summaryrefslogtreecommitdiff
path: root/test
diff options
context:
space:
mode:
authorJames Reed <jamesreed@fb.com>2019-01-26 17:39:34 -0800
committerFacebook Github Bot <facebook-github-bot@users.noreply.github.com>2019-01-26 17:42:08 -0800
commitde6bb3f3e393a1f837b5b99833a5fdb98350dca4 (patch)
tree4d1d11bcbe59658399a65ed1793dd26d7da42ed3 /test
parentd1ed0176df9172fcef643172b756c8e32c43533e (diff)
downloadpytorch-de6bb3f3e393a1f837b5b99833a5fdb98350dca4.tar.gz
pytorch-de6bb3f3e393a1f837b5b99833a5fdb98350dca4.tar.bz2
pytorch-de6bb3f3e393a1f837b5b99833a5fdb98350dca4.zip
Fix flake8 warnings/errors in test_jit.py (#16409)
Summary: These were really annoying to see in the phabricator UI when trying to land PRs that touched test_jit.py, so this fixes them. One remaining item is the T484 error. Locally, flake8 still chokes on that line even though I put the noqa comment there (and tried varying whitespaces around it etc). Not sure why it still persists... Pull Request resolved: https://github.com/pytorch/pytorch/pull/16409 Differential Revision: D13832658 Pulled By: jamesr66a fbshipit-source-id: 46356ba6444ae5ee1a141c28489bdcc7c99e39c0
Diffstat (limited to 'test')
-rw-r--r--test/expect/TestScript.test_loop_unroll_unused_counter.expect4
-rw-r--r--test/expect/TestScript.test_loop_unrolling_nested.expect2
-rw-r--r--test/test_jit.py130
3 files changed, 69 insertions, 67 deletions
diff --git a/test/expect/TestScript.test_loop_unroll_unused_counter.expect b/test/expect/TestScript.test_loop_unroll_unused_counter.expect
index d0096c5daf..102405be6c 100644
--- a/test/expect/TestScript.test_loop_unroll_unused_counter.expect
+++ b/test/expect/TestScript.test_loop_unroll_unused_counter.expect
@@ -9,7 +9,7 @@ graph(%x : Tensor) {
%8 : int = aten::mul(%6, %7)
%9 : int = aten::sub(%4, %8)
%y.3 : int = prim::Loop(%6, %1, %y.1)
- block0(%i.1 : int, %12 : int) {
+ block0(%11 : int, %12 : int) {
%y.12 : int = aten::add(%12, %3)
%y.5 : int = aten::add(%y.12, %3)
%y.6 : int = aten::add(%y.5, %3)
@@ -21,7 +21,7 @@ graph(%x : Tensor) {
-> (%1, %y.11)
}
%y : int = prim::Loop(%9, %1, %y.3)
- block0(%i : int, %23 : int) {
+ block0(%22 : int, %23 : int) {
%y.4 : int = aten::add(%23, %3)
-> (%1, %y.4)
}
diff --git a/test/expect/TestScript.test_loop_unrolling_nested.expect b/test/expect/TestScript.test_loop_unrolling_nested.expect
index 6204965e93..abbc0b559b 100644
--- a/test/expect/TestScript.test_loop_unrolling_nested.expect
+++ b/test/expect/TestScript.test_loop_unrolling_nested.expect
@@ -3,7 +3,7 @@ graph(%x : Tensor) {
%y.1 : int = prim::Constant[value=0]()
%3 : int = prim::Constant[value=10]()
%y : int = prim::Loop(%3, %1, %y.1)
- block0(%i : int, %6 : int) {
+ block0(%5 : int, %6 : int) {
%7 : int = prim::Int(%x)
%8 : int = prim::Constant[value=0]()
%9 : int = prim::Constant[value=8]()
diff --git a/test/test_jit.py b/test/test_jit.py
index b4de6fb70c..bdd31f40f7 100644
--- a/test/test_jit.py
+++ b/test/test_jit.py
@@ -448,7 +448,7 @@ class JitTestCase(TestCase):
vs = vs[:-drop]
# we don't want all the grad for all the outputs to be the same
# so we multiply each by a constant
- return sum([math.log(i + 2) * v.sum() for i, v in enumerate(vs) if v is not None])
+ return sum(math.log(i + 2) * v.sum() for i, v in enumerate(vs) if v is not None)
if input_tensors is None:
input_tensors = reference_tensors
@@ -1153,7 +1153,7 @@ class TestJit(JitTestCase):
float(z) # Warning 4.
z.tolist() # Warning 5.
z.numpy() # Warning 6.
- for elem in torch.ones(4, 4): # Warning 7.
+ for _ in torch.ones(4, 4): # Warning 7.
pass
return z + 4
@@ -1752,7 +1752,7 @@ class TestJit(JitTestCase):
def foo(bar, baz):
baz = bar + 3
quick_brown_fox = torch.neg(baz)
- for i in range(20):
+ for _ in range(20):
yeet = quick_brown_fox - 3.14
return yeet
@@ -2919,7 +2919,7 @@ class TestScript(JitTestCase):
def bar():
a = torch.jit.annotate(List[int], [])
- for i in range(10):
+ for _ in range(10):
a.append(4)
return a
@@ -3428,45 +3428,45 @@ a")
inp = consec((4, 8, 5))
to_check = [
# [[0, 2], [1, 3]]
- ['[i, j]', dict(i=[0, 2], j=[1, 3])],
+ ['[i, j]', {'i': [0, 2], 'j': [1, 3]}],
# [[0, 2], [1, 3], [1, 1]]
- ['[i, j, k]', dict(i=[0, 2], j=[1, 3], k=[1, 1])],
+ ['[i, j, k]', {'i': [0, 2], 'j': [1, 3], 'k': [1, 1]}],
# [[0, 2], 1, [1, 1]]
- ['[i, j, k]', dict(i=[0, 2], j=1, k=[1, 1])],
+ ['[i, j, k]', {'i': [0, 2], 'j': 1, 'k': [1, 1]}],
# [:, :, [0, 3, 4]]
- ['[:, :, i]', dict(i=[0, 3, 4])],
+ ['[:, :, i]', {'i': [0, 3, 4]}],
# [:, [2, 4, 5, 7], 2:4]
- ['[:, i, 2:4]', dict(i=[0, 2, 3])],
+ ['[:, i, 2:4]', {'i': [0, 2, 3]}],
# [[2, 3], :, :]
- ['[i, :, :]', dict(i=[2, 3])],
+ ['[i, :, :]', {'i': [2, 3]}],
# [:, [0, 2, 3], [1, 3, 4]]
- ['[:, i, j]', dict(i=[0, 2, 3], j=[1, 3, 4])],
+ ['[:, i, j]', {'i': [0, 2, 3], 'j': [1, 3, 4]}],
# [:, [0], [1, 2, 4]]
- ['[:, i, j]', dict(i=[0], j=[1, 2, 4])],
+ ['[:, i, j]', {'i': [0], 'j': [1, 2, 4]}],
# [:, [0, 1, 3], [4]]
- ['[:, i, j]', dict(i=[0, 1, 3], j=[4])],
+ ['[:, i, j]', {'i': [0, 1, 3], 'j': [4]}],
# [:, [[0, 1], [1, 0]], [[2, 3]]]
- ['[:, i, j]', dict(i=[[0, 1], [1, 0]], j=[[2, 3]])],
+ ['[:, i, j]', {'i': [[0, 1], [1, 0]], 'j': [[2, 3]]}],
# [:, [[0, 1], [2, 3]], [[0]]]
- ['[:, i, j]', dict(i=[[0, 1], [2, 3]], j=[[0]])],
+ ['[:, i, j]', {'i': [[0, 1], [2, 3]], 'j': [[0]]}],
# [:, [[5, 6]], [[0, 3], [4, 4]]]
- ['[:, i, j]', dict(i=[[5, 6]], j=[[0, 3], [4, 4]])],
+ ['[:, i, j]', {'i': [[5, 6]], 'j': [[0, 3], [4, 4]]}],
# [[0, 2, 3], [1, 3, 4], :]
- ['[i, j, :]', dict(i=[0, 2, 3], j=[1, 3, 4])],
+ ['[i, j, :]', {'i': [0, 2, 3], 'j': [1, 3, 4]}],
# [0, [1, 2, 4], :]
- ['[i, j, :]', dict(i=0, j=[1, 2, 4])],
+ ['[i, j, :]', {'i': 0, 'j': [1, 2, 4]}],
# [[0, 1, 3], 4, :]
- ['[i, j, :]', dict(i=[0, 1, 3], j=4)],
+ ['[i, j, :]', {'i': [0, 1, 3], 'j': 4}],
# [[[0, 1], [1, 0]], [[2, 1], [3, 5]], :]
- ['[i, j, :]', dict(i=[[0, 1], [1, 0]], j=[[2, 1], [3, 5]])],
+ ['[i, j, :]', {'i': [[0, 1], [1, 0]], 'j': [[2, 1], [3, 5]]}],
# [[[0, 1], [1, 0]], [[2, 3]], :]
- ['[i, j, :]', dict(i=[[0, 1], [1, 0]], j=[[2, 3]])],
+ ['[i, j, :]', {'i': [[0, 1], [1, 0]], 'j': [[2, 3]]}],
# [[[0, 1], [2, 3]], [[0]], :]
- ['[i, j, :]', dict(i=[[0, 1], [2, 3]], j=[[0]])],
+ ['[i, j, :]', {'i': [[0, 1], [2, 3]], 'j': [[0]]}],
# [[[2, 1]], [[0, 3], [4, 4]], :]
- ['[i, j, :]', dict(i=[[2, 1]], j=[[0, 3], [4, 4]])],
+ ['[i, j, :]', {'i': [[2, 1]], 'j': [[0, 3], [4, 4]]}],
# [[[2]], [[0, 3], [4, 1]], 0:2]
- ['[i, j, 0:2]', dict(i=[[2]], j=[[0, 3], [4, 1]])],
+ ['[i, j, 0:2]', {'i': [[2]], 'j': [[0, 3], [4, 1]]}],
]
for expr, argdict in to_check:
@@ -3900,7 +3900,7 @@ a")
def test_mutable_list_function_inline(self):
@torch.jit.script
def bar(y):
- # type: (List[int])
+ # type: (List[int]) -> None
y.append(4)
@torch.jit.script
@@ -5180,7 +5180,7 @@ a")
@torch.jit.script_method
def forward(self, x, hiddens):
- # type: (torch.Tensor, Tuple[torch.Tensor, torch.Tensor])
+ # type: (torch.Tensor, Tuple[torch.Tensor, torch.Tensor]) -> Tuple[torch.Tensor, torch.Tensor]
return self.cell(x, hiddens)
else:
@@ -5191,7 +5191,7 @@ a")
@torch.jit.script_method
def forward(self, x, hiddens):
- # type: (torch.Tensor, torch.Tensor)
+ # type: (torch.Tensor, torch.Tensor) -> torch.Tensor
return self.cell(x, hiddens)
cell = ScriptWrapper(cell)
@@ -6116,10 +6116,12 @@ a")
# type: (BroadcastingListx[int]) -> List[int]
return x
+ # TODO: the type comment in this seems to trip up flake8 for some reason
+ # even though we have a noqa comment. Figure out why
with self.assertRaisesRegex(RuntimeError, "Unknown type constructor"):
@torch.jit.script
def nested(x, y):
- # type: (int, Tuple[int, int[2]]) -> List[int]
+ # type: (int, Tuple[int, int[2]]) -> List[int] # noqa: T484
return x
def test_ntuple_builtins(self):
@@ -6143,10 +6145,10 @@ a")
@torch.jit.script
def embedding_norm_script(input, embedding_matrix, max_norm):
- # type: (Tensor, Tensor, float)
+ # type: (Tensor, Tensor, float) -> None
F.embedding(input, embedding_matrix, max_norm=0.01)
- for fun in [embedding_norm, embedding_norm_script]:
+ for _ in [embedding_norm, embedding_norm_script]:
input = torch.tensor([[1, 2, 4, 5], [4, 3, 2, 9]])
embedding_matrix = torch.randn(10, 3)
@@ -7327,7 +7329,7 @@ a")
def test_loop_unrolling_const(self):
def fn():
y = 0
- for i in range(10):
+ for _ in range(10):
y += 1
return y
@@ -7349,7 +7351,7 @@ a")
def test_loop_unrolling_nested(self):
def fn(x):
y = 0
- for i in range(10):
+ for _ in range(10):
for j in range(int(x)):
y += j
return y
@@ -7362,7 +7364,7 @@ a")
def test_loop_unroll_unused_counter(self):
def fn(x):
y = 0
- for i in range(int(x)):
+ for _ in range(int(x)):
y += 1
return y
@@ -7373,7 +7375,7 @@ a")
def test_loop_unroll_negative(self):
def fn(x):
y = 0
- for i in range(int(x)):
+ for _ in range(int(x)):
y += 1
return y
@@ -7402,7 +7404,7 @@ a")
class ReassignSelfLHS(torch.jit.ScriptModule):
@torch.jit.script_method
def forward(self, x):
- for i in range(20):
+ for _ in range(20):
self = x
return self
@@ -7414,7 +7416,7 @@ a")
class ReassignSelfRHS(torch.jit.ScriptModule):
@torch.jit.script_method
def forward(self, x):
- for i in range(20):
+ for _ in range(20):
x = self
return self
@@ -7453,7 +7455,7 @@ a")
with self.assertRaisesRegex(RuntimeError, r'range\(\) expects 1 argument but got 0'):
@torch.jit.script
def range_no_arg(x):
- for i in range():
+ for _ in range():
x += 1
return x
@@ -9578,7 +9580,7 @@ a")
with self.assertRaisesRegex(RuntimeError, "from a loop"):
@torch.jit.script
def nest_for_ret(x):
- for i in range(3):
+ for _ in range(3):
if bool(x < 3):
return 4
return 5
@@ -10471,9 +10473,9 @@ def check_against_reference(self, func, reference_func, args, kwargs=None,
def allSum(vs):
if isinstance(vs, torch.Tensor):
vs = (vs,)
- return sum([(i + 1) * v.sum()
- for i, v in enumerate(vs)
- if v is not None and v.dtype.is_floating_point])
+ return sum((i + 1) * v.sum()
+ for i, v in enumerate(vs)
+ if v is not None and v.dtype.is_floating_point)
def clone_inputs(requires_grad):
inputs = [
@@ -11717,27 +11719,27 @@ nn_functional_single_grad = frozenset('test_nn_' + name for name in [
# additional modules test
# TODO: delete this list once we make all nn_tests work
additional_module_tests = [
- dict(
- module_name='Bilinear',
- constructor_args=(S, S, M),
- input_size=(S, S),
- extra_args=((S, S),)
- ),
- dict(
- module_name='RNNCell',
- constructor_args=(S, S),
- input_size=(S, S),
- ),
- dict(
- module_name='LSTMCell',
- constructor_args=(S, S),
- input_size=(S, S),
- ),
- dict(
- module_name='GRUCell',
- constructor_args=(S, S),
- input_size=(S, S),
- ),
+ {
+ 'module_name': 'Bilinear',
+ 'constructor_args': (S, S, M),
+ 'input_size': (S, S),
+ 'extra_args': ((S, S),)
+ },
+ {
+ 'module_name': 'RNNCell',
+ 'constructor_args': (S, S),
+ 'input_size': (S, S),
+ },
+ {
+ 'module_name': 'LSTMCell',
+ 'constructor_args': (S, S),
+ 'input_size': (S, S),
+ },
+ {
+ 'module_name': 'GRUCell',
+ 'constructor_args': (S, S),
+ 'input_size': (S, S),
+ },
]
@@ -12189,7 +12191,7 @@ class TestAsync(JitTestCase):
super(Traced, self).__init__()
def forward(self, x):
- return tuple([torch.neg(x), x])
+ return (torch.neg(x), x)
class Module(torch.jit.ScriptModule):
def __init__(self):
@@ -12234,7 +12236,7 @@ class TestAsync(JitTestCase):
self.assertGraphContainsExactly(module.graph, kind='aten::neg', num_kind_nodes=3, consider_subgraphs=True)
y = torch.neg(x)
- self.assertEqual(module(x), tuple([y, y, y, y, x, x]))
+ self.assertEqual(module(x), (y, y, y, y, x, x))
def test_async_script_error(self):
x = torch.rand(3, 4)