1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
|
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
from caffe2.proto import caffe2_pb2
from caffe2.python import core, workspace
import onnx
import onnx.defs
from onnx.helper import make_node, make_graph, make_tensor, make_tensor_value_info, make_model
from onnx.backend.base import namedtupledict
from caffe2.python.models.download import downloadFromURLToFile, getURLFromName, deleteDirectory
import caffe2.python.onnx.backend as c2
from caffe2.python.onnx.workspace import Workspace
from caffe2.python.trt.transform import convert_onnx_model_to_trt_op, transform_caffe2_net
from caffe2.python.onnx.tests.test_utils import TestCase
import numpy as np
import os.path
import json
import time
import unittest
import tarfile
import tempfile
import shutil
from six.moves.urllib.request import urlretrieve
def _print_net(net):
for i in net.external_input:
print("Input: {}".format(i))
for i in net.external_output:
print("Output: {}".format(i))
for op in net.op:
print("Op {}".format(op.type))
for x in op.input:
print(" input: {}".format(x))
for y in op.output:
print(" output: {}".format(y))
_BASE_URL = 'https://s3.amazonaws.com/download.onnx/models/opset_{}'.format(onnx.defs.onnx_opset_version())
# TODO: This is copied from https://github.com/onnx/onnx/blob/master/onnx/backend/test/runner/__init__.py. Maybe we should
# expose a model retrival API from ONNX
def _download_onnx_model(model_name):
onnx_home = os.path.expanduser(os.getenv('ONNX_HOME', os.path.join('~', '.onnx')))
models_dir = os.getenv('ONNX_MODELS',
os.path.join(onnx_home, 'models'))
model_dir = os.path.join(models_dir, model_name)
if not os.path.exists(os.path.join(model_dir, 'model.onnx')):
if os.path.exists(model_dir):
bi = 0
while True:
dest = '{}.old.{}'.format(model_dir, bi)
if os.path.exists(dest):
bi += 1
continue
shutil.move(model_dir, dest)
break
os.makedirs(model_dir)
# On Windows, NamedTemporaryFile can not be opened for a
# second time
url = '{}/{}.tar.gz'.format(_BASE_URL, model_name)
download_file = tempfile.NamedTemporaryFile(delete=False)
try:
download_file.close()
print('Start downloading model {} from {}'.format(
model_name, url))
urlretrieve(url, download_file.name)
print('Done')
with tarfile.open(download_file.name) as t:
t.extractall(models_dir)
except Exception as e:
print('Failed to prepare data for model {}: {}'.format(
model_name, e))
raise
finally:
os.remove(download_file.name)
return model_dir
class TensorRTOpTest(TestCase):
def _test_relu_graph(self, X, batch_size, trt_max_batch_size):
node_def = make_node("Relu", ["X"], ["Y"])
Y_c2 = c2.run_node(node_def, {"X": X})
graph_def = make_graph(
[node_def],
name="test",
inputs=[make_tensor_value_info("X", onnx.TensorProto.FLOAT, [batch_size, 1, 3, 2])],
outputs=[make_tensor_value_info("Y", onnx.TensorProto.FLOAT, [batch_size, 1, 3, 2])])
model_def = make_model(graph_def, producer_name='relu-test')
op_outputs = [x.name for x in model_def.graph.output]
op = convert_onnx_model_to_trt_op(model_def, max_batch_size=trt_max_batch_size)
device_option = core.DeviceOption(caffe2_pb2.CUDA, 0)
op.device_option.CopyFrom(device_option)
Y_trt = None
ws = Workspace()
with core.DeviceScope(device_option):
ws.FeedBlob("X", X)
ws.RunOperatorsOnce([op])
output_values = [ws.FetchBlob(name) for name in op_outputs]
Y_trt = namedtupledict('Outputs', op_outputs)(*output_values)
np.testing.assert_almost_equal(Y_c2, Y_trt)
@unittest.skipIf('TEST_C2_TRT' not in os.environ, "No TensortRT support")
def test_relu_graph_simple(self):
X = np.random.randn(1, 1, 3, 2).astype(np.float32)
self._test_relu_graph(X, 1, 50)
@unittest.skipIf('TEST_C2_TRT' not in os.environ, "No TensortRT support")
def test_relu_graph_big_batch(self):
X = np.random.randn(52, 1, 3, 2).astype(np.float32)
self._test_relu_graph(X, 52, 50)
@unittest.skipIf('TEST_C2_TRT' not in os.environ, "No TensortRT support")
def test_resnet50(self):
input_blob_dims = (1, 3, 224, 224)
model_dir = _download_onnx_model('resnet50')
model_def = onnx.load(os.path.join(model_dir, 'model.onnx'))
op_inputs = [x.name for x in model_def.graph.input]
op_outputs = [x.name for x in model_def.graph.output]
n, c, h, w = input_blob_dims
data = np.random.randn(n, c, h, w).astype(np.float32)
Y_c2 = c2.run_model(model_def, {op_inputs[0]: data})
op = convert_onnx_model_to_trt_op(model_def)
device_option = core.DeviceOption(caffe2_pb2.CUDA, 0)
op.device_option.CopyFrom(device_option)
Y_trt = None
ws = Workspace()
with core.DeviceScope(device_option):
ws.FeedBlob(op_inputs[0], data)
ws.RunOperatorsOnce([op])
output_values = [ws.FetchBlob(name) for name in op_outputs]
Y_trt = namedtupledict('Outputs', op_outputs)(*output_values)
np.testing.assert_allclose(Y_c2, Y_trt, rtol=1e-3)
class TensorRTTransformTest(TestCase):
def _model_dir(self, model):
caffe2_home = os.path.expanduser(os.getenv('ONNX_HOME', '~/.caffe2'))
models_dir = os.getenv('ONNX_MODELS', os.path.join(caffe2_home, 'models'))
return os.path.join(models_dir, model)
def _download(self, model):
model_dir = self._model_dir(model)
assert not os.path.exists(model_dir)
os.makedirs(model_dir)
for f in ['predict_net.pb', 'init_net.pb', 'value_info.json']:
url = getURLFromName(model, f)
dest = os.path.join(model_dir, f)
try:
try:
downloadFromURLToFile(url, dest,
show_progress=False)
except TypeError:
# show_progress not supported prior to
# Caffe2 78c014e752a374d905ecfb465d44fa16e02a28f1
# (Sep 17, 2017)
downloadFromURLToFile(url, dest)
except Exception as e:
print("Abort: {reason}".format(reason=e))
print("Cleaning up...")
deleteDirectory(model_dir)
exit(1)
def _get_c2_model(self, model_name):
model_dir = self._model_dir(model_name)
if not os.path.exists(model_dir):
self._download(model_name)
c2_predict_pb = os.path.join(model_dir, 'predict_net.pb')
c2_predict_net = caffe2_pb2.NetDef()
with open(c2_predict_pb, 'rb') as f:
c2_predict_net.ParseFromString(f.read())
c2_predict_net.name = model_name
c2_init_pb = os.path.join(model_dir, 'init_net.pb')
c2_init_net = caffe2_pb2.NetDef()
with open(c2_init_pb, 'rb') as f:
c2_init_net.ParseFromString(f.read())
c2_init_net.name = model_name + '_init'
value_info = json.load(open(os.path.join(model_dir, 'value_info.json')))
return c2_init_net, c2_predict_net, value_info
def _add_head_tail(self, pred_net, new_head, new_tail):
orig_head = pred_net.external_input[0]
orig_tail = pred_net.external_output[0]
# Add head
head = caffe2_pb2.OperatorDef()
head.type = "Copy"
head.input.append(new_head)
head.output.append(orig_head)
dummy = caffe2_pb2.NetDef()
dummy.op.extend(pred_net.op)
del pred_net.op[:]
pred_net.op.extend([head])
pred_net.op.extend(dummy.op)
pred_net.external_input[0] = new_head
# Add tail
tail = caffe2_pb2.OperatorDef()
tail.type = "Copy"
tail.input.append(orig_tail)
tail.output.append(new_tail)
pred_net.op.extend([tail])
pred_net.external_output[0] = new_tail
@unittest.skipIf('TEST_C2_TRT' not in os.environ, "No TensortRT support")
def test_resnet50_core(self):
N = 2
warmup = 20
repeat = 100
print("Batch size: {}, repeat inference {} times, warmup {} times".format(N, repeat, warmup))
init_net, pred_net, _ = self._get_c2_model('resnet50')
self._add_head_tail(pred_net, 'real_data', 'real_softmax')
input_blob_dims = (N, 3, 224, 224)
input_name = "real_data"
device_option = core.DeviceOption(caffe2_pb2.CUDA, 0)
init_net.device_option.CopyFrom(device_option)
pred_net.device_option.CopyFrom(device_option)
for op in pred_net.op:
op.device_option.CopyFrom(device_option)
op.engine = 'CUDNN'
net_outputs = pred_net.external_output
Y_c2 = None
data = np.random.randn(*input_blob_dims).astype(np.float32)
c2_time = 1
ws = Workspace()
with core.DeviceScope(device_option):
ws.FeedBlob(input_name, data)
ws.RunNetOnce(init_net)
ws.CreateNet(pred_net)
for _ in range(warmup):
ws.RunNet(pred_net.name)
start = time.time()
for _ in range(repeat):
ws.RunNet(pred_net.name)
end = time.time()
c2_time = end - start
output_values = [ws.FetchBlob(name) for name in net_outputs]
Y_c2 = namedtupledict('Outputs', net_outputs)(*output_values)
ws.ResetWorkspace()
# Cut the graph
init_net_cut, pred_net_cut = transform_caffe2_net(init_net, pred_net, {input_name: input_blob_dims})
del init_net, pred_net
#print_net(pred_net_cut)
Y_trt = None
input_name = pred_net_cut.external_input[0]
print("C2 runtime: {}s".format(c2_time))
ws = Workspace()
with core.DeviceScope(device_option):
ws.FeedBlob(input_name, data)
ws.RunNetOnce(init_net_cut)
ws.CreateNet(pred_net_cut)
for _ in range(warmup):
ws.RunNet(pred_net_cut.name)
start = time.time()
for _ in range(repeat):
ws.RunNet(pred_net_cut.name)
end = time.time()
trt_time = end - start
print("TRT runtime: {}s, improvement: {}%".format(trt_time, (c2_time-trt_time)/c2_time*100))
output_values = [ws.FetchBlob(name) for name in net_outputs]
Y_trt = namedtupledict('Outputs', net_outputs)(*output_values)
np.testing.assert_allclose(Y_c2, Y_trt, rtol=1e-3)
|