1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
|
import math
def asgd(opfunc, x, config, state=None):
""" An implementation of ASGD
ASGD:
x := (1 - lambda eta_t) x - eta_t df/dx(z,x)
a := a + mu_t [ x - a ]
eta_t = eta0 / (1 + lambda eta0 t) ^ 0.75
mu_t = 1/max(1,t-t0)
implements ASGD algoritm as in L.Bottou's sgd-2.0
ARGS:
- `opfunc` : a function that takes a single input (X), the point of
evaluation, and returns f(X) and df/dX
- `x` : the initial point
- `state` : a table describing the state of the optimizer; after each
call the state is modified
- `state['eta0']` : learning rate
- `state['lambda']` : decay term
- `state['alpha']` : power for eta update
- `state['t0']` : point at which to start averaging
RETURN:
- `x` : the new x vector
- `f(x)` : the function, evaluated before the update
- `ax` : the averaged x vector
(Clement Farabet, 2012)
"""
# (0) get/update state
if config is None and state is None:
raise ValueError("asgd requires a dictionary to retain state between iterations")
state = state if state is not None else config
config['eta0'] = config.get('eta0', 1e-4)
config['lambda'] = config.get('lambda', 1e-4)
config['alpha'] = config.get('alpha', 0.75)
config['t0'] = config.get('t0', 1e6)
# (hidden state)
state['eta_t'] = state.get('eta_t', config['eta0'])
state['mu_t'] = state.get('mu_t', 1)
state['t'] = state.get('t', 0)
# (1) evaluate f(x) and df/dx
fx, dfdx = opfunc(x)
# (2) decay term
x.mul_(1 - config['lambda'] * state['eta_t'])
# (3) update x
x.add_(-state['eta_t'], dfdx)
# (4) averaging
state['ax'] = state.get('ax', x.new().resize_as_(x).zero_())
state['tmp'] = state.get('tmp', state['ax'].new().resize_as_(state['ax']))
if state['mu_t'] != 1:
state['tmp'].copy_(x)
state['tmp'].add_(-1,state['ax']).mul_(state['mu_t'])
state['ax'].add_(state['tmp'])
else:
state['ax'].copy_(x)
# (5) update eta_t and mu_t
state['t'] += 1
state['eta_t'] = config['eta0'] / math.pow((1 + config['lambda'] * config['eta0'] * state['t']), config['alpha'])
state['mu_t'] = 1 / max(1, state['t'] - config['t0'])
# return x*, f(x) before optimization, and average(x_t0,x_t1,x_t2,...)
return x, fx, state['ax']
|