1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
|
#ifndef CAFFE2_OPERATORS_PARTITION_OPS_H_
#define CAFFE2_OPERATORS_PARTITION_OPS_H_
#include "caffe2/core/context.h"
#include "caffe2/core/operator.h"
namespace caffe2 {
template <typename Index>
static inline int moduloPartition(Index key, int numPartitions) {
int shard = key % numPartitions;
// equivalent to `if (shard < 0) shard += partitions;`
shard += numPartitions & (shard >> (sizeof(int) * 8 - 1));
return shard;
}
class GatherByKeyOp : public Operator<CPUContext> {
public:
USE_DISPATCH_HELPER;
USE_OPERATOR_FUNCTIONS(CPUContext);
GatherByKeyOp(const OperatorDef& operator_def, Workspace* ws)
: Operator<CPUContext>(operator_def, ws) {}
private:
bool RunOnDevice() override {
return DispatchHelper<TensorTypes<int32_t, int64_t>>::call(this, Input(0));
}
private:
template <typename Index>
bool DoRunWithType() {
const auto numPartitions = InputSize() - 1;
CAFFE_ENFORCE_GE(numPartitions, 1);
const auto& keysTensor = Input(0);
const auto* keysData = keysTensor.template data<Index>();
const auto& keysShape = Input(0).sizes();
CAFFE_ENFORCE_EQ(
keysShape.size(), 1, "Only 1D keys tensor supported currently.");
// 1. Shape and type consistency checks
const auto& in0Shape = Input(1).sizes();
CAFFE_ENFORCE_GE(in0Shape.size(), 1);
vector<int64_t> outShape(keysShape.vec());
outShape.insert(outShape.end(), in0Shape.begin() + 1, in0Shape.end());
CAFFE_ENFORCE_GE(outShape.size(), 1);
auto totalSize = in0Shape[0];
auto meta = Input(1).dtype();
for (int i = 2; i < InputSize(); ++i) {
const auto& input = Input(i);
CAFFE_ENFORCE(meta == input.dtype());
CAFFE_ENFORCE_GE(input.dim(), 1);
CAFFE_ENFORCE(std::equal(
outShape.begin() + keysShape.size(),
outShape.end(),
input.sizes().begin() + 1));
totalSize += input.size(0);
}
CAFFE_ENFORCE_EQ(keysTensor.numel(), totalSize);
auto* outTensor = Output(0);
outTensor->Resize(outShape);
auto* outData = static_cast<char*>(outTensor->raw_mutable_data(meta));
const auto blockSize = outTensor->size_from_dim(1);
inputDatas_.resize(numPartitions);
for (int i = 0; i < numPartitions; ++i) {
inputDatas_[i] = static_cast<const char*>(Input(i + 1).raw_data());
}
inStartOffsets_.assign(numPartitions, 0);
Index outStartOffset = 0;
int currentShard = -1;
// 2. copy from inputs into output based on shard for each input key
const auto numEntries = keysTensor.numel();
for (int64_t i = 0; i <= numEntries; ++i) {
auto newShard =
i < numEntries ? moduloPartition(keysData[i], numPartitions) : -1;
if (newShard != currentShard) {
if (currentShard != -1) {
auto inStartOffset = inStartOffsets_[currentShard];
auto numItems = i - outStartOffset;
context_.CopyItemsSameDevice(
meta,
numItems * blockSize,
inputDatas_[currentShard] +
inStartOffset * blockSize * meta.itemsize(),
outData + outStartOffset * blockSize * meta.itemsize());
inStartOffsets_[currentShard] += numItems;
}
currentShard = newShard;
outStartOffset = i;
}
}
return true;
}
std::vector<const char*> inputDatas_;
std::vector<int64_t> inStartOffsets_;
};
class PartitionOpBase : public Operator<CPUContext> {
public:
USE_OPERATOR_FUNCTIONS(CPUContext);
PartitionOpBase(const OperatorDef& operator_def, Workspace* ws)
: Operator<CPUContext>(operator_def, ws),
OP_SINGLE_ARG(int, "pack_first_input", pack_first_input_, 0) {}
protected:
template <typename Index>
void ApplyPartition(bool skipFirstArgument) {
CAFFE_ENFORCE_EQ(
OutputSize() % InputSize(),
0,
"Output number must be a multiple of input number");
int partitions = OutputSize() / InputSize();
int inputSize = InputSize();
int mainInputIndex = skipFirstArgument;
CAFFE_ENFORCE_GT(partitions, 0, "Invalid number of partitions");
auto& main_input = Input(mainInputIndex);
int64_t size = main_input.numel();
const Index* data = main_input.template data<Index>();
counts_.assign(partitions, 0);
for (int64_t p = 0; p < size; p++) {
int shard = moduloPartition(data[p], partitions);
++counts_[shard];
}
raw_datas_.resize(inputSize);
block_sizes_.resize(inputSize);
metas_.resize(inputSize);
out_datas_.resize(OutputSize());
for (int i = mainInputIndex; i < inputSize; ++i) {
auto& input = Input(i);
if (i > mainInputIndex) {
CAFFE_ENFORCE_GE(
input.dim(),
main_input.dim(),
"Prefix of extra input's shape must match main input's shape, ",
"input: ",
i);
for (int j = 0; j < main_input.dim(); ++j) {
CAFFE_ENFORCE_GE(
input.size(j),
main_input.size(j),
"Prefix of extra input's shape must match main input's shape, ",
"input: ",
i,
", dim ",
j);
}
}
raw_datas_[i] = input.raw_data();
block_sizes_[i] = input.size_from_dim(main_input.dim());
metas_[i] = input.dtype();
// shape = partition_size + suffix of input dims
vector<int64_t> shape(
input.sizes().begin() + main_input.dim() - 1, input.sizes().end());
for (int j = 0; j < partitions; ++j) {
int out_idx = i + j * inputSize;
auto output = Output(out_idx);
shape[0] = counts_[j];
output->Resize(shape);
out_datas_[out_idx] = output->raw_mutable_data(input.dtype());
}
}
counts_.assign(partitions, 0);
for (int64_t p = 0; p < size; p++) {
int shard = moduloPartition(data[p], partitions);
int64_t idx = counts_[shard]++;
// special case first input
static_cast<Index*>(out_datas_[shard * inputSize + mainInputIndex])[idx] =
pack_first_input_ ? ((data[p] - shard) / partitions) : data[p];
int baseIndex = shard * inputSize;
for (int i = mainInputIndex + 1; i < inputSize; ++i) {
auto bs = block_sizes_[i];
auto meta = metas_[i];
// special case for small bs?
context_.CopyItemsSameDevice(
meta,
bs,
static_cast<const char*>(raw_datas_[i]) + p * bs * meta.itemsize(),
static_cast<char*>(out_datas_[baseIndex + i]) +
idx * bs * meta.itemsize());
}
}
}
bool pack_first_input_;
// use member fields to reuse memory
vector<int64_t> counts_;
vector<int64_t> block_sizes_;
vector<TypeMeta> metas_;
vector<const void*> raw_datas_;
vector<void*> out_datas_;
};
class PartitionOp : public PartitionOpBase {
public:
USE_DISPATCH_HELPER;
PartitionOp(const OperatorDef& operator_def, Workspace* ws)
: PartitionOpBase(operator_def, ws) {}
bool RunOnDevice() override {
return DispatchHelper<TensorTypes<int32_t, int64_t>>::call(this, Input(0));
}
private:
template <typename Index>
bool DoRunWithType() {
ApplyPartition<Index>(false /* skipFirstArgument */);
return true;
}
C10_DISABLE_COPY_AND_ASSIGN(PartitionOp);
};
class LengthsPartitionOp : public PartitionOpBase {
public:
USE_DISPATCH_HELPER;
LengthsPartitionOp(const OperatorDef& operator_def, Workspace* ws)
: PartitionOpBase(operator_def, ws) {}
bool RunOnDevice() override {
return DispatchHelper<TensorTypes<int32_t, int64_t>>::call(this, Input(1));
}
private:
template <typename Index>
bool DoRunWithType() {
CAFFE_ENFORCE(
OutputSize() % InputSize() == 0,
"Output number must be a multiple of input number");
int partitions = OutputSize() / InputSize();
CAFFE_ENFORCE_GT(partitions, 0, "Invalid number of partitions");
CAFFE_ENFORCE_EQ(
Input(1).dim(),
1,
"Only 1-D tensors supported as a partitioning tensor for sharding");
if (partitions == 1) {
// Specialization when partitions == 1 which just becomes a copy.
for (int i = 0; i < InputSize(); ++i) {
auto& input = Input(i);
auto& output = *Output(i);
output.ResizeLike(input);
context_.CopyItemsSameDevice(
input.dtype(),
input.numel(),
input.raw_data(),
output.raw_mutable_data(input.dtype()));
}
return true;
}
// Apply sharding to all parameters except lengths
ApplyPartition<Index>(true /* skipFirstArgument */);
// Compute lengths after sharding
auto& main_input = Input(1);
int64_t size = main_input.numel();
const Index* data = main_input.template data<Index>();
auto& length_input = Input(0);
int64_t elements = length_input.numel();
const int32_t* lengths_data = length_input.template data<int32_t>();
out_length_.resize(partitions);
for (int i = 0; i < partitions; ++i) {
auto& output = *Output(i * InputSize());
output.Resize(elements);
out_length_[i] = output.template mutable_data<int32_t>();
}
int total_length = 0;
for (int i = 0; i < elements; ++i) {
total_length += lengths_data[i];
}
CAFFE_ENFORCE(
total_length == size,
"Total length is not matching to the number of elements");
int index = 0;
for (int i = 0; i < elements; ++i) {
for (int j = 0; j < partitions; ++j) {
out_length_[j][i] = 0;
}
for (int j = 0; j < lengths_data[i]; ++j, ++index) {
int shard = moduloPartition(data[index], partitions);
++out_length_[shard][i];
}
}
return true;
}
C10_DISABLE_COPY_AND_ASSIGN(LengthsPartitionOp);
vector<int32_t*> out_length_;
};
} // namespace caffe2
#endif // CAFFE2_OPERATORS_PARTITION_OPS_H_
|