplace)
@weak_script
def elu(input, alpha=1., inplace=False):
# type: (Tensor, float, bool) -> Tensor
r"""Applies element-wise,
:math:`\text{ELU}(x) = \max(0,x) + \min(0, \alpha * (\exp(x) - 1))`.
See :class:`~torch.nn.ELU` for more details.
"""
if inplace:
result = torch._C._nn.elu_(input, alpha)
else:
result = torch._C._nn.elu(input, alpha)
return result
elu_ = _add_docstr(torch._C._nn.elu_, r"""
elu_(input, alpha=1.) -> Tensor
In-place version of :func:`~elu`.
""")
@weak_script
def selu(input, inplace=False):
# type: (Tensor, bool) -> Tensor
r"""selu(input, inplace=False) -> Tensor
Applies element-wise,
:math:`\text{SELU}(x) = scale * (\max(0,x) + \min(0, \alpha * (\exp(x) - 1)))`,
with :math:`\alpha=1.6732632423543772848170429916717` and
:math:`scale=1.0507009873554804934193349852946`.
See :class:`~torch.nn.SELU` for more details.
"""
if inplace:
result = torch.selu_(input)
else:
result = torch.selu(input)
return result
selu_ = _add_docstr(torch.selu_, r"""
selu_(input) -> Tensor
In-place version of :func:`~selu`.
""")
@weak_script
def celu(input, alpha=1., inplace=False):
# type: (Tensor, float, bool) -> Tensor
r"""celu(input, alpha=1., inplace=False) -> Tensor
Applies element-wise,
:math:`\text{CELU}(x) = \max(0,x) + \min(0, \alpha * (\exp(x/\alpha) - 1))`.
See :class:`~torch.nn.CELU` for more details.
"""
if inplace:
result = torch.celu_(input, alpha)
else:
result = torch.celu(input, alpha)
return result
celu_ = _add_docstr(torch.celu_, r"""
celu_(input, alpha=1.) -> Tensor
In-place version of :func:`~celu`.
""")
@weak_script
def leaky_relu(input, negative_slope=0.01, inplace=False):
# type: (Tensor, float, bool) -> Tensor
r"""
leaky_relu(input, negative_slope=0.01, inplace=False) -> Tensor
Applies element-wise,
:math:`\text{LeakyReLU}(x) = \max(0, x) + \text{negative\_slope} * \min(0, x)`
See :class:`~torch.nn.LeakyReLU` for more details.
"""
if inplace:
result = torch._C._nn.leaky_relu_(input, negative_slope)
else:
result = torch._C._nn.leaky_relu(input, negative_slope)
return result
leaky_relu_ = _add_docstr(torch._C._nn.leaky_relu_, r"""
leaky_relu_(input, negative_slope=0.01) -> Tensor
In-place version of :func:`~leaky_relu`.
""")
@weak_script
def prelu(input, weight):
# type: (Tensor, Tensor) -> Tensor
r"""prelu(input, weight) -> Tensor
Applies element-wise the function
:math:`\text{PReLU}(x) = \max(0,x) + \text{weight} * \min(0,x)` where weight is a
learnable parameter.
See :class:`~torch.nn.PReLU` for more details.
"""
return torch.prelu(input, weight)
@weak_script
def rrelu(input, lower=1. / 8, upper=1. / 3, training=False, inplace=False):
# type: (Tensor, float, float, bool, bool) -> Tensor
r"""rrelu(input, lower=1./8, upper=1./3, training=False, inplace=False) -> Tensor
Randomized leaky ReLU.
See :class:`~torch.nn.RReLU` for more details.
"""
if inplace:
result = torch.rrelu_(input, lower, upper, training)
else:
result = torch.rrelu(input, lower, upper, training)
return result
rrelu_ = _add_docstr(torch.rrelu_, r"""
rrelu_(input, lower=1./8, upper=1./3, training=False) -> Tensor
In-place version of :func:`~rrelu`.
""")
logsigmoid = _add_docstr(torch._C._nn.log_sigmoid, r"""
logsigmoid(input) -> Tensor
Applies element-wise :math:`\text{LogSigmoid}(x) = \log \left(\frac{1}{1 + \exp(-x_i)}\right)`
See :class:`~torch.nn.LogSigmoid` for more details.
""")
@weak_script
def hardshrink(input, lambd=0.5):
# type: (Tensor, float) -> Tensor
r"""
hardshrink(input, lambd=0.5) -> Tensor
Applies the hard shrinkage function element-wise
See :class:`~torch.nn.Hardshrink` for more details.
"""
return torch.hardshrink(input, lambd)
@weak_script
def tanhshrink(input):
r"""tanhshrink(input) -> Tensor
Applies element-wise, :math:`\text{Tanhshrink}(x) = x - \text{Tanh}(x)`
See :class:`~torch.nn.Tanhshrink` for more details.
"""
return input - input.tanh()
@weak_script
def softsign(input):
r"""softsign(input) -> Tensor
Applies element-wise, the function :math:`\text{SoftSign}(x) = \frac{x}{1 + |x|}`
See :class:`~torch.nn.Softsign` for more details.
"""
return input / (input.abs() + 1)
softplus = _add_docstr(torch._C._nn.softplus, r"""
softplus(input, beta=1, threshold=20) -> Tensor
""")
@weak_script
def _get_softmax_dim(name, ndim, stacklevel):
# type: (str, int, int) -> int
warnings.warn("Implicit dimension choice for {} has been deprecated. "
"Change the call to include dim=X as an argument.".format(name), stacklevel=stacklevel)
if ndim == 0 or ndim == 1 or ndim == 3:
ret = 0
else:
ret = 1
return ret
@weak_script
def softmin(input, dim=None, _stacklevel=3, dtype=None):
# type: (Tensor, Optional[int], int, Optional[int]) -> Tensor
r"""Applies a softmin function.
Note that :math:`\text{Softmin}(x) = \text{Softmax}(-x)`. See softmax definition for mathematical formula.
See :class:`~torch.nn.Softmin` for more details.
Arguments:
input (Tensor): input
dim (int): A dimension along which softmin will be computed (so every slice
along dim will sum to 1).
dtype (:class:`torch.dtype`, optional): the desired data type of returned tensor.
If specified, the input tensor is casted to :attr:`dtype` before the operation
is performed. This is useful for preventing data type overflows. Default: None.
"""
if dim is None:
dim = _get_softmax_dim('softmin', input.dim(), _stacklevel)
if dtype is None:
ret = (-input).softmax(dim)
else:
ret = (-input).softmax(dim, dtype=dtype)
return ret
@weak_script
def softmax(input, dim=None, _stacklevel=3, dtype=None):
# type: (Tensor, Optional[int], int, Optional[int]) -> Tensor
r"""Applies a softmax function.
Softmax is defined as:
:math:`\text{Softmax}(x_{i}) = \frac{exp(x_i)}{\sum_j exp(x_j)}`
It is applied to all slices along dim, and will re-scale them so that the elements
lie in the range `(0, 1)` and sum to 1.
See :class:`~torch.nn.Softmax` for more details.
Arguments:
input (Tensor): input
dim (int): A dimension along which softmax will be computed.
dtype (:class:`torch.dtype`, optional): the desired data type of returned tensor.
If specified, the input tensor is casted to :attr:`dtype` before the operation
is performed. This is useful for preventing data type overflows. Default: None.
.. note::
This function doesn't work directly with NLLLoss,
which expects the Log to be computed between the Softmax and itself.
Use log_softmax instead (it's faster and has better numerical properties).
"""
if dim is None:
dim = _get_softmax_dim('softmax', input.dim(), _stacklevel)
if dtype is None:
ret = input.softmax(dim)
else:
ret = input.softmax(dim, dtype=dtype)
return ret
@weak_script
def gumbel_softmax(logits, tau=1, hard=False, eps=1e-10, dim=-1):
# type: (Tensor, float, bool, float, int) -> Tensor
r"""
Samples from the `Gumbel-Softmax distribution`_ and optionally discretizes.
Args:
logits: `[..., num_features]` unnormalized log probabilities
tau: non-negative scalar temperature
hard: if ``True``, the returned samples will be discretized as one-hot vectors,
but will be differentiated as if it is the soft sample in autograd
dim (int): A dimension along which softmax will be computed. Default: -1.
Returns:
Sampled tensor of same shape as `logits` from the Gumbel-Softmax distribution.
If ``hard=True``, the returned samples will be one-hot, otherwise they will
be probability distributions that sum to 1 across `dim`.
.. note::
This function is here for legacy reasons, may be removed from nn.Functional in the future.
.. note::
The main trick for `hard` is to do `y_hard - y_soft.detach() + y_soft`
It achieves two things:
- makes the output value exactly one-hot
(since we add then subtract y_soft value)
- makes the gradient equal to y_soft gradient
(since we strip all other gradients)
Examples::
>>> logits = torch.randn(20, 32)
>>> # Sample soft categorical using reparametrization trick:
>>> F.gumbel_softmax(logits, tau=1, hard=False)
>>> # Sample hard categorical using "Straight-through" trick:
>>> F.gumbel_softmax(logits, tau=1, hard=True)
.. _Gumbel-Softmax distribution:
https://arxiv.org/abs/1611.00712
https://arxiv.org/abs/1611.01144
"""
if eps != 1e-10:
warnings.warn("`eps` parameter is deprecated and has no effect.")
gumbels = -torch.empty_like(logits).exponential_().log() # ~Gumbel(0,1)
gumbels = (logits + gumbels) / tau # ~Gumbel(logits,tau)
y_soft = gumbels.softmax(dim)
if hard:
# Straight through.
index = y_soft.max(dim, keepdim=True)[1]
y_hard = torch.zeros_like(logits).scatter_(dim, index, 1.0)
ret = y_hard - y_soft.detach() + y_soft
else:
# Reparametrization trick.
ret = y_soft
return ret
@weak_script
def log_softmax(input, dim=None, _stacklevel=3, dtype=None):
# type: (Tensor, Optional[int], int, Optional[int]) -> Tensor
r"""Applies a softmax followed by a logarithm.
While mathematically equivalent to log(softmax(x)), doing these two
operations separately is slower, and numerically unstable. This function
uses an alternative formulation to compute the output and gradient correctly.
See :class:`~torch.nn.LogSoftmax` for more details.
Arguments:
input (Tensor): input
dim (int): A dimension along which log_softmax will be computed.
dtype (:class:`torch.dtype`, optional): the desired data type of returned tensor.
If specified, the input tensor is casted to :attr:`dtype` before the operation
is performed. This is useful for preventing data type overflows. Default: None.
"""
if dim is None:
dim = _get_softmax_dim('log_softmax', input.dim(), _stacklevel)
if dtype is None:
ret = input.log_softmax(dim)
else:
ret = input.log_softmax(dim, dtype=dtype)
return ret
softshrink = _add_docstr(torch._C._nn.softshrink, r"""
softshrink(input, lambd=0.5) -> Tensor
Applies the soft shrinkage function elementwise
See :class:`~torch.nn.Softshrink` for more details.
""")
@weak_script
def tanh(input):
r"""tanh(input) -> Tensor
Applies element-wise,
:math:`\text{Tanh}(x) = \tanh(x) = \frac{\exp(x) - \exp(-x)}{\exp(x) + \exp(-x)}`
See :class:`~torch.nn.Tanh` for more details.
"""
warnings.warn("nn.functional.tanh is deprecated. Use torch.tanh instead.")
return input.tanh()
@weak_script
def sigmoid(input):
r"""sigmoid(input) -> Tensor
Applies the element-wise function :math:`\text{Sigmoid}(x) = \frac{1}{1 + \exp(-x)}`
See :class:`~torch.nn.Sigmoid` for more details.
"""
warnings.warn("nn.functional.sigmoid is deprecated. Use torch.sigmoid instead.")
return input.sigmoid()
@weak_script
def linear(input, weight, bias=None):
# type: (Tensor, Tensor, Optional[Tensor]) -> Tensor
r"""
Applies a linear transformation to the incoming data: :math:`y = xA^T + b`.
Shape:
- Input: :math:`(N, *, in\_features)` where `*` means any number of
additional dimensions
- Weight: :math:`(out\_features, in\_features)`
- Bias: :math:`(out\_features)`
- Output: :math:`(N, *, out\_features)`
"""
if input.dim() == 2 and bias is not None:
# fused op is marginally faster
ret = torch.addmm(bias, input, weight.t())
else:
output = input.matmul(weight.t())
if bias is not None:
output += bias
ret = output
return ret
@weak_script
def bilinear(input1, input2, weight, bias=None):
# type: (Tensor, Tensor, Tensor, Optional[Tensor]) -> Tensor
return torch.bilinear(input1, input2, weight, bias)
def _no_grad_embedding_renorm_(weight, input, max_norm, norm_type):
# type: (Tensor, Tensor, float, float) -> Tensor
with torch.no_grad():
return torch.embedding_renorm_(weight, input, max_norm, norm_type)
@weak_script
def embedding(input, weight, padding_idx=None, max_norm=None, norm_type=2.,
scale_grad_by_freq=False, sparse=False):
# type: (Tensor, Tensor, Optional[int], Optional[float], float, bool, bool) -> Tensor
r"""A simple lookup table that looks up embeddings in a fixed dictionary and size.
This module is often used to retrieve word embeddings using indices.
The input to the module is a list of indices, and the embedding matrix,
and the output is the corresponding word embeddings.
See :class:`torch.nn.Embedding` for more details.
Args:
input (LongTensor): Tensor containing indices into the embedding matrix
weight (Tensor): The embedding matrix with number of rows equal to the maximum possible index + 1,
and number of columns equal to the embedding size
padding_idx (int, optional): If given, pads the output with the embedding vector at :attr:`padding_idx`
(initialized to zeros) whenever it encounters the index.
max_norm (float, optional): If given, each embedding vector with norm larger than :attr:`max_norm`
is renormalized to have norm :attr:`max_norm`.
Note: this will modify :attr:`weight` in-place.
norm_type (float, optional): The p of the p-norm to compute for the :attr:`max_norm` option. Default ``2``.
scale_grad_by_freq (boolean, optional): If given, this will scale gradients by the inverse of frequency of
the words in the mini-batch. Default ``False``.
sparse (bool, optional): If ``True``, gradient w.r.t. :attr:`weight` will be a sparse tensor. See Notes under
:class:`torch.nn.Embedding` for more details regarding sparse gradients.
Shape:
- Input: LongTensor of arbitrary shape containing the indices to extract
- Weight: Embedding matrix of floating point type with shape `(V, embedding_dim)`,
where V = maximum index + 1 and embedding_dim = the embedding size
- Output: `(*, embedding_dim)`, where `*` is the input shape
Examples::
>>> # a batch of 2 samples of 4 indices each
>>> input = torch.tensor([[1,2,4,5],[4,3,2,9]])
>>> # an embedding matrix containing 10 tensors of size 3
>>> embedding_matrix = torch.rand(10, 3)
>>> F.embedding(input, embedding_matrix)
tensor([[[ 0.8490, 0.9625, 0.6753],
[ 0.9666, 0.7761, 0.6108],
[ 0.6246, 0.9751, 0.3618],
[ 0.4161, 0.2419, 0.7383]],
[[ 0.6246, 0.9751, 0.3618],
[ 0.0237, 0.7794, 0.0528],
[ 0.9666, 0.7761, 0.6108],
[ 0.3385, 0.8612, 0.1867]]])
>>> # example with padding_idx
>>> weights = torch.rand(10, 3)
>>> weights[0, :].zero_()
>>> embedding_matrix = weights
>>> input = torch.tensor([[0,2,0,5]])
>>> F.embedding(input, embedding_matrix, padding_idx=0)
tensor([[[ 0.0000, 0.0000, 0.0000],
[ 0.5609, 0.5384, 0.8720],
[ 0.0000, 0.0000, 0.0000],
[ 0.6262, 0.2438, 0.7471]]])
"""
if padding_idx is not None:
if padding_idx > 0:
assert padding_idx < weight.size(0), 'Padding_idx must be within num_embeddings'
elif padding_idx < 0:
assert padding_idx >= -weight.size(0), 'Padding_idx must be within num_embeddings'
padding_idx = weight.size(0) + padding_idx
else:
padding_idx = -1
if max_norm is not None:
# `embedding_renorm_` will call .contiguous() on input anyways, so we
# call it here and take advantage of the improved locality in the
# `embedding` call below too.
input = input.contiguous()
# XXX: equivalent to
# with torch.no_grad():
# torch.nembedding_renorm_
# remove once script supports set_grad_enabled
_no_grad_embedding_renorm_(weight, input, max_norm, norm_type)
return torch.embedding(weight, input, padding_idx, scale_grad_by_freq, sparse)
@weak_script
def embedding_bag(input, weight, offsets=None, max_norm=None, norm_type=2,
scale_grad_by_freq=False, mode='mean', sparse=False):
# type: (Tensor, Tensor, Optional[Tensor], Optional[float], float, bool, str, bool) -> Tensor
r"""Computes sums, means or maxes of 'bags' of embeddings, without instantiating the
intermediate embeddings.
See :class:`torch.nn.EmbeddingBag` for more details.
.. include:: cuda_deterministic_backward.rst
Args:
input (LongTensor): Tensor containing bags of indices into the embedding matrix
weight (Tensor): The embedding matrix with number of rows equal to the maximum possible index + 1,
and number of columns equal to the embedding size
offsets (LongTensor, optional): Only used when :attr:`input` is 1D. :attr:`offsets` determines
the starting index position of each bag (sequence) in :attr:`input`.
max_norm (float, optional): If given, each embedding vector with norm larger than :attr:`max_norm`
is renormalized to have norm :attr:`max_norm`.
Note: this will modify :attr:`weight` in-place.
norm_type (float, optional): The ``p`` in the ``p``-norm to compute for the :attr:`max_norm` option.
Default ``2``.
scale_grad_by_freq (boolean, optional): if given, this will scale gradients by the inverse of frequency of
the words in the mini-batch. Default ``False``.
Note: this option is not supported when ``mode="max"``.
mode (string, optional): ``"sum"``, ``"mean"`` or ``"max"``. Specifies the way to reduce the bag.
Default: ``"mean"``
sparse (bool, optional): if ``True``, gradient w.r.t. :attr:`weight` will be a sparse tensor. See Notes under
:class:`torch.nn.Embedding` for more details regarding sparse gradients.
Note: this option is not supported when ``mode="max"``.
Shape:
- :attr:`input` (LongTensor) and :attr:`offsets` (LongTensor, optional)
- If :attr:`input` is 2D of shape ``B x N``,
it will be treated as ``B`` bags (sequences) each of fixed length ``N``, and
this will return ``B`` values aggregated in a way depending on the :attr:`mode`.
:attr:`offsets` is ignored and required to be ``None`` in this case.
- If :attr:`input` is 1D of shape ``N``,
it will be treated as a concatenation of multiple bags (sequences).
:attr:`offsets` is required to be a 1D tensor containing the
starting index positions of each bag in :attr:`input`. Therefore,
for :attr:`offsets` of shape ``B``, :attr:`input` will be viewed as
having ``B`` bags. Empty bags (i.e., having 0-length) will have
returned vectors filled by zeros.
- :attr:`weight` (Tensor): the learnable weights of the module of
shape ``(num_embeddings x embedding_dim)``
- :attr:`output`: aggregated embedding values of shape ``B x embedding_dim``
Examples::
>>> # an Embedding module containing 10 tensors of size 3
>>> embedding_matrix = torch.rand(10, 3)
>>> # a batch of 2 samples of 4 indices each
>>> input = torch.tensor([1,2,4,5,4,3,2,9])
>>> offsets = torch.tensor([0,4])
>>> F.embedding_bag(embedding_matrix, input, offsets)
tensor([[ 0.3397, 0.3552, 0.5545],
[ 0.5893, 0.4386, 0.5882]])
"""
# Check for backward compatibility.
# Used to be embedding_bag(weight, input, ...)
# Now is embedding_bag(input, weight, ...)
if weight.dtype == torch.long and input.is_floating_point():
warnings.warn("Argument order of nn.functional.embedding_bag was changed. "
"Usage `embedding_bag(weight, input, ...)` is deprecated, "
"and should now be `embedding_bag(input, weight, ...)`.")
weight, input = input, weight
if input.dim() == 2:
if offsets is not None:
raise ValueError("if input is 2D, then offsets has to be None"
", as input is treated is a mini-batch of"
" fixed length sequences. However, found "
"offsets of type {}".format(type(offsets)))
else:
offsets = torch.arange(0, input.numel(), input.size(1),
dtype=torch.long, device=input.device)
input = input.reshape(-1)
elif input.dim() == 1:
if offsets is None:
raise ValueError("offsets has to be a 1D Tensor but got None")
offsets = torch.jit._unwrap_optional(offsets)
if offsets.dim() != 1:
raise ValueError("offsets has to be a 1D Tensor")
if int(offsets[0]) != 0:
raise ValueError("offsets[0] has to be 0, i.e., the first sequence "
"in the mini-batch has to start from position 0. "
"However, got {}".format(offsets[0].item()))
if int(offsets[-1]) > input.size(0):
raise ValueError("offsets[-1] can not be greater than input's length"
" ({}), but got offsets[-1] of {}"
.format(input.size(0), offsets[-1].item()))
else:
raise ValueError("input has to be 1D or 2D Tensor,"
" but got Tensor of dimension {}".format(input.dim()))
offsets = torch.jit._unwrap_optional(offsets) # TODO remove when exception control flow logic
if mode == 'sum':
mode_enum = 0
elif mode == 'mean':
mode_enum = 1
elif mode == 'max':
mode_enum = 2
if scale_grad_by_freq:
raise ValueError("max mode does not support scaling the gradient by the frequency")
if sparse:
raise ValueError("max mode does not support sparse weights")
else:
mode_enum = -1 # TODO when exception control flow logic
raise ValueError("mode has to be one of sum, mean or max")
if max_norm is not None:
# XXX: equivalent to
# with torch.no_grad():
# torch.nembedding_renorm_
# remove once script supports set_grad_enabled
_no_grad_embedding_renorm_(weight, input, max_norm, norm_type)
ret, _, _, _ = torch.embedding_bag(
weight,
input,
offsets,
scale_grad_by_freq,
mode_enum,
sparse)
return ret
@weak_script
def batch_norm(input, running_mean, running_var, weight=None, bias=None,
training=False, momentum=0.1, eps=1e-5):
# type: (Tensor, Tensor, Tensor, Optional[Tensor], Optional[Tensor], bool, float, float) -> Tensor
r"""Applies Batch Normalization for each channel across a batch of data.
See :class:`~torch.nn.BatchNorm1d`, :class:`~torch.nn.BatchNorm2d`,
:class:`~torch.nn.BatchNorm3d` for details.
"""
if training:
size = input.size()
# XXX: JIT script does not support the reduce from functools, and mul op is a
# builtin, which cannot be used as a value to a func yet, so rewrite this size
# check to a simple equivalent for loop
#
# TODO: make use of reduce like below when JIT is ready with the missing features:
# from operator import mul
# from functools import reduce
#
# if reduce(mul, size[2:], size[0]) == 1
size_prods = size[0]
for i in range(len(size) - 2):
size_prods *= size[i + 2]
if size_prods == 1:
raise ValueError('Expected more than 1 value per channel when training, got input size {}'.format(size))
return torch.batch_norm(
input, weight, bias, running_mean, running_var,
training, momentum, eps, torch.backends.cudnn.enabled
)
@weak_script
def instance_norm(input, running_mean=None, running_var=None, weight=None,
bias=None, use_input_stats=True, momentum=0.1, eps=1e-5):
# type: (Tensor, Optional[Tensor], Optional[Tensor], Optional[Tensor], Optional[Tensor], bool, float, float) -> Tensor # noqa
r"""Applies Instance Normalization for each channel in each data sample in a
batch.
See :class:`~torch.nn.InstanceNorm1d`, :class:`~torch.nn.InstanceNorm2d`,
:class:`~torch.nn.InstanceNorm3d` for details.
"""
return torch.instance_norm(
input, weight, bias, running_mean, running_var,
use_input_stats, momentum, eps, torch.backends.cudnn.enabled
)
@weak_script
def layer_norm(input, normalized_shape, weight=None, bias=None, eps=1e-5):
# type: (Tensor, List[int], Optional[Tensor], Optional[Tensor], float) -> Tensor
r"""Applies Layer Normalization for last certain number of dimensions.
See :class:`~torch.nn.LayerNorm` for details.
"""
return torch.layer_norm(input, normalized_shape, weight, bias, eps,
torch.backends.cudnn.enabled)
@weak_script
def group_norm(input, num_groups, weight=None, bias=None, eps=1e-5):
# type: (Tensor, int, Optional[Tensor], Optional[Tensor], float) -> Tensor
r"""Applies Group Normalization for last certain number of dimensions.
See :class:`~torch.nn.GroupNorm` for details.
"""
return torch.group_norm(input, num_groups, weight, bias, eps,
torch.backends.cudnn.enabled)
@weak_script
def local_response_norm(input, size, alpha=1e-4, beta=0.75, k=1.):
# type: (Tensor, int, float, float, float) -> Tensor
r"""Applies local response normalization over an input signal composed of
several input planes, where channels occupy the second dimension.
Applies normalization across channels.
See :class:`~torch.nn.LocalResponseNorm` for details.
"""
dim = input.dim()
if dim < 3:
raise ValueError('Expected 3D or higher dimensionality \
input (got {} dimensions)'.format(dim))
div = input.mul(input).unsqueeze(1)
if dim == 3:
div = pad(div, (0, 0, size // 2, (size - 1) // 2))
div = avg_pool2d(div, (size, 1), stride=1).squeeze(1)
else:
sizes = input.size()
div = div.view(sizes[0], 1, sizes[1], sizes[2], -1)
div = pad(div, (0, 0, 0, 0, size // 2, (size - 1) // 2))
div = avg_pool3d(div, (size, 1, 1), stride=1).squeeze(1)
div = div.view(sizes)
div = div.mul(alpha).add(k).pow(beta)
return input / div
# loss
@weak_script
def ctc_loss(log_probs, targets, input_lengths, target_lengths, blank=0,
reduction='mean'):
# type: (Tensor, Tensor, Tensor, Tensor, int, str) -> Tensor
r"""The Connectionist Temporal Classification loss.
See :class:`~torch.nn.CTCLoss` for details.
.. include:: cudnn_deterministic.rst
.. include:: cuda_deterministic_backward.rst
Args:
log_probs: :math:`(T, N, C)` where `C = number of characters in alphabet including blank`,
`T = input length`, and `N = batch size`.
The logarithmized probabilities of the outputs
(e.g. obtained with :func:`torch.nn.functional.log_softmax`).
targets: :math:`(N, S)` or `(sum(target_lengths))`.
Targets (cannot be blank). In the second form, the targets are assumed to be concatenated.
input_lengths: :math:`(N)`.
Lengths of the inputs (must each be :math:`\leq T`)
target_lengths: :math:`(N)`.
Lengths of the targets
blank (int, optional):
Blank label. Default :math:`0`.
reduction (string, optional): Specifies the reduction to apply to the output:
'none' | 'mean' | 'sum'. 'none': no reduction will be applied,
'mean': the output losses will be divided by the target lengths and
then the mean over the batch is taken. Default: 'mean'
Example::
>>> log_probs = torch.randn(50, 16, 20).log_softmax(2).detach().requires_grad_()
>>> targets = torch.randint(1, 20, (16, 30), dtype=torch.long)
>>> input_lengths = torch.full((16,), 50, dtype=torch.long)
>>> target_lengths = torch.randint(10,30,(16,), dtype=torch.long)
>>> loss = F.ctc_loss(log_probs, targets, input_lengths, target_lengths)
>>> loss.backward()
"""
return torch.ctc_loss(log_probs, targets, input_lengths, target_lengths, blank, _Reduction.get_enum(reduction))
@weak_script
def nll_loss(input, target, weight=None, size_average=None, ignore_index=-100,
reduce=None, reduction='mean'):
# type: (Tensor, Tensor, Optional[Tensor], Optional[bool], int, Optional[bool], str) -> Tensor
r"""The negative log likelihood loss.
See :class:`~torch.nn.NLLLoss` for details.
Args:
input: :math:`(N, C)` where `C = number of classes` or :math:`(N, C, H, W)`
in case of 2D Loss, or :math:`(N, C, d_1, d_2, ..., d_K)` where :math:`K > 1`
in the case of K-dimensional loss.
target: :math:`(N)` where each value is :math:`0 \leq \text{targets}[i] \leq C-1`,
or :math:`(N, d_1, d_2, ..., d_K)` where :math:`K \geq 1` for
K-dimensional loss.
weight (Tensor, optional): a manual rescaling weight given to each
class. If given, has to be a Tensor of size `C`
size_average (bool, optional): Deprecated (see :attr:`reduction`). By default,
the losses are averaged over each loss element in the batch. Note that for
some losses, there multiple elements per sample. If the field :attr:`size_average`
is set to ``False``, the losses are instead summed for each minibatch. Ignored
when reduce is ``False``. Default: ``True``
ignore_index (int, optional): Specifies a target value that is ignored
and does not contribute to the input gradient. When :attr:`size_average` is
``True``, the loss is averaged over non-ignored targets. Default: -100
reduce (bool, optional): Deprecated (see :attr:`reduction`). By default, the
losses are averaged or summed over observations for each minibatch depending
on :attr:`size_average`. When :attr:`reduce` is ``False``, returns a loss per
batch element instead and ignores :attr:`size_average`. Default: ``True``
reduction (string, optional): Specifies the reduction to apply to the output:
'none' | 'mean' | 'sum'. 'none': no reduction will be applied,
'mean': the sum of the output will be divided by the number of
elements in the output, 'sum': the output will be summed. Note: :attr:`size_average`
and :attr:`reduce` are in the process of being deprecated, and in the meantime,
specifying either of those two args will override :attr:`reduction`. Default: 'mean'
Example::
>>> # input is of size N x C = 3 x 5
>>> input = torch.randn(3, 5, requires_grad=True)
>>> # each element in target has to have 0 <= value < C
>>> target = torch.tensor([1, 0, 4])
>>> output = F.nll_loss(F.log_softmax(input), target)
>>> output.backward()
"""
if size_average is not None or reduce is not None:
reduction = _Reduction.legacy_get_string(size_average, reduce)
dim = input.dim()
if dim < 2:
raise ValueError('Expected 2 or more dimensions (got {})'.format(dim))
if input.size(0) != target.size(0):
raise ValueError('Expected input batch_size ({}) to match target batch_size ({}).'
.format(input.size(0), target.size(0)))
if dim == 2:
ret = torch._C._nn.nll_loss(input, target, weight, _Reduction.get_enum(reduction), ignore_index)
elif dim == 4:
ret = torch._C._nn.nll_loss2d(input, target, weight, _Reduction.get_enum(reduction), ignore_index)
else:
# dim == 3 or dim > 4
n = input.size(0)
c = input.size(1)
out_size = (n,) + input.size()[2:]
if target.size()[1:] != input.size()[2:]:
raise ValueError('Expected target size {}, got {}'.format(
out_size, target.size()))
input = input.contiguous().view(n, c, 1, -1)
target = target.contiguous().view(n, 1, -1)
reduction_enum = _Reduction.get_enum(reduction)
if reduction != 'none':
ret = torch._C._nn.nll_loss2d(
input, target, weight, reduction_enum, ignore_index)
else:
out = torch._C._nn.nll_loss2d(
input, target, weight, reduction_enum, ignore_index)
ret = out.view(out_size)
return ret
@weak_script
def poisson_nll_loss(input, target, log_input=True, full=False, size_average=None, eps=1e-8,
reduce=None, reduction='mean'):
# type: (Tensor, Tensor, bool, bool, Optional[bool], float, Optional[bool], str) -> Tensor
r"""Poisson negative log likelihood loss.
See :class:`~torch.nn.PoissonNLLLoss` for details.
Args:
input: expectation of underlying Poisson distribution.
target: random sample :math:`target \sim \text{Poisson}(input)`.
log_input: if ``True`` the loss is computed as
:math:`\exp(\text{input}) - \text{target} * \text{input}`, if ``False`` then loss is
:math:`\text{input} - \text{target} * \log(\text{input}+\text{eps})`. Default: ``True``
full: whether to compute full loss, i. e. to add the Stirling
approximation term. Default: ``False``
:math:`\text{target} * \log(\text{target}) - \text{target} + 0.5 * \log(2 * \pi * \text{target})`.
size_average (bool, optional): Deprecated (see :attr:`reduction`). By default,
the losses are averaged over each loss element in the batch. Note that for
some losses, there multiple elements per sample. If the field :attr:`size_average`
is set to ``False``, the losses are instead summed for each minibatch. Ignored
when reduce is ``False``. Default: ``True``
eps (float, optional): Small value to avoid evaluation of :math:`\log(0)` when
:attr:`log_input`=``False``. Default: 1e-8
reduce (bool, optional): Deprecated (see :attr:`reduction`). By default, the
losses are averaged or summed over observations for each minibatch depending
on :attr:`size_average`. When :attr:`reduce` is ``False``, returns a loss per
batch element instead and ignores :attr:`size_average`. Default: ``True``
reduction (string, optional): Specifies the reduction to apply to the output:
'none' | 'mean' | 'sum'. 'none': no reduction will be applied,
'mean': the sum of the output will be divided by the number of
elements in the output, 'sum': the output will be summed. Note: :attr:`size_average`
and :attr:`reduce` are in the process of being deprecated, and in the meantime,
specifying either of those two args will override :attr:`reduction`. Default: 'mean'
"""
if size_average is not None or reduce is not None:
reduction = _Reduction.legacy_get_string(size_average, reduce)
if log_input:
loss = torch.exp(input) - target * input
else:
loss = input - target * torch.log(input + eps)
if full:
mask = target > 1
loss[mask] += (target * torch.log(target) - target + 0.5 * torch.log(2 * math.pi * target))[mask]
if reduction == 'none':
ret = loss
if reduction == 'mean':
ret = torch.mean(loss)
else:
ret = torch.sum(loss)
return ret
@weak_script
def kl_div(input, target, size_average=None, reduce=None, reduction='mean'):
# type: (Tensor, Tensor, Optional[bool], Optional[bool], str) -> Tensor
r"""The `Kullback-Leibler divergence`_ Loss.
See :class:`~torch.nn.KLDivLoss` for details.
Args:
input: Tensor of arbitrary shape
target: Tensor of the same shape as input
size_average (bool, optional): Deprecated (see :attr:`reduction`). By default,
the losses are averaged over each loss element in the batch. Note that for
some losses, there multiple elements per sample. If the field :attr:`size_average`
is set to ``False``, the losses are instead summed for each minibatch. Ignored
when reduce is ``False``. Default: ``True``
reduce (bool, optional): Deprecated (see :attr:`reduction`). By default, the
losses are averaged or summed over observations for each minibatch depending
on :attr:`size_average`. When :attr:`reduce` is ``False``, returns a loss per
batch element instead and ignores :attr:`size_average`. Default: ``True``
reduction (string, optional): Specifies the reduction to apply to the output:
'none' | 'batchmean' | 'sum' | 'mean'.
'none': no reduction will be applied
'batchmean': the sum of the output will be divided by the batchsize
'sum': the output will be summed
'mean': the output will be divided by the number of elements in the output
Default: 'mean'
.. note:: :attr:`size_average` and :attr:`reduce` are in the process of being deprecated,
and in the meantime, specifying either of those two args will override :attr:`reduction`.
.. note:: `reduction='mean'` doesn't return the true kl divergence value, please use
`reduction='batchmean'` which aligns with KL math definition.
In the next major release, 'mean' will be changed to be the same as 'batchmean'.
"""
if size_average is not None or reduce is not None:
reduction_enum = _Reduction.legacy_get_enum(size_average, reduce)
else:
if reduction == 'mean':
warnings.warn("reduction: 'mean' divides the total loss by both the batch size and the support size."
"'batchmean' divides only by the batch size, and aligns with the KL div math definition."
"'mean' will be changed to behave the same as 'batchmean' in the next major release.")
# special case for batchmean
if reduction == 'batchmean':
reduction_enum = _Reduction.get_enum('sum')
else:
reduction_enum = _Reduction.get_enum(reduction)
reduced = torch.kl_div(input, target, reduction_enum)
if reduction == 'batchmean' and input.dim() != 0:
reduced = reduced / input.size()[0]
return reduced
@weak_script
def cross_entropy(input, target, weight=None, size_average=None, ignore_index=-100,
reduce=None, reduction='mean'):
# type: (Tensor, Tensor, Optional[Tensor], Optional[bool], int, Optional[bool], str) -> Tensor
r"""This criterion combines `log_softmax` and `nll_loss` in a single
function.
See :class:`~torch.nn.CrossEntropyLoss` for details.
Args:
input (Tensor) : :math:`(N, C)` where `C = number of classes` or :math:`(N, C, H, W)`
in case of 2D Loss, or :math:`(N, C, d_1, d_2, ..., d_K)` where :math:`K > 1`
in the case of K-dimensional loss.
target (Tensor) : :math:`(N)` where each value is :math:`0 \leq \text{targets}[i] \leq C-1`,
or :math:`(N, d_1, d_2, ..., d_K)` where :math:`K \geq 1` for
K-dimensional loss.
weight (Tensor, optional): a manual rescaling weight given to each
class. If given, has to be a Tensor of size `C`
size_average (bool, optional): Deprecated (see :attr:`reduction`). By default,
the losses are averaged over each loss element in the batch. Note that for
some losses, there multiple elements per sample. If the field :attr:`size_average`
is set to ``False``, the losses are instead summed for each minibatch. Ignored
when reduce is ``False``. Default: ``True``
ignore_index (int, optional): Specifies a target value that is ignored
and does not contribute to the input gradient. When :attr:`size_average` is
``True``, the loss is averaged over non-ignored targets. Default: -100
reduce (bool, optional): Deprecated (see :attr:`reduction`). By default, the
losses are averaged or summed over observations for each minibatch depending
on :attr:`size_average`. When :attr:`reduce` is ``False``, returns a loss per
batch element instead and ignores :attr:`size_average`. Default: ``True``
reduction (string, optional): Specifies the reduction to apply to the output:
'none' | 'mean' | 'sum'. 'none': no reduction will be applied,
'mean': the sum of the output will be divided by the number of
elements in the output, 'sum': the output will be summed. Note: :attr:`size_average`
and :attr:`reduce` are in the process of being deprecated, and in the meantime,
specifying either of those two args will override :attr:`reduction`. Default: 'mean'
Examples::
>>> input = torch.randn(3, 5, requires_grad=True)
>>> target = torch.randint(5, (3,), dtype=torch.int64)
>>> loss = F.cross_entropy(input, target)
>>> loss.backward()
"""
if size_average is not None or reduce is not None:
reduction = _Reduction.legacy_get_string(size_average, reduce)
return nll_loss(log_softmax(input, 1), target, weight, None, ignore_index, None, reduction)
@weak_script
def binary_cross_entropy(input, target, weight=None, size_average=None,
reduce=None, reduction='mean'):
# type: (Tensor, Tensor, Optional[Tensor], Optional[bool], Optional[bool], str) -> Tensor
r"""Function that measures the Binary Cross Entropy
between the target and the output.
See :class:`~torch.nn.BCELoss` for details.
Args:
input: Tensor of arbitrary shape
target: Tensor of the same shape as input
weight (Tensor, optional): a manual rescaling weight
if provided it's repeated to match input tensor shape
size_average (bool, optional): Deprecated (see :attr:`reduction`). By default,
the losses are averaged over each loss element in the batch. Note that for
some losses, there multiple elements per sample. If the field :attr:`size_average`
is set to ``False``, the losses are instead summed for each minibatch. Ignored
when reduce is ``False``. Default: ``True``
reduce (bool, optional): Deprecated (see :attr:`reduction`). By default, the
losses are averaged or summed over observations for each minibatch depending
on :attr:`size_average`. When :attr:`reduce` is ``False``, returns a loss per
batch element instead and ignores :attr:`size_average`. Default: ``True``
reduction (string, optional): Specifies the reduction to apply to the output:
'none' | 'mean' | 'sum'. 'none': no reduction will be applied,
'mean': the sum of the output will be divided by the number of
elements in the output, 'sum': the output will be summed. Note: :attr:`size_average`
and :attr:`reduce` are in the process of being deprecated, and in the meantime,
specifying either of those two args will override :attr:`reduction`. Default: 'mean'
Examples::
>>> input = torch.randn((3, 2), requires_grad=True)
>>> target = torch.rand((3, 2), requires_grad=False)
>>> loss = F.binary_cross_entropy(F.sigmoid(input), target)
>>> loss.backward()
"""
if size_average is not None or reduce is not None:
reduction_enum = _Reduction.legacy_get_enum(size_average, reduce)
else:
reduction_enum = _Reduction.get_enum(reduction)
if not (target.size() == input.size()):
warnings.warn("Using a target size ({}) that is different to the input size ({}) is deprecated. "
"Please ensure they have the same size.".format(target.size(), input.size()))
if input.numel() != target.numel():
raise ValueError("Target and input must have the same number of elements. target nelement ({}) "
"!= input nelement ({})".format(target.numel(), input.numel()))
if weight is not None:
new_size = _infer_size(target.size(), weight.size())
weight = weight.expand(new_size)
return torch._C._nn.binary_cross_entropy(
input, target, weight, reduction_enum)
@weak_script
def binary_cross_entropy_with_logits(input, target, weight=None, size_average=None,
reduce=None, reduction='mean', pos_weight=None):
# type: (Tensor, Tensor, Optional[Tensor], Optional[bool], Optional[bool], str, Optional[Tensor]) -> Tensor
r"""Function that measures Binary Cross Entropy between target and output
logits.
See :class:`~torch.nn.BCEWithLogitsLoss` for details.
Args:
input: Tensor of arbitrary shape
target: Tensor of the same shape as input
weight (Tensor, optional): a manual rescaling weight
if provided it's repeated to match input tensor shape
size_average (bool, optional): Deprecated (see :attr:`reduction`). By default,
the losses are averaged over each loss element in the batch. Note that for
some losses, there multiple elements per sample. If the field :attr:`size_average`
is set to ``False``, the losses are instead summed for each minibatch. Ignored
when reduce is ``False``. Default: ``True``
reduce (bool, optional): Deprecated (see :attr:`reduction`). By default, the
losses are averaged or summed over observations for each minibatch depending
on :attr:`size_average`. When :attr:`reduce` is ``False``, returns a loss per
batch element instead and ignores :attr:`size_average`. Default: ``True``
reduction (string, optional): Specifies the reduction to apply to the output:
'none' | 'mean' | 'sum'. 'none': no reduction will be applied,
'mean': the sum of the output will be divided by the number of
elements in the output, 'sum': the output will be summed. Note: :attr:`size_average`
and :attr:`reduce` are in the process of being deprecated, and in the meantime,
specifying either of those two args will override :attr:`reduction`. Default: 'mean'
pos_weight (Tensor, optional): a weight of positive examples.
Must be a vector with length equal to the number of classes.
Examples::
>>> input = torch.randn(3, requires_grad=True)
>>> target = torch.empty(3).random_(2)
>>> loss = F.binary_cross_entropy_with_logits(input, target)
>>> loss.backward()
"""
if size_average is not None or reduce is not None:
reduction_enum = _Reduction.legacy_get_enum(size_average, reduce)
else:
reduction_enum = _Reduction.get_enum(reduction)
if not (target.size() == input.size()):
raise ValueError("Target size ({}) must be the same as input size ({})".format(target.size(), input.size()))
return torch.binary_cross_entropy_with_logits(input, target, weight, pos_weight, reduction_enum)
def _pointwise_loss(lambd, lambd_optimized, input, target, reduction='mean'):
if target.requires_grad:
d = lambd(input, target)
if reduction == 'none':
return d
return torch.mean(d) if reduction == 'mean' else torch.sum(d)
else:
expanded_input, expanded_target = torch.broadcast_tensors(input, target)
return lambd_optimized(expanded_input, expanded_target, _Reduction.get_enum(reduction))
@weak_script
def _smooth_l1_loss(input, target):
# type: (Tensor, Tensor) -> Tensor
t = torch.abs(input - target)
return torch.where(t < 1, 0.5 * t ** 2, t - 0.5)
@weak_script
def smooth_l1_loss(input, target, size_average=None, reduce=None, reduction='mean'):
# type: (Tensor, Tensor, Optional[bool], Optional[bool], str) -> Tensor
r"""Function that uses a squared term if the absolute
element-wise error falls below 1 and an L1 term otherwise.
See :class:`~torch.nn.SmoothL1Loss` for details.
"""
if size_average is not None or reduce is not None:
reduction = _Reduction.legacy_get_string(size_average, reduce)
if target.requires_grad:
ret = _smooth_l1_loss(input, target)
if reduction != 'none':
ret = torch.mean(ret) if reduction == 'mean' else torch.sum(ret)
else:
expanded_input, expanded_target = torch.broadcast_tensors(input, target)
ret = torch._C._nn.smooth_l1_loss(expanded_input, expanded_target, _Reduction.get_enum(reduction))
return ret
@weak_script
def l1_loss(input, target, size_average=None, reduce=None, reduction='mean'):
# type: (Tensor, Tensor, Optional[bool], Optional[bool], str) -> Tensor
r"""l1_loss(input, target, size_average=None, reduce=None, reduction='mean') -> Tensor
Function that takes the mean element-wise absolute value difference.
See :class:`~torch.nn.L1Loss` for details.
"""
if size_average is not None or reduce is not None:
reduction = _Reduction.legacy_get_string(size_average, reduce)
if target.requires_grad:
ret = torch.abs(input - target)
if reduction != 'none':
ret = torch.mean(ret) if reduction == 'mean' else torch.sum(ret)
else:
expanded_input, expanded_target = torch.broadcast_tensors(input, target)
ret = torch._C._nn.l1_loss(expanded_input, expanded_target, _Reduction.get_enum(reduction))
return ret
@weak_script
def mse_loss(input, target, size_average=None, reduce=None, reduction='mean'):
# type: (Tensor, Tensor, Optional[bool], Optional[bool], str) -> Tensor
r"""mse_loss(input, target, size_average=None, reduce=None, reduction='mean') -> Tensor
Measures the element-wise mean squared error.
See :class:`~torch.nn.MSELoss` for details.
"""
if size_average is not None or reduce is not None:
reduction = _Reduction.legacy_get_string(size_average, reduce)
if target.requires_grad:
ret = (input - target) ** 2
if reduction != 'none':
ret = torch.mean(ret) if reduction == 'mean' else torch.sum(ret)
else:
expanded_input, expanded_target = torch.broadcast_tensors(input, target)
ret = torch._C._nn.mse_loss(expanded_input, expanded_target, _Reduction.get_enum(reduction))
return ret
@weak_script
def margin_ranking_loss(input1, input2, target, margin=0, size_average=None,
reduce=None, reduction='mean'):
# type: (Tensor, Tensor, Tensor, float, Optional[bool], Optional[bool], str) -> Tensor
r"""margin_ranking_loss(input1, input2, target, margin=0, size_average=None, reduce=None, reduction='mean') -> Tensor
See :class:`~torch.nn.MarginRankingLoss` for details.
""" # noqa
if size_average is not None or reduce is not None:
reduction_enum = _Reduction.legacy_get_enum(size_average, reduce)
else:
reduction_enum = _Reduction.get_enum(reduction)
if input1.dim() == 0 or input2.dim() == 0 or target.dim() == 0:
raise RuntimeError(("margin_ranking_loss does not support scalars, got sizes: "
"input1: {}, input2: {}, target: {} ".format(input1.size(), input2.size(), target.size())))
return torch.margin_ranking_loss(input1, input2, target, margin, reduction_enum)
@weak_script
def hinge_embedding_loss(input, target, margin=1.0, size_average=None,
reduce=None, reduction='mean'):
# type: (Tensor, Tensor, float, Optional[bool], Optional[bool], str) -> Tensor
r"""hinge_embedding_loss(input, target, margin=1.0, size_average=None, reduce=None, reduction='mean') -> Tensor
See :class:`~torch.nn.HingeEmbeddingLoss` for details.
""" # noqa
if size_average is not None or reduce is not None:
reduction_enum = _Reduction.legacy_get_enum(size_average, reduce)
else:
reduction_enum = _Reduction.get_enum(reduction)
return torch.hinge_embedding_loss(input, target, margin, reduction_enum)
@weak_script
def multilabel_margin_loss(input, target, size_average=None, reduce=None, reduction='mean'):
# type: (Tensor, Tensor, Optional[bool], Optional[bool], str) -> Tensor
r"""multilabel_margin_loss(input, target, size_average=None, reduce=None, reduction='mean') -> Tensor
See :class:`~torch.nn.MultiLabelMarginLoss` for details.
"""
if size_average is not None or reduce is not None:
reduction_enum = _Reduction.legacy_get_enum(size_average, reduce)
else:
reduction_enum = _Reduction.get_enum(reduction)
return torch._C._nn.multilabel_margin_loss(input, target, reduction_enum)
@weak_script
def soft_margin_loss(input, target, size_average=None, reduce=None, reduction='mean'):
# type: (Tensor, Tensor, Optional[bool], Optional[bool], str) -> Tensor
r"""soft_margin_loss(input, target, size_average=None, reduce=None, reduction='mean') -> Tensor
See :class:`~torch.nn.SoftMarginLoss` for details.
"""
if size_average is not None or reduce is not None:
reduction_enum = _Reduction.legacy_get_enum(size_average, reduce)
else:
reduction_enum = _Reduction.get_enum(reduction)
return torch._C._nn.soft_margin_loss(input, target, reduction_enum)
@weak_script
def multilabel_soft_margin_loss(input, target, weight=None, size_average=None,
reduce=None, reduction='mean'):
# type: (Tensor, Tensor, Optional[Tensor], Optional[bool], Optional[bool], str) -> Tensor
r"""multilabel_soft_margin_loss(input, target, weight=None, size_average=None) -> Tensor
See :class:`~torch.nn.MultiLabelSoftMarginLoss` for details.
"""
if size_average is not None or reduce is not None:
reduction = _Reduction.legacy_get_string(size_average, reduce)
loss = -(target * logsigmoid(input) + (1 - target) * logsigmoid(-input))
if weight is not None:
loss = loss * weight
loss = loss.sum(dim=1) / input.size(1) # only return N loss values
if reduction == 'none':
ret = loss
elif reduction == 'mean':
ret = loss.mean()
elif reduction == 'sum':
ret = loss.sum()
else:
ret = input
raise ValueError(reduction + " is not valid")
return ret
@weak_script
def cosine_embedding_loss(input1, input2, target, margin=0, size_average=None,
reduce=None, reduction='mean'):
# type: (Tensor, Tensor, Tensor, float, Optional[bool], Optional[bool], str) -> Tensor
r"""cosine_embedding_loss(input1, input2, target, margin=0, size_average=None, reduce=None, reduction='mean') -> Tensor
See :class:`~torch.nn.CosineEmbeddingLoss` for details.
""" # noqa
if size_average is not None or reduce is not None:
reduction_enum = _Reduction.legacy_get_enum(size_average, reduce)
else:
reduction_enum = _Reduction.get_enum(reduction)
return torch.cosine_embedding_loss(input1, input2, target, margin, reduction_enum)
@weak_script
def multi_margin_loss(input, target, p=1, margin=1., weight=None, size_average=None,
reduce=None, reduction='mean'):
# type: (Tensor, Tensor, int, float, Optional[Tensor], Optional[bool], Optional[bool], str) -> Tensor
r"""multi_margin_loss(input, target, p=1, margin=1, weight=None, size_average=None,
reduce=None, reduction='mean') -> Tensor
See :class:`~torch.nn.MultiMarginLoss` for details.
"""
if size_average is not None or reduce is not None:
reduction_enum = _Reduction.legacy_get_enum(size_average, reduce)
else:
reduction_enum = _Reduction.get_enum(reduction)
if p != 1 and p != 2:
raise ValueError('only p == 1 and p == 2 supported')
if weight is not None:
if weight.dim() != 1:
raise ValueError('weight must be one-dimensional')
return torch._C._nn.multi_margin_loss(input, target, p, margin, weight, reduction_enum)
pixel_shuffle = _add_docstr(torch.pixel_shuffle, r"""
Rearranges elements in a tensor of shape :math:`(*, C \times r^2, H, W)` to a
tensor of shape :math:`(C, H \times r, W \times r)`.
See :class:`~torch.nn.PixelShuffle` for details.
Args:
input (Tensor): the input tensor
upscale_factor (int): factor to increase spatial resolution by
Examples::
>>> input = torch.randn(1, 9, 4, 4)
>>> output = torch.nn.functional.pixel_shuffle(input, 3)
>>> print(output.size())
torch.Size([1, 1, 12, 12])
""")
def upsample(input, size=None, scale_factor=None, mode='nearest', align_corners=None):
r"""Upsamples the input to either the given :attr:`size` or the given
:attr:`scale_factor`
.. warning::
This function is deprecated in favor of :func:`torch.nn.functional.interpolate`.
This is equivalent with ``nn.functional.interpolate(...)``.
.. include:: cuda_deterministic_backward.rst
The algorithm used for upsampling is determined by :attr:`mode`.
Currently temporal, spatial and volumetric upsampling are supported, i.e.
expected inputs are 3-D, 4-D or 5-D in shape.
The input dimensions are interpreted in the form:
`mini-batch x channels x [optional depth] x [optional height] x width`.
The modes available for upsampling are: `nearest`, `linear` (3D-only),
`bilinear`, `bicubic` (4D-only), `trilinear` (5D-only)
Args:
input (Tensor): the input tensor
size (int or Tuple[int] or Tuple[int, int] or Tuple[int, int, int]):
output spatial size.
scale_factor (int): multiplier for spatial size. Has to be an integer.
mode (string): algorithm used for upsampling:
'nearest' | 'linear' | 'bilinear' | 'bicubic' | 'trilinear'. Default: 'nearest'
align_corners (bool, optional): Geometrically, we consider the pixels of the
input and output as squares rather than points.
If set to True, the input and output tensors are aligned by the
center points of their corner pixels. If set to False, the input and
output tensors are aligned by the corner points of their corner
pixels, and the interpolation uses edge value padding for out-of-boundary values.
This only has effect when :attr:`mode` is `linear`,
`bilinear`, `bicubic` or `trilinear`. Default: False
.. warning::
With ``align_corners = True``, the linearly interpolating modes
(`linear`, `bilinear`, and `trilinear`) don't proportionally align the
output and input pixels, and thus the output values can depend on the
input size. This was the default behavior for these modes up to version
0.3.1. Since then, the default behavior is ``align_corners = False``.
See :class:`~torch.nn.Upsample` for concrete examples on how this
affects the outputs.
"""
warnings.warn("nn.functional.upsample is deprecated. Use nn.functional.interpolate instead.")
return interpolate(input, size, scale_factor, mode, align_corners)
def interpolate(input, size=None, scale_factor=None, mode='nearest', align_corners=None):
r"""Down/up samples the input to either the given :attr:`size` or the given
:attr:`scale_factor`
The algorithm used for interpolation is determined by :attr:`mode`.
Currently temporal, spatial and volumetric sampling are supported, i.e.
expected inputs are 3-D, 4-D or 5-D in shape.
The input dimensions are interpreted in the form:
`mini-batch x channels x [optional depth] x [optional height] x width`.
The modes available for resizing are: `nearest`, `linear` (3D-only),
`bilinear`, `bicubic` (4D-only), `trilinear` (5D-only), `area`
Args:
input (Tensor): the input tensor
size (int or Tuple[int] or Tuple[int, int] or Tuple[int, int, int]):
output spatial size.
scale_factor (float or Tuple[float]): multiplier for spatial size. Has to match input size if it is a tuple.
mode (string): algorithm used for upsampling:
'nearest' | 'linear' | 'bilinear' | 'bicubic' | 'trilinear' | 'area'. Default: 'nearest'
align_corners (bool, optional): Geometrically, we consider the pixels of the
input and output as squares rather than points.
If set to True, the input and output tensors are aligned by the
center points of their corner pixels. If set to False, the input and
output tensors are aligned by the corner points of their corner
pixels, and the interpolation uses edge value padding for out-of-boundary values.
This only has effect when :attr:`mode` is `linear`,
`bilinear`, `bicubic`, or `trilinear`. Default: False
.. warning::
With ``align_corners = True``, the linearly interpolating modes
(`linear`, `bilinear`, and `trilinear`) don't proportionally align the
output and input pixels, and thus the output values can depend on the
input size. This was the default behavior for these modes up to version
0.3.1. Since then, the default behavior is ``align_corners = False``.
See :class:`~torch.nn.Upsample` for concrete examples on how this
affects the outputs.
.. include:: cuda_deterministic_backward.rst
"""
from numbers import Integral
from .modules.utils import _ntuple
def _check_size_scale_factor(dim):
if size is None and scale_factor is None:
raise ValueError('either size or scale_factor should be defined')
if size is not None and scale_factor is not None:
raise ValueError('only one of size or scale_factor should be defined')
if scale_factor is not None and isinstance(scale_factor, tuple)\
and len(scale_factor) != dim:
raise ValueError('scale_factor shape must match input shape. '
'Input is {}D, scale_factor size is {}'.format(dim, len(scale_factor)))
def _output_size(dim):
_check_size_scale_factor(dim)
if size is not None:
return size
scale_factors = _ntuple(dim)(scale_factor)
# math.floor might return float in py2.7
return [int(math.floor(input.size(i + 2) * scale_factors[i])) for i in range(dim)]
if mode in ('nearest', 'area'):
if align_corners is not None:
raise ValueError("align_corners option can only be set with the "
"interpolating modes: linear | bilinear | bicubic | trilinear")
else:
if align_corners is None:
warnings.warn("Default upsampling behavior when mode={} is changed "
"to align_corners=False since 0.4.0. Please specify "
"align_corners=True if the old behavior is desired. "
"See the documentation of nn.Upsample for details.".format(mode))
align_corners = False
if input.dim() == 3 and mode == 'nearest':
return torch._C._nn.upsample_nearest1d(input, _output_size(1))
elif input.dim() == 4 and mode == 'nearest':
return torch._C._nn.upsample_nearest2d(input, _output_size(2))
elif input.dim() == 5 and mode == 'nearest':
return torch._C._nn.upsample_nearest3d(input, _output_size(3))
elif input.dim() == 3 and mode == 'area':
return adaptive_avg_pool1d(input, _output_size(1))
elif input.dim() == 4 and mode == 'area':
return adaptive_avg_pool2d(input, _output_size(2))
elif input.dim() == 5 and mode == 'area':
return adaptive_avg_pool3d(input, _output_size(3))
elif input.dim() == 3 and mode == 'linear':
return torch._C._nn.upsample_linear1d(input, _output_size(1), align_corners)
elif input.dim() == 3 and mode == 'bilinear':
raise NotImplementedError("Got 3D input, but bilinear mode needs 4D input")
elif input.dim() == 3 and mode == 'trilinear':
raise NotImplementedError("Got 3D input, but trilinear mode needs 5D input")
elif input.dim() == 4 and mode == 'linear':
raise NotImplementedError("Got 4D input, but linear mode needs 3D input")
elif input.dim() == 4 and mode == 'bilinear':
return torch._C._nn.upsample_bilinear2d(input, _output_size(2), align_corners)
elif input.dim() == 4 and mode == 'trilinear':
raise NotImplementedError("Got 4D input, but trilinear mode needs 5D input")
elif input.dim() == 5 and mode == 'linear':
raise NotImplementedError("Got 5D input, but linear mode needs 3D input")
elif input.dim() == 5 and mode == 'bilinear':
raise NotImplementedError("Got 5D input, but bilinear mode needs 4D input")
elif input.dim() == 5 and mode == 'trilinear':
return torch._C._nn.upsample_trilinear3d(input, _output_size(3), align_corners)
elif input.dim() == 4 and mode == 'bicubic':
return torch._C._nn.upsample_bicubic2d(input, _output_size(2), align_corners)
else:
raise NotImplementedError("Input Error: Only 3D, 4D and 5D input Tensors supported"
" (got {}D) for the modes: nearest | linear | bilinear | bicubic | trilinear"
" (got {})".format(input.dim(), mode))
def upsample_nearest(input, size=None, scale_factor=None):
r"""Upsamples the input, using nearest neighbours' pixel values.
.. warning::
This function is deprecated in favor of :func:`torch.nn.functional.interpolate`.
This is equivalent with ``nn.functional.interpolate(..., mode='nearest')``.
Currently spatial and volumetric upsampling are supported (i.e. expected
inputs are 4 or 5 dimensional).
Args:
input (Tensor): input
size (int or Tuple[int, int] or Tuple[int, int, int]): output spatia
size.
scale_factor (int): multiplier for spatial size. Has to be an integer.
.. include:: cuda_deterministic_backward.rst
"""
# DeprecationWarning is ignored by default
warnings.warn("nn.functional.upsample_nearest is deprecated. Use nn.functional.interpolate instead.")
return interpolate(input, size, scale_factor, mode='nearest')
def upsample_bilinear(input, size=None, scale_factor=None):
r"""Upsamples the input, using bilinear upsampling.
.. warning::
This function is deprecated in favor of :func:`torch.nn.functional.interpolate`.
This is equivalent with
``nn.functional.interpolate(..., mode='bilinear', align_corners=True)``.
Expected inputs are spatial (4 dimensional). Use `upsample_trilinear` fo
volumetric (5 dimensional) inputs.
Args:
input (Tensor): input
size (int or Tuple[int, int]): output spatial size.
scale_factor (int or Tuple[int, int]): multiplier for spatial size
.. include:: cuda_deterministic_backward.rst
"""
# DeprecationWarning is ignored by default
warnings.warn("nn.functional.upsample_bilinear is deprecated. Use nn.functional.interpolate instead.")
return interpolate(input, size, scale_factor, mode='bilinear', align_corners=True)
GRID_SAMPLE_INTERPOLATION_MODES = {
'bilinear': 0,
'nearest': 1,
}
GRID_SAMPLE_PADDING_MODES = {
'zeros': 0,
'border': 1,
'reflection': 2,
}
@weak_script
def grid_sample(input, grid, mode='bilinear', padding_mode='zeros'):
# type: (Tensor, Tensor, str, str) -> Tensor
r"""Given an :attr:`input` and a flow-field :attr:`grid`, computes the
``output`` using :attr:`input` values and pixel locations from :attr:`grid`.
Currently, only spatial (4-D) and volumetric (5-D) :attr:`input` are
supported.
In the spatial (4-D) case, for :attr:`input` with shape
:math:`(N, C, H_\text{in}, W_\text{in})` and :attr:`grid` with shape
:math:`(N, H_\text{out}, W_\text{out}, 2)`, the output will have shape
:math:`(N, C, H_\text{out}, W_\text{out})`.
For each output location ``output[n, :, h, w]``, the size-2 vector
``grid[n, h, w]`` specifies :attr:`input` pixel locations ``x`` and ``y``,
which are used to interpolate the output value ``output[n, :, h, w]``.
In the case of 5D inputs, ``grid[n, d, h, w]`` specifies the
``x``, ``y``, ``z`` pixel locations for interpolating
``output[n, :, d, h, w]``. :attr:`mode` argument specifies ``nearest`` or
``bilinear`` interpolation method to sample the input pixels.
:attr:`grid` should have most values in the range of ``[-1, 1]``. This is
because the pixel locations are normalized by the :attr:`input` spatial
dimensions. For example, values ``x = -1, y = -1`` is the left-top pixel of
:attr:`input`, and values ``x = 1, y = 1`` is the right-bottom pixel of
:attr:`input`.
If :attr:`grid` has values outside the range of ``[-1, 1]``, those locations
are handled as defined by :attr:`padding_mode`. Options are
* ``padding_mode="zeros"``: use ``0`` for out-of-bound values,
* ``padding_mode="border"``: use border values for out-of-bound values,
* ``padding_mode="reflection"``: use values at locations reflected by
the border for out-of-bound values. For location far away from the
border, it will keep being reflected until becoming in bound, e.g.,
(normalized) pixel location ``x = -3.5`` reflects by ``-1`` and
becomes ``x' = 2.5``, then reflects by border ``1`` and becomes
``x'' = -0.5``.
.. Note:: This function is often used in building Spatial Transformer Networks.
.. include:: cuda_deterministic_backward.rst
Args:
input (Tensor): input of shape :math:`(N, C, H_\text{in}, W_\text{in})` (4-D case)
or :math:`(N, C, D_\text{in}, H_\text{in}, W_\text{in})` (5-D case)
grid (Tensor): flow-field of shape :math:`(N, H_\text{out}, W_\text{out}, 2)` (4-D case)
or :math:`(N, D_\text{out}, H_\text{out}, W_\text{out}, 3)` (5-D case)
mode (str): interpolation mode to calculate output values
'bilinear' | 'nearest'. Default: 'bilinear'
padding_mode (str): padding mode for outside grid values
'zeros' | 'border' | 'reflection'. Default: 'zeros'
Returns:
output (Tensor): output Tensor
"""
if mode != 'bilinear' and mode != 'nearest':
raise ValueError("nn.functional.grid_sample(): expected mode to be "
"'bilinear' or 'nearest', but got: '{}'".format(mode))
if padding_mode != 'zeros' and padding_mode != 'border' and padding_mode != 'reflection':
raise ValueError("nn.functional.grid_sample(): expected padding_mode "
"to be 'zeros', 'border', or 'reflection', "
"but got: '{}'".format(padding_mode))
if mode == 'bilinear':
mode_enum = 0
else:
mode_enum = 1
if padding_mode == 'zeros':
padding_mode_enum = 0
elif padding_mode == 'border':
padding_mode_enum = 1
else:
padding_mode_enum = 2
return torch.grid_sampler(input, grid, mode_enum, padding_mode_enum)
@weak_script
def affine_grid(theta, size):
# type: (Tensor, List[int]) -> Tensor
r"""Generates a 2d flow field, given a batch of affine matrices :attr:`theta`
Generally used in conjunction with :func:`grid_sample` to
implement Spatial Transformer Networks.
Args:
theta (Tensor): input batch of affine matrices (:math:`N \times 2 \times 3`)
size (torch.Size): the target output image size (:math:`N \times C \times H \times W`)
Example: torch.Size((32, 3, 24, 24))
Returns:
output (Tensor): output Tensor of size (:math:`N \times H \times W \times 2`)
"""
return vision.affine_grid_generator(theta, size)
@weak_script
def pad(input, pad, mode='constant', value=0):
# type: (Tensor, List[int], str, float) -> Tensor
r"""Pads tensor.
Padding size:
The padding size by which to pad some dimensions of :attr:`input`
are described starting from the last dimension and moving forward.
:math:`\left\lfloor\frac{\text{len(pad)}}{2}\right\rfloor` dimensions
of ``input`` will be padded.
For example, to pad only the last dimension of the input tensor, then
:attr:`pad` has the form
:math:`(\text{padding\_left}, \text{padding\_right})`;
to pad the last 2 dimensions of the input tensor, then use
:math:`(\text{padding\_left}, \text{padding\_right},`
:math:`\text{padding\_top}, \text{padding\_bottom})`;
to pad the last 3 dimensions, use
:math:`(\text{padding\_left}, \text{padding\_right},`
:math:`\text{padding\_top}, \text{padding\_bottom}`
:math:`\text{padding\_front}, \text{padding\_back})`.
Padding mode:
See :class:`torch.nn.ConstantPad2d`, :class:`torch.nn.ReflectionPad2d`, and
:class:`torch.nn.ReplicationPad2d` for concrete examples on how each of the
padding modes works. Constant padding is implemented for arbitrary dimensions.
Replicate padding is implemented for padding the last 3 dimensions of 5D input
tensor, or the last 2 dimensions of 4D input tensor, or the last dimension of
3D input tensor. Reflect padding is only implemented for padding the last 2
dimensions of 4D input tensor, or the last dimension of 3D input tensor.
.. include:: cuda_deterministic_backward.rst
Args:
input (Tensor): `Nd` tensor
pad (tuple): m-elem tuple, where :math:`\frac{m}{2} \leq` input dimensions and :math:`m` is even.
mode: 'constant', 'reflect' or 'replicate'. Default: 'constant'
value: fill value for 'constant' padding. Default: 0
Examples::
>>> t4d = torch.empty(3, 3, 4, 2)
>>> p1d = (1, 1) # pad last dim by 1 on each side
>>> out = F.pad(t4d, p1d, "constant", 0) # effectively zero padding
>>> print(out.data.size())
torch.Size([3, 3, 4, 4])
>>> p2d = (1, 1, 2, 2) # pad last dim by (1, 1) and 2nd to last by (2, 2)
>>> out = F.pad(t4d, p2d, "constant", 0)
>>> print(out.data.size())
torch.Size([3, 3, 8, 4])
>>> t4d = torch.empty(3, 3, 4, 2)
>>> p3d = (0, 1, 2, 1, 3, 3) # pad by (0, 1), (2, 1), and (3, 3)
>>> out = F.pad(t4d, p3d, "constant", 0)
>>> print(out.data.size())
torch.Size([3, 9, 7, 3])
"""
assert len(pad) % 2 == 0, 'Padding length must be divisible by 2'
assert len(pad) // 2 <= input.dim(), 'Padding length too large'
if mode == 'constant':
ret = _VF.constant_pad_nd(input, pad, value)
else:
assert value == 0, 'Padding mode "{}"" doesn\'t take in value argument'.format(mode)
if input.dim() == 3:
assert len(pad) == 2, '3D tensors expect 2 values for padding'
if mode == 'reflect':
ret = torch._C._nn.reflection_pad1d(input, pad)
elif mode == 'replicate':
ret = torch._C._nn.replication_pad1d(input, pad)
else:
ret = input # TODO: remove this when jit raise supports control flow
raise NotImplementedError
elif input.dim() == 4:
assert len(pad) == 4, '4D tensors expect 4 values for padding'
if mode == 'reflect':
ret = torch._C._nn.reflection_pad2d(input, pad)
elif mode == 'replicate':
ret = torch._C._nn.replication_pad2d(input, pad)
else:
ret = input # TODO: remove this when jit raise supports control flow
raise NotImplementedError
elif input.dim() == 5:
assert len(pad) == 6, '5D tensors expect 6 values for padding'
if mode == 'reflect':
ret = input # TODO: remove this when jit raise supports control flow
raise NotImplementedError
elif mode == 'replicate':
ret = torch._C._nn.replication_pad3d(input, pad)
else:
ret = input # TODO: remove this when jit raise supports control flow
raise NotImplementedError
else:
ret = input # TODO: remove this when jit raise supports control flow
raise NotImplementedError("Only 3D, 4D, 5D padding with non-constant padding are supported for now")
return ret
# distance
@weak_script
def pairwise_distance(x1, x2, p=2., eps=1e-6, keepdim=False):
# type: (Tensor, Tensor, float, float, bool) -> Tensor
r"""
See :class:`torch.nn.PairwiseDistance` for details
"""
return torch.pairwise_distance(x1, x2, p, eps, keepdim)
pdist = _add_docstr(torch.pdist, r"""
pdist(input, p=2) -> Tensor
Computes the p-norm distance between every pair of row vectors in the input.
This is identical to the upper triangular portion, excluding the diagonal, of
`torch.norm(input[:, None] - input, dim=2, p=p)`. This function will be faster
if the rows are contiguous.
If input has shape :math:`N \times M` then the output will have shape
:math:`\frac{1}{2} N (N - 1)`.
This function is equivalent to `scipy.spatial.distance.pdist(input,
'minkowski', p=p)` if :math:`p \in (0, \infty)`. When :math:`p = 0` it is
equivalent to `scipy.spatial.distance.pdist(input, 'hamming') * M`.
When :math:`p = \infty`, the closest scipy function is
`scipy.spatial.distance.pdist(xn, lambda x, y: np.abs(x - y).max())`.
Args:
input: input tensor of shape :math:`N \times M`.
p: p value for the p-norm distance to calculate between each vector pair
:math:`\in [0, \infty]`.
""")
cosine_similarity = _add_docstr(torch.cosine_similarity, r"""
cosine_similarity(x1, x2, dim=1, eps=1e-8) -> Tensor
Returns cosine similarity between x1 and x2, computed along dim.
.. math ::
\text{similarity} = \dfrac{x_1 \cdot x_2}{\max(\Vert x_1 \Vert _2 \cdot \Vert x_2 \Vert _2, \epsilon)}
Args:
x1 (Tensor): First input.
x2 (Tensor): Second input (of size matching x1).
dim (int, optional): Dimension of vectors. Default: 1
eps (float, optional): Small value to avoid division by zero.
Default: 1e-8
Shape:
- Input: :math:`(\ast_1, D, \ast_2)` where D is at position `dim`.
- Output: :math:`(\ast_1, \ast_2)` where 1 is at position `dim`.
Example::
>>> input1 = torch.randn(100, 128)
>>> input2 = torch.randn(100, 128)
>>> output = F.cosine_similarity(input1, input2)
>>> print(output)
""")
one_hot = _add_docstr(torch._C._nn.one_hot, r"""
one_hot(tensor, num_classes=0) -> LongTensor
Takes LongTensor with index values of shape ``(*)`` and returns a tensor
of shape ``(*, num_classes)`` that have zeros everywhere except where the
index of last dimension matches the corresponding value of the input tensor,
in which case it will be 1.
See also `One-hot on Wikipedia`_ .
.. _One-hot on Wikipedia:
https://en.wikipedia.org/wiki/One-hot
Arguments:
tensor (LongTensor): class values of any shape.
num_classes (int): Total number of classes. If set to -1, the number
of classes will be inferred as one greater than the largest class
value in the input tensor.
Returns:
Tensor: LongTensor that has one more dimension with 1 values at the
index of last dimension indicated by the input, and 0 everywhere
else.
Examples::
>>> torch.one_hot(torch.arange(0, 5) % 3)
tensor([[1, 0, 0],
[0, 1, 0],
[0, 0, 1],
[1, 0, 0],
[0, 1, 0]])
>>> torch.one_hot(torch.arange(0, 5) % 3, num_classes=5)
tensor([[1, 0, 0, 0, 0],
[0, 1, 0, 0, 0],
[0, 0, 1, 0, 0],
[1, 0, 0, 0, 0],
[0, 1, 0, 0, 0]])
>>> torch.one_hot(torch.arange(0, 6).view(3,2) % 3)
tensor([[[1, 0, 0],
[0, 1, 0]],
[[0, 0, 1],
[1, 0, 0]],
[[0, 1, 0],
[0, 0, 1]]])
""")
@weak_script
def triplet_margin_loss(anchor, positive, negative, margin=1.0, p=2, eps=1e-6, swap=False, size_average=None,
reduce=None, reduction="mean"):
# type: (Tensor, Tensor, Tensor, float, float, float, bool, Optional[bool], Optional[bool], str) -> Tensor
r"""
See :class:`~torch.nn.TripletMarginLoss` for details
"""
if size_average is not None or reduce is not None:
reduction_enum = _Reduction.legacy_get_enum(size_average, reduce)
else:
reduction_enum = _Reduction.get_enum(reduction)
return torch.triplet_margin_loss(anchor, positive, negative, margin, p, eps,
swap, reduction_enum)
@weak_script
def normalize(input, p=2, dim=1, eps=1e-12, out=None):
# type: (Tensor, float, int, float, Optional[Tensor]) -> Tensor
r"""Performs :math:`L_p` normalization of inputs over specified dimension.
For a tensor :attr:`input` of sizes :math:`(n_0, ..., n_{dim}, ..., n_k)`, each
:math:`n_{dim}` -element vector :math:`v` along dimension :attr:`dim` is transformed as
.. math::
v = \frac{v}{\max(\lVert v \rVert_p, \epsilon)}.
With the default arguments it uses the Euclidean norm over vectors along dimension :math:`1` for normalization.
Args:
input: input tensor of any shape
p (float): the exponent value in the norm formulation. Default: 2
dim (int): the dimension to reduce. Default: 1
eps (float): small value to avoid division by zero. Default: 1e-12
out (Tensor, optional): the output tensor. If :attr:`out` is used, this
operation won't be differentiable.
"""
if out is None:
denom = input.norm(p, dim, True).clamp(min=eps).expand_as(input)
ret = input / denom
else:
denom = input.norm(p, dim, True).clamp_(min=eps).expand_as(input)
ret = torch.div(input, denom, out=out)
return ret
def assert_int_or_pair(arg, arg_name, message):
assert isinstance(arg, int) or len(arg) == 2, message.format(arg_name)
@weak_script
def unfold(input, kernel_size, dilation=1, padding=0, stride=1):
# type: (Tensor, BroadcastingList2[int], BroadcastingList2[int], BroadcastingList2[int], BroadcastingList2[int]) -> Tensor # noqa
r"""Extracts sliding local blocks from an batched input tensor.
.. warning::
Currently, only 4-D input tensors (batched image-like tensors) are
supported.
See :class:`torch.nn.Unfold` for details
"""
if input.dim() == 4:
msg = '{} must be int or 2-tuple for 4D input'
assert_int_or_pair(kernel_size, 'kernel_size', msg)
assert_int_or_pair(dilation, 'dilation', msg)
assert_int_or_pair(padding, 'padding', msg)
assert_int_or_pair(stride, 'stride', msg)
ret = torch._C._nn.thnn_im2col(input, _pair(kernel_size),
_pair(dilation), _pair(padding), _pair(stride))
else:
raise NotImplementedError("Input Error: Only 4D input Tensors are supported (got {}D)".format(input.dim()))
ret = input # TODO: remove when jit supports exception control flow
return ret
@weak_script
def fold(input, output_size, kernel_size, dilation=1, padding=0, stride=1):
# type: (Tensor, BroadcastingList2[int], BroadcastingList2[int], BroadcastingList2[int], BroadcastingList2[int], BroadcastingList2[int]) -> Tensor # noqa
r"""Combines an array of sliding local blocks into a large containing
tensor.
.. warning::
Currently, only 4-D output tensors (batched image-like tensors) are
supported.
See :class:`torch.nn.Fold` for details
"""
if input.dim() == 3:
msg = '{} must be int or 2-tuple for 3D input'
assert_int_or_pair(output_size, 'output_size', msg)
assert_int_or_pair(kernel_size, 'kernel_size', msg)
assert_int_or_pair(dilation, 'dilation', msg)
assert_int_or_pair(padding, 'padding', msg)
assert_int_or_pair(stride, 'stride', msg)
ret = torch._C._nn.thnn_col2im(input, _pair(output_size), _pair(kernel_size),
_pair(dilation), _pair(padding), _pair(stride))
else:
raise NotImplementedError("Input Error: Only 3D input Tensors are supported (got {}D)".format(input.dim()))
ret = input # TODO: remove when jit supports exception control flow
return ret
|