1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
|
#ifndef CAFFE2_UTILS_MATH_H_
#define CAFFE2_UTILS_MATH_H_
// This is a simple translation from the old Caffe math interfaces. We aim to
// still keep it simple, so all platforms would be able to support it fairly
// easily.
// We include the cblas header here so that we can obtain the macros from cblas.
extern "C" {
#include "caffe2/utils/cblas.h"
}
#ifdef CAFFE2_USE_ACCELERATE
#include <Accelerate/Accelerate.h>
#endif // CAFFE2_USE_ACCELERATE
#include "caffe2/core/common.h"
#include "caffe2/core/types.h"
#include "caffe2/utils/math/elementwise.h"
#include "caffe2/utils/math/reduce.h"
#include "caffe2/utils/math_utils.h"
namespace caffe2 {
// TODO: Change dims related arguments to int64_t?
class Tensor;
// An empty class as a placeholder for a math function that has no specific
// engine specified.
class CAFFE2_API DefaultEngine {};
namespace math {
#define C10_DECLARE_COMPARE_OP(Comp) \
template <typename T, class Context> \
void Comp(const int N, const T* A, const T* B, bool* C, Context* context); \
\
template <typename T, class Context, bool kBroadcast1st = false> \
void Rowwise##Comp( \
const int rows, \
const int cols, \
const T* A, \
const T* B, \
bool* C, \
Context* context); \
\
template <typename T, class Context, bool kBroadcast1st = false> \
void Colwise##Comp( \
const int rows, \
const int cols, \
const T* A, \
const T* B, \
bool* C, \
Context* context); \
\
template <typename T, class Context> \
void Comp( \
const int A_ndim, \
const int* A_dims, \
const int B_ndim, \
const int* B_dims, \
const T* A, \
const T* B, \
bool* C, \
Context* context);
C10_DECLARE_COMPARE_OP(EQ)
C10_DECLARE_COMPARE_OP(NE)
C10_DECLARE_COMPARE_OP(LT)
C10_DECLARE_COMPARE_OP(LE)
C10_DECLARE_COMPARE_OP(GT)
C10_DECLARE_COMPARE_OP(GE)
#undef C10_DECLARE_COMPARE_OP
#define C10_DECLARE_BINARY_OP(Func) \
template <typename T, class Context> \
void Func(const int N, const T* A, const T* B, T* C, Context* context); \
\
template <typename T, class Context, bool kBroadcast1st = false> \
void Rowwise##Func( \
const int rows, \
const int cols, \
const T* A, \
const T* B, \
T* C, \
Context* context); \
\
template <typename T, class Context, bool kBroadcast1st = false> \
void Colwise##Func( \
const int rows, \
const int cols, \
const T* A, \
const T* B, \
T* C, \
Context* context); \
\
template <typename T, class Context> \
void Func( \
const int A_ndim, \
const int* A_dims, \
const int B_ndim, \
const int* B_dims, \
const T* A, \
const T* B, \
T* C, \
Context* context);
C10_DECLARE_BINARY_OP(Add)
C10_DECLARE_BINARY_OP(Sub)
C10_DECLARE_BINARY_OP(Mul)
C10_DECLARE_BINARY_OP(Div)
C10_DECLARE_BINARY_OP(And)
C10_DECLARE_BINARY_OP(Or)
C10_DECLARE_BINARY_OP(Xor)
C10_DECLARE_BINARY_OP(BitwiseAnd)
C10_DECLARE_BINARY_OP(BitwiseOr)
C10_DECLARE_BINARY_OP(BitwiseXor)
#undef C10_DECLARE_BINARY_OP
template <typename T, class Context>
CAFFE2_API void
ReduceMin(const int N, const T* x, T* y, Tensor* scratch_ptr, Context* context);
template <typename T, class Context>
CAFFE2_API void
ReduceMax(const int N, const T* x, T* y, Tensor* scratch_ptr, Context* context);
template <typename T, class Context>
CAFFE2_API void ReduceMin(
const int num_dims,
const int* dims,
const int num_axes,
const int* axes,
const T alpha,
const T* X,
T* Y,
Context* context);
template <typename T, class Context>
CAFFE2_API void ReduceMax(
const int num_dims,
const int* dims,
const int num_axes,
const int* axes,
const T alpha,
const T* X,
T* Y,
Context* context);
template <typename T, class Context>
CAFFE2_API void ReduceSum(
const int num_dims,
const int* dims,
const int num_axes,
const int* axes,
const T alpha,
const T* X,
T* Y,
Context* context);
template <typename T, class Context>
CAFFE2_API void ReduceMean(
const int num_dims,
const int* dims,
const int num_axes,
const int* axes,
const T alpha,
const T* X,
T* Y,
Context* context);
template <typename T, class Context>
CAFFE2_API void ReduceL1(
const int num_dims,
const int* dims,
const int num_axes,
const int* axes,
const T alpha,
const T* X,
T* Y,
Context* context);
template <typename T, class Context>
CAFFE2_API void ReduceL2(
const int num_dims,
const int* dims,
const int num_axes,
const int* axes,
const T alpha,
const T* X,
T* Y,
Context* context);
// Broadcasts X with X_dims to Y with Y_dims.
template <typename T, class Context>
CAFFE2_API void Broadcast(
const int X_ndim,
const int* X_dims,
const int Y_ndim,
const int* Y_dims,
const T alpha,
const T* X,
T* Y,
Context* context);
// Computes inv_std from variance.
template <typename T, class Context>
CAFFE2_API void InvStd(
const int N,
const T epsilon,
const T* var,
T* inv_std,
Context* context);
// Adds batch sub-tensors elementwise to output. Stripe is the stripe length
// and N is the number of elements to add (size of Y).
template <typename T, class Context>
CAFFE2_API void AddStripedBatch(
const int N,
const T* first,
T* y,
const int stripe,
const int batch,
Context* context);
// Compute the row-wise max of a N*D matrix X, and write it to a N
// dimensional vector y.
template <typename T, class Context>
CAFFE2_API void
RowwiseMax(const int N, const int D, const T* x, T* y, Context* context);
// Compute the column-wise max of a N*D matrix X, and write it to a D
// dimensional vector y.
template <typename T, class Context>
CAFFE2_API void
ColwiseMax(const int N, const int D, const T* x, T* y, Context* context);
// Elemwise maximum of vector x and vector y. z[i] = max(x[i], y[i])
template <typename T, class Context>
CAFFE2_API void
ElemwiseMax(const int N, const T* x, const T* y, T* z, Context* context);
// Elemwise maximum of vector x and scalar alpha. y[i] = max(x[i], alpha)
template <typename T, class Context>
CAFFE2_API void
Maximum(const int N, const float alpha, const T* x, T* y, Context* context);
// Transpose tensor X with dims by axes and write the result to tensor Y.
template <typename T, class Context>
CAFFE2_API void Transpose(
const int ndim,
const int* dims,
const int* axes,
const T* X,
T* Y,
Context* context);
// Decaf gemm provides a simpler interface to the gemm functions, with the
// limitation that the data has to be contiguous in memory.
template <typename T, class Context, class Engine = DefaultEngine>
CAFFE2_API void Gemm(
const CBLAS_TRANSPOSE trans_A,
const CBLAS_TRANSPOSE trans_B,
const int M,
const int N,
const int K,
const float alpha,
const T* A,
const T* B,
const float beta,
T* C,
Context* context,
TensorProto::DataType math_type = TensorProto_DataType_FLOAT);
// We also provide a gemm that has explicit lda, ldb and ldc specified.
// In most cases you probably want to use the function above, though.
template <typename T, class Context, class Engine = DefaultEngine>
CAFFE2_API void GemmEx(
const CBLAS_TRANSPOSE trans_A,
const CBLAS_TRANSPOSE trans_B,
const int M,
const int N,
const int K,
const T alpha,
const T* A,
const int lda,
const T* B,
const int ldb,
const T beta,
T* C,
const int ldc,
Context* context);
// GemmBatched provides a simple abstraction into library routines
template <typename T, class Context, class Engine = DefaultEngine>
CAFFE2_API void GemmBatched(
const CBLAS_TRANSPOSE trans_A,
const CBLAS_TRANSPOSE trans_B,
const int batch_size,
const int M,
const int N,
const int K,
const float alpha,
const T** A,
const T** B,
const float beta,
T** C,
Context* context,
TensorProto::DataType math_type = TensorProto_DataType_FLOAT);
template <typename T, class Context, class Engine = DefaultEngine>
CAFFE2_API void GemmStridedBatched(
const CBLAS_TRANSPOSE trans_A,
const CBLAS_TRANSPOSE trans_B,
const int batch_size,
const int M,
const int N,
const int K,
const float alpha,
const T* A,
const int A_stride,
const T* B,
const int B_stride,
const float beta,
T* C,
const int C_stride,
Context* context,
TensorProto::DataType math_type = TensorProto_DataType_FLOAT);
// Gemv always takes in a M*N matrix A, and depending on whether we set TransA
// to Trans, the output is:
// CblasNoTrans: x is an N dim vector and y is an M dim vector.
// CblasTrans: x is an M dim vector and y is an N dim vector.
template <typename T, class Context, class Engine = DefaultEngine>
CAFFE2_API void Gemv(
const CBLAS_TRANSPOSE trans_A,
const int M,
const int N,
const float alpha,
const T* A,
const T* x,
const float beta,
T* y,
Context* context,
TensorProto::DataType math_type = TensorProto_DataType_FLOAT);
template <typename T, class Context>
CAFFE2_API void Set(const size_t N, const T alpha, T* X, Context* context);
template <typename T, class Context>
CAFFE2_API void
RandUniform(const size_t n, const T a, const T b, T* r, Context* context);
// Generate n values that sum up to a fixed sum
// and subject to a restriction a <= x <= b for each x generated
template <typename T, class Context>
CAFFE2_API void RandFixedSum(
const size_t n,
const T a,
const T b,
const T sum,
T* r,
Context* context);
template <typename T, class Context>
CAFFE2_API void RandUniformUnique(
const size_t n,
const T a,
const T b,
T* r,
const size_t m,
const T* avoid,
Context* context);
// Generate n values from synthetic data distribution,
// define by unique accesses and stack distances
template <typename T, class Context>
CAFFE2_API void
RandSyntheticData(const size_t n, const T a, const T b, T* r, Context* context);
template <typename T, class Context>
CAFFE2_API void
RandGaussian(const size_t n, const T mean, const T std, T* r, Context* context);
// Dot matrix of vector a and b, and writes the result to a single value y.
template <typename T, class Context>
CAFFE2_API void
Dot(const int N, const T* a, const T* b, T* y, Context* context);
// Sum of vector x, and writes the result to a single value y.
template <typename T, class Context>
CAFFE2_API void Sum(
const int N,
const T* x,
T* y,
Context* context,
Tensor* scratch_ptr = nullptr);
// Sum of squares of vector x, and writes the result to a single value y.
template <typename T, class Context>
CAFFE2_API void SumSqr(
const int N,
const T* x,
T* y,
Context* context,
Tensor* scratch_ptr = nullptr);
// Select does index selection of the rows a N*D matrix x, and gives the N
// dimensional vector y that contains the selected data.
template <typename T, class Context>
CAFFE2_API void Select(
const int N,
const int D,
const T* x,
const int* idx,
T* y,
Context* context);
template <typename TAlpha, typename TData, class Context>
CAFFE2_API void Scale(
const int N,
const TAlpha alpha,
const TData* x,
TData* y,
Context* context);
// Different from the Scale function above, if alpha is passed in
// as a pointer, we will assume that it lives on the Context device,
// for example on GPU.
template <typename TAlpha, typename TData, class Context>
CAFFE2_API void Scale(
const int N,
const TAlpha* alpha,
const TData* x,
TData* y,
Context* context);
template <typename T, class Context>
CAFFE2_API void
Axpy(const int N, const float alpha, const T* x, T* y, Context* context);
// Different from the Axpy function above, if alpha is passed in
// as a pointer, we will assume that it lives on the Context device,
// for example on GPU.
template <typename T, class Context>
CAFFE2_API void
Axpy(const int N, const float* alpha, const T* x, T* y, Context* context);
template <typename TCoeff, typename TData, class Context>
CAFFE2_API void Axpby(
const int N,
const TCoeff alpha,
const TData* x,
const TCoeff b,
TData* y,
Context* context);
template <typename TCoeff, typename TData, class Context>
CAFFE2_API void Axpby(
const int N,
const TCoeff* alpha,
const TData* x,
const TCoeff* b,
TData* y,
Context* context);
// groups must be 1 for GPU
// For NHWC order with groups > 1, the result will be layout in
// NHW G RS C/G order to make data within the same group to be contiguous.
// For NCHW order, groups doesn't make any difference because we're doing Im2Col
// for each N and C is the slowest moving dimension among CHW.
template <typename T, class Context, StorageOrder kOrder>
CAFFE2_API void Im2Col(
const int channels,
const int height,
const int width,
const int kernel_h,
const int kernel_w,
const int dilation_h,
const int dilation_w,
const int pad_t,
const int pad_l,
const int pad_b,
const int pad_r,
const int stride_h,
const int stride_w,
const T* img_data,
T* col_data,
Context* context,
const int groups = 1);
// groups must be 1 for GPU
template <typename T, class Context, StorageOrder kOrder>
CAFFE2_API void Im2ColNd(
const int N,
const int img_size,
const int col_size,
const int* img_shape,
const int* col_shape,
const int* kernel_shape,
const int* stride,
const int* dilation,
const int* pad,
const T* img_data,
T* col_data,
Context* context,
const int groups = 1);
// groups must be 1 for GPU
// For NHWC order with groups > 1, the result will be layout in
// NHW G RS C/G order to make data within the same group to be contiguous.
// For NCHW order, groups doesn't make any difference because we're doing Im2Col
// for each N and C is the slowest moving dimension among CHW.
template <typename T, class Context, StorageOrder kOrder>
CAFFE2_API void Col2Im(
const int channels,
const int height,
const int width,
const int patch_h,
const int patch_w,
const int dilation_h,
const int dilation_w,
const int pad_t,
const int pad_l,
const int pad_b,
const int pad_r,
const int stride_h,
const int stride_w,
const T* col_data,
T* img_data,
Context* context,
const int groups = 1);
// groups must be 1 for GPU
// For NHWC order with groups > 1, the result will be layout in
// NHW G RS C/G order to make data within the same group to be contiguous.
// For NCHW order, groups doesn't make any difference because we're doing Im2Col
// for each N and C is the slowest moving dimension among CHW.
template <typename T, class Context, StorageOrder kOrder>
CAFFE2_API void Col2ImNd(
const int N,
const int img_size,
const int col_size,
const int* img_shape,
const int* col_shape,
const int* kernel_shape,
const int* stride,
const int* dilation,
const int* pad,
const T* col_data,
T* img_data,
Context* context,
const int groups = 1);
// Applies a per-channel bias value to each channel of the input
// image. image_size is H * W
template <typename T, class Context>
CAFFE2_API void BiasCHW(
const T* bias,
const T* bias_multiplier,
const int bias_channels,
const int image_size,
T* image,
Context* context);
template <class Context>
CAFFE2_API void CopyMatrix(
const size_t item_size,
const int M,
const int N,
const void* A,
const int lda,
void* B,
const int ldb,
Context* context,
TypeMeta::Copy copy = nullptr);
template <typename T, class Context>
CAFFE2_API void CopyMatrix(
const int M,
const int N,
const T* A,
const int lda,
T* B,
const int ldb,
Context* context);
template <typename T, class Context>
CAFFE2_API void CopyMatrix(
const int M,
const int N,
const T* A,
const int A_outer_stride,
const int A_inner_stride,
T* B,
const int B_outer_stride,
const int B_inner_stride,
Context* context);
template <typename T, class Context>
CAFFE2_API void CopyVector(const int N, const T* A, T* B, Context* context);
template <typename T, class Context>
CAFFE2_API void NCHW2NHWC(
const int N,
const int C,
const int HxW,
const T* X,
T* Y,
Context* context);
template <typename T, class Context>
CAFFE2_API void NHWC2NCHW(
const int N,
const int C,
const int HxW,
const T* X,
T* Y,
Context* context);
} // namespace math
} // namespace caffe2
#include "caffe2/utils/math-detail.h"
#endif // CAFFE2_UTILS_MATH_H_
|