1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
|
#include "caffe2/core/operator.h"
#include "caffe2/utils/cpu_neon.h"
#include "caffe2/utils/math.h"
#ifdef CAFFE2_USE_MKLDNN
#include <caffe2/ideep/operators/operator_fallback_ideep.h>
#include <caffe2/ideep/utils/ideep_operator.h>
#endif
namespace caffe2 {
#if defined(__ARM_NEON__) || defined(__ARM_NEON)
namespace {
//
// ARM Neon code utilities
//
inline float32x4_t to_v4_f32(uint16x4_t v) {
return vcvtq_f32_u32(vmovl_u16(v));
}
inline float32x4x4_t to_f32_v4_x4(uint8x16_t v) {
float32x4x4_t out;
uint16x8_t lo_u16 = vmovl_u8(vget_low_u8(v));
out.val[0] = to_v4_f32(vget_low_u16(lo_u16));
out.val[1] = to_v4_f32(vget_high_u16(lo_u16));
uint16x8_t hi_u16 = vmovl_u8(vget_high_u8(v));
out.val[2] = to_v4_f32(vget_low_u16(hi_u16));
out.val[3] = to_v4_f32(vget_high_u16(hi_u16));
return out;
}
inline void clamp(float32x4_t& v) {
v = vmaxq_f32(v, vdupq_n_f32(0));
v = vminq_f32(v, vdupq_n_f32((float)std::numeric_limits<uint8_t>::max()));
}
inline void addMeanAndClamp(float32x4_t& v, float mean) {
v = vaddq_f32(v, vdupq_n_f32(mean));
clamp(v);
}
inline uint8x8_t convertNarrowAndPack(float32x4_t v0, float32x4_t v1) {
uint16x4_t u16_0 = vmovn_u32(vcvtq_u32_f32(v0));
uint16x4_t u16_1 = vmovn_u32(vcvtq_u32_f32(v1));
uint16x8_t u16_01 = vcombine_u16(u16_0, u16_1);
return vmovn_u16(u16_01);
}
} // unnamed namespace
#endif // defined(__ARM_NEON__) || defined(__ARM_NEON)
class PackedInt8BGRANHWCToNCHWCStylizerPreprocessOp
: public Operator<CPUContext> {
public:
// Expect this many channels as input
static constexpr int kInputChannels = 4;
// Expect this many channels as output
static constexpr int kOutputChannels = 3;
// We read this much noise per vectorized cycle
static constexpr int kNeonNoiseReadSize = kOutputChannels * 16;
USE_OPERATOR_FUNCTIONS(CPUContext);
PackedInt8BGRANHWCToNCHWCStylizerPreprocessOp(
const OperatorDef& operator_def,
Workspace* ws)
: Operator<CPUContext>(operator_def, ws), ws_(ws) {}
bool RunOnDevice() {
const auto& X = Input(0);
const auto& mean = Input(1);
auto* noiseBlob = ws_->CreateBlob("__CAFFE2_STYLIZER_NOISE__");
auto defaultNoiseSize = OperatorBase::GetSingleArgument<int>(
"noise_size", 491 /* prime to avoid artifacts */);
if (!BlobIsTensorType(*noiseBlob, CPU)) {
// Initialize random noise on first use.
// Cache it to maintain temporal consistency.
auto* t = BlobGetMutableTensor(noiseBlob, CPU);
#if defined(__ARM_NEON__) || defined(__ARM_NEON)
// Noise space is larger for vectorized code due to the
// vectorized load
initNoiseCPUNeon(t, defaultNoiseSize);
#else
initNoiseCPU(t, defaultNoiseSize);
#endif
}
const auto& noise = noiseBlob->template Get<TensorCPU>();
CAFFE_ENFORCE(noise.numel() >= defaultNoiseSize);
CAFFE_ENFORCE(X.dim() == 4);
const int N = X.dim32(0), H = X.dim32(1), W = X.dim32(2), C = X.dim32(3);
// Assume BGR or BGRA
CAFFE_ENFORCE(mean.numel() == kOutputChannels);
CAFFE_ENFORCE(C == kInputChannels);
auto* Y = Output(0, {N, kOutputChannels, H, W}, at::dtype<float>());
runBatch(
N,
C,
H,
W,
defaultNoiseSize,
X.data<uint8_t>(),
mean.data<float>(),
noise.data<float>(),
Y->template mutable_data<float>());
return true;
}
#if !defined(__ARM_NEON__) && !defined(__ARM_NEON)
void initNoiseCPU(Tensor* noise, int size) {
noise->Resize(size);
math::RandGaussian<float, CPUContext>(
size,
0.0,
OperatorBase::GetSingleArgument<float>("noise_std", 10.0),
noise->template mutable_data<float>(),
&context_);
}
#endif // !defined(__ARM_NEON__) && !defined(__ARM_NEON)
#if defined(__ARM_NEON__) || defined(__ARM_NEON)
void initNoiseCPUNeon(Tensor* noise, int size) {
// For ARM NEON, we read in multiples of kNeonNoiseReadSize since
// the inner loop is vectorized. Round up to the next highest
// multiple of kNeonNoiseReadSize
size = math::RoundUp(size, kNeonNoiseReadSize) + size;
noise->Resize(size);
math::RandGaussian<float, CPUContext>(
size,
0.0,
OperatorBase::GetSingleArgument<float>("noise_std", 10.0),
noise->template mutable_data<float>(),
&context_);
}
#endif // defined(__ARM_NEON__) || defined(__ARM_NEON)
void runBatch(
int N,
int /*C*/,
int H,
int W,
int noiseCycle,
const uint8_t* input,
const float* meanChannel,
const float* noise,
float* output) {
int planeSize = H * W;
for (int n = 0; n < N; ++n) {
auto curInput = input + n * kInputChannels * planeSize;
auto curOutput = output + n * kOutputChannels * planeSize;
#if defined(__ARM_NEON__) || defined(__ARM_NEON)
runCPUNeon(H, W, noiseCycle, curInput, meanChannel, noise, curOutput);
#else
runCPU(H, W, noiseCycle, curInput, meanChannel, noise, curOutput);
#endif // defined(__ARM_NEON__) || defined(__ARM_NEON)
}
}
#if !defined(__ARM_NEON__) && !defined(__ARM_NEON)
void runCPU(
int H,
int W,
int noiseCycle,
const uint8_t* input,
const float* meanChannel,
const float* noise,
float* output) {
int planeSize = H * W;
int noiseOffset = 0;
for (int point = 0; point < planeSize; ++point) {
for (int c = 0; c < kOutputChannels; ++c) {
float v = (float)input[point * kInputChannels + c];
output[c * planeSize + point] = v - meanChannel[c] + noise[noiseOffset];
if (++noiseOffset >= noiseCycle) {
noiseOffset = 0;
}
}
}
}
#endif // !defined(__ARM_NEON__) && !defined(__ARM_NEON)
#if defined(__ARM_NEON__) || defined(__ARM_NEON)
void runCPUNeon(
int H,
int W,
int noiseCycle,
const uint8_t* input,
const float* meanChannel,
const float* noise,
float* output) {
// Vectorized load parameters:
// Loop unroll factor
// FIXME: this doesn't actually unroll; clang has per-loop unroll
// pragmas but GCC does not
constexpr int kUnroll = 1;
// How much data we load for each inner loop
constexpr int kInnerLoadSize = sizeof(uint8x16x4_t);
// What we write out
constexpr int kInnerStoreSize = sizeof(float32x4_t);
// We load 16 pixels at a time, with 4 channels each
constexpr int kLoadPixels = kInnerLoadSize / kInputChannels;
static_assert(kLoadPixels == 16, "unexpected");
// How many pixels we load per loop
constexpr int kLoadPixelsPerLoop = kLoadPixels * kUnroll;
// We need at least this much noise each loop through
CAFFE_ENFORCE_GE(noiseCycle, kOutputChannels * kLoadPixelsPerLoop);
int noiseUsed = 0;
const float* curNoise = noise;
float mean[kOutputChannels] = {
meanChannel[0], meanChannel[1], meanChannel[2]};
int planeSize = H * W;
// Vectorized portion
int point = 0;
// If the slice is not aligned, then we have to use the
// un-vectorized version
bool isAligned = isPointerAligned(input, kInnerLoadSize) &&
isPointerAligned(output, kInnerStoreSize) &&
// Because we are writing to output at offsets of planeSize,
// planeSize has to be an even multiple of kInnerStoreSize
(planeSize % kInnerStoreSize == 0);
// What portion the vectorized loop will handle
int limit =
isAligned ? (planeSize / kLoadPixelsPerLoop) * kLoadPixelsPerLoop : 0;
for (; point < limit; point += kLoadPixelsPerLoop) {
// Unroll load/update/store by kUnroll
for (int j = 0; j < kUnroll; ++j) {
// We load 16 pixels x 4 channels at a time
const uint8_t* inputAligned = (const uint8_t*)__builtin_assume_aligned(
input + (point + j * kLoadPixels) * kInputChannels,
sizeof(uint8x16x4_t));
uint8x16x4_t loadV = vld4q_u8(inputAligned);
// The compiler doesn't want to unroll this when we put it in a
// loop, and in GCC there's no per-loop unroll pragma, so we do
// it manually.
// This seems to involve no register spillage, crossing fingers
// that it remains that way.
{
constexpr int kChannel = 0;
float32x4_t noise0 = vld1q_f32(curNoise + j * 48 + 0);
float32x4_t noise1 = vld1q_f32(curNoise + j * 48 + 4);
float32x4_t noise2 = vld1q_f32(curNoise + j * 48 + 8);
float32x4_t noise3 = vld1q_f32(curNoise + j * 48 + 12);
float32x4x4_t outV = to_f32_v4_x4(loadV.val[kChannel]);
float32x4_t meanV = vdupq_n_f32(mean[kChannel]);
outV.val[0] = vsubq_f32(outV.val[0], meanV);
outV.val[1] = vsubq_f32(outV.val[1], meanV);
outV.val[2] = vsubq_f32(outV.val[2], meanV);
outV.val[3] = vsubq_f32(outV.val[3], meanV);
outV.val[0] = vaddq_f32(outV.val[0], noise0);
outV.val[1] = vaddq_f32(outV.val[1], noise1);
outV.val[2] = vaddq_f32(outV.val[2], noise2);
outV.val[3] = vaddq_f32(outV.val[3], noise3);
float* outputAligned = (float*)__builtin_assume_aligned(
&output[kChannel * planeSize + (point + j * kLoadPixels)],
sizeof(float32x4_t));
vst1q_f32(outputAligned + 0, outV.val[0]);
vst1q_f32(outputAligned + 4, outV.val[1]);
vst1q_f32(outputAligned + 8, outV.val[2]);
vst1q_f32(outputAligned + 12, outV.val[3]);
}
{
constexpr int kChannel = 1;
float32x4_t noise0 = vld1q_f32(curNoise + j * 48 + 16);
float32x4_t noise1 = vld1q_f32(curNoise + j * 48 + 20);
float32x4_t noise2 = vld1q_f32(curNoise + j * 48 + 24);
float32x4_t noise3 = vld1q_f32(curNoise + j * 48 + 28);
float32x4x4_t outV = to_f32_v4_x4(loadV.val[kChannel]);
float32x4_t meanV = vdupq_n_f32(mean[kChannel]);
outV.val[0] = vsubq_f32(outV.val[0], meanV);
outV.val[1] = vsubq_f32(outV.val[1], meanV);
outV.val[2] = vsubq_f32(outV.val[2], meanV);
outV.val[3] = vsubq_f32(outV.val[3], meanV);
outV.val[0] = vaddq_f32(outV.val[0], noise0);
outV.val[1] = vaddq_f32(outV.val[1], noise1);
outV.val[2] = vaddq_f32(outV.val[2], noise2);
outV.val[3] = vaddq_f32(outV.val[3], noise3);
float* outputAligned = (float*)__builtin_assume_aligned(
&output[kChannel * planeSize + (point + j * kLoadPixels)],
sizeof(float32x4_t));
vst1q_f32(outputAligned + 0, outV.val[0]);
vst1q_f32(outputAligned + 4, outV.val[1]);
vst1q_f32(outputAligned + 8, outV.val[2]);
vst1q_f32(outputAligned + 12, outV.val[3]);
}
{
constexpr int kChannel = 2;
float32x4_t noise0 = vld1q_f32(curNoise + j * 48 + 32);
float32x4_t noise1 = vld1q_f32(curNoise + j * 48 + 36);
float32x4_t noise2 = vld1q_f32(curNoise + j * 48 + 40);
float32x4_t noise3 = vld1q_f32(curNoise + j * 48 + 44);
float32x4x4_t outV = to_f32_v4_x4(loadV.val[kChannel]);
float32x4_t meanV = vdupq_n_f32(mean[kChannel]);
outV.val[0] = vsubq_f32(outV.val[0], meanV);
outV.val[1] = vsubq_f32(outV.val[1], meanV);
outV.val[2] = vsubq_f32(outV.val[2], meanV);
outV.val[3] = vsubq_f32(outV.val[3], meanV);
outV.val[0] = vaddq_f32(outV.val[0], noise0);
outV.val[1] = vaddq_f32(outV.val[1], noise1);
outV.val[2] = vaddq_f32(outV.val[2], noise2);
outV.val[3] = vaddq_f32(outV.val[3], noise3);
float* outputAligned = (float*)__builtin_assume_aligned(
&output[kChannel * planeSize + (point + j * kLoadPixels)],
sizeof(float32x4_t));
vst1q_f32(outputAligned + 0, outV.val[0]);
vst1q_f32(outputAligned + 4, outV.val[1]);
vst1q_f32(outputAligned + 8, outV.val[2]);
vst1q_f32(outputAligned + 12, outV.val[3]);
}
}
curNoise += (kLoadPixels * kOutputChannels) * kUnroll;
noiseUsed += (kLoadPixels * kOutputChannels) * kUnroll;
if (noiseUsed >= noiseCycle) {
noiseUsed = 0;
curNoise = noise + ((curNoise - noise) % noiseCycle);
}
}
// Epilogue: non-vectorized remainder
for (; point < planeSize; ++point) {
for (int c = 0; c < kOutputChannels; ++c) {
float v = (float)input[point * kInputChannels + c];
output[c * planeSize + point] = v - mean[c] + *curNoise++;
++noiseUsed;
}
if (noiseUsed >= noiseCycle) {
noiseUsed = 0;
curNoise = noise + ((curNoise - noise) % noiseCycle);
}
}
}
#endif // defined(__ARM_NEON__) || defined(__ARM_NEON)
private:
Workspace* ws_;
};
namespace {
template <typename T>
static inline T clamped_cast(float f) {
if (f >= std::numeric_limits<T>::max()) {
return std::numeric_limits<T>::max();
}
if (f <= std::numeric_limits<T>::min()) {
return std::numeric_limits<T>::min();
}
return static_cast<T>(f);
}
} // unnamed namespace
class BRGNCHWCToPackedInt8BGRAStylizerDeprocessOp
: public Operator<CPUContext> {
public:
using Operator<CPUContext>::Operator;
// Expect this many channels as input
static constexpr int kInputChannels = 3;
// Expect this many channels as output
static constexpr int kOutputChannels = 4;
bool RunOnDevice() {
const auto& X = Input(0);
const auto& mean = Input(1);
CAFFE_ENFORCE(X.dim() == 4);
const int N = X.dim32(0), C = X.dim32(1), H = X.dim32(2), W = X.dim32(3);
// Assume BGR or BGRA
CAFFE_ENFORCE(mean.numel() == kInputChannels);
CAFFE_ENFORCE(C == kInputChannels);
// RGB
auto* Y = Output(0, {N, H, W, kOutputChannels}, at::dtype<uint8_t>());
runBatch(
N,
C,
H,
W,
X.data<float>(),
mean.data<float>(),
Y->template mutable_data<uint8_t>());
return true;
}
void runBatch(
int N,
int /*C*/,
int H,
int W,
const float* input,
const float* meanChannel,
uint8_t* output) {
int planeSize = H * W;
for (int n = 0; n < N; ++n) {
auto curInput = input + n * kInputChannels * planeSize;
auto curOutput = output + n * kOutputChannels * planeSize;
#if defined(__ARM_NEON__) || defined(__ARM_NEON)
runCPUNeon(H, W, curInput, meanChannel, curOutput);
#else
runCPU(H, W, curInput, meanChannel, curOutput);
#endif // defined(__ARM_NEON__) || defined(__ARM_NEON)
}
}
#if !defined(__ARM_NEON__) && !defined(__ARM_NEON)
void runCPU(
int H,
int W,
const float* input,
const float* meanChannel,
uint8_t* output) {
int planeSize = H * W;
for (int point = 0; point < planeSize; ++point) {
for (int c = 0; c < kInputChannels; ++c) {
uint8_t v = clamped_cast<uint8_t>(
input[c * planeSize + point] + meanChannel[c]);
output[point * kOutputChannels + c] = v;
}
// alpha
output[point * kOutputChannels + (kOutputChannels - 1)] =
std::numeric_limits<uint8_t>::max();
}
}
#endif // !defined(__ARM_NEON__) && !defined(__ARM_NEON)
#if defined(__ARM_NEON__) || defined(__ARM_NEON)
void runCPUNeon(
int H,
int W,
const float* input,
const float* meanChannel,
uint8_t* output) {
// Vectorized load parameters:
// We load in chunks of this size
constexpr int kLoadUnit = sizeof(float32x4_t);
constexpr int kLoadFloats = (sizeof(float32x4_t) / sizeof(float));
// We store in chunks of this size
constexpr int kStoreUnit = sizeof(uint8x8x4_t);
// The vector portion loads this many f32 pixels at a time (8)
constexpr int kLoadPixels = 2 * kLoadFloats;
float mean[kInputChannels] = {
meanChannel[0], meanChannel[1], meanChannel[2]};
int planeSize = H * W;
// Vectorized portion
int point = 0;
// If the slice is not aligned, then we have to use the
// un-vectorized version
bool isAligned = isPointerAligned(input, kLoadUnit) &&
isPointerAligned(output, kStoreUnit) &&
// Because we are reading from input at offsets of planeSize,
// planeSize has to be an even multiple of kLoadUnit
(planeSize % kLoadUnit == 0);
// What portion the vectorized loop will handle
int limit = isAligned ? (planeSize / kLoadPixels) * kLoadPixels : 0;
for (; point < limit; point += kLoadPixels) {
// Load 8 f32 pixels from each channel; loading 16 involves
// register spills it seems
float32x4_t inputc0_0 =
vld1q_f32_aligned(input + 0 * planeSize + point + 0 * kLoadFloats);
float32x4_t inputc0_1 =
vld1q_f32_aligned(input + 0 * planeSize + point + 1 * kLoadFloats);
float32x4_t inputc1_0 =
vld1q_f32_aligned(input + 1 * planeSize + point + 0 * kLoadFloats);
float32x4_t inputc1_1 =
vld1q_f32_aligned(input + 1 * planeSize + point + 1 * kLoadFloats);
float32x4_t inputc2_0 =
vld1q_f32_aligned(input + 2 * planeSize + point + 0 * kLoadFloats);
float32x4_t inputc2_1 =
vld1q_f32_aligned(input + 2 * planeSize + point + 1 * kLoadFloats);
addMeanAndClamp(inputc0_0, mean[0]);
addMeanAndClamp(inputc0_1, mean[0]);
uint8x8_t u8_c0 = convertNarrowAndPack(inputc0_0, inputc0_1);
addMeanAndClamp(inputc1_0, mean[1]);
addMeanAndClamp(inputc1_1, mean[1]);
uint8x8_t u8_c1 = convertNarrowAndPack(inputc1_0, inputc1_1);
addMeanAndClamp(inputc2_0, mean[2]);
addMeanAndClamp(inputc2_1, mean[2]);
uint8x8_t u8_c2 = convertNarrowAndPack(inputc2_0, inputc2_1);
// This is the alpha channel
uint8x8_t u8_c3 = vdup_n_u8(std::numeric_limits<uint8_t>::max());
// We now have 8 bytes of each channel in a separate vector
// Write BGRA interleaved to output
uint8x8x4_t u8_out = {{ u8_c0, u8_c1, u8_c2, u8_c3 }};
vst4_u8_aligned(output + kOutputChannels * point, u8_out);
}
// Epilogue: non-vectorized remainder
for (; point < planeSize; ++point) {
for (int c = 0; c < kInputChannels; ++c) {
uint8_t v =
clamped_cast<uint8_t>(input[c * planeSize + point] + mean[c]);
output[point * kOutputChannels + c] = v;
}
// alpha
output[point * kOutputChannels + (kOutputChannels - 1)] =
std::numeric_limits<uint8_t>::max();
}
}
#endif // defined(__ARM_NEON__) || defined(__ARM_NEON)
};
namespace {
REGISTER_CPU_OPERATOR(
PackedInt8BGRANHWCToNCHWCStylizerPreprocess,
PackedInt8BGRANHWCToNCHWCStylizerPreprocessOp);
OPERATOR_SCHEMA(PackedInt8BGRANHWCToNCHWCStylizerPreprocess)
.NumInputs(2)
.NumOutputs(1);
REGISTER_CPU_OPERATOR(
BRGNCHWCToPackedInt8BGRAStylizerDeprocess,
BRGNCHWCToPackedInt8BGRAStylizerDeprocessOp);
OPERATOR_SCHEMA(BRGNCHWCToPackedInt8BGRAStylizerDeprocess)
.NumInputs(2)
.NumOutputs(1);
#ifdef CAFFE2_USE_MKLDNN
REGISTER_IDEEP_OPERATOR(
BRGNCHWCToPackedInt8BGRAStylizerDeprocess,
IDEEPFallbackOp<BRGNCHWCToPackedInt8BGRAStylizerDeprocessOp, SkipIndices<0>>);
REGISTER_IDEEP_OPERATOR(
PackedInt8BGRANHWCToNCHWCStylizerPreprocess,
IDEEPFallbackOp<PackedInt8BGRANHWCToNCHWCStylizerPreprocessOp>);
#endif
} // namespace
} // namespace caffe2
|