1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
|
#include "bound_shape_inferencer.h"
#include "caffe2/core/operator_schema.h"
#include "caffe2/core/tensor_impl.h"
#include "caffe2/utils/proto_utils.h"
#include "caffe2/utils/string_utils.h"
namespace caffe2 {
namespace {
std::vector<int64_t> ConvertToVec(
const ::google::protobuf::RepeatedField<::google::protobuf::int64>& in) {
std::vector<int64_t> out;
out.reserve(in.size());
for (const auto d : in) {
out.push_back(d);
}
return out;
}
int64_t SizeFromDim(const TensorShape& shape, int axis) {
int64_t r = 1;
for (int i = axis; i < shape.dims_size(); ++i) {
r *= shape.dims(i);
}
return r;
}
int64_t SizeToDim(const TensorShape& shape, int axis) {
CAFFE_ENFORCE_LE(axis, shape.dims_size());
int64_t r = 1;
for (int i = 0; i < axis; ++i) {
r *= shape.dims(i);
}
return r;
}
void EnsureShapeNames(std::unordered_map<std::string, ShapeInfo>* info) {
for (auto& kv : *info) {
kv.second.shape.set_name(kv.first);
}
}
} // namespace
void BoundShapeInferencer::InferBoundShapeAndType(
const NetDef& net,
const std::unordered_map<std::string, ShapeInfo>& info) {
const static std::unordered_set<std::string> unsupported{"Tile"};
shape_info_ = info;
for (const auto& op : net.op()) {
VLOG(1) << op.type();
if (unsupported.count(op.type())) {
continue;
}
if (op.type() == "SparseLengthsSum" ||
op.type() == "SparseLengthsSumFused8BitRowwise" ||
op.type() == "SparseLengthsWeightedSum" ||
op.type() == "SparseLengthsWeightedSumFused8BitRowwise") {
InferSparseLengthsSum(op);
} else if (op.type() == "FC" || op.type() == "FCTransposed") {
InferFC(op);
} else if (op.type() == "Concat") {
InferConcat(op);
} else if (op.type() == "Reshape") {
InferReshape(op);
} else if (op.type() == "LengthsRangeFill") {
InferLengthsRangeFill(op);
} else if (
(caffe2::StartsWith(op.type(), "GivenTensor") &&
caffe2::EndsWith(op.type(), "Fill")) ||
op.type() == "ConstantFill" || op.type() == "Int8GivenTensorFill" ||
op.type() == "Int8GivenIntTensorFill") {
InferGivenTensorFill(op);
} else if (op.type() == "Shape") {
InferShape(op);
} else {
InferCommonOp(op);
}
}
// Make sure shape has name
EnsureShapeNames(&shape_info_);
}
TensorShape& BoundShapeInferencer::CheckAndSetTensorShapeAndType(
const std::string& name,
ShapeInfo::DimType t,
std::vector<int64_t> bound_dims,
TensorProto::DataType type,
bool is_quantized) {
auto rt = shape_info_.emplace(name, ShapeInfo());
ShapeInfo& shape_info = rt.first->second;
TensorShape& shape = shape_info.shape;
if (is_quantized) {
shape_info.is_quantized = true;
shape_info.q_info.scale = 1;
shape_info.q_info.offset = 0;
}
if (!rt.second) {
// Check shape consistency
CAFFE_ENFORCE_EQ(shape.dims_size(), bound_dims.size());
// For shapes that was provided as a hint at the input of the net, fix the
// batch size first.
if (shape.dims_size() > 0 &&
shape_info.dim_type == ShapeInfo::DimType::UNKNOWN &&
t > ShapeInfo::DimType::CONSTANT) {
shape_info.dim_type = t;
shape.set_dims(0, bound_dims.front());
}
for (int i = 0; i < shape.dims_size(); ++i) {
CAFFE_ENFORCE_EQ(
shape.dims(i),
bound_dims[i],
"Shape inconsistency found in tensor ",
name,
" on dim ",
i,
" (",
shape.dims(i),
" vs ",
bound_dims[i],
")");
}
return shape;
}
shape_info.dim_type = t;
shape.mutable_dims()->Clear();
for (const auto d : bound_dims) {
shape.add_dims(d);
}
shape.set_data_type(type);
return shape;
}
std::vector<TensorShape> InferOutput(
const OperatorDef& op,
const std::vector<TensorShape>& input_shapes) {
const OpSchema* schema = OpSchemaRegistry::Schema(op.type());
CAFFE_ENFORCE(schema);
return schema->InferTensor(op, input_shapes);
}
void BoundShapeInferencer::InferGivenTensorFill(const OperatorDef& op) {
CAFFE_ENFORCE_EQ(op.output_size(), 1, op.type(), " must have 1 output");
InferCommonOp(op);
auto it = shape_info_.find(op.output(0));
if (it != shape_info_.end()) {
it->second.dim_type = ShapeInfo::DimType::CONSTANT;
}
}
void BoundShapeInferencer::InferLengthsRangeFill(const OperatorDef& op) {
CAFFE_ENFORCE_EQ(op.input_size(), 1, "LengthsRangeFill must have 1 input");
CAFFE_ENFORCE_EQ(op.output_size(), 1, "LengthsRangeFill must have 1 output");
// Both input and ouptut of LengthsRangeFill is int32:
// https://fburl.com/fhwb5666
CheckAndSetTensorShapeAndType(
op.input(0),
ShapeInfo::DimType::BATCH,
{spec_.max_batch_size},
TensorProto_DataType_INT32,
false);
CheckAndSetTensorShapeAndType(
op.output(0),
ShapeInfo::DimType::SEQ,
{spec_.max_seq_size},
TensorProto_DataType_INT32,
false);
current_dim_type_ = ShapeInfo::DimType::SEQ;
}
void BoundShapeInferencer::InferSparseLengthsSum(const OperatorDef& op) {
CAFFE_ENFORCE_GE(
op.input_size(), 3, op.type(), " must have at least 3 inputs");
const auto it = shape_info_.find(op.input(0));
CAFFE_ENFORCE(
it != shape_info_.end(),
"Shape of DATA input of SparseLengthsSum ",
op.input(0),
" needs to be presented");
CAFFE_ENFORCE_EQ(
it->second.shape.dims().size(),
2,
"DATA input ",
op.input(0),
"needs to be 2D");
int weight = (op.type() == "SparseLengthsWeightedSum" ||
op.type() == "SparseLengthsWeightedSumFused8BitRowwise")
? 1
: 0;
if (weight) {
CAFFE_ENFORCE_EQ(
op.input_size(), 4, "SparseLengthsWeightedSum must have 4 inputs");
CheckAndSetTensorShapeAndType(
op.input(weight),
ShapeInfo::DimType::SEQ,
{spec_.max_seq_size},
TensorProto_DataType_FLOAT,
false);
}
// Bound inputs
CheckAndSetTensorShapeAndType(
op.input(1 + weight),
ShapeInfo::DimType::SEQ,
{spec_.max_seq_size},
TensorProto_DataType_INT64,
false);
CheckAndSetTensorShapeAndType(
op.input(2 + weight),
ShapeInfo::DimType::BATCH,
{spec_.max_batch_size},
TensorProto_DataType_INT32,
false);
// Infer output
CAFFE_ENFORCE_EQ(it->second.shape.dims_size(), 2);
current_dim_type_ = ShapeInfo::DimType::BATCH;
current_max_batch_size_ = spec_.max_batch_size;
auto output_dim1 = it->second.shape.dims(1);
// If the op is SparseLengthsSumFused8BitRowwise, we need to extract 4 for
// scale and 4 byte for bias (https://fburl.com/t6dp9tsc)
if (op.type() == "SparseLengthsSumFused8BitRowwise" ||
op.type() == "SparseLengthsWeightedSumFused8BitRowwise") {
output_dim1 -= 8;
}
CheckAndSetTensorShapeAndType(
op.output(0),
ShapeInfo::DimType::BATCH,
{spec_.max_batch_size, output_dim1},
TensorProto_DataType_FLOAT,
false);
}
void BoundShapeInferencer::InferShape(const OperatorDef& op) {
InferCommonOp(op);
// old_shape should be a constant
if (op.output_size() > 0 && shape_info_.count(op.output(0))) {
shape_info_[op.output(0)].dim_type = ShapeInfo::DimType::CONSTANT;
}
}
void BoundShapeInferencer::InferReshape(const OperatorDef& op) {
InferCommonOp(op);
// old_shape should be a constant
if (op.output_size() > 1 && shape_info_.count(op.output(1))) {
shape_info_[op.output(1)].dim_type = ShapeInfo::DimType::CONSTANT;
}
}
// For concat net, if some inputs are missing and we have add_axis argument, it
// means that all the inputs should be of the same dimension. In this case, we
// can infer the shape of the missing inputs
void BoundShapeInferencer::InferConcat(const OperatorDef& op) {
ArgumentHelper helper(op);
auto add_axis = helper.GetSingleArgument<int32_t>("add_axis", 0);
if (add_axis) {
ShapeInfo* ref_input_shape = nullptr;
std::string ref_name;
std::unordered_set<std::string> missing_shape_inputs;
for (const auto& i : op.input()) {
const auto it = shape_info_.find(i);
if (it != shape_info_.end()) {
const auto& current_input_shape = it->second;
if (ref_input_shape) {
CAFFE_ENFORCE_EQ(
ref_input_shape->shape.dims_size(),
current_input_shape.shape.dims_size(),
ref_name,
" vs ",
i);
for (int j = 0; j < ref_input_shape->shape.dims_size(); ++j) {
CAFFE_ENFORCE_EQ(
ref_input_shape->shape.dims(j),
current_input_shape.shape.dims(j),
"Mismatched size on dim ",
j,
" between ",
ref_name,
" and ",
i,
" (",
ref_input_shape->shape.dims(j),
" vs ",
current_input_shape.shape.dims(j),
")");
}
} else {
ref_input_shape = &it->second;
ref_name = i;
}
} else {
missing_shape_inputs.emplace(i);
}
}
if (ref_input_shape) {
current_dim_type_ = ref_input_shape->dim_type;
for (const auto& i : missing_shape_inputs) {
shape_info_.emplace(i, *ref_input_shape);
}
}
}
InferCommonOp(op);
// split_info should be a constant
if (op.output_size() > 1 && shape_info_.count(op.output(1))) {
shape_info_[op.output(1)].dim_type = ShapeInfo::DimType::CONSTANT;
}
}
void BoundShapeInferencer::InferFC(const OperatorDef& op) {
CAFFE_ENFORCE_EQ(op.input_size(), 3, "FC has to have 3 inputs");
const auto w_it = shape_info_.find(op.input(1));
CAFFE_ENFORCE(
w_it != shape_info_.end(),
"Shape of WEIGHT input of FC ",
op.input(1),
" needs to be presented");
const ShapeInfo& w_shape_info = w_it->second;
const auto b_it = shape_info_.find(op.input(2));
CAFFE_ENFORCE(
w_it != shape_info_.end(),
"Shape of BIAS input of FC ",
op.input(2),
" needs to be presented");
const ShapeInfo& b_shape_info = b_it->second;
auto x_it = shape_info_.find(op.input(0));
if (x_it == shape_info_.end()) {
// We don't have a hint at the x input we try to deduce it from weight shape
ArgumentHelper helper(op);
auto axis = helper.GetSingleArgument<int32_t>("axis", 1);
auto axis_w = helper.GetSingleArgument<int32_t>("axis_w", 1);
const TensorShape w_shape = w_shape_info.shape;
bool transposed = (op.type() == "FC") ? false : true;
const int canonical_axis_w =
canonical_axis_index_(axis_w, w_shape.dims().size());
const int64_t K = transposed ? SizeToDim(w_shape, canonical_axis_w)
: SizeFromDim(w_shape, canonical_axis_w);
std::vector<int64_t> dims;
for (int i = 0; i < axis - 1; ++i) {
dims.push_back(1);
}
dims.push_back(spec_.max_batch_size);
dims.push_back(K);
current_dim_type_ = ShapeInfo::DimType::BATCH;
current_max_batch_size_ = spec_.max_batch_size;
CheckAndSetTensorShapeAndType(
op.input(0),
ShapeInfo::DimType::BATCH,
dims,
w_shape.data_type(),
false);
} else {
ShapeInfo& x_shape_info = x_it->second;
if (x_shape_info.dim_type != ShapeInfo::DimType::BATCH) {
CAFFE_ENFORCE_GE(x_shape_info.shape.dims_size(), 1);
x_shape_info.shape.set_dims(0, spec_.max_batch_size);
x_shape_info.dim_type = ShapeInfo::DimType::BATCH;
}
}
// Standard shape inference for outputs
std::vector<TensorShape> input_shapes{
shape_info_[op.input(0)].shape, w_shape_info.shape, b_shape_info.shape};
std::vector<TensorShape> output_shapes = InferOutput(op, input_shapes);
CAFFE_ENFORCE_EQ(output_shapes.size(), 1);
CheckAndSetTensorShapeAndType(
op.output(0),
ShapeInfo::DimType::BATCH,
ConvertToVec(output_shapes[0].dims()),
output_shapes[0].data_type(),
false);
}
void BoundShapeInferencer::InferCommonOp(const OperatorDef& op) {
// First, we need to check that all the input shape/types are already
// presented
try {
std::vector<TensorShape> input_shapes;
for (const auto& input : op.input()) {
const auto it = shape_info_.find(input);
if (it == shape_info_.end()) {
LOG(WARNING) << "Cannot find shape info for " << input << ". Skipping "
<< op.type();
return;
}
input_shapes.emplace_back(it->second.shape);
}
const OpSchema* schema = OpSchemaRegistry::Schema(op.type());
CAFFE_ENFORCE(schema);
std::vector<TensorShape> output_shapes;
output_shapes = schema->InferTensor(op, input_shapes);
int i = 0;
bool is_quantized =
!(op.type().compare(0, 4, "Int8")) && (op.type() != "Int8Dequantize");
TensorProto::DataType infered_data_type = TensorProto::UNDEFINED;
if (is_quantized) {
const static std::map<string, int> type_info_from_input = {
{"Int8Quantize", -1}, // Force this op's output to be uint8
{"Int8ConvRelu", 1},
{"Int8MaxPool", 0},
{"Int8AveragePool", 0},
{"Int8FC", 1},
{"Int8Conv", 1},
{"Int8SumRelu", 0}};
CAFFE_ENFORCE(
type_info_from_input.find(op.type()) != type_info_from_input.end(),
"Undefined quantized output data type, add it into type_info_from_input");
int target = type_info_from_input.find(op.type())->second;
if (target == -1) {
infered_data_type = TensorProto::UINT8;
} else {
CAFFE_ENFORCE(target < input_shapes.size());
infered_data_type = input_shapes[target].data_type();
}
} else if (op.type() == "Int8Dequantize") {
infered_data_type = TensorProto::FLOAT;
}
for (const auto& shape : output_shapes) {
if (infered_data_type == TensorProto::UNDEFINED) {
infered_data_type = shape.data_type();
}
if (shape.unknown_shape()) {
++i;
continue;
}
CheckAndSetTensorShapeAndType(
op.output(i++),
current_dim_type_,
ConvertToVec(shape.dims()),
infered_data_type,
is_quantized);
}
} catch (const caffe2::EnforceNotMet& e) {
LOG(ERROR) << "Enforce not met while inferring shapes for " << op.type()
<< ": " << e.msg();
} catch (const std::exception& e) {
LOG(WARNING) << "Caught exception while inferring shapes for " << op.type()
<< ": " << e.what();
}
}
} // namespace caffe2
|