1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
|
#pragma once
#include <unordered_map>
#include "onnx/onnx_pb.h"
#include "caffe2/core/context.h"
#include "caffe2/core/logging.h"
#include "caffe2/core/operator.h"
#include "caffe2/onnx/onnxifi_graph_info.h"
#include "caffe2/onnx/onnxifi_init.h"
#include "caffe2/utils/string_utils.h"
namespace caffe2 {
template <typename T, typename Context>
class OnnxifiOp final : public Operator<Context> {
struct TensorInfo {
TensorInfo() {}
TensorInfo(TensorInfo&&) = default;
TensorInfo& operator=(TensorInfo&&) = default;
std::vector<uint64_t> dims;
uint64_t onnxifi_type;
};
public:
USE_OPERATOR_CONTEXT_FUNCTIONS;
OnnxifiOp(const OperatorDef& operator_def, Workspace* ws)
: Operator<Context>(operator_def, ws) {
lib_ = onnx::initOnnxifiLibrary();
backend_graph_map_ptr_ = onnx::getOnnxBackendGraphMap();
CAFFE_ENFORCE(lib_, "Cannot initialize ONNXIFI library");
auto onnx_model_str =
this->template GetSingleArgument<std::string>("onnx_model", "");
CAFFE_ENFORCE(!onnx_model_str.empty(), "onnx_model cannot be empty");
// Setup input/output descriptor templates
input_names_ =
this->template GetRepeatedArgument<std::string>("input_names");
output_names_ =
this->template GetRepeatedArgument<std::string>("output_names");
CAFFE_ENFORCE_EQ(input_names_.size(), operator_def.input_size());
CAFFE_ENFORCE_EQ(output_names_.size(), operator_def.output_size());
for (const auto& input : input_names_) {
input_desc_.push_back(onnxTensorDescriptorV1());
input_desc_.back().name = input.c_str();
}
int output_idx = 0;
for (const auto& output : output_names_) {
output_desc_.push_back(onnxTensorDescriptorV1());
output_desc_.back().name = output.c_str();
// For output, we try to get its output size hint
const std::string key = c10::str("output_shape_hint_", output_idx);
auto output_shape_hint = this->template GetRepeatedArgument<int>(key);
if (!output_shape_hint.empty()) {
TensorInfo info;
info.onnxifi_type = output_shape_hint.front();
for (int i = 1; i < output_shape_hint.size(); ++i) {
info.dims.push_back(output_shape_hint[i]);
}
output_shape_hints_.emplace(output_idx, std::move(info));
}
++output_idx;
}
// Encode arguments starting with "custom_" to backend
std::vector<uint64_t> property_pointers;
std::vector<int64_t> int_args;
std::vector<float> float_args;
BuildPropertyList(operator_def, &property_pointers, &int_args, &float_args);
// Pull the weights from workspace and feed it to the backend through
// setGraphIO. Notice that since we may have rewritten the net, we need to
// map the weight names
auto initializers =
this->template GetRepeatedArgument<std::string>("initializers");
CAFFE_ENFORCE_EQ(
initializers.size() % 2, 0, "initializers should come in pairs");
std::unordered_set<std::string> initializer_set;
std::unordered_map<std::string, std::string> input_mapping;
for (auto it = initializers.begin(); it != initializers.end(); ++it) {
auto key = *it++;
input_mapping.emplace(key, *it);
initializer_set.emplace(key);
}
Workspace mapped_ws(ws, input_mapping);
std::vector<std::string> weight_names;
std::vector<std::vector<uint64_t>> weight_shapes;
auto weight_descs = BuildInitializationList(
&mapped_ws, &initializer_set, &weight_names, &weight_shapes);
BuildBackendAndGraph(property_pointers, onnx_model_str, weight_descs);
}
~OnnxifiOp() {
backend_graph_shared_ptr_.reset();
backend_graph_map_ptr_->remove(op_id_string_);
}
bool RunOnDevice() override;
private:
uint64_t SetOutputShapeAndType(int output_idx, std::vector<size_t>* dims) {
uint64_t type = ONNXIFI_DATATYPE_FLOAT32;
const auto it = output_shape_hints_.find(output_idx);
if (it != output_shape_hints_.end()) {
std::copy(
it->second.dims.begin(),
it->second.dims.end(),
std::back_inserter(*dims));
type = it->second.onnxifi_type;
}
return type;
}
void BuildPropertyList(
const OperatorDef& /* unused */,
std::vector<uint64_t>* property_list,
std::vector<int64_t>* /* unused */,
std::vector<float>* /* unused */) {
property_list->push_back(ONNXIFI_BACKEND_PROPERTY_NONE);
}
void BuildBackendAndGraph(
const std::vector<uint64_t>& property_pointers,
const std::string& onnx_model_str,
const std::vector<onnxTensorDescriptorV1>& weight_descs) {
op_id_string_ =
this->template GetSingleArgument<std::string>("net_pos", "");
auto net_id_string =
this->template GetSingleArgument<std::string>("model_id", "");
op_id_string_ += net_id_string;
backend_graph_shared_ptr_ = backend_graph_map_ptr_->lookup(op_id_string_);
if (backend_graph_shared_ptr_ == nullptr) {
// Build the Onnxifi engine
std::vector<onnxBackendID> backend_ids;
auto backend_index =
this->template GetSingleArgument<int>("backend_id", 0);
CAFFE_ENFORCE_EQ(
lib_->onnxGetBackendIDs(nullptr, &num_backends_),
ONNXIFI_STATUS_FALLBACK);
CAFFE_ENFORCE_GT(
num_backends_, 0, "At least 1 onnxifi backend should be available");
CAFFE_ENFORCE_LT(
backend_index,
num_backends_,
"Backend idx out of bound: ",
backend_index,
", #backends: ",
num_backends_);
backend_ids.resize(num_backends_);
CAFFE_ENFORCE_EQ(
lib_->onnxGetBackendIDs(backend_ids.data(), &num_backends_),
ONNXIFI_STATUS_SUCCESS);
backend_id_ = backend_ids[backend_index];
CAFFE_ENFORCE_EQ(
lib_->onnxInitBackend(
backend_id_, property_pointers.data(), &backend_),
ONNXIFI_STATUS_SUCCESS);
// Release unused backend ids.
for (auto i = 0; i < num_backends_; ++i) {
if (i == backend_index) {
continue;
}
lib_->onnxReleaseBackendID(backend_ids[i]);
}
CAFFE_ENFORCE_EQ(
lib_->onnxInitGraph(
backend_,
nullptr,
onnx_model_str.size(),
(const void*)(onnx_model_str.c_str()),
weight_descs.size(),
weight_descs.data(),
&graph_),
ONNXIFI_STATUS_SUCCESS);
backend_graph_shared_ptr_ = backend_graph_map_ptr_->insert(
op_id_string_,
onnx::BackendGraphInfo(backend_id_, backend_, graph_, lib_));
// This checks if our insertion was successful or some other thread did
// the insert in the meantime.
if (backend_graph_shared_ptr_->backend_id != backend_id_ ||
backend_graph_shared_ptr_->backend != backend_ ||
backend_graph_shared_ptr_->graph != graph_) {
lib_->onnxReleaseBackendID(backend_id_);
lib_->onnxReleaseBackend(backend_);
lib_->onnxReleaseGraph(graph_);
}
}
backend_id_ = backend_graph_shared_ptr_->backend_id;
backend_ = backend_graph_shared_ptr_->backend;
graph_ = backend_graph_shared_ptr_->graph;
}
std::vector<onnxTensorDescriptorV1> BuildInitializationList(
Workspace* ws,
std::unordered_set<std::string>* initialization_list,
std::vector<std::string>* weight_names,
std::vector<std::vector<uint64_t>>* weight_shapes);
// pointer to loaded onnxifi library
onnxifi_library* lib_{nullptr};
onnx::OnnxBackendGraphMap* backend_graph_map_ptr_;
std::string op_id_string_;
onnxBackendID backend_id_{nullptr};
onnxBackend backend_{nullptr};
onnxGraph graph_{nullptr};
onnx::SharedPtrBackendGraphInfo backend_graph_shared_ptr_;
size_t num_backends_{0};
// input/output descriptors
std::vector<onnxTensorDescriptorV1> input_desc_;
std::vector<onnxTensorDescriptorV1> output_desc_;
// We bind the op input/output by position while ONNXIFI binds input/output by
// names. In addition, op input/output names can be writtten by, for example,
// memonger. We cache the original input/output name of ONNX object here and
// bind them by position.
std::vector<std::string> input_names_;
std::vector<std::string> output_names_;
std::vector<std::vector<uint64_t>> input_shapes_;
std::vector<std::vector<uint64_t>> output_shapes_;
// output shape hints
std::unordered_map<int, TensorInfo> output_shape_hints_;
};
} // namespace caffe2
|