1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
|
import torch
def rmsprop(opfunc, x, config, state=None):
""" An implementation of RMSprop
ARGS:
- 'opfunc' : a function that takes a single input (X), the point
of a evaluation, and returns f(X) and df/dX
- 'x' : the initial point
- 'config` : a table with configuration parameters for the optimizer
- 'config['learningRate']' : learning rate
- 'config['alpha']' : smoothing constant
- 'config['epsilon']' : value with which to initialise m
- 'config['weightDecay']' : weight decay
- 'state' : a table describing the state of the optimizer;
after each call the state is modified
- 'state['m']' : leaky sum of squares of parameter gradients,
- 'state['tmp']' : and the square root (with epsilon smoothing)
RETURN:
- `x` : the new x vector
- `f(x)` : the function, evaluated before the update
"""
# (0) get/update state
if config is None and state is None:
raise ValueError("rmsprop requires a dictionary to retain state between iterations")
state = state if state is not None else config
lr = config.get('learningRate', 1e-2)
alpha = config.get('alpha', 0.99)
epsilon = config.get('epsilon', 1e-8)
wd = config.get('weightDecay', 0)
# (1) evaluate f(x) and df/dx
fx, dfdx = opfunc(x)
# (2) weight decay
if wd != 0:
dfdx.add_(wd, x)
# (3) initialize mean square values and square gradient storage
if not 'm' in state:
state['m'] = x.new().resize_as_(dfdx).zero_()
state['tmp'] = x.new().resize_as_(dfdx)
# (4) calculate new (leaky) mean squared values
state['m'].mul_(alpha)
state['m'].addcmul_(1.0 - alpha, dfdx, dfdx)
# (5) perform update
torch.sqrt(state['m'], out=state['tmp']).add_(epsilon)
x.addcdiv_(-lr, dfdx, state['tmp'])
# return x*, f(x) before optimization
return x, fx
|