1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
|
import io
import math
import tempfile
import re
import unittest
import sys
from itertools import repeat
import os
from contextlib import contextmanager
import torch
import torch.cuda
import torch.cuda.comm as comm
from torch import multiprocessing as mp
from torch._six import inf, nan
from test_torch import _TestTorchMixin
from common_methods_invocations import tri_tests_args, tri_large_tests_args, \
run_additional_tri_tests, _compare_trilu_indices, _compare_large_trilu_indices
from common_utils import TestCase, get_gpu_type, to_gpu, freeze_rng_state, run_tests, \
PY3, IS_WINDOWS, NO_MULTIPROCESSING_SPAWN, skipIfRocm, TEST_NUMPY, TEST_WITH_ROCM, load_tests, iter_indices
# load_tests from common_utils is used to automatically filter tests for
# sharding on sandcastle. This line silences flake warnings
load_tests = load_tests
# We cannot import TEST_CUDA and TEST_MULTIGPU from common_cuda here,
# because if we do that, the TEST_CUDNN line from common_cuda will be executed
# multiple times as well during the execution of this test suite, and it will
# cause CUDA OOM error on Windows.
TEST_CUDA = torch.cuda.is_available()
TEST_MULTIGPU = TEST_CUDA and torch.cuda.device_count() >= 2
if not TEST_CUDA:
print('CUDA not available, skipping tests')
TestCase = object # noqa: F811
TEST_MAGMA = TEST_CUDA
TEST_LARGE_TENSOR = TEST_CUDA
if TEST_CUDA:
torch.ones(1).cuda() # has_magma shows up after cuda is initialized
TEST_MAGMA = torch.cuda.has_magma
TEST_LARGE_TENSOR = torch.cuda.get_device_properties(0).total_memory >= 9e9
floating_set = {torch.FloatTensor, torch.DoubleTensor, torch.cuda.FloatTensor,
torch.cuda.DoubleTensor, torch.HalfTensor, torch.cuda.HalfTensor}
def is_floating(t):
if not isinstance(t, type):
raise TypeError('t should be an instance of type')
assert t != torch.autograd.Variable
return t in floating_set
def is_half(t):
if isinstance(t, torch.Tensor):
return t.dtype == torch.float16
assert isinstance(t, type)
assert t != torch.autograd.Variable
return t in [torch.HalfTensor, torch.cuda.HalfTensor]
types = [
torch.FloatTensor,
torch.DoubleTensor,
torch.LongTensor,
torch.IntTensor,
torch.ShortTensor,
torch.CharTensor,
torch.ByteTensor,
torch.HalfTensor,
]
signed_types = [
torch.FloatTensor,
torch.DoubleTensor,
torch.LongTensor,
torch.IntTensor,
torch.ShortTensor,
torch.CharTensor,
]
unsigned_types = [
torch.ByteTensor,
]
float_types = [
torch.FloatTensor,
torch.DoubleTensor,
torch.HalfTensor,
]
float_types_no_half = [
torch.FloatTensor,
torch.DoubleTensor,
]
def number(floating, integer, t):
return floating if is_floating(t) else integer
def cast_tensor(tensor, t):
return t(tensor.size()).copy_(tensor)
S = 10
M = 50
G = 275000000
def make_tensor(t, *sizes):
if 'Half' in t.__name__:
return t(*sizes).copy_(torch.randn(*sizes))
else:
tensor = t(*sizes)
if tensor.is_floating_point():
return tensor.normal_()
else:
return tensor.random_(0, 10)
def make_sparse_tensor(t, n, *sizes):
assert t.is_sparse
tensor = t()
i = tensor._indices()
i = i.new(len(sizes), n).copy_(
torch.cat([torch.LongTensor(1, n).random_(s) for s in sizes], 0))
v = tensor._values()
v = v.new(n).copy_(torch.randn(n))
return t(i, v, torch.Size(sizes))
def tensor_clamp(t, min, max):
if is_half(t):
return t.float().clamp(min, max).half()
else:
return t.clamp(min, max)
def tensor_mul(t, scale):
if is_half(t):
return t.float().mul(scale).half()
else:
return t.mul(scale)
def tensor_abs_(t):
if is_half(t):
return t.float().abs_().half()
else:
return t.abs_()
def constant_tensor_sub(a, b):
# helper function to address const - torch.HalfTensor where it doesn't
# have resize_as()
if is_half(b):
return (a - b.float()).half()
else:
return a - b
def constant_tensor_add(a, b):
# helper function to address const + torch.HalfTensor where it doesn't
# have add()
if is_half(b):
return (a + b.float()).half()
else:
return a + b
def small_0d(t):
return make_tensor(t, (1,)).squeeze()
def small_2d(t):
return make_tensor(t, S, S)
def small_2d_scaled(t, scale=10):
return tensor_mul(make_tensor(t, S, S), scale)
def small_2d_oneish(t):
if is_floating(t):
return tensor_clamp(make_tensor(t, S, S), min=0.99, max=1.01)
else:
return t(S, S).fill_(1)
def small_3d(t):
return make_tensor(t, S, S, S)
def medium_1d(t):
return make_tensor(t, M)
def medium_2d(t):
return make_tensor(t, M, M)
def medium_2d_expanded(t):
return t(1).expand(M, M)
def medium_2d_scaled(t, scale=10):
return tensor_mul(make_tensor(t, M, M), scale)
def small_3d_ones(t):
return t(S, S, S).copy_(torch.ones(S, S, S))
def small_3d_positive(t):
# In div_tensor(), half cannot achieve float precision
min_val = 1e-3 if is_floating(t) and not is_half(t) else 2
return tensor_clamp(make_tensor(t, S, S, S), min_val, 120)
def small_3d_unique(t):
return t(S, S, S).copy_(torch.arange(1, S * S * S + 1).view(S, S, S))
def small_1d_lapack(t):
return t(1, 3).copy_(torch.arange(1, 4).view(3))
def small_2d_lapack(t):
return t(3, 3).copy_(torch.arange(1, 10).view(3, 3))
def small_2d_lapack_skinny(t):
return t(3, 4).copy_(torch.arange(1, 13).view(3, 4))
def small_2d_lapack_fat(t):
return t(4, 3).copy_(torch.arange(1, 13).view(4, 3))
def large_2d_lapack(t):
return t(1000, 1000).normal_()
def giant_1d_ones(t):
return t(G).copy_(torch.ones(G))
def long_type(t):
return torch.cuda.LongTensor if 'cuda' in t.__module__ else torch.LongTensor
def new_t(*sizes):
def tmp(t):
return t(*sizes).copy_(torch.randn(*sizes))
return tmp
# Content of each tuple:
# - function name
# - constructor for the tensor, signature: fn(tensor_type) -> tensor
# - constructor for the arguments, signature: fn(tensor_type) -> list
# - postfix name for the test (must be unique for a given function) (default='')
# - tensor types to use (default=types)
# - disable inplace test, if set to True, no inplace test will be done (default=False)
# - decorator, e.g., unittest.skipIf (default is no decorator)
tests = [
('add', small_3d, lambda t: [number(3.14, 3, t)]),
('add', small_3d, lambda t: [small_3d_positive(t)], 'tensor'),
('add', small_3d, lambda t: [number(0.2, 2, t), small_3d_positive(t)], 'scalar_tensor'),
('sub', small_3d, lambda t: [number(3.14, 3, t)]),
('sub', small_3d, lambda t: [small_3d_positive(t)], 'tensor'),
('mul', small_3d, lambda t: [number(3.14, 3, t)]),
('mul', small_3d, lambda t: [small_3d_positive(t)], 'tensor'),
('mul', small_0d, lambda t: [small_0d(torch.IntTensor)], 'scalar', types, True),
('div', small_3d, lambda t: [number(3.14, 3, t)]),
('div', small_3d, lambda t: [small_3d_positive(t)], 'tensor'),
('pow', small_3d, lambda t: [number(3.14, 3, t)], None, float_types),
('pow', small_3d, lambda t: [number(1., 1, t)], 'pow1'),
('pow', small_3d, lambda t: [number(2., 2, t)], 'pow2'),
('pow', small_3d, lambda t: [number(3., 3, t)], 'pow3'),
('pow', small_3d, lambda t: [number(-1., -1, t)], 'pow-1', float_types),
# HalfTensor gives bad result at pow-2 with data sampled from torch.randn
('pow', small_3d, lambda t: [number(-2., -2, t)], 'pow-2', float_types_no_half, False,
"skipIfRocm:FloatTensor"),
('pow', small_3d, lambda t: [tensor_abs_(small_3d(t))], 'tensor', float_types),
('addbmm', small_2d, lambda t: [small_3d(t), small_3d(t)], None, float_types),
('addbmm', small_2d, lambda t: [number(0.4, 2, t), small_3d(t), small_3d(t)], 'scalar'),
('addbmm', small_2d, lambda t: [number(0.5, 3, t), number(0.4, 2, t), small_3d(t), small_3d(t)], 'two_scalars'),
('baddbmm', small_3d, lambda t: [small_3d(t), small_3d(t)],),
('baddbmm', small_3d, lambda t: [number(0.4, 2, t), small_3d(t), small_3d(t)], 'scalar'),
('baddbmm', small_3d, lambda t: [number(0.5, 3, t), number(0.4, 2, t), small_3d(t), small_3d(t)], 'two_scalars'),
('bmm', small_3d, lambda t: [small_3d(t)], '', float_types_no_half),
('addcdiv', small_2d_lapack, lambda t: [tensor_mul(small_2d_lapack(t), 2), small_2d_lapack(t)]),
('addcdiv', small_2d_lapack, lambda t: [number(2.8, 1, t), tensor_mul(small_2d_lapack(t), 2), small_2d_lapack(t)],
'scalar'),
('addcmul', small_3d, lambda t: [small_3d(t), small_3d(t)]),
('addcmul', small_3d, lambda t: [number(0.4, 2, t), small_3d(t), small_3d(t)], 'scalar'),
('addmm', medium_2d, lambda t: [medium_2d(t), medium_2d(t)]),
('addmm', medium_2d, lambda t: [number(0.4, 2, t), medium_2d(t), medium_2d(t)], 'scalar'),
('addmm', medium_2d, lambda t: [number(0.5, 3, t), number(0.4, 2, t), medium_2d(t), medium_2d(t)], 'two_scalars'),
('addmv', medium_1d, lambda t: [medium_2d(t), medium_1d(t)],),
('addmv', medium_1d, lambda t: [number(0.4, 2, t), medium_2d(t), medium_1d(t)], 'scalar'),
('addmv', medium_1d, lambda t: [number(0.5, 3, t), number(0.4, 2, t), medium_2d(t), medium_1d(t)], 'two_scalars'),
('addr', medium_2d, lambda t: [medium_1d(t), medium_1d(t)]),
('addr', medium_2d, lambda t: [number(0.4, 2, t), medium_1d(t), medium_1d(t)], 'scalar'),
('addr', medium_2d, lambda t: [number(0.5, 3, t), number(0.4, 2, t), medium_1d(t), medium_1d(t)], 'two_scalars'),
('atan2', medium_2d, lambda t: [medium_2d(t)], None, float_types + [torch.HalfTensor]),
('fmod', small_3d, lambda t: [3], 'value',),
('fmod', small_3d, lambda t: [small_3d_positive(t)], 'tensor'),
('chunk', medium_2d, lambda t: [4],),
('chunk', medium_2d, lambda t: [4, 1], 'dim'),
('chunk', medium_2d, lambda t: [4, -2], 'neg_dim'),
('clamp', medium_2d_scaled, lambda t: [-1, 5], None, signed_types),
('clamp', medium_2d_scaled, lambda t: [1, 5], None, unsigned_types),
('clone', medium_2d, lambda t: [],),
('contiguous', medium_2d, lambda t: [],),
('cross', new_t(M, 3, M), lambda t: [new_t(M, 3, M)(t)],),
('cumprod', small_3d, lambda t: [1]),
('cumprod', small_3d, lambda t: [-1], 'neg_dim'),
('cumsum', small_3d, lambda t: [1]),
('cumsum', small_3d, lambda t: [-1], 'neg_dim'),
('dim', small_3d, lambda t: [],),
('dist', small_2d, lambda t: [small_2d(t)]),
('dist', small_2d, lambda t: [small_2d(t), 3], '3_norm'),
('dist', small_2d, lambda t: [small_2d(t), 2.5], '2_5_norm'),
('dot', medium_1d, lambda t: [medium_1d(t)], '', types, False, "skipIfRocm:HalfTensor"),
('element_size', medium_1d, lambda t: [],),
('eq', small_3d_ones, lambda t: [small_3d(t)],),
('eq', small_3d_ones, lambda t: [small_3d_ones(t)], 'equal'),
('ne', small_3d_ones, lambda t: [small_3d(t)],),
('ne', small_3d_ones, lambda t: [small_3d_ones(t)], 'equal'),
('equal', small_3d_ones, lambda t: [small_3d_ones(t)], 'equal'),
('equal', small_3d_ones, lambda t: [small_3d(t)],),
('expand', new_t(M, 1, M), lambda t: [M, 4, M],),
('expand_as', new_t(M, 1, M), lambda t: [new_t(M, 4, M)(t)],),
('fill', medium_2d, lambda t: [number(3.14, 3, t)]),
('ge', medium_2d, lambda t: [medium_2d(t)],),
('le', medium_2d, lambda t: [medium_2d(t)],),
('gt', medium_2d, lambda t: [medium_2d(t)],),
('lt', medium_2d, lambda t: [medium_2d(t)],),
('is_contiguous', medium_2d, lambda t: [],),
# TODO: can't check negative case - GPU copy will be contiguous
('is_same_size', medium_2d, lambda t: [small_3d(t)], 'negative'),
('is_same_size', medium_2d, lambda t: [medium_2d(t)], 'positive'),
('is_set_to', medium_2d, lambda t: [medium_2d(t)],),
# TODO: positive case
('kthvalue', small_3d_unique, lambda t: [3],),
('kthvalue', small_3d_unique, lambda t: [3, 1], 'dim'),
('kthvalue', small_3d_unique, lambda t: [3, -1], 'neg_dim'),
('lerp', small_3d, lambda t: [small_3d(t), 0.3]),
('max', small_3d_unique, lambda t: []),
('max', small_3d_unique, lambda t: [1], 'dim'),
('max', small_3d_unique, lambda t: [-1], 'neg_dim'),
('max', medium_2d, lambda t: [medium_2d(t)], 'elementwise'),
('min', small_3d_unique, lambda t: []),
('min', small_3d_unique, lambda t: [1], 'dim'),
('min', small_3d_unique, lambda t: [-1], 'neg_dim'),
('min', medium_2d, lambda t: [medium_2d(t)], 'elementwise'),
('mean', small_3d, lambda t: []),
('mean', small_3d, lambda t: [-1], 'neg_dim'),
('mean', small_3d, lambda t: [1], 'dim'),
('mean', giant_1d_ones, lambda t: [], '64bit_indexing',
# Double here because otherwise the CPU result will be
# wrong.
[torch.DoubleTensor]),
('mode', small_3d, lambda t: []),
('mode', small_3d, lambda t: [1], 'dim'),
('mode', small_3d, lambda t: [-1], 'neg_dim'),
('mvlgamma', lambda t: tensor_clamp(small_2d(t), 0.1, 10), lambda t: [1], '2d_p=1', float_types_no_half),
('mvlgamma', lambda t: tensor_clamp(small_2d(t), 0.6, 10), lambda t: [2], '2d_p=2', float_types_no_half),
('remainder', small_3d, lambda t: [3], 'value',),
('remainder', small_3d, lambda t: [-3], 'negative_value', signed_types),
('remainder', small_3d, lambda t: [small_3d_positive(t)], 'tensor'),
('remainder', small_3d, lambda t: [constant_tensor_sub(0, small_3d_positive(t))], 'negative_tensor', signed_types),
('std', small_3d, lambda t: []),
('std', small_3d, lambda t: [1], 'dim', types, False, skipIfRocm),
('std', small_3d, lambda t: [-1], 'neg_dim', types, False, skipIfRocm),
('var', small_3d, lambda t: []),
('var', small_3d, lambda t: [1], 'dim'),
('var', small_3d, lambda t: [-1], 'neg_dim'),
('ndimension', small_3d, lambda t: [],),
('nelement', small_3d, lambda t: [],),
('numel', small_3d, lambda t: [],),
('narrow', small_3d, lambda t: [1, 3, 2],),
('narrow', small_3d, lambda t: [-1, 3, 2], 'neg_dim'),
('nonzero', small_3d, lambda t: [], '', types, False, skipIfRocm),
('norm', small_3d, lambda t: []),
('norm', small_3d, lambda t: [3], '3_norm'),
('norm', small_3d, lambda t: [3, 0], '3_norm_dim'),
('norm', small_3d, lambda t: [3, -2], '3_norm_neg_dim'),
('ones', small_3d, lambda t: [1, 2, 3, 4, 5],),
('permute', new_t(1, 2, 3, 4), lambda t: [2, 1, 3, 0],),
('put_', new_t(2, 5, 3), lambda t: [long_type(t)([[0], [-2]]), t([[3], [4]])], '', types, False, skipIfRocm),
('put_', new_t(2, 3), lambda t: [long_type(t)([]), t([])], 'empty'),
('put_', new_t(2, 2), lambda t: [long_type(t)([[1], [-3]]), t([[1], [2]]), True], 'accumulate'),
('prod', small_2d_oneish, lambda t: []),
('prod', small_3d, lambda t: [1], 'dim'),
('prod', small_3d, lambda t: [-1], 'neg_dim'),
('sum', small_2d, lambda t: []),
('sum', small_3d, lambda t: [1], 'dim'),
('sum', small_3d, lambda t: [-1], 'neg_dim'),
('renorm', small_3d, lambda t: [2, 1, 1], '2_norm'),
('renorm', small_3d, lambda t: [2, -1, 1], '2_norm_neg_dim'),
('renorm', small_3d, lambda t: [1.5, 1, 1], '1_5_norm'),
('repeat', small_2d, lambda t: [2, 2, 2],),
('size', new_t(1, 2, 3, 4), lambda t: [],),
('size', new_t(1, 2, 3, 4), lambda t: [1], 'dim'),
('size', new_t(1, 2, 3, 4), lambda t: [-2], 'neg_dim'),
('sort', small_3d_unique, lambda t: [], ''),
('sort', small_3d_unique, lambda t: [1], 'dim'),
('sort', small_3d_unique, lambda t: [-1], 'neg_dim'),
('sort', small_3d_unique, lambda t: [1, True], 'dim_descending'),
('sort', small_3d_unique, lambda t: [-1, True], 'neg_dim_descending'),
('split', small_3d, lambda t: [2],),
('split', small_3d, lambda t: [2, 1], 'dim'),
('split', small_3d, lambda t: [2, -3], 'neg_dim'),
('squeeze', new_t(1, 2, 1, 4), lambda t: [],),
('squeeze', new_t(1, 2, 1, 4), lambda t: [2], 'dim'),
('squeeze', new_t(1, 2, 1, 4), lambda t: [-2], 'neg_dim'),
('t', new_t(1, 2), lambda t: [],),
('take', new_t(3, 4), lambda t: [long_type(t)([[0], [-2]])], '', types, False, skipIfRocm),
('transpose', new_t(1, 2, 3, 4), lambda t: [1, 2],),
('transpose', new_t(1, 2, 3, 4), lambda t: [-1, -2], 'neg_dim'),
('to_list', small_3d, lambda t: [],),
('topk', small_3d_unique, lambda t: [2, 1, False, True], 'dim_sort',),
('topk', small_3d_unique, lambda t: [2, -1, False, True], 'neg_dim_sort',),
('topk', small_3d_unique, lambda t: [2, 1, True, True], 'dim_desc_sort',),
('trace', medium_2d, lambda t: []),
('tril', medium_2d, lambda t: [],),
('tril', medium_2d_expanded, lambda t: [], 'zero_stride', types, True),
('tril', medium_2d, lambda t: [2], 'positive'),
('tril', medium_2d, lambda t: [-2], 'negative'),
('triu', medium_2d, lambda t: [],),
('triu', medium_2d_expanded, lambda t: [], 'zero_stride', types, True),
('triu', medium_2d, lambda t: [2], 'positive'),
('triu', medium_2d, lambda t: [-2], 'negative'),
('unsqueeze', new_t(2, 3, 4), lambda t: [2],),
('unsqueeze', new_t(2, 3, 4), lambda t: [-2], 'neg_dim'),
('view', small_3d, lambda t: [100, 10], 'contiguous'),
('view_as', small_3d, lambda t: [make_tensor(t, 100, 10)],),
('zero', small_3d, lambda t: [],),
('zeros', small_3d, lambda t: [1, 2, 3, 4],),
('eye', small_2d, lambda t: [3, 4],),
('flip', small_3d, lambda t: [0], 'd0', types, True),
('flip', small_3d, lambda t: [0, 1, 2], 'd012', types, True),
('flip', small_3d, lambda t: [0, 2], 'd02', types, True),
('flip', small_3d, lambda t: [2, 0], 'd20', types, True),
('flip', small_3d, lambda t: [-1], 'neg_d', types, True),
('rot90', small_2d, lambda t: [1, [0, 1]], 'k1_d01', types, True),
('rot90', small_3d, lambda t: [1, [1, 2]], 'k1_d12', types, True),
('rot90', small_3d, lambda t: [1, [1, -1]], 'k1_neg_d', types, True),
('rot90', small_3d, lambda t: [], 'default', types, True),
('rsqrt', lambda t: constant_tensor_add(1, small_3d(t)), lambda t: [], None, float_types),
('sinh', lambda t: tensor_clamp(small_3d(t), -1, 1), lambda t: [], None, float_types),
('tan', lambda t: tensor_clamp(small_3d(t), -1, 1), lambda t: [], None, float_types),
('__lshift__', lambda t: torch.pow(2, cast_tensor(torch.arange(1, 5), t)),
lambda t: [2], None, signed_types),
('__rshift__', lambda t: torch.pow(2, cast_tensor(torch.arange(3, 7), t)),
lambda t: [2], None, signed_types),
# lapack tests
('qr', small_2d_lapack, lambda t: [], 'square', float_types, False,
unittest.skipIf(not TEST_MAGMA, "no MAGMA library detected")),
('qr', small_2d_lapack_skinny, lambda t: [], 'skinny', float_types, False,
unittest.skipIf(not TEST_MAGMA, "no MAGMA library detected")),
('qr', small_2d_lapack_fat, lambda t: [], 'fat', float_types, False,
unittest.skipIf(not TEST_MAGMA, "no MAGMA library detected")),
('qr', large_2d_lapack, lambda t: [], 'big', float_types, False,
unittest.skipIf(not TEST_MAGMA, "no MAGMA library detected")),
('geqrf', new_t(20, 20), lambda t: [], None, float_types, False,
unittest.skipIf(not TEST_MAGMA, "no MAGMA library detected")),
('svd', new_t(10, 10), lambda t: [], 'square', float_types_no_half, False,
unittest.skipIf(not TEST_MAGMA, "no MAGMA library detected")),
('svd', lambda t: new_t(10, 10)(t).t(), lambda t: [True], 'square_col_maj',
float_types_no_half, False,
unittest.skipIf(not TEST_MAGMA, "no MAGMA library detected")),
('svd', new_t(20, 5), lambda t: [True], 'tall_some', float_types_no_half, False,
unittest.skipIf(not TEST_MAGMA, "no MAGMA library detected")),
('svd', new_t(20, 5), lambda t: [False], 'tall_all', float_types_no_half, False,
unittest.skipIf(not TEST_MAGMA, "no MAGMA library detected")),
('svd', lambda t: new_t(5, 20)(t).t(), lambda t: [True],
'tall_some_col_maj', float_types_no_half, False,
unittest.skipIf(not TEST_MAGMA, "no MAGMA library detected")),
('svd', lambda t: new_t(5, 20)(t).t(), lambda t: [False],
'tall_all_col_maj', float_types_no_half, False,
unittest.skipIf(not TEST_MAGMA, "no MAGMA library detected")),
('eig', new_t(10, 10), lambda t: [True], 'with_eigvec', float_types_no_half, False,
unittest.skipIf(not TEST_MAGMA, "no MAGMA library detected")),
]
# TODO: random functions, cat, gather, scatter, index*, masked*,
# resize, resizeAs, storage_offset, storage, stride, unfold
custom_precision = {
'addbmm': 1e-4,
'addmm': 1e-4,
'addmv': 1e-4,
'addr': 1e-4,
'baddbmm': 1e-4,
'rsqrt': 1e-4,
'cumprod': 1e-4,
'qr': 3e-4,
'digamma': 1e0, # large values lead to large absolute error but small relative error
}
custom_half_precision = {
'add': 1e-2,
'acos': 1e-3,
'addbmm': 1e-1,
'addcdiv': 1e-2,
'addcmul': 1e-2,
'addmm': 1e-1,
'addmv': 1e-2,
'addr': 1e-2,
'asin': 1e-3,
'atan2': 1e-3,
'atan': 1e-3,
'baddbmm': 1e-2,
'cos': 1e-3,
'cosh': 1e-2,
'cross': 1e-2,
'cumprod': 1e-2,
'cumsum': 1e-2,
'dist': 1e-2,
'div': 1e-3,
'dot': 1e-2,
'erf': 1e-3,
'erfc': 1e-3,
'erfinv': 1e-3,
'exp': 1e-2,
'expm1': 1e-2,
'fill': 1e-3,
'lerp': 1e-2,
'lgamma': 1e-2,
'log': 1e-2,
'log10': 1e-2,
'log1p': 1e-3,
'log2': 1e-2,
'mean': 1e-3,
'mul': 1e-2,
'norm': 1e-1,
'pow': 1e-1,
'prod': 1e-3,
'reciprocal': 1e-1,
'remainder': 1e-3,
'renorm': 1e-3,
'rsqrt': 1e-2,
'sigmoid': 1e-3,
'sin': 1e-3,
'sinh': 1e-3,
'sqrt': 1e-3,
'std': 1e-3,
'sub': 1e-2,
'sum': 1e-2,
'tan': 1e-3,
'tanh': 1e-3,
'trace': 1e-3,
'var': 1e-3,
'__lshift__': 1e-3,
'__rshift__': 1e-3,
}
simple_pointwise = [
'abs',
'sign',
]
for fn in simple_pointwise:
tests.append((fn, small_3d, lambda t: []))
simple_pointwise_float = [
'log',
'log10',
'log1p',
'log2',
'sigmoid',
'sin',
'sqrt',
'tanh',
'acos',
'asin',
'atan',
'cos',
'cosh',
'erf',
'erfc',
'erfinv',
'exp',
'expm1',
'reciprocal',
'floor',
'frac',
'neg',
'round',
'trunc',
'ceil',
'lgamma',
'digamma',
'trigamma',
]
for fn in simple_pointwise_float:
tests.append((fn, small_3d, lambda t: [], None, float_types))
_cycles_per_ms = None
def get_cycles_per_ms():
"""Approximate number of cycles per millisecond for torch.cuda._sleep"""
global _cycles_per_ms
if _cycles_per_ms is None:
start = torch.cuda.Event(enable_timing=True)
end = torch.cuda.Event(enable_timing=True)
start.record()
torch.cuda._sleep(1000000)
end.record()
end.synchronize()
_cycles_per_ms = 1000000 / start.elapsed_time(end)
return _cycles_per_ms
def compare_cpu_gpu(tensor_constructor, arg_constructor, fn, t, precision=1e-5):
def tmp(self):
cpu_tensor = tensor_constructor(t)
gpu_tensor = to_gpu(cpu_tensor)
cpu_args = arg_constructor(t)
gpu_args = [to_gpu(arg) for arg in cpu_args]
if is_half(t):
cpu_tensor = cpu_tensor.float()
cpu_args = [arg.float() if isinstance(arg, torch.Tensor) and is_half(arg) else arg for arg in cpu_args]
cpu_result = getattr(cpu_tensor, fn)(*cpu_args)
try:
gpu_result = getattr(gpu_tensor, fn)(*gpu_args)
except RuntimeError as e:
reason = e.args[0]
if 'only supports floating-point types' in reason or 'unimplemented data type' in reason:
raise unittest.SkipTest('unimplemented data type')
raise
except AttributeError as e:
reason = e.args[0]
if 'object has no attribute' in reason:
raise unittest.SkipTest('unimplemented data type')
raise
# If one changes, another should change as well
self.assertEqual(cpu_tensor, gpu_tensor, precision)
self.assertEqual(cpu_args, gpu_args, precision)
# Compare results
if fn == 'element_size' and t.__name__ == 'HalfTensor':
# Workaround since cpu_result is float
self.assertEqual(2, gpu_result)
else:
self.assertEqual(cpu_result, gpu_result, precision)
return tmp
class TestCuda(TestCase):
_do_cuda_memory_leak_check = True
@staticmethod
def _test_memory_stats_generator(self, device=None, N=35):
if device is None:
device = torch.cuda.current_device()
m0 = torch.cuda.memory_allocated(device)
last_m_arr = [torch.cuda.memory_allocated(device)]
max_m_arr = [torch.cuda.max_memory_allocated(device)]
last_c_arr = [torch.cuda.memory_cached(device)]
max_c_arr = [torch.cuda.max_memory_cached(device)]
def alloc(*size):
with torch.cuda.device(device):
# NOTE: do **not** use methods that can have additional
# memory overhead, e.g., inplace random sampling methods.
# they can leave some memory occupied even after being
# deallocated, e.g., initialized RNG state, causing some
# memory checks below to fail.
return torch.cuda.FloatTensor(*size)
def assert_change(comp=1, empty_cache=False, reset_max_alloc=False, reset_max_cached=False):
# comp > 0: increased
# comp = 0: equal
# comp < 0: decreased
new_m = torch.cuda.memory_allocated(device)
new_max_m = torch.cuda.max_memory_allocated(device)
if comp > 0:
self.assertGreater(new_m, last_m_arr[0])
elif comp < 0:
self.assertLess(new_m, last_m_arr[0])
else:
self.assertEqual(new_m, last_m_arr[0])
self.assertLessEqual(new_m, new_max_m)
self.assertGreaterEqual(new_max_m, max_m_arr[0])
last_m_arr[0] = new_m
max_m_arr[0] = new_max_m
new_c = torch.cuda.memory_cached(device)
new_max_c = torch.cuda.max_memory_cached(device)
# emptying cache may happen (due to allocation or empty_cache), so
# we can't assert new_c >= last_c
self.assertLessEqual(new_c, new_max_c)
self.assertGreaterEqual(new_max_c, max_c_arr[0])
last_c_arr[0] = new_c
max_c_arr[0] = new_max_c
if empty_cache:
torch.cuda.empty_cache()
new_c = torch.cuda.memory_cached(device)
new_max_c = torch.cuda.max_memory_cached(device)
self.assertLessEqual(new_c, last_c_arr[0])
self.assertLessEqual(new_c, new_max_c)
self.assertEqual(new_max_c, max_c_arr[0])
last_c_arr[0] = new_c
if reset_max_alloc:
torch.cuda.reset_max_memory_allocated(device)
self.assertEqual(torch.cuda.memory_allocated(device), last_m_arr[0])
self.assertEqual(torch.cuda.max_memory_allocated(device), last_m_arr[0])
max_m_arr[0] = last_m_arr[0]
self.assertEqual(torch.cuda.memory_cached(device), last_c_arr[0])
self.assertEqual(torch.cuda.max_memory_cached(device), max_c_arr[0])
if reset_max_cached:
torch.cuda.reset_max_memory_cached(device)
self.assertEqual(torch.cuda.memory_allocated(device), last_m_arr[0])
self.assertEqual(torch.cuda.max_memory_allocated(device), max_m_arr[0])
self.assertEqual(torch.cuda.memory_cached(device), last_c_arr[0])
self.assertEqual(torch.cuda.max_memory_cached(device), last_c_arr[0])
max_c_arr[0] = last_c_arr[0]
assert_change(0)
assert_change(0, reset_max_alloc=True)
assert_change(0, empty_cache=True)
assert_change(0, reset_max_cached=True)
assert_change(0)
yield
tensors1 = [alloc(1), alloc(10, 20), alloc(200, 300, 2000)]
m1 = torch.cuda.memory_allocated(device)
assert_change(1)
yield
tensors2 = []
for i in range(1, int(N / 2) + 1):
# small ones
tensors2.append(alloc(i, i * 4))
assert_change(1)
yield
for i in range(5, int(N / 2) + 5):
# large ones
tensors2.append(alloc(i, i * 7, i * 9, i * 11))
assert_change(1, reset_max_alloc=(i % 2 == 0), reset_max_cached=(i % 2 == 1))
yield
tensors2.append(alloc(0, 0, 0))
assert_change(0)
yield
permute = []
for i in torch.randperm(len(tensors2)):
permute.append(tensors2[i])
assert_change(0)
yield
del tensors2
assert_change(0)
yield
tensors2 = permute
assert_change(0)
yield
del permute
assert_change(0, reset_max_alloc=True)
yield
for i in range(int(N / 2)):
x = tensors2[i].numel()
del tensors2[i]
assert_change(-x) # in case that tensors2[i] is empty
yield
for i in range(2, int(2 * N / 3) + 2):
tensors2.append(alloc(i, i * 3, i * 8))
assert_change(1)
yield
del tensors2
assert_change(-1, reset_max_cached=True)
assert_change(0)
self.assertEqual(torch.cuda.memory_allocated(device), m1)
yield True
del tensors1
assert_change(-1, reset_max_alloc=True)
self.assertEqual(torch.cuda.memory_allocated(device), m0)
# test empty_cache and reset_max_memory_*
assert_change(0, empty_cache=True)
assert_change(0, reset_max_cached=True)
assert_change(0, reset_max_alloc=True)
def test_memory_stats(self):
torch.cuda.empty_cache()
for _ in self._test_memory_stats_generator(self):
pass
@unittest.skipIf(not TEST_MULTIGPU, "only one GPU detected")
def test_memory_stats_multigpu(self):
# advance a generator with a end flag
def advance(gen, end):
if not end:
try:
next(gen)
except StopIteration:
end = True
return end
# interlace
torch.cuda.empty_cache()
gen0 = self._test_memory_stats_generator(self, device='cuda:0', N=35)
gen1 = self._test_memory_stats_generator(self, device=torch.device('cuda:1'), N=35)
end0 = end1 = False
while not (end0 and end1):
end0 = advance(gen0, end0)
end1 = advance(gen1, end1)
# semi-random order
torch.cuda.empty_cache()
gen0 = self._test_memory_stats_generator(self, device=0, N=35)
gen1 = self._test_memory_stats_generator(self, device=torch.device('cuda:1'), N=35)
end0 = end1 = False
while not (end0 and end1):
end0 = advance(gen0, end0)
if not end0:
gen1_max_times = torch.LongTensor(1).random_(0, 3)[0]
else:
gen1_max_times = inf
t = 0
while t < gen1_max_times and not end1:
end1 = advance(gen1, end1)
t += 1
def test_out_of_memory(self):
tensor = torch.zeros(1024, device='cuda')
with self.assertRaisesRegex(RuntimeError, "Tried to allocate 80.00 GiB"):
torch.empty(1024 * 1024 * 1024 * 80, dtype=torch.int8, device='cuda')
# ensure out of memory error doesn't disturb subsequent kernel
tensor.fill_(1)
self.assertTrue((tensor == 1).all())
@unittest.skipIf(not TEST_MULTIGPU, "only one GPU detected")
def test_autogpu(self):
x = torch.randn(5, 5).cuda()
y = torch.randn(5, 5).cuda()
self.assertEqual(x.get_device(), 0)
self.assertEqual(x.get_device(), 0)
with torch.cuda.device(1):
z = torch.randn(5, 5).cuda()
self.assertEqual(z.get_device(), 1)
q = x.add(y)
self.assertEqual(q.get_device(), 0)
w = torch.randn(5, 5).cuda()
self.assertEqual(w.get_device(), 1)
self.assertEqual(y.cuda().get_device(), 1)
z = z.cuda()
self.assertEqual(z.get_device(), 0)
@unittest.skipIf(not TEST_MULTIGPU, "only one GPU detected")
def test_new(self):
x = torch.randn(3, 3).cuda()
self.assertEqual(x.new([0, 1, 2]).get_device(), 0)
self.assertEqual(x.new([0, 1, 2], device=1).get_device(), 1)
with torch.cuda.device(1):
self.assertEqual(x.new([0, 1, 2]).get_device(), 0)
self.assertEqual(x.new([0, 1, 2], device=1).get_device(), 1)
@unittest.skipIf(not TEST_MULTIGPU, "only one GPU detected")
def test_copy_device(self):
x = torch.randn(5, 5).cuda()
with torch.cuda.device(1):
y = x.cuda()
self.assertEqual(y.get_device(), 1)
self.assertIs(y.cuda(), y)
z = y.cuda(0)
self.assertEqual(z.get_device(), 0)
self.assertIs(z.cuda(0), z)
x = torch.randn(5, 5)
with torch.cuda.device(1):
y = x.cuda()
self.assertEqual(y.get_device(), 1)
self.assertIs(y.cuda(), y)
z = y.cuda(0)
self.assertEqual(z.get_device(), 0)
self.assertIs(z.cuda(0), z)
def test_copy_non_blocking(self):
x = torch.randn(5, 5).cuda()
y = torch.zeros(5, 5)
y.copy_(x, non_blocking=True)
self.assertEqual(x, y)
x = torch.randn(5, 5)
y = torch.zeros(5, 5).cuda()
y.copy_(x, non_blocking=True)
self.assertEqual(x, y)
def test_serialization_array_with_storage(self):
x = torch.randn(5, 5).cuda()
y = torch.IntTensor(2, 5).fill_(0).cuda()
q = [x, y, x, y.storage()]
with tempfile.NamedTemporaryFile() as f:
torch.save(q, f)
f.seek(0)
q_copy = torch.load(f)
self.assertEqual(q_copy, q, 0)
q_copy[0].fill_(5)
self.assertEqual(q_copy[0], q_copy[2], 0)
self.assertTrue(isinstance(q_copy[0], torch.cuda.DoubleTensor))
self.assertTrue(isinstance(q_copy[1], torch.cuda.IntTensor))
self.assertTrue(isinstance(q_copy[2], torch.cuda.DoubleTensor))
self.assertTrue(isinstance(q_copy[3], torch.cuda.IntStorage))
q_copy[1].fill_(10)
self.assertTrue(q_copy[3], torch.cuda.IntStorage(10).fill_(10))
def test_type_conversions(self):
x = torch.randn(5, 5)
self.assertIsInstance(x.float(), torch.FloatTensor)
self.assertIsInstance(x.cuda(), torch.cuda.DoubleTensor)
self.assertIsInstance(x.cuda().float(), torch.cuda.FloatTensor)
self.assertIsInstance(x.cuda().float().cpu(), torch.FloatTensor)
self.assertIsInstance(x.cuda().float().cpu().int(), torch.IntTensor)
y = x.storage()
self.assertIsInstance(y.float(), torch.FloatStorage)
self.assertIsInstance(y.cuda(), torch.cuda.DoubleStorage)
self.assertIsInstance(y.cuda().float(), torch.cuda.FloatStorage)
self.assertIsInstance(y.cuda().float().cpu(), torch.FloatStorage)
self.assertIsInstance(y.cuda().float().cpu().int(), torch.IntStorage)
def test_mul_intertype_scalar(self):
def test_mul(dtype):
x = torch.tensor(1.5, dtype=dtype, device='cuda')
y = torch.tensor(3, dtype=torch.int32, device='cuda')
self.assertEqual(x * y, 4.5)
self.assertEqual(y * x, 4.5)
with self.assertRaisesRegex(RuntimeError, "doesn't match the desired type"):
y *= x
x *= y
self.assertEqual(x, 4.5)
test_mul(torch.float16)
test_mul(torch.float32)
test_mul(torch.float64)
@unittest.skipIf(not TEST_MULTIGPU, "only one GPU detected")
def test_type_conversions_same_gpu(self):
x = torch.randn(5, 5).cuda(1)
self.assertEqual(x.int().get_device(), 1)
self.assertEqual(x.type(torch.int).get_device(), 1)
self.assertEqual(x.to(torch.int).get_device(), 1)
def test_neg(self):
_TestTorchMixin._test_neg(self, lambda t: t.cuda())
def test_isinf(self):
_TestTorchMixin._test_isinf(self, lambda t: t.cuda())
@unittest.skipIf(not TEST_LARGE_TENSOR, "not enough memory")
def test_arithmetic_large_tensor(self):
x = torch.empty(2**30, device='cuda')
x.fill_(1)
self.assertEqual(x.sum(), 2**30)
x += 1
self.assertEqual(x.sum(), 2**31)
x.fill_(1)
x -= 0.5
self.assertEqual(x.sum(), 2**29)
x.fill_(1)
x *= 2
self.assertEqual(x.sum(), 2**31)
x.fill_(1)
x /= 2
self.assertEqual(x.sum(), 2**29)
def _test_broadcast(self, input):
if not TEST_MULTIGPU:
raise unittest.SkipTest("only one GPU detected")
result = comm.broadcast(input, (0, 1))
for i, t in enumerate(result):
self.assertEqual(t.get_device(), i)
self.assertEqual(t, input)
if input.is_cuda and input.get_device() == i:
self.assertEqual(t.data_ptr(), input.data_ptr())
def test_broadcast_cpu(self):
self._test_broadcast(torch.randn(5, 5))
def test_broadcast_gpu(self):
self._test_broadcast(torch.randn(5, 5).cuda())
def test_min_max_nan(self):
tests = [(lambda x: x.min(), 'min'),
(lambda x: x.max(), 'max'),
(lambda x: x.min(0)[0], 'min_dim'),
(lambda x: x.max(0)[0], 'max_dim')]
for f, name in tests:
a = torch.arange(25.0).view(5, 5)
a[2, 2] = nan
actual = f(a.cuda()).cpu()
expected = f(a).cpu()
self.assertEqual(torch.isnan(actual), torch.isnan(expected), 'nans for {}'.format(name))
self.assertEqual(actual[~torch.isnan(actual)],
expected[~torch.isnan(expected)], 'nans for {}'.format(name))
@staticmethod
def _test_broadcast_coalesced(self, tensors, buffer_size):
b_tensors = [comm.broadcast(t, (0, 1)) for t in tensors]
for (_, bt), t in zip(b_tensors, tensors):
self.assertEqual(bt.get_device(), 1)
self.assertEqual(bt, t)
self.assertIsInstance(bt, type(t))
bc_tensors = comm.broadcast_coalesced(tensors, (0, 1), buffer_size=buffer_size)
bc_tensors_t = list(zip(*bc_tensors))
self.assertEqual(b_tensors, bc_tensors_t)
for (_, bt), (_, bct) in zip(b_tensors, bc_tensors_t):
self.assertEqual(bt.get_device(), bct.get_device())
self.assertIsInstance(bct, type(bt))
# check that tensors on device[0] are returned as-is
for out_tensors in (b_tensors, bc_tensors_t):
for inp_t, (out_t, _) in zip(tensors, out_tensors):
self.assertIs(inp_t, out_t)
# check that the tensors not on device[0] have different version counters
# NOTE [ Version Counter in comm.*_coalesced ]
versions = [t._version for _, t in bc_tensors_t]
for old_version, (_, t) in zip(versions, bc_tensors_t):
self.assertEqual(t._version, old_version)
t.zero_()
self.assertEqual(t._version, old_version + 1)
@unittest.skipIf(not TEST_MULTIGPU, "only one GPU detected")
@skipIfRocm
def test_broadcast_coalesced(self):
numel = 5
num_bytes = numel * 8
tensors = [
make_sparse_tensor(torch.cuda.sparse.DoubleTensor, 1, 2, 3),
torch.randn(numel).long().cuda(),
torch.randn(numel).cuda(),
make_sparse_tensor(torch.cuda.sparse.DoubleTensor, 10, 2, 3),
make_sparse_tensor(torch.cuda.sparse.DoubleTensor, 5, 2, 3),
make_sparse_tensor(torch.cuda.sparse.LongTensor, 7, 3, 3),
make_sparse_tensor(torch.cuda.sparse.FloatTensor, 2, 2, 3),
torch.randn(numel).long().cuda(),
torch.randn(numel).long().cuda(),
make_sparse_tensor(torch.cuda.sparse.LongTensor, 3, 2, 7),
torch.randn(numel * 2).int().cuda(), # int is 2x shorter
torch.randn(numel).cuda(),
]
self._test_broadcast_coalesced(self, tensors, num_bytes * 5 // 2)
@unittest.skipIf(not TEST_MULTIGPU, "only one GPU detected")
def test_broadcast_coalesced_dense_only(self):
numel = 5
num_bytes = numel * 8
tensors = [
torch.randn(numel).long().cuda(),
torch.randn(numel).cuda(),
torch.randn(numel).long().cuda(),
torch.randn(numel).long().cuda(),
torch.randn(numel * 2).int().cuda(), # int is 2x shorter
torch.randn(numel).cuda(),
]
self._test_broadcast_coalesced(self, tensors, num_bytes * 5 // 2)
@unittest.skipIf(not TEST_MULTIGPU, "only one GPU detected")
def test_reduce_add(self):
x = torch.randn(5, 5)
y = torch.randn(5, 5)
x_cuda = x.cuda(0)
y_cuda = y.cuda(1)
result = comm.reduce_add((x_cuda, y_cuda))
self.assertEqual(result.get_device(), 0)
self.assertEqual(result.cpu(), x + y)
@staticmethod
def _test_reduce_add_coalesced(self, tensors, buffer_size):
dup_tensors = [tensors, list(map(lambda t: t.cuda(1), tensors))]
r_tensors = list(map(comm.reduce_add, zip(*dup_tensors)))
for r, t in zip(r_tensors, tensors):
self.assertEqual(r.get_device(), t.get_device())
self.assertEqual(r, t * 2)
self.assertEqual(r.type(), t.type())
rc_tensors = comm.reduce_add_coalesced(dup_tensors, buffer_size=buffer_size)
self.assertEqual(r_tensors, rc_tensors)
for r, rc in zip(r_tensors, rc_tensors):
self.assertEqual(rc.get_device(), r.get_device())
self.assertEqual(rc.type(), r.type())
# Since we have both cuda:0 and cuda:1 inputs, the outputs must be new.
# We can check that they have different version counters.
# NOTE [ Version Counter in comm.*_coalesced ]
versions = [t._version for t in rc_tensors]
for old_version, t in zip(versions, rc_tensors):
self.assertEqual(t._version, old_version)
t.zero_()
self.assertEqual(t._version, old_version + 1)
@unittest.skipIf(not TEST_MULTIGPU, "only one GPU detected")
@skipIfRocm
def test_reduce_add_coalesced(self):
numel = 5
num_bytes = numel * 8
tensors = [
make_sparse_tensor(torch.cuda.sparse.DoubleTensor, 1, 2, 3),
torch.randn(numel).long().cuda(),
torch.randn(numel).cuda(),
make_sparse_tensor(torch.cuda.sparse.DoubleTensor, 10, 2, 3),
make_sparse_tensor(torch.cuda.sparse.DoubleTensor, 5, 2, 3),
make_sparse_tensor(torch.cuda.sparse.LongTensor, 7, 3, 3),
make_sparse_tensor(torch.cuda.sparse.FloatTensor, 2, 2, 3),
torch.randn(numel).long().cuda(),
torch.randn(numel).long().cuda(),
make_sparse_tensor(torch.cuda.sparse.LongTensor, 3, 2, 7),
torch.randn(numel * 2).int().cuda(), # int is 2x shorter
torch.randn(numel).cuda(),
]
self._test_reduce_add_coalesced(self, tensors, num_bytes * 5 // 2)
@unittest.skipIf(not TEST_MULTIGPU, "only one GPU detected")
def test_reduce_add_coalesced_dense_only(self):
numel = 5
num_bytes = numel * 8
tensors = [
torch.randn(numel).long().cuda(),
torch.randn(numel).cuda(),
torch.randn(numel).long().cuda(),
torch.randn(numel).long().cuda(),
torch.randn(numel * 2).int().cuda(), # int is 2x shorter
torch.randn(numel).cuda(),
]
self._test_reduce_add_coalesced(self, tensors, num_bytes * 5 // 2)
def _test_scatter(self, input, chunk_sizes=None, dim=0):
if not TEST_MULTIGPU:
raise unittest.SkipTest("only one GPU detected")
result = comm.scatter(input, (0, 1), chunk_sizes, dim)
self.assertEqual(len(result), 2)
if chunk_sizes is None:
chunk_sizes = tuple(repeat(input.size(dim) // 2, 2))
chunk_start = 0
for i, r in enumerate(result):
chunk_end = chunk_start + chunk_sizes[i]
index = [slice(None, None), slice(None, None)]
index[dim] = slice(chunk_start, chunk_end)
self.assertEqual(r, input[tuple(index)], 0)
chunk_start = chunk_end
def test_scatter_cpu(self):
self._test_scatter(torch.randn(4, 4), dim=0)
def test_scatter_cpu_dim(self):
self._test_scatter(torch.randn(4, 4), dim=1)
def test_scatter_cpu_neg_dim(self):
self._test_scatter(torch.randn(4, 4), dim=-2)
def test_scatter_cpu_sizes(self):
self._test_scatter(torch.randn(6, 4), chunk_sizes=(2, 4))
def test_scatter_gpu(self):
self._test_scatter(torch.randn(4, 4).cuda(), dim=0)
@skipIfRocm
def test_scatter_gpu_dim(self):
self._test_scatter(torch.randn(4, 4).cuda(), dim=1)
def test_scatter_gpu_neg_dim(self):
self._test_scatter(torch.randn(4, 4).cuda(), dim=-2)
def test_scatter_gpu_sizes(self):
self._test_scatter(torch.randn(6, 4).cuda(), chunk_sizes=(2, 4))
def _test_gather(self, dim):
if not TEST_MULTIGPU:
raise unittest.SkipTest("only one GPU detected")
x = torch.randn(2, 5).cuda(0)
y = torch.randn(2, 5).cuda(1)
result = comm.gather((x, y), dim)
expected_size = list(x.size())
expected_size[dim] += y.size(dim)
expected_size = torch.Size(expected_size)
self.assertEqual(result.get_device(), 0)
self.assertEqual(result.size(), expected_size)
index = [slice(None, None), slice(None, None)]
index[dim] = slice(0, x.size(dim))
self.assertEqual(result[tuple(index)], x)
index[dim] = slice(x.size(dim), x.size(dim) + y.size(dim))
self.assertEqual(result[tuple(index)], y)
def test_gather(self):
self._test_gather(0)
def test_gather_dim(self):
self._test_gather(1)
def test_from_sequence(self):
seq = [list(range(i * 4, i * 4 + 4)) for i in range(5)]
reference = torch.arange(0, 20).resize_(5, 4)
for t in types:
cuda_type = get_gpu_type(t)
self.assertEqual(cuda_type(seq), reference)
def test_torch_manual_seed_seeds_cuda_devices(self):
with freeze_rng_state():
x = torch.zeros(4, 4).float().cuda()
torch.manual_seed(2)
self.assertEqual(torch.cuda.initial_seed(), 2)
x.uniform_()
torch.manual_seed(2)
y = x.clone().uniform_()
self.assertEqual(x, y)
self.assertEqual(torch.cuda.initial_seed(), 2)
def test_manual_seed(self):
with freeze_rng_state():
x = torch.zeros(4, 4).float().cuda()
torch.cuda.manual_seed(2)
self.assertEqual(torch.cuda.initial_seed(), 2)
x.uniform_()
a = torch.bernoulli(torch.full_like(x, 0.5))
torch.cuda.manual_seed(2)
y = x.clone().uniform_()
b = torch.bernoulli(torch.full_like(x, 0.5))
self.assertEqual(x, y)
self.assertEqual(a, b)
self.assertEqual(torch.cuda.initial_seed(), 2)
@unittest.skipIf(not TEST_MULTIGPU, "only one GPU detected")
def test_cat_autogpu(self):
x = torch.randn(4, 4).cuda(1)
y = torch.randn(4, 4).cuda(1)
z = torch.cat([x, y], 0)
self.assertEqual(z.get_device(), x.get_device())
def test_clamp(self):
_TestTorchMixin._test_clamp(self, 'cuda')
def test_cat(self):
SIZE = 10
for dim in range(-3, 3):
pos_dim = dim if dim >= 0 else 3 + dim
x = torch.rand(13, SIZE, SIZE).transpose(0, pos_dim).cuda()
y = torch.rand(17, SIZE, SIZE).transpose(0, pos_dim).cuda()
z = torch.rand(19, SIZE, SIZE).transpose(0, pos_dim).cuda()
res1 = torch.cat((x, y, z), dim)
self.assertEqual(res1.narrow(pos_dim, 0, 13), x, 0)
self.assertEqual(res1.narrow(pos_dim, 13, 17), y, 0)
self.assertEqual(res1.narrow(pos_dim, 30, 19), z, 0)
x = torch.randn(20, SIZE, SIZE).cuda()
self.assertEqual(torch.cat(torch.split(x, 7)), x)
self.assertEqual(torch.cat(torch.chunk(x, 7)), x)
y = torch.randn(1, SIZE, SIZE).cuda()
z = torch.cat([x, y])
self.assertEqual(z.size(), (21, SIZE, SIZE))
def test_cat_empty_legacy(self):
_TestTorchMixin._test_cat_empty_legacy(self, use_cuda=True)
def test_cat_empty(self):
_TestTorchMixin._test_cat_empty(self, use_cuda=True)
def test_bernoulli(self):
_TestTorchMixin._test_bernoulli(self, torch.float32, torch.float64, 'cuda')
_TestTorchMixin._test_bernoulli(self, torch.float32, torch.float16, 'cuda')
_TestTorchMixin._test_bernoulli(self, torch.float16, torch.float64, 'cuda')
_TestTorchMixin._test_bernoulli(self, torch.float16, torch.float16, 'cuda')
# test that it works with integral tensors
_TestTorchMixin._test_bernoulli(self, torch.uint8, torch.float64, 'cuda')
_TestTorchMixin._test_bernoulli(self, torch.uint8, torch.float16, 'cuda')
_TestTorchMixin._test_bernoulli(self, torch.int64, torch.float64, 'cuda')
_TestTorchMixin._test_bernoulli(self, torch.int64, torch.float16, 'cuda')
def test_cat_bad_input_sizes(self):
x = torch.randn(2, 1).cuda()
y = torch.randn(2, 1, 1).cuda()
z = torch.randn(2, 1, 1).cuda()
self.assertRaises(RuntimeError, lambda: torch.cat([x, y, z]))
x = torch.randn(2, 1, 2).cuda()
y = torch.randn(2, 1, 1).cuda()
z = torch.randn(2, 2, 1).cuda()
self.assertRaises(RuntimeError, lambda: torch.cat([x, y, z], dim=1))
@unittest.skipIf(torch.cuda.device_count() >= 10, "Loading a cuda:9 tensor")
@unittest.skipIf(not PY3, "Tensor was serialized with Python 3")
def test_load_nonexistent_device(self):
# Setup: create a serialized file object with a 'cuda:9' restore location
tensor = torch.randn(2, device='cuda')
buf = io.BytesIO()
torch.save(tensor, buf)
# NB: this might not work in the future if serialization changes
buf = io.BytesIO(buf.getvalue().replace(b'cuda:0', b'cuda:9'))
msg = r'Attempting to deserialize object on CUDA device 9'
with self.assertRaisesRegex(RuntimeError, msg):
_ = torch.load(buf)
def test_serialization(self):
x = torch.randn(4, 4).cuda()
with tempfile.NamedTemporaryFile() as f:
torch.save(x, f)
f.seek(0)
x_copy = torch.load(f)
self.assertEqual(x_copy, x)
self.assertIs(type(x_copy), type(x))
self.assertEqual(x_copy.get_device(), x.get_device())
def test_serialization_array_with_empty(self):
x = [torch.randn(4, 4).cuda(), torch.cuda.FloatTensor()]
with tempfile.NamedTemporaryFile() as f:
torch.save(x, f)
f.seek(0)
x_copy = torch.load(f)
for original, copy in zip(x, x_copy):
self.assertEqual(copy, original)
self.assertIs(type(copy), type(original))
self.assertEqual(copy.get_device(), original.get_device())
@unittest.skipIf(not TEST_MULTIGPU, "detected only one GPU")
def test_multigpu_serialization(self):
x = [torch.randn(4, 4).cuda(0), torch.randn(4, 4).cuda(1)]
with tempfile.NamedTemporaryFile() as f:
torch.save(x, f)
f.seek(0)
x_copy = torch.load(f)
for original, copy in zip(x, x_copy):
self.assertEqual(copy, original)
self.assertIs(type(copy), type(original))
self.assertEqual(copy.get_device(), original.get_device())
@unittest.skipIf(not TEST_MULTIGPU, "detected only one GPU")
def test_multigpu_serialization_remap(self):
x = [torch.randn(4, 4).cuda(0), torch.randn(4, 4).cuda(1)]
def gpu_remap(storage, location):
if location == 'cuda:1':
return storage.cuda(0)
with tempfile.NamedTemporaryFile() as f:
torch.save(x, f)
f.seek(0)
x_copy = torch.load(f, map_location=gpu_remap)
for original, copy in zip(x, x_copy):
self.assertEqual(copy, original)
self.assertIs(type(copy), type(original))
self.assertEqual(copy.get_device(), 0)
@unittest.skipIf(not TEST_MULTIGPU, "detected only one GPU")
def test_multigpu_serialization_remap_dict(self):
x = [torch.randn(4, 4).cuda(0), torch.randn(4, 4).cuda(1)]
with tempfile.NamedTemporaryFile() as f:
torch.save(x, f)
f.seek(0)
x_copy = torch.load(f, map_location={'cuda:1': 'cuda:0'})
for original, copy in zip(x, x_copy):
self.assertEqual(copy, original)
self.assertIs(type(copy), type(original))
self.assertEqual(copy.get_device(), 0)
@unittest.skipIf(not TEST_MULTIGPU, "detected only one GPU")
def test_multigpu_storage_clone(self):
x = torch.randn(4, 4, device='cuda:1').storage()
y = x.clone()
self.assertEqual(x.get_device(), y.get_device())
for t in ['byte', 'char', 'short', 'int', 'long', 'half', 'double']:
self.assertEqual(getattr(x, t)().get_device(), x.get_device())
@unittest.skipIf(not TEST_MULTIGPU, "detected only one GPU")
def test_cuda_set_device(self):
x = torch.randn(5, 5)
with torch.cuda.device(1):
self.assertEqual(x.cuda().get_device(), 1)
torch.cuda.set_device(0)
self.assertEqual(x.cuda().get_device(), 0)
with torch.cuda.device(1):
self.assertEqual(x.cuda().get_device(), 1)
self.assertEqual(x.cuda().get_device(), 0)
torch.cuda.set_device(1)
self.assertEqual(x.cuda().get_device(), 0)
def test_is_tensor(self):
for t in types:
tensor = get_gpu_type(t)()
self.assertTrue(torch.is_tensor(tensor))
self.assertTrue(torch.is_tensor(torch.cuda.HalfTensor()))
def test_cuda_synchronize(self):
torch.cuda.synchronize()
@skipIfRocm
def test_streams(self):
default_stream = torch.cuda.current_stream()
user_stream = torch.cuda.Stream()
self.assertEqual(torch.cuda.current_stream(), default_stream)
self.assertNotEqual(default_stream, user_stream)
self.assertEqual(default_stream.cuda_stream, 0)
self.assertNotEqual(user_stream.cuda_stream, 0)
with torch.cuda.stream(user_stream):
self.assertEqual(torch.cuda.current_stream(), user_stream)
self.assertTrue(user_stream.query())
# copy 10 MB tensor from CPU-GPU which should take some time
tensor1 = torch.ByteTensor(10000000).pin_memory()
tensor2 = tensor1.cuda(non_blocking=True)
self.assertFalse(default_stream.query())
default_stream.synchronize()
self.assertTrue(default_stream.query())
@unittest.skipIf(not TEST_MULTIGPU, "detected only one GPU")
def test_streams_multi_gpu(self):
default_stream = torch.cuda.current_stream()
self.assertEqual(default_stream.device, 0)
stream = torch.cuda.Stream(device=1)
self.assertEqual(stream.device, 1)
with torch.cuda.device(1):
self.assertEqual(torch.cuda.current_stream().device, 1)
self.assertNotEqual(torch.cuda.current_stream(), default_stream)
@unittest.skipIf(not TEST_MULTIGPU, "detected only one GPU")
@skipIfRocm
def test_streams_multi_gpu_query(self):
d0 = torch.device('cuda:0')
d1 = torch.device('cuda:1')
with torch.cuda.device(d0):
s0 = torch.cuda.current_stream()
with torch.cuda.device(d1):
s1 = torch.cuda.current_stream()
torch.cuda._sleep(50000000) # spin for about 50 ms on device1
self.assertTrue(s0.query())
self.assertFalse(s1.query())
with torch.cuda.device(d0):
self.assertTrue(s0.query())
self.assertFalse(s1.query())
with torch.cuda.device(d1):
self.assertTrue(s0.query())
self.assertFalse(s1.query())
with torch.cuda.device(d1):
s1.synchronize()
self.assertTrue(s0.query())
self.assertTrue(s1.query())
with torch.cuda.device(d0):
self.assertTrue(s0.query())
self.assertTrue(s1.query())
with torch.cuda.device(d1):
self.assertTrue(s0.query())
self.assertTrue(s1.query())
@unittest.skipIf(not TEST_MULTIGPU, "detected only one GPU")
@skipIfRocm
def test_streams_multi_gpu_eq(self):
d0 = torch.device('cuda:0')
d1 = torch.device('cuda:1')
with torch.cuda.device(d0):
s0 = torch.cuda.current_stream()
s1 = torch.cuda.current_stream()
with torch.cuda.device(d1):
s2 = torch.cuda.current_stream()
s3 = torch.cuda.current_stream()
self.assertTrue(s0 == s0)
self.assertTrue(s0 == s1)
self.assertTrue(s2 == s2)
self.assertTrue(s2 == s3)
self.assertFalse(s0 == s2)
self.assertFalse(s1 == s3)
self.assertEqual(s0.device, s1.device)
self.assertEqual(s0.cuda_stream, s1.cuda_stream)
self.assertEqual(s2.device, s3.device)
self.assertEqual(s2.cuda_stream, s3.cuda_stream)
self.assertNotEqual(s0.device, s3.device)
self.assertEqual(hash(s0), hash(s1))
self.assertEqual(hash(s2), hash(s3))
self.assertNotEqual(hash(s0), hash(s3))
@unittest.skipIf(not TEST_MULTIGPU, "multi-GPU not supported")
def test_tensor_device(self):
self.assertEqual(torch.cuda.FloatTensor(1).get_device(), 0)
self.assertEqual(torch.cuda.FloatTensor(1, device=1).get_device(), 1)
with torch.cuda.device(1):
self.assertEqual(torch.cuda.FloatTensor(1).get_device(), 1)
self.assertEqual(torch.cuda.FloatTensor(1, device=0).get_device(), 0)
self.assertEqual(torch.cuda.FloatTensor(1, device=None).get_device(), 1)
@skipIfRocm
def test_events(self):
stream = torch.cuda.current_stream()
event = torch.cuda.Event(enable_timing=True)
self.assertTrue(event.query())
start_event = torch.cuda.Event(enable_timing=True)
stream.record_event(start_event)
torch.cuda._sleep(int(50 * get_cycles_per_ms()))
stream.record_event(event)
self.assertFalse(event.query())
event.synchronize()
self.assertTrue(event.query())
self.assertGreater(start_event.elapsed_time(event), 0)
@skipIfRocm
def test_record_stream(self):
cycles_per_ms = get_cycles_per_ms()
t = torch.FloatTensor([1, 2, 3, 4]).pin_memory()
result = torch.cuda.FloatTensor(t.size())
stream = torch.cuda.Stream()
ptr = [None]
# Performs the CPU->GPU copy in a background stream
def perform_copy():
with torch.cuda.stream(stream):
tmp = t.cuda(non_blocking=True)
ptr[0] = tmp.data_ptr()
torch.cuda.current_stream().wait_stream(stream)
tmp.record_stream(torch.cuda.current_stream())
torch.cuda._sleep(int(50 * cycles_per_ms)) # delay the copy
result.copy_(tmp)
perform_copy()
with torch.cuda.stream(stream):
tmp2 = torch.cuda.FloatTensor(t.size())
tmp2.zero_()
self.assertNotEqual(tmp2.data_ptr(), ptr[0], 'allocation re-used to soon')
self.assertEqual(result.tolist(), [1, 2, 3, 4])
# Check that the block will be re-used after the main stream finishes
torch.cuda.current_stream().synchronize()
with torch.cuda.stream(stream):
tmp3 = torch.cuda.FloatTensor(t.size())
self.assertEqual(tmp3.data_ptr(), ptr[0], 'allocation not re-used')
def test_noncontiguous_pinned_memory(self):
# See issue #3266
x = torch.arange(0, 10).view((2, 5))
self.assertEqual(x.t(), x.t().pin_memory())
@skipIfRocm
def test_caching_pinned_memory(self):
cycles_per_ms = get_cycles_per_ms()
# check that allocations are re-used after deletion
t = torch.FloatTensor([1]).pin_memory()
ptr = t.data_ptr()
del t
t = torch.FloatTensor([1]).pin_memory()
self.assertEqual(t.data_ptr(), ptr, 'allocation not reused')
# check that the allocation is not re-used if it's in-use by a copy
gpu_tensor = torch.cuda.FloatTensor([0])
torch.cuda._sleep(int(50 * cycles_per_ms)) # delay the copy
gpu_tensor.copy_(t, non_blocking=True)
del t
t = torch.FloatTensor([1]).pin_memory()
self.assertNotEqual(t.data_ptr(), ptr, 'allocation re-used too soon')
self.assertEqual(list(gpu_tensor), [1])
@unittest.skipIf(not TEST_MULTIGPU, "only one GPU detected")
@skipIfRocm
def test_caching_pinned_memory_multi_gpu(self):
# checks that the events preventing pinned memory from being re-used
# too early are recorded on the correct GPU
cycles_per_ms = get_cycles_per_ms()
t = torch.FloatTensor([1]).pin_memory()
ptr = t.data_ptr()
gpu_tensor0 = torch.cuda.FloatTensor([0], device=0)
gpu_tensor1 = torch.cuda.FloatTensor([0], device=1)
with torch.cuda.device(1):
torch.cuda._sleep(int(50 * cycles_per_ms)) # delay the copy
gpu_tensor1.copy_(t, non_blocking=True)
del t
t = torch.FloatTensor([2]).pin_memory()
self.assertNotEqual(t.data_ptr(), ptr, 'allocation re-used too soon')
with torch.cuda.device(0):
gpu_tensor0.copy_(t, non_blocking=True)
self.assertEqual(gpu_tensor1[0], 1)
self.assertEqual(gpu_tensor0[0], 2)
@skipIfRocm
def test_sum_cpu_gpu_mismatch(self):
x = torch.randn(20, dtype=torch.float32, device='cuda')
y = torch.randn(1, dtype=torch.float32)
with self.assertRaisesRegex(RuntimeError, 'expected type'
' torch.FloatTensor but got'
' torch.cuda.FloatTensor'):
torch.sum(x, dim=[0], dtype=torch.float32, out=y)
# makeing sure half to float promotion is also properly working.
x = x.half()
with self.assertRaisesRegex(RuntimeError, 'expected type'
' torch.FloatTensor but got'
' torch.cuda.HalfTensor'):
torch.sum(x, dim=[0], dtype=torch.float32, out=y)
@skipIfRocm
def test_sum_noncontig(self):
x = torch.randn(1, 75, 57, 20, device='cuda').permute(0, 3, 1, 2)
y = x.cpu()
self.assertEqual(x.sum().cpu(), y.sum())
self.assertEqual(x.sum(dim=(-1, -2)).cpu(), y.sum(dim=(-1, -2)))
self.assertEqual(x.sum(dim=(1, 3)).cpu(), y.sum(dim=(1, 3)))
def test_sum_fp16(self):
x = torch.zeros(10, device='cuda', dtype=torch.float16)
self.assertEqual(x.sum(), 0)
x = torch.ones(65504, device='cuda', dtype=torch.float16)
self.assertEqual(x.sum(), 65504)
self.assertEqual(x.sum(dtype=torch.float32), 65504)
x = torch.ones(65536, device='cuda', dtype=torch.float16)
self.assertEqual(x.sum(dtype=torch.float32), 65536)
a = torch.zeros(1203611).bernoulli_(0.0005)
x = a.to(device='cuda', dtype=torch.float16)
self.assertEqual(x.sum().item(), a.sum().item())
a = torch.zeros(100, 121, 80).bernoulli_(0.0005)
x = a.to(device='cuda', dtype=torch.float16)
self.assertEqual(x.sum((0, 2)).float().cpu(), a.sum((0, 2)))
@skipIfRocm
def test_mean_fp16(self):
x = torch.ones(65536, device='cuda', dtype=torch.float16)
self.assertEqual(x.mean(), 1)
x = torch.ones(65536, device='cuda', dtype=torch.float16)
self.assertEqual(x.mean(dtype=torch.float32), 1)
def test_prod_large(self):
# tests global reduction (should_global_reduce = true) in case of non-zero identity element
x = torch.ones(240000, device='cuda', dtype=torch.float32)
self.assertEqual(x.prod(), 1)
@staticmethod
def _select_broadcastable_dims(dims_full=None):
return _TestTorchMixin._select_broadcastable_dims(dims_full)
@skipIfRocm
@unittest.skipIf(not TEST_MAGMA, "no MAGMA library detected")
def test_inverse(self):
_TestTorchMixin._test_inverse(self, lambda t: t.cuda())
@unittest.skipIf(not TEST_MAGMA, "no MAGMA library detected")
def test_pinverse(self):
_TestTorchMixin._test_pinverse(self, lambda t: t.cuda())
@unittest.skipIf(not TEST_MAGMA, "no MAGMA library detected")
def test_matrix_rank(self):
_TestTorchMixin._test_matrix_rank(self, lambda x: x.cuda())
@unittest.skipIf(not TEST_MAGMA, "no MAGMA library detected")
def test_matrix_power(self):
_TestTorchMixin._test_matrix_power(self, conv_fn=lambda t: t.cuda())
def test_chain_matmul(self):
_TestTorchMixin._test_chain_matmul(self, cast=lambda t: t.cuda())
@unittest.skipIf(not TEST_MAGMA, "no MAGMA library detected")
def test_det_logdet_slogdet(self):
_TestTorchMixin._test_det_logdet_slogdet(self, lambda t: t.cuda())
@unittest.skipIf(not TEST_MAGMA, "no MAGMA library detected")
def test_gesv(self):
_TestTorchMixin._test_gesv(self, lambda t: t.cuda())
@unittest.skipIf(not TEST_MAGMA, "no MAGMA library detected")
def test_gesv_batched(self):
_TestTorchMixin._test_gesv_batched(self, lambda t: t.cuda())
@unittest.skipIf(not TEST_MAGMA, "no MAGMA library detected")
def test_gesv_batched_dims(self):
_TestTorchMixin._test_gesv_batched_dims(self, lambda t: t.cuda())
@unittest.skipIf(not TEST_MAGMA, "no MAGMA library detected")
def test_cholesky_solve(self):
_TestTorchMixin._test_cholesky_solve(self, lambda t: t.cuda())
@unittest.skipIf(not TEST_MAGMA, "no MAGMA library detected")
def test_cholesky_solve_batched(self):
_TestTorchMixin._test_cholesky_solve_batched(self, lambda t: t.cuda())
@unittest.skipIf(not TEST_MAGMA, "no MAGMA library detected")
def test_cholesky_solve_batched_dims(self):
_TestTorchMixin._test_cholesky_solve_batched_dims(self, lambda t: t.cuda())
@unittest.skipIf(not TEST_MAGMA, "no MAGMA library detected")
def test_cholesky(self):
_TestTorchMixin._test_cholesky(self, lambda t: t.cuda())
@unittest.skipIf(not TEST_MAGMA, "no MAGMA library detected")
def test_cholesky_batched(self):
_TestTorchMixin._test_cholesky_batched(self, lambda t: t.cuda())
def test_view(self):
_TestTorchMixin._test_view(self, lambda t: t.cuda())
def test_flip(self):
_TestTorchMixin._test_flip(self, use_cuda=True)
def test_rot90(self):
_TestTorchMixin._test_rot90(self, use_cuda=True)
def test_signal_window_functions(self):
_TestTorchMixin._test_signal_window_functions(self, device=torch.device('cuda'))
@skipIfRocm
def test_fft_ifft_rfft_irfft(self):
_TestTorchMixin._test_fft_ifft_rfft_irfft(self, device=torch.device('cuda'))
@contextmanager
def plan_cache_max_size(n):
original = torch.backends.cuda.cufft_plan_cache.max_size
torch.backends.cuda.cufft_plan_cache.max_size = n
yield
torch.backends.cuda.cufft_plan_cache.max_size = original
with plan_cache_max_size(max(1, torch.backends.cuda.cufft_plan_cache.size - 10)):
_TestTorchMixin._test_fft_ifft_rfft_irfft(self, device=torch.device('cuda'))
with plan_cache_max_size(0):
_TestTorchMixin._test_fft_ifft_rfft_irfft(self, device=torch.device('cuda'))
torch.backends.cuda.cufft_plan_cache.clear()
# check that stll works after clearing cache
with plan_cache_max_size(10):
_TestTorchMixin._test_fft_ifft_rfft_irfft(self, device=torch.device('cuda'))
with self.assertRaisesRegex(RuntimeError, r"must be non-negative"):
torch.backends.cuda.cufft_plan_cache.max_size = -1
with self.assertRaisesRegex(RuntimeError, r"read-only property"):
torch.backends.cuda.cufft_plan_cache.size = -1
def test_stft(self):
_TestTorchMixin._test_stft(self, device=torch.device('cuda'))
@skipIfRocm
def test_multinomial(self):
_TestTorchMixin._test_multinomial(self, torch.cuda.FloatTensor)
# Test two corner cases from older PyTorch (Issue #4858)
freqs = torch.cuda.FloatTensor([
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.03178183361887932, 0.027680952101945877, 0.033176131546497345,
0.046052902936935425, 0.07742464542388916, 0.11543981730937958,
0.14148041605949402, 0.15784293413162231, 0.13180233538150787,
0.08271478116512299, 0.049702685326337814, 0.027557924389839172,
0.018125897273421288, 0.011851548217236996, 0.010252203792333603,
0.007422595750540495, 0.005372154992073774, 0.0045109698548913,
0.0036087757907807827, 0.0035267581697553396, 0.0018864056328311563,
0.0024605290964245796, 0.0022964938543736935, 0.0018453967059031129,
0.0010662291897460818, 0.0009842115687206388, 0.00045109697384759784,
0.0007791675161570311, 0.00020504408166743815, 0.00020504408166743815,
0.00020504408166743815, 0.00012302644609007984, 0.0,
0.00012302644609007984, 4.100881778867915e-05, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0])
torch.cuda.manual_seed(11042)
sample = torch.multinomial(freqs, 1000, True)
self.assertNotEqual(freqs[sample].min(), 0)
p = torch.zeros(3421, 2, device="cuda", dtype=torch.float)
p[:, 1] = 1
torch.cuda.manual_seed(5214)
r = torch.multinomial(p, 1)
self.assertNotEqual(r.min().item(), 0)
@staticmethod
def mute():
os.dup2(os.open(os.devnull, os.O_WRONLY), sys.stderr.fileno())
def _spawn_method(self, method, arg):
ctx = mp.get_context("spawn")
with ctx.Pool(1, initializer=self.mute) as pool:
errors = pool.map(method, [arg])
for e in errors:
if 'device-side assert triggered' not in str(e):
self.fail(e)
@staticmethod
def _test_multinomial_invalid_probs_cuda(probs):
try:
with torch.random.fork_rng(devices=[0]):
torch.multinomial(probs.to('cuda'), 2)
torch.cuda.synchronize()
return False # Should not be reached
except RuntimeError as e:
return e
@unittest.skipIf(NO_MULTIPROCESSING_SPAWN, "Disabled for environments that \
don't support multiprocessing with spawn start method")
@unittest.skipIf(IS_WINDOWS, 'FIXME: CUDA OOM error on Windows')
@unittest.skipIf(not PY3,
"spawn start method is not supported in Python 2, \
but we need it for creating another process with CUDA")
@skipIfRocm
def test_multinomial_invalid_probs_cuda(self):
test_method = TestCuda._test_multinomial_invalid_probs_cuda
self._spawn_method(test_method, torch.Tensor([1, -1, 1]))
self._spawn_method(test_method, torch.Tensor([1, inf, 1]))
self._spawn_method(test_method, torch.Tensor([1, -inf, 1]))
self._spawn_method(test_method, torch.Tensor([1, 1, nan]))
self._spawn_method(test_method, torch.Tensor([0, 1, 0]))
@skipIfRocm
def test_broadcast(self):
_TestTorchMixin._test_broadcast(self, lambda t: t.cuda())
def test_contiguous(self):
_TestTorchMixin._test_contiguous(self, lambda t: t.cuda())
def test_broadcast_fused_matmul(self):
_TestTorchMixin._test_broadcast_fused_matmul(self, lambda t: t.cuda())
def test_broadcast_batched_matmul(self):
_TestTorchMixin._test_broadcast_batched_matmul(self, lambda t: t.cuda())
@skipIfRocm
def test_index(self):
_TestTorchMixin._test_index(self, lambda t: t.cuda())
@skipIfRocm
def test_advancedindex(self):
_TestTorchMixin._test_advancedindex(self, lambda t: t.cuda())
@skipIfRocm
def test_advancedindex_mixed_cpu_cuda(self):
def test(x, ia, ib):
# test getitem
self.assertEqual(x[:, ia, None, ib, 0].cpu(),
x.cpu()[:, ia.cpu(), None, ib.cpu(), 0])
self.assertEqual(x[ia], x.cpu()[ia.cpu()])
# test setitem
x_clone1 = x.clone()
x_clone2 = x.clone()
first_shape = x[:, ia, None, ib, 0].shape
second_shape = x[ia].shape
x_clone1[:, ia, None, ib, 0] = torch.randn(first_shape).to(x_clone1)
x_clone2[ia] = torch.randn(second_shape).to(x_clone2)
cpu = torch.device('cpu')
for device in ['cuda:0', 'cuda:1'] if torch.cuda.device_count() > 1 else ['cuda']:
# Index cpu tensor with cuda tensor
x = torch.randn(3, 4, 4, 4, 3)
ia = torch.tensor([0, 2, 1]).to(device)
ib = torch.tensor([0, 2, 1]).to(device)
test(x, ia, ib)
# Index cuda tensor with cpu tensor
x = x.to(device)
ia = ia.to(cpu)
ib = ib.to(cpu)
test(x, ia, ib)
# Index cpu tensor with mixed cpu, cuda tensors
x = x.to(cpu)
ia = ia.to(cpu)
ib = ib.to(device)
test(x, ia, ib)
# Index cuda tensor with mixed cpu, cuda tensors
x = x.to(device)
ia = ia.to(cpu)
ib = ib.to(device)
test(x, ia, ib)
if torch.cuda.device_count() > 1:
other_device = 'cuda:0' if device != 'cuda:0' else 'cuda:1'
# Index cuda tensor with mixed cpu, cuda tensors on different devices
x = x.to(device)
ia = ia.to(cpu)
ib = ib.to(other_device)
test(x, ia, ib)
@skipIfRocm
def test_advancedindex_big(self):
_TestTorchMixin._test_advancedindex_big(self, lambda t: t.cuda())
@skipIfRocm
def test_btrifact(self):
_TestTorchMixin._test_btrifact(self, lambda t: t.cuda())
@skipIfRocm
def test_btrisolve(self):
_TestTorchMixin._test_btrisolve(self, lambda t: t.cuda())
@skipIfRocm
def test_btriunpack(self):
_TestTorchMixin._test_btriunpack(self, lambda t: t.cuda())
@skipIfRocm
def test_dim_reduction(self):
_TestTorchMixin._test_dim_reduction(self, lambda t: t.cuda())
def test_tensor_gather(self):
_TestTorchMixin._test_gather(self, lambda t: t.cuda(), False)
def test_tensor_scatter(self):
_TestTorchMixin._test_scatter_base(self, lambda t: t.cuda(), 'scatter_', test_bounds=False)
def test_tensor_scatterAdd(self):
_TestTorchMixin._test_scatter_base(self, lambda t: t.cuda(), 'scatter_add_', test_bounds=False)
def test_tensor_scatterFill(self):
_TestTorchMixin._test_scatter_base(self, lambda t: t.cuda(), 'scatter_', True, test_bounds=False)
def test_min_max_inits(self):
# Testing if THC_reduceAll received the correct index initialization.
# This affects the result of THC_reduceAll operations at extreme values
x = torch.cuda.ByteTensor([0])
y = torch.cuda.ByteTensor([255])
expected = torch.cuda.LongTensor([0])[0]
_, v = x.max(dim=0)
self.assertEqual(v, expected)
_, v = y.min(dim=0)
self.assertEqual(v, expected)
def test_max_with_inf(self):
_TestTorchMixin._test_max_with_inf(self, (torch.half, torch.float, torch.double), 'cuda')
def test_min_with_inf(self):
_TestTorchMixin._test_min_with_inf(self, (torch.half, torch.float, torch.double), 'cuda')
def test_int_pow(self):
_TestTorchMixin._test_int_pow(self, lambda x: x.cuda())
def test_remainder_overflow(self):
_TestTorchMixin._test_remainder_overflow(self, dtype=torch.int64, device='cuda')
@skipIfRocm
def test_var(self):
cpu_tensor = torch.randn(2, 3, 3)
gpu_tensor = cpu_tensor.cuda()
self.assertEqual(gpu_tensor.var(), cpu_tensor.var())
self.assertEqual(gpu_tensor.var(1), cpu_tensor.var(1))
self.assertEqual(gpu_tensor.var(2), cpu_tensor.var(2))
self.assertEqual(gpu_tensor.std(), cpu_tensor.std())
self.assertEqual(gpu_tensor.std(1), cpu_tensor.std(1))
self.assertEqual(gpu_tensor.var(2), cpu_tensor.var(2))
cpu_tensor = torch.randn(100)
gpu_tensor = cpu_tensor.cuda()
self.assertEqual(gpu_tensor.var(), cpu_tensor.var())
@skipIfRocm
def test_var_unbiased(self):
tensor = torch.randn(100).cuda()
self.assertEqual(tensor.var(0), tensor.var(0, unbiased=True))
self.assertEqual(tensor.var(), tensor.var(unbiased=True))
self.assertEqual(tensor.var(unbiased=False), tensor.var(0, unbiased=False))
tensor = torch.FloatTensor([1.0, 2.0]).cuda()
self.assertEqual(tensor.var(unbiased=True), 0.5)
self.assertEqual(tensor.var(unbiased=False), 0.25)
tensor = torch.randn(100).cuda()
self.assertEqual(tensor.std(0), tensor.std(0, unbiased=True))
self.assertEqual(tensor.std(), tensor.std(unbiased=True))
self.assertEqual(tensor.std(unbiased=False), tensor.std(0, unbiased=False))
def test_var_large_input(self):
# Large, not-nice input
tensor_cpu = torch.randn(2 * 32 * 1024 + 1, 2, 67)
tensor_cuda = tensor_cpu.cuda()
self.assertEqual(tensor_cpu.var(2), tensor_cuda.var(2).cpu())
def test_var_stability(self):
tensor = torch.FloatTensor([2281.5, 2281.25]).cuda()
# Stability for inner dim
self.assertEqual(tensor.var(0), 0.03125)
# General stability
self.assertEqual(tensor.var(), 0.03125)
# Stability for outer dimensions
tensor = tensor.unsqueeze(1)
self.assertEqual(tensor.var(0), 0.03125)
@skipIfRocm
def test_digamma(self):
def test(use_double=False):
cpu_tensor = torch.randn(10, 10, 10)
gpu_tensor = cpu_tensor.cuda()
zeros = torch.zeros(10, 10, 10)
if (use_double):
cpu_tensor = cpu_tensor.double()
gpu_tensor = gpu_tensor.double()
zeros = zeros.double()
cpu_out = cpu_tensor.digamma()
gpu_out = gpu_tensor.digamma()
norm_errors = (gpu_out - cpu_out.cuda()) / gpu_out
self.assertEqual(norm_errors, zeros)
test(True)
test(False)
# Test float32 behavior near and at poles.
cpu_tensor = torch.tensor([-0.999999994, -1.999999994, -2.0000000111,
-100.99999994, -1931.99999994, 0.000000111,
-0.000000111, 0, -1, -2, -931])
expected_errors = torch.tensor([0, 0, 0, 0, 0, 0, 0, nan, nan, nan, nan])
gpu_tensor = cpu_tensor.cuda()
cpu_out = cpu_tensor.digamma()
gpu_out = gpu_tensor.digamma()
norm_errors = (gpu_out - cpu_out.cuda()) / gpu_out
self.assertEqual(norm_errors, expected_errors)
@skipIfRocm
def test_polygamma(self):
def test(use_double=False):
cpu_tensor = torch.randn(10, 10, 10)
gpu_tensor = cpu_tensor.cuda()
zeros = torch.zeros(10, 10, 10)
if (use_double):
cpu_tensor = cpu_tensor.double()
gpu_tensor = gpu_tensor.double()
zeros = zeros.double()
for n in [0, 1]:
cpu_out = cpu_tensor.polygamma(n)
gpu_out = gpu_tensor.polygamma(n)
norm_errors = (gpu_out - cpu_out.cuda()) / gpu_out
self.assertEqual(norm_errors, zeros)
test(True)
test(False)
@unittest.skipIf(not TEST_MAGMA, "no MAGMA library detected")
def test_symeig(self):
_TestTorchMixin._test_symeig(self, lambda t: t.cuda())
@unittest.skipIf(not TEST_MAGMA, "no MAGMA library detected")
def test_svd_no_singularvectors(self):
_TestTorchMixin._test_svd_no_singularvectors(self, lambda t: t.cuda())
def test_arange(self):
for t in ['IntTensor', 'LongTensor', 'FloatTensor', 'DoubleTensor']:
a = torch.cuda.__dict__[t]()
torch.arange(0, 10, out=a)
b = torch.__dict__[t]()
torch.arange(0, 10, out=b)
self.assertEqual(a, b.cuda())
def test_linspace(self):
a = torch.linspace(0, 10, 10, device='cuda')
b = torch.linspace(0, 10, 10)
self.assertEqual(a, b.cuda())
def test_logspace(self):
a = torch.logspace(1, 10, 10, device='cuda')
b = torch.logspace(1, 10, 10)
self.assertEqual(a, b.cuda())
def test_diagonal(self):
_TestTorchMixin._test_diagonal(self, dtype=torch.float32, device='cuda')
def test_diagflat(self):
_TestTorchMixin._test_diagflat(self, dtype=torch.float32, device='cuda')
@unittest.skipIf(not TEST_NUMPY, "NumPy not found")
@unittest.skipIf(not TEST_MAGMA, "no MAGMA library detected")
@skipIfRocm
def test_norm(self):
_TestTorchMixin._test_norm(self, device='cuda')
def test_dist(self):
_TestTorchMixin._test_dist(self, device='cuda')
@unittest.skipIf(not TEST_MAGMA, "no MAGMA library detected")
def test_trtrs(self):
_TestTorchMixin._test_trtrs(self, lambda t: t.cuda())
@unittest.skipIf(not TEST_MULTIGPU, "only one GPU detected")
def test_get_set_rng_state_all(self):
states = torch.cuda.get_rng_state_all()
before0 = torch.cuda.FloatTensor(100, device=0).normal_()
before1 = torch.cuda.FloatTensor(100, device=1).normal_()
torch.cuda.set_rng_state_all(states)
after0 = torch.cuda.FloatTensor(100, device=0).normal_()
after1 = torch.cuda.FloatTensor(100, device=1).normal_()
self.assertEqual(before0, after0, 0)
self.assertEqual(before1, after1, 0)
@skipIfRocm
def test_nvtx(self):
# Just making sure we can see the symbols
torch.cuda.nvtx.range_push("foo")
torch.cuda.nvtx.mark("bar")
torch.cuda.nvtx.range_pop()
def test_randperm_cuda(self):
cuda = torch.device('cuda:0')
# For small inputs, randperm is offloaded to CPU instead
with torch.random.fork_rng(devices=[0]):
res1 = torch.randperm(100, device=cuda)
res2 = torch.cuda.LongTensor()
torch.randperm(100, out=res2, device=cuda)
self.assertEqual(res1, res2, 0)
with torch.random.fork_rng(devices=[0]):
res1 = torch.randperm(100000, device=cuda)
res2 = torch.cuda.LongTensor()
torch.randperm(100000, out=res2, device=cuda)
self.assertEqual(res1, res2, 0)
with torch.random.fork_rng(devices=[0]):
res1 = torch.randperm(100, dtype=torch.half, device=cuda)
res2 = torch.cuda.HalfTensor()
torch.randperm(100, out=res2, device=cuda)
self.assertEqual(res1, res2, 0)
with torch.random.fork_rng(devices=[0]):
res1 = torch.randperm(50000, dtype=torch.half, device=cuda)
res2 = torch.cuda.HalfTensor()
torch.randperm(50000, out=res2, device=cuda)
self.assertEqual(res1, res2, 0)
# randperm of 0 elements is an empty tensor
res1 = torch.randperm(0, device=cuda)
res2 = torch.cuda.LongTensor(5)
torch.randperm(0, out=res2, device=cuda)
self.assertEqual(res1.numel(), 0)
self.assertEqual(res2.numel(), 0)
def test_random_neg_values(self):
_TestTorchMixin._test_random_neg_values(self, use_cuda=True)
def test_bincount_cuda(self):
_TestTorchMixin._test_bincount(self, device='cuda')
# ensure CUDA code coverage
input_size = (5000,)
w = torch.randn(input_size, device='cuda')
w_cpu = w.cpu()
# test shared memory impl
t = torch.randint(50, input_size, dtype=torch.int8, device='cuda')
self.assertEqual(t.cpu().bincount(), t.bincount())
self.assertEqual(t.cpu().bincount(w_cpu), t.bincount(w))
# test multi block memory impl
# see `THRESH_NUMBER_BINS_FOR_MULTI_BLOCK_MEM` in SummaryOps.cu
t = torch.randint(500, input_size, dtype=torch.int64, device='cuda')
self.assertEqual(t.cpu().bincount(), t.bincount())
self.assertEqual(t.cpu().bincount(w_cpu), t.bincount(w))
# test global memory impl
# see `THRESH_NUMBER_BINS_FOR_GLOBAL_MEM` in SummaryOps.cu
t = torch.randint(2000, input_size, dtype=torch.int64, device='cuda')
self.assertEqual(t.cpu().bincount(), t.bincount())
self.assertEqual(t.cpu().bincount(w_cpu), t.bincount(w))
@skipIfRocm
def test_tiny_half_norm_(self):
a = torch.arange(25).cuda().float()
a /= 100000000
b = a.half()
self.assertGreater(b.norm().item(), 0)
@skipIfRocm
# Test that wrap_with_cuda_memory_check successfully detects leak
def test_cuda_memory_leak_detection(self):
l = []
@self.wrap_with_cuda_memory_check
def no_leak():
pass
@self.wrap_with_cuda_memory_check
def leak_gpu0():
l.append(torch.tensor(10, device=torch.device("cuda:0")))
no_leak()
with self.assertRaisesRegex(AssertionError, r"leaked \d+ bytes CUDA memory on device 0"):
leak_gpu0()
if TEST_MULTIGPU:
@self.wrap_with_cuda_memory_check
def leak_gpu1():
l.append(torch.tensor(10, device=torch.device("cuda:1")))
with self.assertRaisesRegex(AssertionError, r"leaked \d+ bytes CUDA memory on device 1"):
leak_gpu1()
def test_cuda_memory_leak_detection_propagates_errors(self):
with self.assertRaisesRegex(RuntimeError, r"The size of tensor a \(3\) must match"):
with self.assertLeaksNoCudaTensors():
x = torch.randn(3, 1, device='cuda')
y = torch.randn(2, 1, device='cuda')
z = x + y
def test_trilu_indices(self):
for test_args in tri_tests_args:
_compare_trilu_indices(self, *test_args, device='cuda')
# test default options
x = torch.ones(
3, 3, dtype=torch.long, device='cuda', layout=torch.strided)
self.assertEqual(
x.tril(0).nonzero().transpose(0, 1),
torch.tril_indices(3, 3, device='cuda'))
self.assertEqual(
x.triu(0).nonzero().transpose(0, 1),
torch.triu_indices(3, 3, device='cuda'))
def test_large_trilu_indices(self):
for test_args in tri_large_tests_args:
_compare_large_trilu_indices(self, *test_args, device='cuda')
def test_triu_tril(self):
_TestTorchMixin._test_triu_tril(self, lambda t: t.cuda())
def load_ignore_file():
from os.path import join, dirname
global ignores
path = join(dirname(__file__), 'data', 'test_cuda_ignores.txt')
with open(path, 'r') as f:
ignores = {l for l in f.read().splitlines() if not l.startswith('#')}
def generate_tests():
for decl in tests:
for t in types:
tensor = t()
# Default values
desc = ''
type_subset = types
no_inplace = False
decorator = None
if len(decl) == 3:
name, constr, arg_constr = decl
elif len(decl) == 4:
name, constr, arg_constr, desc = decl
elif len(decl) == 5:
name, constr, arg_constr, desc, type_subset = decl
elif len(decl) == 6:
name, constr, arg_constr, desc, type_subset, no_inplace = decl
elif len(decl) == 7:
name, constr, arg_constr, desc, type_subset, no_inplace, decorator = decl
if t not in type_subset:
continue
if TEST_WITH_ROCM and decorator is not None:
if (isinstance(decorator, str)):
tensor_type_name = str(t.__name__)
decorator_list = decorator.split(":")
skip_type_list = decorator_list[1].split(",")
if (("ByteTensor" in skip_type_list) and tensor_type_name == "ByteTensor") \
or (("CharTensor" in skip_type_list) and tensor_type_name == "CharTensor") \
or (("DoubleTensor" in skip_type_list) and tensor_type_name == "DoubleTensor") \
or (("FloatTensor" in skip_type_list) and tensor_type_name == "FloatTensor") \
or (("HalfTensor" in skip_type_list) and tensor_type_name == "HalfTensor") \
or (("IntTensor" in skip_type_list) and tensor_type_name == "IntTensor") \
or (("LongTensor" in skip_type_list) and tensor_type_name == "LongTensor") \
or (("ShortTensor" in skip_type_list) and tensor_type_name == "ShortTensor"):
decorator = skipIfRocm
else:
decorator = None
elif ((not TEST_WITH_ROCM) and (decorator is not None)):
if (isinstance(decorator, str)):
decorator = None
precision = custom_precision.get(name, TestCuda.precision)
if is_half(t):
precision = custom_half_precision.get(name, precision)
for inplace in (True, False):
if inplace and no_inplace:
continue
if inplace:
name_inner = name + '_'
else:
name_inner = name
if t != torch.HalfTensor and not hasattr(tensor, name_inner):
# torch.HalfTensor doesn't support most operations,
# but we use torch.FloatTensor as cpu baseline
continue
full_name = '{}.{}'.format(tensor.type(), name_inner)
if full_name in ignores:
continue
test_name = 'test_' + t.__name__ + '_' + name_inner
if desc:
test_name += '_' + desc
assert not hasattr(TestCuda, test_name), "Duplicated test name: " + test_name
test_fn = compare_cpu_gpu(constr, arg_constr, name_inner, t, precision)
if decorator is not None:
test_fn = decorator(test_fn)
setattr(TestCuda, test_name, test_fn)
if __name__ == '__main__':
if TEST_CUDA:
load_ignore_file()
generate_tests()
run_tests()
|