1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
|
#pragma once
#include "torch/csrc/WindowsTorchApiMacro.h"
#include "torch/csrc/jit/ir.h"
#include <ATen/ATen.h>
#include <vector>
#include <memory>
namespace torch { namespace jit {
using value_list = std::vector<Value*>;
// Example showcasing how Gradient is constructed:
//
// Let's assume we have a function f, `m` and `n` do not require grad
// (`n` can depend only on `m`):
// y, n = f(x, m)
//
// Now, let's assume that the reverse of f (called f') needs to use values of `x`, `t` and `y`.
// `t` is an intermediate value produced in the body of f, and let's assume that it requires
// grad too.
//
// In this case differentiate(f) will return this:
// y, n, t = f(x, m) // `t` is appended to the output list
// dx = f'(dy, dt, x, t, y) // No `dm` or `dn` because they do not require gradient
// // All needed values from f are prepended to the input list
//
// f_real_outputs = 2 // Only first two outputs were present in f originally
// df_input_vjps = {0, 2} // i.e. connect grad_fn of y and t variables produced by f,
// y t // with y's output_nr = 0 and t's output_nr = 1
// df_input_captures = {I0, O2, O0} // Order matches the prefix of inputs to df
// x t y
// df_output_vjps = {0} // i.e. connect next_edge[0] of grad_fn to x's (grad_fn, output_nr).
//
// Terminology: vjp = vector-jacobian product
struct Gradient {
explicit operator bool() const {
return df != nullptr;
}
std::shared_ptr<Graph> f;
std::shared_ptr<Graph> df;
// Describes how to construct outputs of f from what its graph will return.
// This is necessary because some trailing outputs are intermediates produced
// only to be saved for df (and should be ignored).
size_t f_real_outputs;
// df inputs are split into two sections: vjps (aka grad_outputs) and captures.
// VJPs are "seeds" for the gradient computation given for each input capture
// of an Output kind.
// Captures are values the need to be saved when f is run. We handle inputs
// specially, because this allows us to avoid adding extra vjps as df inputs.
std::vector<size_t> df_input_vjps; // Offsets into f's outputs.
// capture can come from inputs or outputs
std::vector<size_t> df_input_captured_inputs; // Offsets into f's inputs
std::vector<size_t> df_input_captured_outputs; // Offsets into f's outputs
// df will produce vjps for a subset of inputs of f that required grad.
// df_output_vjps[idx] == inp_idx means that idx-th output of df produces a vjp
// for inp_idx-th input of f.
std::vector<size_t> df_output_vjps; // Offsets into f's inputs.
// How to use gradient to implement a differentiable autograd function:
// When running f:
// - Unwrap input Variables
// - Run f's graph
// - Create grad_fn
// - Wrap outputs in Variables (assume we have a tensor_outputs array):
// outputs = map(Variable, tensor_output)
// for i, offset in enumerate(df_input_vjps):
// outputs[offset].set_grad_fn(grad_fn, output_nr=i)
// - Use df_output_vjps to connect next_edges of grad_fn:
// for idx in df_output_vjps:
// grad_fn.add_next_edge(inputs[idx].gradient_edge())
// - Save captures for df (care needs to be taken to use SavedVariables for inputs and
// outputs that we will actually return)
// - Return outputs[:f_real_outputs]
//
// When running df:
// - Concatenate received vjps and captured Variables
// - Interpret df
// - Wrap outputs of df into Variables (that don't require grad)
};
// XXX: When calling this function, graph should have complete type information.
// Use the shape analysis pass to fill in the gaps if it doesn't.
TORCH_API Gradient differentiate(std::shared_ptr<Graph>& graph, const std::vector<bool>& requires_grad);
// can we take a derivative of this node symbolically?
TORCH_API bool isDifferentiable(Node * n);
TORCH_API bool isDifferentiable(Graph & g);
TORCH_API bool isZero(Value * v);
}}
|