1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
|
/**
* Copyright (c) 2016-present, Facebook, Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
#include <string>
#include "caffe2/core/blob_serialization.h"
#include "caffe2/core/init.h"
#include "caffe2/core/logging.h"
#include "caffe2/core/net.h"
#include "caffe2/core/operator.h"
#include "caffe2/utils/string_utils.h"
#include "c10/util/string_utils.h"
using std::map;
using std::shared_ptr;
using std::string;
using std::vector;
template <typename ContextType, typename TensorType>
void writeTextOutput(
TensorType* tensor,
const string& output_prefix,
const string& name,
int index,
int num_blobs) {
if (index >= num_blobs) {
return;
}
string filename = name;
std::replace(filename.begin(), filename.end(), '/', '_');
string output_name = output_prefix + "/" + filename + ".txt";
caffe2::TensorSerializer ser;
caffe2::BlobProto blob_proto;
ser.Serialize(
*tensor, output_name, blob_proto.mutable_tensor(), 0, tensor->numel());
blob_proto.set_name(output_name);
blob_proto.set_type("Tensor");
CAFFE_ENFORCE(blob_proto.has_tensor());
caffe2::TensorProto tensor_proto = blob_proto.tensor();
int dims_size = tensor_proto.dims_size();
long long elem_dim_size =
dims_size > 1 ? tensor_proto.dims(1) : tensor_proto.dims(0);
for (int i = 2; i < dims_size; i++) {
elem_dim_size *= tensor_proto.dims(i);
}
std::vector<std::string> lines;
std::string dims;
for (int i = 0; i < dims_size; i++) {
int dim = tensor_proto.dims(i);
if (i > 0) {
dims += ", ";
}
dims += c10::to_string(dim);
}
lines.push_back(dims);
std::stringstream line;
if (tensor_proto.data_type() == caffe2::TensorProto::FLOAT) {
auto start = tensor_proto.float_data().begin();
auto end = tensor_proto.float_data().end();
copy(start, end, std::ostream_iterator<float>(line, ","));
} else if (tensor_proto.data_type() == caffe2::TensorProto::INT32) {
auto start = tensor_proto.int32_data().begin();
auto end = tensor_proto.int32_data().end();
copy(start, end, std::ostream_iterator<int>(line, ","));
} else {
CAFFE_THROW("Unimplemented Blob type.");
}
// remove the last ,
string str = line.str();
str.pop_back();
lines.push_back(str);
// static casts are workaround for MSVC build
auto flags = static_cast<std::ios_base::openmode>(std::ios::out);
if (index != 0) {
flags |= static_cast<std::ios_base::openmode>(std::ios::app);
} else {
flags |= static_cast<std::ios_base::openmode>(std::ios::trunc);
}
std::ofstream output_file(output_name, flags);
std::ostream_iterator<std::string> output_iterator(output_file, "\n");
std::copy(lines.begin(), lines.end(), output_iterator);
}
void observerConfig();
bool backendCudaSet(const string&);
void setDeviceType(caffe2::NetDef*, caffe2::DeviceType&);
void setOperatorEngine(caffe2::NetDef*, const string&);
int loadInput(
shared_ptr<caffe2::Workspace> workspace,
const bool run_on_gpu,
map<string, caffe2::TensorProtos>& tensor_protos_map,
const string& input,
const string& input_file,
const string& input_dims,
const string& input_type);
void fillInputBlob(
shared_ptr<caffe2::Workspace> workspace,
map<string, caffe2::TensorProtos>& tensor_protos_map,
int iteration);
void writeOutput(
shared_ptr<caffe2::Workspace> workspace,
const bool run_on_gpu,
const string& output,
const string& output_folder,
const bool text_output,
const int index,
const int num_blobs);
void runNetwork(
shared_ptr<caffe2::Workspace> workspace,
caffe2::NetDef& net_def,
map<string, caffe2::TensorProtos>& tensor_protos_map,
const bool wipe_cache,
const bool run_individual,
const bool run_on_gpu,
const bool text_output,
const int warmup,
const int iter,
const int num_blobs,
const int sleep_before_run,
const int sleep_between_iteration,
const int sleep_between_net_and_operator,
const std::string& output,
const std::string& output_folder);
int benchmark(
int argc,
char* argv[],
const string& FLAGS_backend,
const string& FLAGS_init_net,
const string& FLAGS_input,
const string& FLAGS_input_dims,
const string& FLAGS_input_file,
const string& FLAGS_input_type,
int FLAGS_iter,
const string& FLAGS_net,
const string& FLAGS_output,
const string& FLAGS_output_folder,
bool FLAGS_run_individual,
int FLAGS_sleep_before_run,
int FLAGS_sleep_between_iteration,
int FLAGS_sleep_between_net_and_operator,
bool FLAGS_text_output,
int FLAGS_warmup,
bool FLAGS_wipe_cache);
|