1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
|
#include "caffe2/operators/sqrt_op.h"
#include <string>
#include <vector>
namespace caffe2 {
REGISTER_CPU_OPERATOR(
Sqrt,
UnaryElementwiseOp<
TensorTypes<float>,
CPUContext,
SqrtFunctor<CPUContext>>);
// Input: X, output: Y
OPERATOR_SCHEMA(Sqrt)
.NumInputs(1)
.NumOutputs(1)
.AllowInplace({{0, 0}})
.IdenticalTypeAndShape()
.SetDoc(R"DOC(
Performs element-wise square-root ($\sqrt{x}$) of input tensor $X$.
Github Link:
- https://github.com/pytorch/pytorch/blob/master/caffe2/operators/sqrt_op.cc
<details>
<summary> <b>Example</b> </summary>
**Code**
```
workspace.ResetWorkspace()
op = core.CreateOperator(
"Sqrt",
["X"],
["Y"],
)
workspace.FeedBlob("X", (np.random.randint(10, size=(3,3))).astype(np.float32))
print("X:", workspace.FetchBlob("X"))
workspace.RunOperatorOnce(op)
print("Y:", workspace.FetchBlob("Y"))
```
**Result**
```
X:
[[8. 3. 3.]
[4. 0. 0.]
[1. 2. 5.]]
Y:
[[2.8284268 1.7320508 1.7320508 ]
[1.9999999 0. 0. ]
[0.99999994 1.4142134 2.236068 ]]
```
</details>
)DOC")
.Input(0, "X", "*(type: Tensor`<float>`)* Input data tensor.")
.Output(0, "Y", "*(type: Tensor`<float>`)* Output tensor.");
namespace {
class GetSqrtGradient : public GradientMakerBase {
using GradientMakerBase::GradientMakerBase;
std::vector<OperatorDef> GetGradientDefs() override {
Argument scale_arg;
scale_arg.set_name("scale");
scale_arg.set_f(0.5);
return std::vector<OperatorDef>{CreateOperatorDef(
"Scale",
"",
std::vector<std::string>{GO(0)},
std::vector<std::string>{GI(0)},
std::vector<Argument>{scale_arg}),
CreateOperatorDef(
"Div",
"",
std::vector<std::string>{GI(0), O(0)},
std::vector<std::string>{GI(0)})};
}
};
} // namespace
REGISTER_GRADIENT(Sqrt, GetSqrtGradient);
} // namespace caffe2
|