summaryrefslogtreecommitdiff
path: root/test
diff options
context:
space:
mode:
authorJerry Zhang <jerryzh@fb.com>2019-04-17 16:10:05 -0700
committerFacebook Github Bot <facebook-github-bot@users.noreply.github.com>2019-04-17 16:17:40 -0700
commitad8f34fcca6aadbe0711227e43f87ae47cf417eb (patch)
tree2708643a6bab2bea35cf632ac6ace61e7bb2c59e /test
parent4371cb5e0193d2eaa8d23673eb153874113eab4e (diff)
downloadpytorch-ad8f34fcca6aadbe0711227e43f87ae47cf417eb.tar.gz
pytorch-ad8f34fcca6aadbe0711227e43f87ae47cf417eb.tar.bz2
pytorch-ad8f34fcca6aadbe0711227e43f87ae47cf417eb.zip
Add empty_quantized (#18960)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/18960 empty_affine_quantized creates an empty affine quantized Tensor from scratch. We might need this when we implement quantized operators. Differential Revision: D14810261 fbshipit-source-id: f07d8bf89822d02a202ee81c78a17aa4b3e571cc
Diffstat (limited to 'test')
-rw-r--r--test/test_torch.py13
1 files changed, 13 insertions, 0 deletions
diff --git a/test/test_torch.py b/test/test_torch.py
index cb6db50cb7..39abb94fd9 100644
--- a/test/test_torch.py
+++ b/test/test_torch.py
@@ -2695,6 +2695,19 @@ class _TestTorchMixin(object):
print(rqr.numpy())
self.assertTrue(np.allclose(r.numpy(), rqr.numpy(), atol=2 / scale))
+ def test_qtensor_creation(self):
+ scale = 0.5
+ zero_point = 10
+ val = 100
+ numel = 10
+ q = torch.empty_affine_quantized(numel, dtype=torch.qint8, scale=scale, zero_point=zero_point)
+ # for i in range(numel):
+ # # wait for th_fill
+ # q[i] = val
+ # r = q.dequantize()
+ # for i in range(numel):
+ # self.assertEqual(r[i], (val - zero_point) * scale)
+
@unittest.skipIf(torch.cuda.device_count() < 2, 'fewer than 2 GPUs detected')
def test_device_guard(self):
# verify that all operators with `device_guard: False` behave properly with multiple devices.