summaryrefslogtreecommitdiff
path: root/c10/util/Half.h
blob: 37d12b162c6dd06dc0b08d3a1846493a05adf933 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
#pragma once

/// Defines the Half type (half-precision floating-point) including conversions
/// to standard C types and basic arithmetic operations. Note that arithmetic
/// operations are implemented by converting to floating point and
/// performing the operation in float32, instead of using CUDA half intrinisics.
/// Most uses of this type within ATen are memory bound, including the
/// element-wise kernels, and the half intrinisics aren't efficient on all GPUs.
/// If you are writing a compute bound kernel, you can use the CUDA half
/// intrinsics directly on the Half type from device code.

#include <c10/macros/Macros.h>
#include <c10/util/C++17.h>

#if defined(__cplusplus) && (__cplusplus >= 201103L)
#include <cmath>
#include <cstdint>
#elif !defined(__OPENCL_VERSION__)
#include <math.h>
#include <stdint.h>
#endif

#ifdef _MSC_VER
#include <intrin.h>
#endif

#include <complex>
#include <cstring>
#include <cstdint>
#include <iosfwd>
#include <limits>
#include <sstream>
#include <stdexcept>
#include <string>
#include <utility>

#ifdef __CUDACC__
#include <cuda_fp16.h>
#endif

#ifdef __HIPCC__
#include <hip/hip_fp16.h>
#endif

namespace c10 {

namespace detail {

  inline float fp32_from_bits(uint32_t w) {
  #if defined(__OPENCL_VERSION__)
    return as_float(w);
  #elif defined(__CUDA_ARCH__)
    return __uint_as_float((unsigned int)w);
  #elif defined(__INTEL_COMPILER)
    return _castu32_f32(w);
  #else
    union {
      uint32_t as_bits;
      float as_value;
    } fp32 = {w};
    return fp32.as_value;
  #endif
  }

  inline uint32_t fp32_to_bits(float f) {
  #if defined(__OPENCL_VERSION__)
    return as_uint(f);
  #elif defined(__CUDA_ARCH__)
    return (uint32_t)__float_as_uint(f);
  #elif defined(__INTEL_COMPILER)
    return _castf32_u32(f);
  #else
    union {
      float as_value;
      uint32_t as_bits;
    } fp32 = {f};
    return fp32.as_bits;
  #endif
  }

  /*
   * Convert a 16-bit floating-point number in IEEE half-precision format, in bit representation, to
   * a 32-bit floating-point number in IEEE single-precision format, in bit representation.
   *
   * @note The implementation doesn't use any floating-point operations.
   */
  inline uint32_t fp16_ieee_to_fp32_bits(uint16_t h) {
  	/*
  	 * Extend the half-precision floating-point number to 32 bits and shift to the upper part of the 32-bit word:
  	 *      +---+-----+------------+-------------------+
  	 *      | S |EEEEE|MM MMMM MMMM|0000 0000 0000 0000|
  	 *      +---+-----+------------+-------------------+
  	 * Bits  31  26-30    16-25            0-15
  	 *
  	 * S - sign bit, E - bits of the biased exponent, M - bits of the mantissa, 0 - zero bits.
  	 */
  	const uint32_t w = (uint32_t) h << 16;
  	/*
  	 * Extract the sign of the input number into the high bit of the 32-bit word:
  	 *
  	 *      +---+----------------------------------+
  	 *      | S |0000000 00000000 00000000 00000000|
  	 *      +---+----------------------------------+
  	 * Bits  31                 0-31
  	 */
  	const uint32_t sign = w & UINT32_C(0x80000000);
  	/*
  	 * Extract mantissa and biased exponent of the input number into the bits 0-30 of the 32-bit word:
  	 *
  	 *      +---+-----+------------+-------------------+
  	 *      | 0 |EEEEE|MM MMMM MMMM|0000 0000 0000 0000|
  	 *      +---+-----+------------+-------------------+
  	 * Bits  30  27-31     17-26            0-16
  	 */
  	const uint32_t nonsign = w & UINT32_C(0x7FFFFFFF);
  	/*
  	 * Renorm shift is the number of bits to shift mantissa left to make the half-precision number normalized.
  	 * If the initial number is normalized, some of its high 6 bits (sign == 0 and 5-bit exponent) equals one.
  	 * In this case renorm_shift == 0. If the number is denormalize, renorm_shift > 0. Note that if we shift
  	 * denormalized nonsign by renorm_shift, the unit bit of mantissa will shift into exponent, turning the
  	 * biased exponent into 1, and making mantissa normalized (i.e. without leading 1).
  	 */
#ifdef _MSC_VER
        unsigned long nonsign_bsr;
        _BitScanReverse(&nonsign_bsr, (unsigned long)nonsign);
        uint32_t renorm_shift = (uint32_t)nonsign_bsr ^ 31;
#else
        uint32_t renorm_shift = __builtin_clz(nonsign);
#endif
        renorm_shift = renorm_shift > 5 ? renorm_shift - 5 : 0;
        /*
         * Iff half-precision number has exponent of 15, the addition overflows
         * it into bit 31, and the subsequent shift turns the high 9 bits
         * into 1. Thus inf_nan_mask == 0x7F800000 if the half-precision number
         * had exponent of 15 (i.e. was NaN or infinity) 0x00000000 otherwise
         */
        const int32_t inf_nan_mask =
            ((int32_t)(nonsign + 0x04000000) >> 8) & INT32_C(0x7F800000);
        /*
         * Iff nonsign is 0, it overflows into 0xFFFFFFFF, turning bit 31
         * into 1. Otherwise, bit 31 remains 0. The signed shift right by 31
         * broadcasts bit 31 into all bits of the zero_mask. Thus zero_mask ==
         * 0xFFFFFFFF if the half-precision number was zero (+0.0h or -0.0h)
         * 0x00000000 otherwise
         */
        const int32_t zero_mask = (int32_t)(nonsign - 1) >> 31;
        /*
         * 1. Shift nonsign left by renorm_shift to normalize it (if the input
         * was denormal)
         * 2. Shift nonsign right by 3 so the exponent (5 bits originally)
         * becomes an 8-bit field and 10-bit mantissa shifts into the 10 high
         * bits of the 23-bit mantissa of IEEE single-precision number.
         * 3. Add 0x70 to the exponent (starting at bit 23) to compensate the
         * different in exponent bias (0x7F for single-precision number less 0xF
         * for half-precision number).
         * 4. Subtract renorm_shift from the exponent (starting at bit 23) to
         * account for renormalization. As renorm_shift is less than 0x70, this
         * can be combined with step 3.
         * 5. Binary OR with inf_nan_mask to turn the exponent into 0xFF if the
         * input was NaN or infinity.
         * 6. Binary ANDNOT with zero_mask to turn the mantissa and exponent
         * into zero if the input was zero.
         * 7. Combine with the sign of the input number.
         */
        return sign |
            ((((nonsign << renorm_shift >> 3) + ((0x70 - renorm_shift) << 23)) |
              inf_nan_mask) &
             ~zero_mask);
  }

  /*
   * Convert a 16-bit floating-point number in IEEE half-precision format, in bit representation, to
   * a 32-bit floating-point number in IEEE single-precision format.
   *
   * @note The implementation relies on IEEE-like (no assumption about rounding mode and no operations on denormals)
   * floating-point operations and bitcasts between integer and floating-point variables.
   */
  inline float fp16_ieee_to_fp32_value(uint16_t h) {
  	/*
  	 * Extend the half-precision floating-point number to 32 bits and shift to the upper part of the 32-bit word:
  	 *      +---+-----+------------+-------------------+
  	 *      | S |EEEEE|MM MMMM MMMM|0000 0000 0000 0000|
  	 *      +---+-----+------------+-------------------+
  	 * Bits  31  26-30    16-25            0-15
  	 *
  	 * S - sign bit, E - bits of the biased exponent, M - bits of the mantissa, 0 - zero bits.
  	 */
  	const uint32_t w = (uint32_t) h << 16;
  	/*
  	 * Extract the sign of the input number into the high bit of the 32-bit word:
  	 *
  	 *      +---+----------------------------------+
  	 *      | S |0000000 00000000 00000000 00000000|
  	 *      +---+----------------------------------+
  	 * Bits  31                 0-31
  	 */
  	const uint32_t sign = w & UINT32_C(0x80000000);
  	/*
  	 * Extract mantissa and biased exponent of the input number into the high bits of the 32-bit word:
  	 *
  	 *      +-----+------------+---------------------+
  	 *      |EEEEE|MM MMMM MMMM|0 0000 0000 0000 0000|
  	 *      +-----+------------+---------------------+
  	 * Bits  27-31    17-26            0-16
  	 */
  	const uint32_t two_w = w + w;

  	/*
  	 * Shift mantissa and exponent into bits 23-28 and bits 13-22 so they become mantissa and exponent
  	 * of a single-precision floating-point number:
  	 *
  	 *       S|Exponent |          Mantissa
  	 *      +-+---+-----+------------+----------------+
  	 *      |0|000|EEEEE|MM MMMM MMMM|0 0000 0000 0000|
  	 *      +-+---+-----+------------+----------------+
  	 * Bits   | 23-31   |           0-22
  	 *
  	 * Next, there are some adjustments to the exponent:
  	 * - The exponent needs to be corrected by the difference in exponent bias between single-precision and half-precision
  	 *   formats (0x7F - 0xF = 0x70)
  	 * - Inf and NaN values in the inputs should become Inf and NaN values after conversion to the single-precision number.
  	 *   Therefore, if the biased exponent of the half-precision input was 0x1F (max possible value), the biased exponent
  	 *   of the single-precision output must be 0xFF (max possible value). We do this correction in two steps:
  	 *   - First, we adjust the exponent by (0xFF - 0x1F) = 0xE0 (see exp_offset below) rather than by 0x70 suggested
  	 *     by the difference in the exponent bias (see above).
  	 *   - Then we multiply the single-precision result of exponent adjustment by 2**(-112) to reverse the effect of
  	 *     exponent adjustment by 0xE0 less the necessary exponent adjustment by 0x70 due to difference in exponent bias.
  	 *     The floating-point multiplication hardware would ensure than Inf and NaN would retain their value on at least
  	 *     partially IEEE754-compliant implementations.
  	 *
  	 * Note that the above operations do not handle denormal inputs (where biased exponent == 0). However, they also do not
  	 * operate on denormal inputs, and do not produce denormal results.
  	 */
  	const uint32_t exp_offset = UINT32_C(0xE0) << 23;
    // const float exp_scale = 0x1.0p-112f;
    uint32_t scale_bits = (uint32_t) 15 << 23;
    float exp_scale_val;
    std::memcpy(&exp_scale_val, &scale_bits, sizeof(exp_scale_val));
    const float exp_scale = exp_scale_val;
    const float normalized_value = fp32_from_bits((two_w >> 4) + exp_offset) * exp_scale;

  	/*
  	 * Convert denormalized half-precision inputs into single-precision results (always normalized).
  	 * Zero inputs are also handled here.
  	 *
  	 * In a denormalized number the biased exponent is zero, and mantissa has on-zero bits.
  	 * First, we shift mantissa into bits 0-9 of the 32-bit word.
  	 *
  	 *                  zeros           |  mantissa
  	 *      +---------------------------+------------+
  	 *      |0000 0000 0000 0000 0000 00|MM MMMM MMMM|
  	 *      +---------------------------+------------+
  	 * Bits             10-31                0-9
  	 *
  	 * Now, remember that denormalized half-precision numbers are represented as:
  	 *    FP16 = mantissa * 2**(-24).
  	 * The trick is to construct a normalized single-precision number with the same mantissa and thehalf-precision input
  	 * and with an exponent which would scale the corresponding mantissa bits to 2**(-24).
  	 * A normalized single-precision floating-point number is represented as:
  	 *    FP32 = (1 + mantissa * 2**(-23)) * 2**(exponent - 127)
  	 * Therefore, when the biased exponent is 126, a unit change in the mantissa of the input denormalized half-precision
  	 * number causes a change of the constructud single-precision number by 2**(-24), i.e. the same ammount.
  	 *
  	 * The last step is to adjust the bias of the constructed single-precision number. When the input half-precision number
  	 * is zero, the constructed single-precision number has the value of
  	 *    FP32 = 1 * 2**(126 - 127) = 2**(-1) = 0.5
  	 * Therefore, we need to subtract 0.5 from the constructed single-precision number to get the numerical equivalent of
  	 * the input half-precision number.
  	 */
  	const uint32_t magic_mask = UINT32_C(126) << 23;
  	const float magic_bias = 0.5f;
  	const float denormalized_value = fp32_from_bits((two_w >> 17) | magic_mask) - magic_bias;

  	/*
  	 * - Choose either results of conversion of input as a normalized number, or as a denormalized number, depending on the
  	 *   input exponent. The variable two_w contains input exponent in bits 27-31, therefore if its smaller than 2**27, the
  	 *   input is either a denormal number, or zero.
  	 * - Combine the result of conversion of exponent and mantissa with the sign of the input number.
  	 */
  	const uint32_t denormalized_cutoff = UINT32_C(1) << 27;
  	const uint32_t result = sign |
  		(two_w < denormalized_cutoff ? fp32_to_bits(denormalized_value) : fp32_to_bits(normalized_value));
  	return fp32_from_bits(result);
  }

  /*
   * Convert a 32-bit floating-point number in IEEE single-precision format to a 16-bit floating-point number in
   * IEEE half-precision format, in bit representation.
   *
   * @note The implementation relies on IEEE-like (no assumption about rounding mode and no operations on denormals)
   * floating-point operations and bitcasts between integer and floating-point variables.
   */
  inline uint16_t fp16_ieee_from_fp32_value(float f) {
    // const float scale_to_inf = 0x1.0p+112f;
    // const float scale_to_zero = 0x1.0p-110f;
    uint32_t scale_to_inf_bits = (uint32_t) 239 << 23;
    uint32_t scale_to_zero_bits = (uint32_t) 17 << 23;
    float scale_to_inf_val, scale_to_zero_val;
    std::memcpy(&scale_to_inf_val, &scale_to_inf_bits, sizeof(scale_to_inf_val));
    std::memcpy(&scale_to_zero_val, &scale_to_zero_bits, sizeof(scale_to_zero_val));
    const float scale_to_inf = scale_to_inf_val;
    const float scale_to_zero = scale_to_zero_val;

  	float base = (fabsf(f) * scale_to_inf) * scale_to_zero;

  	const uint32_t w = fp32_to_bits(f);
  	const uint32_t shl1_w = w + w;
  	const uint32_t sign = w & UINT32_C(0x80000000);
  	uint32_t bias = shl1_w & UINT32_C(0xFF000000);
  	if (bias < UINT32_C(0x71000000)) {
  		bias = UINT32_C(0x71000000);
  	}

  	base = fp32_from_bits((bias >> 1) + UINT32_C(0x07800000)) + base;
  	const uint32_t bits = fp32_to_bits(base);
  	const uint32_t exp_bits = (bits >> 13) & UINT32_C(0x00007C00);
  	const uint32_t mantissa_bits = bits & UINT32_C(0x00000FFF);
  	const uint32_t nonsign = exp_bits + mantissa_bits;
  	return (sign >> 16) | (shl1_w > UINT32_C(0xFF000000) ? UINT16_C(0x7E00) : nonsign);
  }

} // namespace detail

struct alignas(2) Half {
  unsigned short x;

  struct from_bits_t {};
  static constexpr from_bits_t from_bits() {
    return from_bits_t();
  }

  // HIP wants __host__ __device__ tag, CUDA does not
#ifdef __HIP_PLATFORM_HCC__
  C10_HOST_DEVICE Half() = default;
#else
  Half() = default;
#endif

  constexpr C10_HOST_DEVICE Half(unsigned short bits, from_bits_t) : x(bits){};
  inline C10_HOST_DEVICE Half(float value);
  inline C10_HOST_DEVICE operator float() const;

#if defined(__CUDACC__) || defined(__HIPCC__)
  inline C10_HOST_DEVICE Half(const __half& value);
  inline C10_HOST_DEVICE operator __half() const;
#endif
};

// This is just a placeholder for whatever complex representation we
// end up deciding to use for half-precision complex numbers.
struct alignas(4) ComplexHalf {
  Half real_;
  Half imag_;
  ComplexHalf() = default;
  Half real() const {
    return real_;
  }
  Half imag() const {
    return imag_;
  }
  inline ComplexHalf(std::complex<float> value)
      : real_(value.real()), imag_(value.imag()) {}
  inline operator std::complex<float>() const {
    return {real_, imag_};
  }
};

template <typename T>
struct is_complex_t : public std::false_type {};

template <typename T>
struct is_complex_t<std::complex<T>> : public std::true_type {};

template <>
struct is_complex_t<ComplexHalf> : public std::true_type {};

// Extract double from std::complex<double>; is identity otherwise
// TODO: Write in more idiomatic C++17
template <typename T>
struct scalar_value_type {
  using type = T;
};
template <typename T>
struct scalar_value_type<std::complex<T>> {
  using type = T;
};
template <>
struct scalar_value_type<ComplexHalf> {
  using type = Half;
};

// The old implementation of Converter as a function made nvcc's head explode
// when we added std::complex on top of the specializations for CUDA-only types
// like __half, so I rewrote it as a templated class (so, no more overloads,
// just (partial) specialization).

template <typename To, typename From, typename Enable = void>
struct Converter {
  To operator()(From f) {
    return static_cast<To>(f);
  }
};

template <typename To, typename From>
To convert(From from) {
  return Converter<To, From>()(from);
}

template <typename To, typename FromV>
struct Converter<
    To,
    std::complex<FromV>,
    typename std::enable_if<
        c10::guts::negation<is_complex_t<To>>::value>::type> {
  To operator()(std::complex<FromV> f) {
    return static_cast<To>(f.real());
  }
};

// In some versions of MSVC, there will be a compiler error when building.
// C4146: unary minus operator applied to unsigned type, result still unsigned
// It can be addressed by disabling the following warning. 
#ifdef _MSC_VER
#pragma warning( push )
#pragma warning( disable : 4146 )
#endif

// skip isnan and isinf check for integral types
template <typename To, typename From>
typename std::enable_if<std::is_integral<From>::value, bool>::type overflows(
    From f) {
  using limit = std::numeric_limits<typename scalar_value_type<To>::type>;
  if (!limit::is_signed && std::numeric_limits<From>::is_signed) {
    // allow for negative numbers to wrap using two's complement arithmetic.
    // For example, with uint8, this allows for `a - b` to be treated as
    // `a + 255 * b`.
    return f > limit::max() ||
        (f < 0 && -static_cast<uint64_t>(f) > limit::max());
  } else {
    return f < limit::lowest() || f > limit::max();
  }
}

#ifdef _MSC_VER
#pragma warning( pop )
#endif

template <typename To, typename From>
typename std::enable_if<std::is_floating_point<From>::value, bool>::type
overflows(From f) {
  using limit = std::numeric_limits<typename scalar_value_type<To>::type>;
  if (limit::has_infinity && std::isinf(static_cast<double>(f))) {
    return false;
  }
  if (!limit::has_quiet_NaN && (f != f)) {
    return true;
  }
  return f < limit::lowest() || f > limit::max();
}

template <typename To, typename From>
typename std::enable_if<is_complex_t<From>::value, bool>::type overflows(
    From f) {
  // casts from complex to real are considered to overflow if the
  // imaginary component is non-zero
  if (!is_complex_t<To>::value && f.imag() != 0) {
    return true;
  }
  // Check for overflow componentwise
  // (Technically, the imag overflow check is guaranteed to be false
  // when !is_complex_t<To>, but any optimizer worth its salt will be
  // able to figure it out.)
  return overflows<
             typename scalar_value_type<To>::type,
             typename From::value_type>(f.real()) ||
      overflows<
             typename scalar_value_type<To>::type,
             typename From::value_type>(f.imag());
}

template <typename To, typename From>
To checked_convert(From f, const char* name) {
  if (overflows<To, From>(f)) {
    std::ostringstream oss;
    oss << "value cannot be converted to type " << name
        << " without overflow: " << f;
    throw std::domain_error(oss.str());
  }
  return convert<To, From>(f);
}

C10_API std::ostream& operator<<(std::ostream& out, const Half& value);

} // namespace c10

#include <c10/util/Half-inl.h>