1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
|
#include "caffe2/operators/selu_op.h"
#include "caffe2/utils/eigen_utils.h"
#include "caffe2/utils/math.h"
namespace caffe2 {
template <>
bool SeluOp<float, CPUContext>::RunOnDevice() {
auto& X = Input(0);
auto* Y = Output(0, X.sizes(), at::dtype<float>());
ConstEigenVectorArrayMap<float> Xvec(X.data<float>(), X.numel());
EigenVectorArrayMap<float> Yvec(
Y->template mutable_data<float>(), Y->numel());
Yvec = lambda_ * (Xvec > 0).select(Xvec, (alpha_ * Xvec.exp() - alpha_));
return true;
}
template <>
bool SeluGradientOp<float, CPUContext>::RunOnDevice() {
auto& Y = Input(0);
auto& dY = Input(1);
CAFFE_ENFORCE_EQ(dY.numel(), Y.numel());
auto* dX = Output(0, Y.sizes(), at::dtype<float>());
ConstEigenVectorArrayMap<float> Yvec(Y.data<float>(), Y.numel());
ConstEigenVectorArrayMap<float> dYvec(dY.data<float>(), dY.numel());
EigenVectorArrayMap<float> dXvec(
dX->template mutable_data<float>(), dX->numel());
const float la = lambda_ * alpha_;
dXvec = (Yvec > 0).select(lambda_ * dYvec, dYvec * (Yvec + la));
return true;
}
REGISTER_CPU_OPERATOR(Selu, SeluOp<float, CPUContext>);
REGISTER_CPU_OPERATOR(SeluGradient, SeluGradientOp<float, CPUContext>);
// Input: X; output: Y
OPERATOR_SCHEMA(Selu)
.NumInputs(1)
.NumOutputs(1)
.AllowInplace({{0, 0}})
.IdenticalTypeAndShape()
.SetDoc(R"DOC(
The *Selu* op takes one input tensor $X$, an argument $alpha$, an argument $scale$, and produces one output tensor $Y$ of the same shape as $X.$ The op performs the element wise *Selu* operation, defined as
$$y=selu(x) =\begin{cases}scale (\alpha e^{x} - \alpha) & x < 0\\scale * x & otherwise\end{cases}$$
The default value of *alpha* is 1.6732632423543772848170429916717 and the default value of *scale* is 1.0507009873554804934193349852946. See [Self-Normalizing Neural Networks](https://arxiv.org/abs/1706.02515) for more information.
Github Links:
- https://github.com/pytorch/pytorch/blob/master/caffe2/operators/selu_op.h
- https://github.com/pytorch/pytorch/blob/master/caffe2/operators/selu_op.cc
<details>
<summary> <b>Example</b> </summary>
**Code**
```
workspace.ResetWorkspace()
op = core.CreateOperator(
"Selu",
["X"],
["Y"],
)
workspace.FeedBlob("X", np.random.randn(3, 3).astype(np.float32))
print("X:\n", workspace.FetchBlob("X"), "\n")
workspace.RunOperatorOnce(op)
print("Y:\n", workspace.FetchBlob("Y"))
```
**Result**
```
X:
[[ 1.1613879 -0.27111396 -1.2076733 ]
[ 1.3442237 -1.0701777 1.2070968 ]
[ 0.23810555 0.9740916 -1.7872391 ]]
Y:
[[ 1.2202715 -0.4174965 -1.2326177 ]
[ 1.4123772 -1.1551634 1.2682979 ]
[ 0.25017774 1.023479 -1.4637551 ]]
```
</details>
)DOC")
.Arg(
"alpha",
"*(type: float; default: 1.673263~)* Alpha constant in equation.")
.Arg(
"scale",
"*(type: float; default: 1.050700~; must be > 1.0)* Scale constant in equation.")
.Input(0, "X", "Input tensor of data to be operated on.")
.Output(0, "Y", "Output tensor with same shape as input.")
.InheritOnnxSchema();
// Input: Y, dY; output: dX
OPERATOR_SCHEMA(SeluGradient)
.NumInputs(2)
.NumOutputs(1)
.AllowInplace({{1, 0}})
.SetDoc(R"DOC(
SeluGradient takes both Y and dY and uses this to update dX according to the
chain rule and derivatives of the selu function.
)DOC")
.Arg(
"alpha",
"(float) default to 1.6732~; affects the activation function itself."
"This should go with the weight initialization in the paper. "
" See https://arxiv.org/abs/1706.02515 ")
.Arg(
"scale",
"(float) default to 1.0507~; affects the activation function itself.")
.Input(0, "Y", "input tensor")
.Input(1, "dY", "input tensor");
class GetSeluGradient : public GradientMakerBase {
using GradientMakerBase::GradientMakerBase;
vector<OperatorDef> GetGradientDefs() override {
return SingleGradientDef(
def_.type() + "Gradient",
"",
vector<string>{O(0), GO(0)},
vector<string>{GI(0)});
}
};
REGISTER_GRADIENT(Selu, GetSeluGradient);
} // namespace caffe2
|