summaryrefslogtreecommitdiff
path: root/test/test_dataloader.py
blob: 50f5e60f90abdc5b3db0af2d95fea5e6b31478fb (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
import math
import sys
import errno
import os
import ctypes
import signal
import torch
import gc
import time
import traceback
import unittest
import subprocess
import itertools
import warnings
from torch import multiprocessing as mp
from torch.utils.data import _utils, Dataset, TensorDataset, DataLoader, ConcatDataset
from torch.utils.data._utils import ExceptionWrapper, MP_STATUS_CHECK_INTERVAL
from torch.utils.data.dataset import random_split
from common_utils import (TestCase, run_tests, TEST_NUMPY, IS_WINDOWS, IS_PPC,
                          IS_PYTORCH_CI, NO_MULTIPROCESSING_SPAWN, skipIfRocm,
                          load_tests)

try:
    import psutil
    HAS_PSUTIL = True
except ImportError:
    HAS_PSUTIL = False
    err_msg = ("psutil not found. Some critical data loader tests relying on it "
               "(e.g., TestDataLoader.test_proper_exit) will not run.")
    if IS_PYTORCH_CI:
        raise ImportError(err_msg)
    else:
        warnings.warn(err_msg)


# load_tests from common_utils is used to automatically filter tests for
# sharding on sandcastle. This line silences flake warnings
load_tests = load_tests

# We cannot import TEST_CUDA from common_cuda here, because if we do that,
# the TEST_CUDNN line from common_cuda will be executed multiple times
# as well during the execution of this test suite, and it will cause
# CUDA OOM error on Windows.
TEST_CUDA = torch.cuda.is_available()

if not NO_MULTIPROCESSING_SPAWN:
    # Get a multiprocessing context because some test / third party library will
    # set start_method when imported, and setting again triggers RuntimeError.
    mp = mp.get_context(method='spawn')


JOIN_TIMEOUT = 17.0 if (IS_WINDOWS or IS_PPC) else 13.0


class TestDatasetRandomSplit(TestCase):
    def test_lengths_must_equal_datset_size(self):
        with self.assertRaises(ValueError):
            random_split([1, 2, 3, 4], [1, 2])

    def test_splits_have_correct_size(self):
        splits = random_split([1, 2, 3, 4, 5, 6], [2, 4])
        self.assertEqual(len(splits), 2)
        self.assertEqual(len(splits[0]), 2)
        self.assertEqual(len(splits[1]), 4)

    def test_splits_are_mutually_exclusive(self):
        data = [5, 2, 3, 4, 1, 6]
        splits = random_split(data, [2, 4])
        all_values = []
        all_values.extend(list(splits[0]))
        all_values.extend(list(splits[1]))
        data.sort()
        all_values.sort()
        self.assertListEqual(data, all_values)


class TestTensorDataset(TestCase):

    def test_len(self):
        source = TensorDataset(torch.randn(15, 10, 2, 3, 4, 5), torch.randperm(15))
        self.assertEqual(len(source), 15)

    def test_getitem(self):
        t = torch.randn(15, 10, 2, 3, 4, 5)
        l = torch.randn(15, 10)
        source = TensorDataset(t, l)
        for i in range(15):
            self.assertEqual(t[i], source[i][0])
            self.assertEqual(l[i], source[i][1])

    def test_getitem_1d(self):
        t = torch.randn(15)
        l = torch.randn(15)
        source = TensorDataset(t, l)
        for i in range(15):
            self.assertEqual(t[i], source[i][0])
            self.assertEqual(l[i], source[i][1])

    def test_single_tensor(self):
        t = torch.randn(5, 10)
        source = TensorDataset(t)
        self.assertEqual(len(source), 5)
        for i in range(5):
            self.assertEqual(t[i], source[i][0])

    def test_many_tensors(self):
        t0 = torch.randn(5, 10, 2, 3, 4, 5)
        t1 = torch.randn(5, 10)
        t2 = torch.randn(5, 10, 2, 5)
        t3 = torch.randn(5, 10, 3, 7)
        source = TensorDataset(t0, t1, t2, t3)
        self.assertEqual(len(source), 5)
        for i in range(5):
            self.assertEqual(t0[i], source[i][0])
            self.assertEqual(t1[i], source[i][1])
            self.assertEqual(t2[i], source[i][2])
            self.assertEqual(t3[i], source[i][3])


class TestConcatDataset(TestCase):

    def test_concat_two_singletons(self):
        result = ConcatDataset([[0], [1]])
        self.assertEqual(2, len(result))
        self.assertEqual(0, result[0])
        self.assertEqual(1, result[1])

    def test_concat_two_non_singletons(self):
        result = ConcatDataset([[0, 1, 2, 3, 4],
                                [5, 6, 7, 8, 9]])
        self.assertEqual(10, len(result))
        self.assertEqual(0, result[0])
        self.assertEqual(5, result[5])

    def test_concat_two_non_singletons_with_empty(self):
        # Adding an empty dataset somewhere is correctly handled
        result = ConcatDataset([[0, 1, 2, 3, 4],
                                [],
                                [5, 6, 7, 8, 9]])
        self.assertEqual(10, len(result))
        self.assertEqual(0, result[0])
        self.assertEqual(5, result[5])

    def test_concat_raises_index_error(self):
        result = ConcatDataset([[0, 1, 2, 3, 4],
                                [5, 6, 7, 8, 9]])
        with self.assertRaises(IndexError):
            # this one goes to 11
            result[11]

    def test_add_dataset(self):
        d1 = TensorDataset(torch.rand(7, 3, 28, 28), torch.rand(7))
        d2 = TensorDataset(torch.rand(7, 3, 28, 28), torch.rand(7))
        d3 = TensorDataset(torch.rand(7, 3, 28, 28), torch.rand(7))
        result = d1 + d2 + d3
        self.assertEqual(21, len(result))
        self.assertEqual(0, (d1[0][0] - result[0][0]).abs().sum())
        self.assertEqual(0, (d2[0][0] - result[7][0]).abs().sum())
        self.assertEqual(0, (d3[0][0] - result[14][0]).abs().sum())


# Stores the first encountered exception in .exception.
# Inspired by https://stackoverflow.com/a/33599967
class ErrorTrackingProcess(mp.Process):

    def __init__(self, *args, **kwargs):
        super(ErrorTrackingProcess, self).__init__(*args, **kwargs)
        self._pconn, self._cconn = mp.Pipe()
        self._exception = None

    def run(self):
        # Disable polluting stderr with errors that are supposed to happen.
        sys.stderr = open(os.devnull, "w")
        try:
            super(ErrorTrackingProcess, self).run()
            self._cconn.send(None)
        except Exception:
            self._cconn.send(ExceptionWrapper(sys.exc_info()))
            raise

    @property
    def exception(self):
        if self._pconn.poll():
            self._exception = self._pconn.recv()
        if self._exception is None:
            return None
        else:
            return self._exception.exc_type(self._exception.exc_msg)

    # ESRCH means that os.kill can't finds alive proc
    def send_signal(self, signum, ignore_ESRCH=False):
        try:
            os.kill(self.pid, signum)
        except OSError as e:
            if not ignore_ESRCH or e.errno != errno.ESRCH:
                raise


class ErrorDataset(Dataset):

    def __init__(self, size):
        self.size = size

    def __len__(self):
        return self.size


class SegfaultDataset(Dataset):

    def __init__(self, size):
        self.size = size

    def __getitem__(self, idx):
        return ctypes.string_at(0)

    def __len__(self):
        return self.size


class SleepDataset(Dataset):

    def __init__(self, size, sleep_sec):
        self.size = size
        self.sleep_sec = sleep_sec
        self.sleeped = False

    def __getitem__(self, idx):
        if not self.sleeped:
            time.sleep(self.sleep_sec)
            self.sleeped = True
        return idx

    def __len__(self):
        return self.size


class SeedDataset(Dataset):

    def __init__(self, size):
        self.size = size

    def __getitem__(self, idx):
        return torch.initial_seed()

    def __len__(self):
        return self.size


# Inspired by https://stackoverflow.com/a/26703365
# This will ensure that each worker at least processes one data
class SynchronizedSeedDataset(Dataset):

    def __init__(self, size, num_workers):
        assert size >= num_workers
        self.count = mp.Value('i', 0, lock=True)
        self.barrier = mp.Semaphore(0)
        self.num_workers = num_workers
        self.size = size

    def __getitem__(self, idx):
        with self.count.get_lock():
            self.count.value += 1
            if self.count.value == self.num_workers:
                self.barrier.release()
        self.barrier.acquire()
        self.barrier.release()
        return torch.initial_seed()

    def __len__(self):
        return self.size


def _test_timeout():
    dataset = SleepDataset(10, 3)
    dataloader = DataLoader(dataset, batch_size=2, num_workers=2, timeout=1)
    _ = next(iter(dataloader))


def _test_timeout_pin_memory():
    dataset = SleepDataset(10, 3)
    dataloader = DataLoader(dataset, batch_size=2, num_workers=2, timeout=1, pin_memory=True)
    _ = next(iter(dataloader))


def disable_stderr(worker_id):
    r"""
    Avoids printing "ERROR: Unexpected segmentation fault encountered in worker."
    from workers. Since worker signal handler prints with low-level write(),
    this has to be done on OS level via dup.

    This is used as worker_init_fn for test_segfault.
    """
    sys.stderr.flush()  # flush library buffers that dup2 knows nothing about
    # Can't use a with-block because otherwise the fd will be closed when this
    # function ends.
    devnull = open(os.devnull, 'w')
    os.dup2(devnull.fileno(), sys.stderr.fileno())


def _test_segfault():
    dataset = SegfaultDataset(10)
    dataloader = DataLoader(dataset, batch_size=2, num_workers=2, worker_init_fn=disable_stderr)
    _ = next(iter(dataloader))


class TestProperExitDataset(object):
    def __init__(self, size, error_event):
        self.size = size
        self.error_event = error_event

    def __len__(self):
        return self.size

    def __getitem__(self, idx):
        if self.error_event is not None and self.error_event.is_set():
            raise RuntimeError('Worker error')
        return torch.tensor([idx])


# See TestDataLoader.test_proper_exit for usage
def _test_proper_exit(use_workers, pin_memory, exit_method, hold_iter_reference,
                      loader_setup_event, tester_setup_event):
    num_workers = 2 if use_workers else 0

    if exit_method == 'worker_error' or exit_method == 'worker_kill':
        assert use_workers is True

    if exit_method == 'worker_error':
        worker_error_event = mp.Event()
    else:
        worker_error_event = None

    ds = TestProperExitDataset(12, worker_error_event)

    loader = DataLoader(ds, batch_size=1, shuffle=False,
                        num_workers=num_workers, pin_memory=pin_memory)
    error_it = 2

    if use_workers:
        # 2 is the magical per-worker prefetch number...
        # FIXME: change this after the number becomes configurable.
        assert len(loader) > (error_it + 2 + 1) * num_workers

    it = iter(loader)
    if use_workers:
        workers = it.workers

    def kill_pid(pid):
        psutil_p = psutil.Process(pid)
        psutil_p.kill()
        psutil_p.wait(JOIN_TIMEOUT)
        assert not psutil_p.is_running()

    for i, _ in enumerate(it):
        if i == 0:
            if not hold_iter_reference:
                del it
            loader_setup_event.set()
            tester_setup_event.wait()
            # ensure that the workers are still alive
            if use_workers:
                for w in workers:
                    assert w.is_alive()
            if worker_error_event is not None:
                worker_error_event.set()

        if i == error_it:
            if exit_method == 'loader_error':
                raise RuntimeError('Loader error')
            elif exit_method == 'loader_kill':
                kill_pid(os.getpid())
            elif exit_method == 'worker_kill':
                kill_pid(workers[0].pid)

    if not hold_iter_reference:
        # Tries to trigger the __del__ clean-up rather than the automatic
        # exiting of daemonic children. Technically it should be automatically
        # triggered, but I don't want to rely on the implementation detail of
        # Python gc.
        gc.collect()


# test custom init function
def init_fn(worker_id):
    torch.manual_seed(12345)


class TestDataLoader(TestCase):

    def setUp(self):
        self.data = torch.randn(100, 2, 3, 5)
        self.labels = torch.randperm(50).repeat(2)
        self.dataset = TensorDataset(self.data, self.labels)

    def _test_sequential(self, loader):
        batch_size = loader.batch_size
        for i, (sample, target) in enumerate(loader):
            idx = i * batch_size
            self.assertEqual(sample, self.data[idx:idx + batch_size])
            self.assertEqual(target, self.labels[idx:idx + batch_size])
        self.assertEqual(i, math.floor((len(self.dataset) - 1) / batch_size))

    def _test_shuffle(self, loader):
        found_data = {i: 0 for i in range(self.data.size(0))}
        found_labels = {i: 0 for i in range(self.labels.size(0))}
        batch_size = loader.batch_size
        for i, (batch_samples, batch_targets) in enumerate(loader):
            for sample, target in zip(batch_samples, batch_targets):
                for data_point_idx, data_point in enumerate(self.data):
                    if data_point.eq(sample).all():
                        self.assertFalse(found_data[data_point_idx])
                        found_data[data_point_idx] += 1
                        break
                self.assertEqual(target, self.labels[data_point_idx])
                found_labels[data_point_idx] += 1
            self.assertEqual(sum(found_data.values()), (i + 1) * batch_size)
            self.assertEqual(sum(found_labels.values()), (i + 1) * batch_size)
        self.assertEqual(i, math.floor((len(self.dataset) - 1) / batch_size))

    def _test_error(self, loader):
        it = iter(loader)
        errors = 0
        while True:
            try:
                next(it)
            except NotImplementedError:
                errors += 1
            except StopIteration:
                self.assertEqual(errors,
                                 math.ceil(float(len(loader.dataset)) / loader.batch_size))
                return

    def test_invalid_assign_after_init(self):
        dl = DataLoader(self.dataset)
        for attr in ('batch_size', 'sampler', 'drop_last'):
            def fn():
                setattr(dl, attr, {})

            self.assertRaises(ValueError, fn)

    def test_sequential(self):
        self._test_sequential(DataLoader(self.dataset))

    def test_sequential_batch(self):
        self._test_sequential(DataLoader(self.dataset, batch_size=2))

    def test_growing_dataset(self):
        dataset = [torch.ones(4) for _ in range(4)]
        dataloader_seq = DataLoader(dataset, shuffle=False)
        dataloader_shuffle = DataLoader(dataset, shuffle=True)
        dataset.append(torch.ones(4))
        self.assertEqual(len(dataloader_seq), 5)
        self.assertEqual(len(dataloader_shuffle), 5)

    @unittest.skipIf(not TEST_CUDA, "CUDA unavailable")
    def test_sequential_pin_memory(self):
        loader = DataLoader(self.dataset, batch_size=2, pin_memory=True)
        for input, target in loader:
            self.assertTrue(input.is_pinned())
            self.assertTrue(target.is_pinned())

    def test_multiple_dataloaders(self):
        loader1_it = iter(DataLoader(self.dataset, num_workers=1))
        loader2_it = iter(DataLoader(self.dataset, num_workers=2))
        next(loader1_it)
        next(loader1_it)
        next(loader2_it)
        next(loader2_it)
        next(loader1_it)
        next(loader2_it)

    @unittest.skip("temporarily disable until flaky failures are fixed")
    def test_segfault(self):
        p = ErrorTrackingProcess(target=_test_segfault)
        p.start()
        p.join(JOIN_TIMEOUT)
        try:
            self.assertFalse(p.is_alive())
            self.assertNotEqual(p.exitcode, 0)
            if IS_WINDOWS:
                self.assertIsInstance(p.exception, OSError)
                self.assertRegex(str(p.exception), r'access violation reading ')
            else:
                self.assertIsInstance(p.exception, RuntimeError)
                self.assertRegex(str(p.exception), r'DataLoader worker \(pid \d+\) is killed by signal: ')
        finally:
            p.terminate()

    def test_timeout(self):
        if TEST_CUDA and not NO_MULTIPROCESSING_SPAWN:
            targets = (_test_timeout, _test_timeout_pin_memory)
        else:
            targets = (_test_timeout,)
        for target in targets:
            p = ErrorTrackingProcess(target=target)
            p.start()
            p.join(JOIN_TIMEOUT)
            try:
                self.assertFalse(p.is_alive())
                self.assertNotEqual(p.exitcode, 0)
                self.assertIsInstance(p.exception, RuntimeError)
                self.assertRegex(str(p.exception), r'DataLoader timed out after \d+ seconds')
            finally:
                p.terminate()

    def test_worker_seed(self):
        num_workers = 6
        dataset = SynchronizedSeedDataset(num_workers, num_workers)
        dataloader = DataLoader(dataset, batch_size=1, num_workers=num_workers)
        seeds = set()
        for batch in dataloader:
            seeds.add(batch[0])
        self.assertEqual(len(seeds), num_workers)

    def test_worker_init_fn(self):
        dataset = SeedDataset(4)
        dataloader = DataLoader(dataset, batch_size=2, num_workers=2,
                                worker_init_fn=init_fn)
        for batch in dataloader:
            self.assertEqual(12345, batch[0])
            self.assertEqual(12345, batch[1])

    def test_shuffle(self):
        self._test_shuffle(DataLoader(self.dataset, shuffle=True))

    def test_shuffle_batch(self):
        self._test_shuffle(DataLoader(self.dataset, batch_size=2, shuffle=True))

    def test_sequential_workers(self):
        self._test_sequential(DataLoader(self.dataset, num_workers=4))

    def test_seqential_batch_workers(self):
        self._test_sequential(DataLoader(self.dataset, batch_size=2, num_workers=4))

    def test_shuffle_workers(self):
        self._test_shuffle(DataLoader(self.dataset, shuffle=True, num_workers=4))

    def test_shuffle_batch_workers(self):
        self._test_shuffle(DataLoader(self.dataset, batch_size=2, shuffle=True, num_workers=4))

    def _test_batch_sampler(self, **kwargs):
        # [(0, 1), (2, 3, 4), (5, 6), (7, 8, 9), ...]
        batches = []
        for i in range(0, 100, 5):
            batches.append(tuple(range(i, i + 2)))
            batches.append(tuple(range(i + 2, i + 5)))

        dl = DataLoader(self.dataset, batch_sampler=batches, **kwargs)
        self.assertEqual(len(dl), 40)
        for i, (input, _target) in enumerate(dl):
            if i % 2 == 0:
                offset = i * 5 // 2
                self.assertEqual(len(input), 2)
                self.assertEqual(input, self.data[offset:offset + 2])
            else:
                offset = i * 5 // 2
                self.assertEqual(len(input), 3)
                self.assertEqual(input, self.data[offset:offset + 3])

    def test_RandomSampler(self):

        from collections import Counter
        from torch.utils.data import RandomSampler

        def sample_stat(sampler, num_samples):
            counts = Counter(sampler)
            count_repeated = sum(val > 1 for val in counts.values())
            return (count_repeated, min(counts.keys()), max(counts.keys()))

        # test sample with replacement
        n = len(self.dataset) + 1  # ensure at least one sample is drawn more than once
        sampler_with_replacement = RandomSampler(self.dataset, replacement=True, num_samples=n)
        count_repeated, minval, maxval = sample_stat(sampler_with_replacement, n)
        self.assertTrue(count_repeated > 0)
        self.assertTrue(minval >= 0)
        self.assertTrue(maxval < len(self.dataset))

        # test sample without replacement
        sampler_without_replacement = RandomSampler(self.dataset)
        count_repeated, minval, maxval = sample_stat(sampler_without_replacement, len(self.dataset))
        self.assertTrue(count_repeated == 0)
        self.assertTrue(minval == 0)
        self.assertTrue(maxval == len(self.dataset) - 1)

        # raise error when replacement=False and num_samples is not None
        self.assertRaises(ValueError, lambda: RandomSampler(self.dataset, num_samples=len(self.dataset)))

        self.assertRaises(ValueError, lambda: RandomSampler(self.dataset, num_samples=0))

    def test_random_sampler_len_with_replacement(self):
        from torch.utils.data import RandomSampler
        # add 5 extra samples
        num_samples = len(self.dataset) + 5
        sampler = RandomSampler(self.dataset,
                                replacement=True,
                                num_samples=num_samples)
        # test len method
        self.assertEqual(num_samples, len(sampler))

        # test with iteration
        count_num_samples = sum(1 for _ in sampler)
        self.assertEqual(num_samples, count_num_samples)

        # test with dataloader, batch_size = 1
        batch_size = 1
        count_num_samples_in_data_loader = len(DataLoader(
            self.dataset, batch_size=batch_size, sampler=sampler))
        self.assertEqual(num_samples, count_num_samples_in_data_loader)

        # test with dataloader, batch_size = 6
        batch_size = 6
        count_num_samples_in_data_loader = len(DataLoader(
            self.dataset, batch_size=batch_size, sampler=sampler))
        self.assertEqual(int(math.ceil(float(num_samples) / batch_size)),
                         count_num_samples_in_data_loader)

    def test_duplicating_data_with_drop_last(self):

        from torch.utils.data.distributed import DistributedSampler

        num_processes = 4
        num_batches = 9
        data_set = torch.IntTensor(range(num_batches))
        scanned_data = torch.IntTensor([])
        for i in range(num_processes):
            s = DistributedSampler(data_set, num_processes, i)
            d_loader = DataLoader(data_set, batch_size=int(num_batches / num_processes), drop_last=True, sampler=s)
            for k, data in enumerate(d_loader):
                scanned_data = torch.cat((scanned_data, data), 0)

        self.assertEqual(scanned_data.size(), scanned_data.unique().size())

    @unittest.skipIf(NO_MULTIPROCESSING_SPAWN, "Disabled for environments that \
                     don't support multiprocessing with spawn start method")
    def test_batch_sampler(self):
        self._test_batch_sampler()
        self._test_batch_sampler(num_workers=4)

    @unittest.skipIf(not TEST_CUDA, "CUDA unavailable")
    def test_shuffle_pin_memory(self):
        loader = DataLoader(self.dataset, batch_size=2, shuffle=True, num_workers=4, pin_memory=True)
        for input, target in loader:
            self.assertTrue(input.is_pinned())
            self.assertTrue(target.is_pinned())

    @unittest.skipIf(not TEST_NUMPY, "numpy unavailable")
    def test_numpy(self):
        import numpy as np

        class TestDataset(torch.utils.data.Dataset):
            def __getitem__(self, i):
                return np.ones((2, 3, 4)) * i

            def __len__(self):
                return 1000

        loader = DataLoader(TestDataset(), batch_size=12)
        batch = next(iter(loader))
        self.assertIsInstance(batch, torch.DoubleTensor)
        self.assertEqual(batch.size(), torch.Size([12, 2, 3, 4]))

    def test_error(self):
        self._test_error(DataLoader(ErrorDataset(100), batch_size=2, shuffle=True))

    @unittest.skipIf(NO_MULTIPROCESSING_SPAWN, "Disabled for environments that \
                     don't support multiprocessing with spawn start method")
    def test_error_workers(self):
        self._test_error(DataLoader(ErrorDataset(41), batch_size=2, shuffle=True, num_workers=4))

    @unittest.skipIf(IS_WINDOWS, "FIXME: stuck test")
    def test_partial_workers(self):
        r"""Check that workers exit even if the iterator is not exhausted."""
        if TEST_CUDA:
            pin_memory_configs = (True, False)
        else:
            pin_memory_configs = (False,)

        for pin_memory in pin_memory_configs:
            loader = iter(DataLoader(self.dataset, batch_size=2, num_workers=4, pin_memory=pin_memory))
            workers = loader.workers
            if pin_memory:
                pin_memory_thread = loader.pin_memory_thread
            for i, sample in enumerate(loader):
                if i == 10:
                    break
            assert i == 10
            del loader
            for w in workers:
                w.join(JOIN_TIMEOUT)
                self.assertFalse(w.is_alive(), 'subprocess not terminated')
            if pin_memory:
                pin_memory_thread.join(JOIN_TIMEOUT)
                self.assertFalse(pin_memory_thread.is_alive())

    @skipIfRocm
    @unittest.skipIf(not HAS_PSUTIL, "psutil not found")
    def test_proper_exit(self):
        (r'''There might be ConnectionResetError or leaked semaphore warning '''
         r'''(due to dirty process exit), but they are all safe to ignore''')

        # TODO: test the case where the pin_memory_thread triggers an
        #       error/fatal signal. I haven't found out how to properly do that.

        for use_workers, pin_memory, hold_iter_reference in itertools.product([True, False], repeat=3):
            # `hold_iter_reference` specifies whether we hold a reference to the
            # iterator. This is interesting because Python3 error traces holds a
            # reference to the frames, which hold references to all the local
            # variables including the iterator, and then the iterator dtor may
            # not be called before process end. It is important to see that the
            # processes still exit in both cases.

            if pin_memory and (not TEST_CUDA or NO_MULTIPROCESSING_SPAWN):
                # Can't use CUDA without spawn
                continue

            # `exit_method` controls the way the loader process ends.
            #   - `*_kill` means that `*` is killed by OS.
            #   - `*_error` means that `*` raises an error.
            #   - `None` means that no error happens.
            # In all cases, all processes should end properly.
            if use_workers:
                exit_methods = [None, 'loader_error', 'loader_kill', 'worker_kill', 'worker_error']
            else:
                exit_methods = [None, 'loader_error', 'loader_kill']

            for exit_method in exit_methods:

                desc = []
                desc.append('use_workers={}'.format(use_workers))
                desc.append('pin_memory={}'.format(pin_memory))
                desc.append('hold_iter_reference={}'.format(hold_iter_reference))
                desc.append('exit_method={}'.format(exit_method))
                desc = 'test_proper_exit with ' + ', '.join(desc)

                # Event that the loader process uses to signal testing process
                # that various things are setup, including that the worker pids
                # are specified in `worker_pids` array.
                loader_setup_event = mp.Event()

                # Event that this process has finished setting up, and the
                # loader process can now proceed to trigger error events or
                # finish normally.
                tester_setup_event = mp.Event()

                loader_p = ErrorTrackingProcess(target=_test_proper_exit,
                                                args=(use_workers, pin_memory, exit_method,
                                                      hold_iter_reference, loader_setup_event,
                                                      tester_setup_event))
                loader_p.start()

                # Wait for loader process to set everything up, e.g., starting
                # workers.
                loader_setup_event.wait(timeout=JOIN_TIMEOUT)
                if not loader_setup_event.is_set():
                    fail_msg = desc + ': loader process failed to setup within given time'
                    if loader_p.exception is not None:
                        self.fail(fail_msg + ', and had exception {}'.format(loader_p.exception))
                    elif not loader_p.is_alive():
                        self.fail(fail_msg + ', and exited with code {} but had no exception'.format(loader_p.exitcode))
                    else:
                        self.fail(fail_msg + ', and is still alive.')

                worker_psutil_p = psutil.Process(loader_p.pid).children()

                tester_setup_event.set()

                try:
                    loader_p.join(JOIN_TIMEOUT + MP_STATUS_CHECK_INTERVAL)
                    if loader_p.is_alive():
                        fail_msg = desc + ': loader process did not terminate'
                        if loader_p.exception is not None:
                            self.fail(fail_msg + ', and had exception {}'.format(loader_p.exception))
                        else:
                            self.fail(fail_msg + ', and had no exception')
                    _, alive = psutil.wait_procs(worker_psutil_p, timeout=(MP_STATUS_CHECK_INTERVAL + JOIN_TIMEOUT))
                    if len(alive) > 0:
                        self.fail(desc + ': worker process (pid(s) {}) did not terminate'.format(
                            ', '.join(str(p.pid) for p in alive)))
                    if exit_method is None:
                        self.assertEqual(loader_p.exitcode, 0)
                    else:
                        self.assertNotEqual(loader_p.exitcode, 0)
                        if exit_method == 'loader_error':
                            self.assertIsInstance(loader_p.exception, RuntimeError, desc)
                            self.assertIn('Loader error', str(loader_p.exception), desc)
                        elif exit_method == 'worker_kill':
                            self.assertIsInstance(loader_p.exception, RuntimeError, desc)
                            self.assertIn('DataLoader worker (pid', str(loader_p.exception), desc)
                        elif exit_method == 'worker_error':
                            self.assertIsInstance(loader_p.exception, RuntimeError, desc)
                            self.assertIn('Worker error', str(loader_p.exception), desc)
                finally:
                    loader_p.terminate()

    def test_len(self):
        def check_len(dl, expected):
            self.assertEqual(len(dl), expected)
            n = 0
            for sample in dl:
                n += 1
            self.assertEqual(n, expected)
        check_len(self.dataset, 100)
        check_len(DataLoader(self.dataset, batch_size=2), 50)
        check_len(DataLoader(self.dataset, batch_size=3), 34)

    @unittest.skipIf(not TEST_NUMPY, "numpy unavailable")
    def test_numpy_scalars(self):
        import numpy as np

        class ScalarDataset(torch.utils.data.Dataset):
            def __init__(self, dtype):
                self.dtype = dtype

            def __getitem__(self, i):
                return self.dtype()

            def __len__(self):
                return 4

        dtypes = {
            np.float64: torch.DoubleTensor,
            np.float32: torch.FloatTensor,
            np.float16: torch.HalfTensor,
            np.int64: torch.LongTensor,
            np.int32: torch.IntTensor,
            np.int16: torch.ShortTensor,
            np.int8: torch.CharTensor,
            np.uint8: torch.ByteTensor,
        }
        for dt, tt in dtypes.items():
            dset = ScalarDataset(dt)
            loader = DataLoader(dset, batch_size=2)
            batch = next(iter(loader))
            self.assertIsInstance(batch, tt)

    def test_default_collate_dtype(self):
        arr = [1, 2, -1]
        collated = _utils.collate.default_collate(arr)
        self.assertEqual(collated, torch.tensor(arr))
        self.assertEqual(collated.dtype, torch.int64)

        arr = [1.1, 2.3, -0.9]
        collated = _utils.collate.default_collate(arr)
        self.assertEqual(collated, torch.tensor(arr))
        self.assertEqual(collated.dtype, torch.float64)

        arr = [True, False]
        collated = _utils.collate.default_collate(arr)
        self.assertEqual(collated, torch.tensor(arr))
        self.assertEqual(collated.dtype, torch.uint8)

        # Should be a no-op
        arr = ['a', 'b', 'c']
        self.assertEqual(arr, _utils.collate.default_collate(arr))

    @unittest.skipIf(not TEST_NUMPY, "numpy unavailable")
    def test_default_collate_bad_numpy_types(self):
        import numpy as np

        # Should be a no-op
        arr = np.array(['a', 'b', 'c'])
        self.assertEqual(arr, _utils.collate.default_collate(arr))

        arr = np.array([[['a', 'b', 'c']]])
        self.assertRaises(TypeError, lambda: _utils.collate.default_collate(arr))

        arr = np.array([object(), object(), object()])
        self.assertRaises(TypeError, lambda: _utils.collate.default_collate(arr))

        arr = np.array([[[object(), object(), object()]]])
        self.assertRaises(TypeError, lambda: _utils.collate.default_collate(arr))

    @unittest.skipIf(not TEST_NUMPY, "numpy unavailable")
    def test_default_collate_shared_tensor(self):
        import numpy as np
        t_in = torch.zeros(1)
        n_in = np.zeros(1)

        self.assertEqual(t_in.is_shared(), False)

        self.assertEqual(_utils.collate.default_collate([t_in]).is_shared(), False)
        self.assertEqual(_utils.collate.default_collate([n_in]).is_shared(), False)

        old = _utils.collate._use_shared_memory
        try:
            _utils.collate._use_shared_memory = True
            self.assertEqual(_utils.collate.default_collate([t_in]).is_shared(), True)
            self.assertEqual(_utils.collate.default_collate([n_in]).is_shared(), True)
        finally:
            _utils.collate._use_shared_memory = old


class StringDataset(Dataset):
    def __init__(self):
        self.s = '12345'

    def __len__(self):
        return len(self.s)

    def __getitem__(self, ndx):
        return (self.s[ndx], ndx)


class TestStringDataLoader(TestCase):
    def setUp(self):
        self.dataset = StringDataset()

    @unittest.skipIf(not TEST_CUDA, "CUDA unavailable")
    def test_shuffle_pin_memory(self):
        loader = DataLoader(self.dataset, batch_size=2, shuffle=True, num_workers=4, pin_memory=True)
        for batch_ndx, (s, n) in enumerate(loader):
            self.assertIsInstance(s[0], str)
            self.assertTrue(n.is_pinned())


class DictDataset(Dataset):
    def __len__(self):
        return 4

    def __getitem__(self, ndx):
        return {
            'a_tensor': torch.Tensor(4, 2).fill_(ndx),
            'another_dict': {
                'a_number': ndx,
            },
        }


class TestDictDataLoader(TestCase):
    def setUp(self):
        self.dataset = DictDataset()

    def test_sequential_batch(self):
        loader = DataLoader(self.dataset, batch_size=2, shuffle=False)
        batch_size = loader.batch_size
        for i, sample in enumerate(loader):
            idx = i * batch_size
            self.assertEqual(set(sample.keys()), {'a_tensor', 'another_dict'})
            self.assertEqual(set(sample['another_dict'].keys()), {'a_number'})

            t = sample['a_tensor']
            self.assertEqual(t.size(), torch.Size([batch_size, 4, 2]))
            self.assertTrue((t[0] == idx).all())
            self.assertTrue((t[1] == idx + 1).all())

            n = sample['another_dict']['a_number']
            self.assertEqual(n.size(), torch.Size([batch_size]))
            self.assertEqual(n[0], idx)
            self.assertEqual(n[1], idx + 1)

    @unittest.skipIf(not TEST_CUDA, "CUDA unavailable")
    def test_pin_memory(self):
        loader = DataLoader(self.dataset, batch_size=2, pin_memory=True)
        for batch_ndx, sample in enumerate(loader):
            self.assertTrue(sample['a_tensor'].is_pinned())
            self.assertTrue(sample['another_dict']['a_number'].is_pinned())


class NamedTupleDataset(Dataset):
    from collections import namedtuple
    Batch = namedtuple('Batch', ['data', 'label'])
    Data = namedtuple('Data', ['positive', 'negative'])

    def __len__(self):
        return 4

    def __getitem__(self, ndx):
        return self.Batch(data=self.Data(positive=ndx, negative=-ndx),
                          label=str(ndx))


class TestNamedTupleDataLoader(TestCase):
    def setUp(self):
        self.dataset = NamedTupleDataset()

    @unittest.skipIf(not TEST_CUDA, "CUDA unavailable")
    def test_collate_and_pin_memory_with_namedtuple(self):
        loader = DataLoader(self.dataset, batch_size=2, pin_memory=True)
        for batch in loader:
            self.assertIsInstance(batch, NamedTupleDataset.Batch)
            self.assertIsInstance(batch.data, NamedTupleDataset.Data)


class SimpleCustomBatch:
    def __init__(self, data):
        transposed_data = list(zip(*data))
        self.inp = torch.stack(transposed_data[0], 0)
        self.tgt = torch.stack(transposed_data[1], 0)

    def pin_memory(self):
        self.inp = self.inp.pin_memory()
        self.tgt = self.tgt.pin_memory()
        return self


def collate_wrapper(batch):
    return SimpleCustomBatch(batch)


class TestCustomPinFn(TestCase):
    def setUp(self):
        inps = torch.arange(10 * 5, dtype=torch.float32).view(10, 5)
        tgts = torch.arange(10 * 5, dtype=torch.float32).view(10, 5)
        self.dataset = TensorDataset(inps, tgts)

    @unittest.skipIf(not TEST_CUDA, "CUDA unavailable")
    @skipIfRocm
    def test_custom_batch_pin(self):
        loader = DataLoader(self.dataset, batch_size=2, collate_fn=collate_wrapper,
                            pin_memory=True)
        for batch_ndx, sample in enumerate(loader):
            self.assertTrue(sample.inp.is_pinned())
            self.assertTrue(sample.tgt.is_pinned())

    @unittest.skipIf(not TEST_CUDA, "CUDA unavailable")
    @skipIfRocm
    def test_custom_batch_pin_worker(self):
        loader = DataLoader(self.dataset, batch_size=2, collate_fn=collate_wrapper,
                            pin_memory=True, num_workers=1)
        for batch_ndx, sample in enumerate(loader):
            self.assertTrue(sample.inp.is_pinned())
            self.assertTrue(sample.tgt.is_pinned())


class TestWorkerQueueDataset(Dataset):
    def __init__(self, data):
        self.data = data
        self.worker_id = None

    def worker_init_fn(self, worker_id):
        self.worker_id = worker_id

    def __getitem__(self, item):
        return self.worker_id, self.data[item]

    def __len__(self):
        return len(self.data)


class TestIndividualWorkerQueue(TestCase):
    def setUp(self):
        self.dataset = TestWorkerQueueDataset([i for i in range(128)])

    def _run_ind_worker_queue_test(self, batch_size, num_workers):
        loader = DataLoader(
            self.dataset, batch_size=batch_size, shuffle=False, num_workers=num_workers,
            worker_init_fn=self.dataset.worker_init_fn
        )
        current_worker_idx = 0
        for i, (worker_ids, sample) in enumerate(loader):
            self.assertEqual(worker_ids.tolist(), [current_worker_idx] * batch_size)
            self.assertEqual(sample.tolist(), [j for j in range(i * batch_size, (i + 1) * batch_size)])
            current_worker_idx += 1
            if current_worker_idx == num_workers:
                current_worker_idx = 0

    def test_ind_worker_queue(self):
        for batch_size in (8, 16, 32, 64):
            for num_workers in range(1, 6):
                self._run_ind_worker_queue_test(batch_size=batch_size, num_workers=num_workers)


if __name__ == '__main__':
    run_tests()