diff options
author | braincodercn <braincoder@aliyun.com> | 2018-05-21 23:10:24 +0800 |
---|---|---|
committer | Soumith Chintala <soumith@gmail.com> | 2018-05-21 11:10:24 -0400 |
commit | 5ee5537b9800bb312575247873c0e5139b30bfe4 (patch) | |
tree | 7615f5112aef766e5d2d543c8b918e41f46a431a /docs/source/notes | |
parent | 28b592e00bcf7c1484964001817f1104e876e54c (diff) | |
download | pytorch-5ee5537b9800bb312575247873c0e5139b30bfe4.tar.gz pytorch-5ee5537b9800bb312575247873c0e5139b30bfe4.tar.bz2 pytorch-5ee5537b9800bb312575247873c0e5139b30bfe4.zip |
Fix typo in document (#7725)
Diffstat (limited to 'docs/source/notes')
-rw-r--r-- | docs/source/notes/extending.rst | 4 | ||||
-rw-r--r-- | docs/source/notes/multiprocessing.rst | 2 |
2 files changed, 3 insertions, 3 deletions
diff --git a/docs/source/notes/extending.rst b/docs/source/notes/extending.rst index f03b9f436e..55732ae0ca 100644 --- a/docs/source/notes/extending.rst +++ b/docs/source/notes/extending.rst @@ -107,8 +107,8 @@ numerical approximations using small finite differences:: # gradcheck takes a tuple of tensors as input, check if your gradient # evaluated with these tensors are close enough to numerical # approximations and returns True if they all verify this condition. - input = (Variable(torch.randn(20,20).double(), requires_grad=True), Variable(torch.randn(30,20).double(), requires_grad=True),) - test = gradcheck(Linear.apply, input, eps=1e-6, atol=1e-4) + input = (torch.randn(20,20,dtype=torch.double,requires_grad=True), torch.randn(30,20,dtype=torch.double,requires_grad=True)) + test = gradcheck(linear, input, eps=1e-6, atol=1e-4) print(test) Extending :mod:`torch.nn` diff --git a/docs/source/notes/multiprocessing.rst b/docs/source/notes/multiprocessing.rst index 90d7e3f34f..1992a550c1 100644 --- a/docs/source/notes/multiprocessing.rst +++ b/docs/source/notes/multiprocessing.rst @@ -119,6 +119,6 @@ example below as well:: p.start() processes.append(p) for p in processes: - p.join() + p.join() .. __: https://github.com/pytorch/examples/tree/master/mnist_hogwild |