summaryrefslogtreecommitdiff
path: root/docs/source/notes
diff options
context:
space:
mode:
authorThibault FEVRY <ThibaultFevry@gmail.com>2018-02-12 15:08:27 -0500
committerAdam Paszke <adam.paszke@gmail.com>2018-02-12 21:08:27 +0100
commite39e86f11980297db2b48f41d625561bae1852f5 (patch)
tree515d12f7cce32108852e18da6e516d00ff0b0e04 /docs/source/notes
parentf38b6f611e0e841496c7d9ad901e07296a253a0d (diff)
downloadpytorch-e39e86f11980297db2b48f41d625561bae1852f5.tar.gz
pytorch-e39e86f11980297db2b48f41d625561bae1852f5.tar.bz2
pytorch-e39e86f11980297db2b48f41d625561bae1852f5.zip
Remove deprecated references to volatile (#5193)
Diffstat (limited to 'docs/source/notes')
-rw-r--r--docs/source/notes/autograd.rst5
-rw-r--r--docs/source/notes/extending.rst3
2 files changed, 3 insertions, 5 deletions
diff --git a/docs/source/notes/autograd.rst b/docs/source/notes/autograd.rst
index c04d74ff72..fcf14b613a 100644
--- a/docs/source/notes/autograd.rst
+++ b/docs/source/notes/autograd.rst
@@ -11,9 +11,8 @@ programs, and can aid you in debugging.
Excluding subgraphs from backward
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
-Every Variable has two flags: :attr:`requires_grad` and :attr:`volatile`.
-They both allow for fine grained exclusion of subgraphs from gradient
-computation and can increase efficiency.
+Every Variable has a flag: :attr:`requires_grad` that allows for fine grained
+exclusion of subgraphs from gradient computation and can increase efficiency.
.. _excluding-requires_grad:
diff --git a/docs/source/notes/extending.rst b/docs/source/notes/extending.rst
index e232bd59e9..6b4d3bb2b5 100644
--- a/docs/source/notes/extending.rst
+++ b/docs/source/notes/extending.rst
@@ -155,8 +155,7 @@ This is how a ``Linear`` module can be implemented::
# they won't appear in .parameters() (doesn't apply to buffers), and
# won't be converted when e.g. .cuda() is called. You can use
# .register_buffer() to register buffers.
- # nn.Parameters can never be volatile and, different than Variables,
- # they require gradients by default.
+ # nn.Parameters require gradients by default.
self.weight = nn.Parameter(torch.Tensor(output_features, input_features))
if bias:
self.bias = nn.Parameter(torch.Tensor(output_features))