1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
|
import torch
import importlib
from collections import defaultdict
def _type(self, new_type=None, async=False):
"""Returns the type if `new_type` is not provided, else casts this object to
the specified type.
If this is already of the correct type, no copy is performed and the
original object is returned.
Args:
new_type (type or string): The desired type
async (bool): If ``True``, and the source is in pinned memory and
destination is on the GPU or vice versa, the copy is
performed asynchronously with respect to the host.
Otherwise, the argument has no effect.
"""
if new_type is None:
return self.__module__ + '.' + self.__class__.__name__
if isinstance(new_type, str):
new_type = _import_dotted_name(new_type)
if new_type == type(self):
return self
if self.is_sparse:
if not new_type.is_sparse:
raise RuntimeError("Cannot cast sparse tensor to dense tensor")
new_module_name = new_type.__module__.replace('.sparse', '')
new_values_type_name = new_module_name + '.' + new_type.__name__
new_values = self._values().type(new_values_type_name, async)
new_indices_type_name = new_module_name + '.LongTensor'
new_indices = self._indices().type(new_indices_type_name, async)
return new_type(new_indices, new_values, self.size())
if new_type.is_sparse:
raise RuntimeError("Cannot cast dense tensor to sparse tensor")
return new_type(self.size()).copy_(self, async)
def _cuda(self, device=None, async=False):
"""Returns a copy of this object in CUDA memory.
If this object is already in CUDA memory and on the correct device, then
no copy is performed and the original object is returned.
Args:
device (int): The destination GPU id. Defaults to the current device.
async (bool): If ``True`` and the source is in pinned memory, the copy will
be asynchronous with respect to the host. Otherwise, the
argument has no effect.
"""
if self.is_cuda:
if device is None:
device = torch.cuda.current_device()
if self.get_device() == device:
return self
else:
if device is None:
device = -1
with torch.cuda.device(device):
if self.is_sparse:
new_type = getattr(torch.cuda.sparse, self.__class__.__name__)
indices = self._indices().cuda(device, async)
values = self._values().cuda(device, async)
return new_type(indices, values, self.size())
else:
new_type = getattr(torch.cuda, self.__class__.__name__)
return new_type(self.size()).copy_(self, async)
def _rebuild_tensor(storage, storage_offset, size, stride):
class_name = storage.__class__.__name__.replace('Storage', 'Tensor')
module = importlib.import_module(storage.__module__)
tensor_class = getattr(module, class_name)
return tensor_class().set_(storage, storage_offset, size, stride)
def _import_dotted_name(name):
components = name.split('.')
obj = __import__(components[0])
for component in components[1:]:
obj = getattr(obj, component)
return obj
# Taken from python 3.5 docs
def _accumulate(iterable, fn=lambda x, y: x + y):
'Return running totals'
# _accumulate([1,2,3,4,5]) --> 1 3 6 10 15
# _accumulate([1,2,3,4,5], operator.mul) --> 1 2 6 24 120
it = iter(iterable)
try:
total = next(it)
except StopIteration:
return
yield total
for element in it:
total = fn(total, element)
yield total
def _flatten_dense_tensors(tensors):
"""Flatten dense tensors into a contiguous 1D buffer. Assume tensors are of
same dense type.
Since inputs are dense, the resulting tensor will be a concatenated 1D
buffer. Element-wise operation on this buffer will be equivalent to
operating individually.
Arguments:
tensors (Iterable[Tensor]): dense tensors to flatten.
Returns:
A contiguous 1D buffer containing input tensors.
"""
if len(tensors) == 1:
return tensors[0].contiguous().view(-1)
flat = torch.cat([t.contiguous().view(-1) for t in tensors], dim=0)
return flat
def _flatten_sparse_tensors(tensors):
"""Flatten sparse tensors into two contiguous 1D buffers, one of indices and
one of values. Assume tensors are of same sparse type.
Arguments:
tensors (Iterable[Tensor]): sparse tensors to flatten.
Returns:
A tuple of two contiguous 1D buffers, one containing input tensors'
indices and the other containing the values.
"""
flat_indices = _flatten_dense_tensors([t._indices() for t in tensors])
flat_values = _flatten_dense_tensors([t._values() for t in tensors])
return flat_indices, flat_values
def _unflatten_dense_tensors(flat, tensors):
"""View a flat buffer using the sizes of tensors. Assume that tensors are of
same dense type, and that flat is given by _flatten_dense_tensors.
Arguments:
flat (Tensor): flattened dense tensors to unflatten.
tensors (Iterable[Tensor]): dense tensors whose sizes will be used to
unflatten flat.
Returns:
Unflattened dense tensors with sizes same as tensors and values from
flat.
"""
outputs = []
offset = 0
for tensor in tensors:
numel = tensor.numel()
outputs.append(flat.narrow(0, offset, numel).view_as(tensor))
offset += numel
return tuple(outputs)
def _unflatten_sparse_tensors(flat, tensors):
"""View flat buffer (containing indices and values) using the sizes of
tensors. Assume that tensors are of same sparse type, and that flat is given
by _flatten_sparse_tensors.
Arguments:
flat (tuple(Tensor, Tensor)): flattened indices and values of sparse
tensors to unflatten.
tensors (Iterable[Tensor]): sparse tensors whose sizes will be used to
unflatten flat.
Returns:
Unflattened sparse tensors with sizes same as tensors and values from
flat.
"""
flat_indices, flat_values = flat
indices = _unflatten_dense_tensors(flat_indices, [t._indices() for t in tensors])
values = _unflatten_dense_tensors(flat_values, [t._values() for t in tensors])
outputs = []
for t, i, v in zip(tensors, indices, values):
outputs.append(t.new(i, v, t.size()))
return tuple(outputs)
def _reorder_tensors_as(tensors, ordered_tensors):
"""Assume that tensors are of same order as ordered_tensors within their
types, e.g., from _take_tensors. Reorder them to be of same order as
ordered_tensors.
Arguments:
tensors (Iterable[Tensor]): tensors to be reordered. They should be of
the same order as ordered_tensors within their own types.
ordered_tensors (Iterable[Tensor]): tensors whose order will be the
reference.
Returns:
Ordered tuple of tensors with contents from tensors and order of
ordered_tensors.
"""
type_dict = defaultdict(list)
for tensor in tensors:
type_dict[type(tensor)].append(tensor)
type_dict = {t: iter(coll) for t, coll in type_dict.items()}
return tuple(next(type_dict[type(tensor)]) for tensor in ordered_tensors)
def _take_tensors(tensors, size_limit):
"""Group tensors into chunks. This generator yields a chunk at each time,
each containing tensors of same type up to certain byte limit in total size.
Args:
tensors (Sequence): A sequence of tensors to be separated into chunks.
size_limit (int): The limit of each chunk in bytes.
Yields:
Blocks of tensors of same type and within size_limit. The yielded
tensors are only ordered as the original sequence within its types.
"""
buf_dict = defaultdict(lambda: [[], 0])
for tensor in tensors:
t = type(tensor)
if tensor.is_sparse:
indices = tensor._indices()
values = tensor._values()
size = indices.numel() * indices.element_size() + values.numel() * values.element_size()
else:
size = tensor.numel() * tensor.element_size()
buf_and_size = buf_dict[t]
if buf_and_size[1] + size > size_limit and buf_and_size[1] > 0:
yield buf_and_size[0]
buf_and_size = buf_dict[t] = [[], 0]
buf_and_size[0].append(tensor)
buf_and_size[1] += size
for buf, _ in buf_dict.values():
if len(buf) > 0:
yield buf
def _repeat(self, *sizes):
r"""Repeats this tensor along the specified dimensions.
Unlike :meth:`expand`, this function copies the tensor's data.
Args:
*sizes (torch.Size or int...): The number of times to repeat this
tensor along each dimension
Example:
>>> x = torch.Tensor([1, 2, 3])
>>> x.repeat(4, 2)
1 2 3 1 2 3
1 2 3 1 2 3
1 2 3 1 2 3
1 2 3 1 2 3
[torch.FloatTensor of size 4x6]
>>> x.repeat(4, 2, 1).size()
torch.Size([4, 2, 3])
"""
# If args == (torch.Size,), then we need to unpack the tuple
if len(sizes) == 1 and isinstance(sizes[0], torch.Size):
sizes = sizes[0]
repeats = list(sizes)
if len(repeats) < self.dim():
raise ValueError('Number of dimensions of repeat dims can not be '
'smaller than number of dimensions of tensor')
# Add new leading dimensions to the tensor if the
# number of target dimensions is larger than the
# number of source dimensions.
num_new_dimensions = len(repeats) - self.dim()
padded_size = [1] * num_new_dimensions + list(self.size())
target_size = torch.Size([a * b for a, b in zip(padded_size, repeats)])
xtensor = self.new().set_(self)
xtensor = xtensor.expand(padded_size)
result = self.new()
result.resize_(target_size)
urtensor = result.new(result)
for i in range(xtensor.dim()):
urtensor = urtensor.unfold(i, xtensor.size(i), xtensor.size(i))
urtensor.copy_(xtensor.expand_as(urtensor))
return result
|