1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
|
#include "caffe2/core/context_gpu.h"
#include "caffe2/operators/flatten_op.h"
#include "caffe2/operators/minmax_ops.h"
#include "caffe2/operators/utility_ops.h"
#include "caffe2/utils/math.h"
#include <thrust/device_vector.h>
#include <thrust/sequence.h>
#include <thrust/sort.h>
#include <thrust/system/cuda/execution_policy.h>
#include <thrust/unique.h>
namespace caffe2 {
template <>
bool WeightedSumOp<CUDAContext>::RunOnDevice() {
if (Input(0).IsType<float>()) {
return DoRunWithType<float>();
} else if (Input(0).IsType<at::Half>()) {
return DoRunWithType<at::Half>();
} else {
CAFFE_THROW("Unsupported inputs");
}
return false;
}
template <>
bool SumOp<CUDAContext>::RunOnDevice() {
if (Input(0).IsType<float>()) {
return DoRunWithType<float, float>();
} else if (Input(0).IsType<at::Half>()) {
return DoRunWithType<at::Half, at::Half>();
} else {
CAFFE_THROW("Unsupported inputs");
}
return false;
}
REGISTER_CUDA_OPERATOR(Print, PrintOp<CUDAContext>);
REGISTER_CUDA_OPERATOR(Flatten, FlattenOp<CUDAContext>);
REGISTER_CUDA_OPERATOR(FlattenToVec, FlattenToVecOp<CUDAContext>);
REGISTER_CUDA_OPERATOR(Alias, AliasOp<CUDAContext>);
REGISTER_CUDA_OPERATOR(ResizeLike, ResizeLikeOp<CUDAContext>);
REGISTER_CUDA_OPERATOR(Sum, SumOp<CUDAContext>);
REGISTER_CUDA_OPERATOR(WeightedSum, WeightedSumOp<CUDAContext>);
CAFFE_KNOWN_TYPE(const float*);
REGISTER_CUDA_OPERATOR(EnsureDense, EnsureDenseOp<CUDAContext>);
__global__ void NanCheckKernel(int N, const float* X, bool* result) {
bool has_nan = false;
CUDA_1D_KERNEL_LOOP(i, N) {
// Note: we have no need to do early return, since only if this fails
// will we not need to inspect all elements. No need to optimize the
// case that will fail.
has_nan = has_nan || isnan(X[i]) || isinf(X[i]);
}
__syncthreads();
if (has_nan) {
result[0] = true;
}
}
template <>
bool NanCheckOp<CUDAContext>::RunOnDevice() {
auto& X = Input(0);
auto* Y = Output(0);
const size_t N = X.numel();
const float* data_ptr = X.data<float>();
ReinitializeTensor(&scratch_, {1}, at::dtype<bool>().device(CUDA));
math::Set<bool, CUDAContext>(
1, false, scratch_.mutable_data<bool>(), &context_);
NanCheckKernel<<<
CAFFE_GET_BLOCKS(N),
CAFFE_CUDA_NUM_THREADS,
0,
context_.cuda_stream()>>>(
N, X.data<float>(), scratch_.mutable_data<bool>());
bool result = false;
{
std::lock_guard<std::mutex> lock(CUDAContext::mutex());
CUDA_ENFORCE(cudaMemcpyAsync(
&result,
scratch_.raw_data(),
1,
cudaMemcpyDefault,
context_.cuda_stream()));
}
// Note: we must synchronize here so we can inspect the result
context_.FinishDeviceComputation();
// Print out diagnostic info if we have a NaN or inf
if (result) {
std::cerr << "Tensor contained NaN or inf: " << this->debug_def().input(0)
<< std::endl;
for (int j = 0; j < InputSize(); j++) {
Tensor cpu_X(CPU);
cpu_X.ResizeLike(Input(j));
// Hack to cause allocaiton happen here, so it won't happen
// when we do CopyFrom. We need the mutex then because host->gpu
// copies seem to possibly lock with NCCL.
cpu_X.mutable_data<float>();
{
std::lock_guard<std::mutex> lock(CUDAContext::mutex());
cpu_X.CopyFrom(Input(j)); // sync copy
}
std::cerr << "Input tensor: " << j << ": [" << this->debug_def().input(j)
<< "]" << std::endl;
tensorPrinter_.Print<float>(cpu_X);
if (j == 0) {
std::cerr << "NaN idxs:" << std::endl;
auto* cpu_X_data = cpu_X.data<float>();
for (size_t i = 0; i < cpu_X.numel(); ++i) {
if (std::isnan(cpu_X_data[i]) || std::isinf(cpu_X_data[i])) {
std::cerr << i << " ";
}
}
}
std::cerr << std::endl;
}
return false;
}
// This op should act as an identity matrix if we don't find any NaNs/infs.
// Copy over the data if we are not doing this in-place.
if (&X != Y) {
Y->CopyFrom(X, true /*async*/);
}
return true;
}
REGISTER_CUDA_OPERATOR(NanCheck, NanCheckOp<CUDAContext>);
__global__ void
ElwiseMaxKernel(const float* X, const float* Y, float* maxout, const int N) {
CUDA_1D_KERNEL_LOOP(i, N) {
maxout[i] = fmaxf(X[i], Y[i]);
}
}
template <>
bool MaxOp<float, CUDAContext>::Compute() {
float* output_data = Output(0)->template mutable_data<float>();
const int N = Input(0).numel();
// Run pairwise-maxes
for (int i = 1; i < InputSize(); ++i) {
ElwiseMaxKernel<<<
CAFFE_GET_BLOCKS(N),
CAFFE_CUDA_NUM_THREADS,
0,
context_.cuda_stream()>>>(
(i == 0 ? Input(0).data<float>() : Output(0)->data<float>()),
Input(i).data<float>(),
output_data,
N);
}
return true;
}
REGISTER_CUDA_OPERATOR(Max, MaxOp<float, CUDAContext>);
REGISTER_CUDA_OPERATOR(MaxGradient, MaxGradientOp<float, CUDAContext>);
__global__ void
ElwiseMinKernel(const float* X, const float* Y, float* minout, const int N) {
CUDA_1D_KERNEL_LOOP(i, N) {
minout[i] = fminf(X[i], Y[i]);
}
}
template <>
bool MinOp<float, CUDAContext>::Compute() {
float* output_data = Output(0)->template mutable_data<float>();
const int N = Input(0).numel();
// Run pairwise-mines
for (int i = 1; i < InputSize(); ++i) {
ElwiseMinKernel<<<
CAFFE_GET_BLOCKS(N),
CAFFE_CUDA_NUM_THREADS,
0,
context_.cuda_stream()>>>(
(i == 0 ? Input(0).data<float>() : Output(0)->data<float>()),
Input(i).data<float>(),
output_data,
N);
}
return true;
}
REGISTER_CUDA_OPERATOR(Min, MinOp<float, CUDAContext>);
REGISTER_CUDA_OPERATOR(MinGradient, MinGradientOp<float, CUDAContext>);
template <typename T>
__global__ void
MaxMinGradKernel(int N, const T* mx, const T* x, const T* go, T* gi) {
CUDA_1D_KERNEL_LOOP(i, N) {
gi[i] = go[i] * (mx[i] == x[i]);
}
}
template <>
bool SelectGradientOpBase<float, CUDAContext>::RunOnDevice() {
auto& output = Input(0);
auto& grad_output = Input(1);
const int kInputStartOffset = 2;
const float* data = output.data<float>();
for (int i = 0; i < OutputSize(); i++) {
auto& input = Input(i + kInputStartOffset);
auto* grad_input = Output(i, input.sizes(), at::dtype<float>());
MaxMinGradKernel<<<
CAFFE_GET_BLOCKS(input.numel()),
CAFFE_CUDA_NUM_THREADS,
0,
context_.cuda_stream()>>>(
input.numel(),
output.data<float>(),
input.data<float>(),
grad_output.data<float>(),
grad_input->template mutable_data<float>());
}
return true;
}
/**
* @brief Update slices of Y in-place with a batch of weighted X's.
* Y[idx] = alpha[b] * X[b][i] + Y[idx]
* i=0,...,N-1
* b=0,...,B-1
* idx=Indices[i]
*/
template <typename T_INDEX>
__global__ void AxpySliceKernel(
const float* weight0,
const int64_t N,
const int64_t B,
const int64_t slice_size,
const float** alpha,
const float** X,
const T_INDEX* Indices,
float* Y,
const int64_t M) {
// This implementation requires that the first weight is 1.0
CUDA_KERNEL_ASSERT(weight0[0] == 1.0);
for (int i = blockIdx.x; i < N; i += gridDim.x) {
T_INDEX idx = Indices[i];
float* y_offset = Y + (idx * slice_size);
for (int b = 0; b < B; b++) {
float a = *alpha[b];
const float* x_offset = X[b] + (i * slice_size);
for (int j = threadIdx.x; j < slice_size; j += blockDim.x) {
atomicAdd(&y_offset[j], a * x_offset[j]);
}
}
}
}
template <>
bool ScatterWeightedSumOp<float, CUDAContext>::RunOnDevice() {
return DispatchHelper<TensorTypes<int32_t, int64_t>>::call(this, Input(2));
}
template <>
template <typename Index>
bool ScatterWeightedSumOp<float, CUDAContext>::DoRunWithType() {
CAFFE_ENFORCE_EQ(InputSize() % 2, 1);
auto& X0 = Input(0);
auto& weight0 = Input(1);
auto& indices = Input(2);
auto* output = Output(0);
CAFFE_ENFORCE_EQ(&X0, output, "In place operation is required");
CAFFE_ENFORCE_GT(X0.numel(), 0);
CAFFE_ENFORCE_GT(X0.dim(), 0, "X0 has to be at least the vector");
CAFFE_ENFORCE_EQ(weight0.numel(), 1);
int64_t M = X0.numel();
int64_t N = X0.dim(0);
int64_t K = indices.numel();
int64_t block_size = M / N;
float* data = output->template mutable_data<float>();
// In order to have all device pointers of x_i (and weight_i similarly)
// consecutively in device memory, copy pointers to a host vector and then
// copy back into a device array.
const int64_t B = (InputSize() - 3) / 2;
ReinitializeTensor(&x_data_host_, {B}, at::dtype<const float*>().device(CPU));
ReinitializeTensor(&weights_host_, {B}, at::dtype<const float*>().device(CPU));
ReinitializeTensor(&x_data_device_, {B}, at::dtype<const float*>().device(CUDA));
ReinitializeTensor(&weights_device_, {B}, at::dtype<const float*>().device(CUDA));
const float** x_data_host = x_data_host_.mutable_data<const float*>();
const float** weights_host = weights_host_.mutable_data<const float*>();
const float** x_data_device = x_data_device_.mutable_data<const float*>();
const float** weights_device = weights_device_.mutable_data<const float*>();
for (int inp = 3; inp < InputSize(); inp += 2) {
int idx = (inp - 3) / 2;
x_data_host[idx] = static_cast<const float*>(Input(inp).raw_data());
weights_host[idx] = static_cast<const float*>(Input(inp + 1).raw_data());
}
context_.Copy<const float*, CPUContext, CUDAContext>(
B, x_data_host, x_data_device);
context_.Copy<const float*, CPUContext, CUDAContext>(
B, weights_host, weights_device);
AxpySliceKernel<<<
std::min<int64_t>(K, CAFFE_MAXIMUM_NUM_BLOCKS),
CAFFE_CUDA_NUM_THREADS,
0,
context_.cuda_stream()>>>(
weight0.template data<float>(),
K,
B,
block_size,
weights_device,
x_data_device,
indices.template data<Index>(),
data,
M);
return true;
}
REGISTER_CUDA_OPERATOR(
ScatterWeightedSum,
ScatterWeightedSumOp<float, CUDAContext>);
namespace {
template <typename Index, typename T>
__global__ void scatter_assign_kernel(
T* data,
const Index* idxs,
const T* slicesData,
int64_t N,
int64_t K,
int64_t block_size) {
for (int64_t i = blockIdx.x; i < K; i += gridDim.x) {
Index idx = idxs[i];
CUDA_KERNEL_ASSERT(0 <= idx && idx < N);
const T* src = slicesData + block_size * i;
T* dest = data + block_size * idx;
for (int64_t j = threadIdx.x; j < block_size; j += blockDim.x) {
dest[j] = src[j];
}
}
}
} // namespace
template <>
template <typename Index, typename T>
void ScatterAssignOp<CUDAContext>::DoScatterAssign(
T* data,
const Index* idxs,
const T* slicesData,
int64_t N,
int64_t K,
int64_t block_size) {
scatter_assign_kernel<<<
std::min(K, static_cast<int64_t>(CAFFE_MAXIMUM_NUM_BLOCKS)),
CAFFE_CUDA_NUM_THREADS,
0,
context_.cuda_stream()>>>(data, idxs, slicesData, N, K, block_size);
}
REGISTER_CUDA_OPERATOR(ScatterAssign, ScatterAssignOp<CUDAContext>);
REGISTER_CUDA_OPERATOR(Size, SizeOp<CUDAContext>);
template <typename T>
__global__ void RangeKernel(const int n, T* Y, T offset, T step) {
CUDA_1D_KERNEL_LOOP(index, n) {
Y[index] = index * step + offset;
}
}
template <>
template <typename T>
bool RangeOp<CUDAContext>::DoRunOnDevice(
const T& start,
const T& step,
Tensor* output) {
int N = output->numel();
RangeKernel<<<
CAFFE_GET_BLOCKS(N),
CAFFE_CUDA_NUM_THREADS,
0,
context_.cuda_stream()>>>(
N, output->template mutable_data<T>(), start, step);
return true;
}
REGISTER_CUDA_OPERATOR(Range, RangeOp<CUDAContext>);
} // namespace caffe2
|