diff options
author | Yinghai Lu <yinghai@fb.com> | 2019-02-14 14:22:51 -0800 |
---|---|---|
committer | Facebook Github Bot <facebook-github-bot@users.noreply.github.com> | 2019-02-14 15:12:20 -0800 |
commit | b515ebc6f11400d904339275aa5df12f1f8121b1 (patch) | |
tree | 9696946487cdac7729b5359de2d0013173f6892f /caffe2 | |
parent | 0a5de6e9720eb9600c6424fd2d7a5df0b36d9703 (diff) | |
download | pytorch-b515ebc6f11400d904339275aa5df12f1f8121b1.tar.gz pytorch-b515ebc6f11400d904339275aa5df12f1f8121b1.tar.bz2 pytorch-b515ebc6f11400d904339275aa5df12f1f8121b1.zip |
Remove fake inference for shape info in ONNXIFI transform (#17046)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/17046
As we are moving to use bound shape inference, we can remove the awkward fake inference run path and make the code cleaner.
Reviewed By: ipiszy
Differential Revision: D14061501
fbshipit-source-id: b3ace98b3dabef3c3359086a0bb1410518cefa26
Diffstat (limited to 'caffe2')
-rw-r--r-- | caffe2/opt/onnxifi_transformer.cc | 96 | ||||
-rw-r--r-- | caffe2/opt/onnxifi_transformer.h | 5 | ||||
-rw-r--r-- | caffe2/python/onnx/onnxifi.py | 17 | ||||
-rw-r--r-- | caffe2/python/pybind_state.cc | 4 |
4 files changed, 39 insertions, 83 deletions
diff --git a/caffe2/opt/onnxifi_transformer.cc b/caffe2/opt/onnxifi_transformer.cc index 0fdbeb5b86..94e85a0c76 100644 --- a/caffe2/opt/onnxifi_transformer.cc +++ b/caffe2/opt/onnxifi_transformer.cc @@ -85,57 +85,36 @@ uint64_t OnnxifiDataType(caffe2::TensorProto::DataType t) { #undef CAFFE2_TO_ONNXIFI_TYPE } -// TODO: Use ShapeInfo instead of shape ShapeInfoMap InferShapes( Workspace* ws, NetDef* pred_net, - CaffeMap<std::string, TensorShape>* shape_hints_ordered, - bool infer_shapes, + std::unordered_map<std::string, TensorShape>* shape_hints_mapped, const BoundShapeSpec& spec) { ShapeInfoMap shape_map; - if (infer_shapes) { - // Populate shapes from workplace - const std::vector<std::string> ws_blobs = ws->Blobs(); - for (const auto& s : ws_blobs) { - auto shape_info = getShapeInfoFromBlob(ws->GetBlob(s)); - if (shape_info.dim_type != ShapeInfo::DimType::UNKNOWN) { - shape_map[s] = shape_info; - } - } - for (const auto& kv : *shape_hints_ordered) { - shape_map.emplace( - std::piecewise_construct, - std::forward_as_tuple(kv.first), - std::forward_as_tuple(ShapeInfo::DimType::CONSTANT, kv.second)); - } - BoundShapeInferencer eng(spec); - eng.InferBoundShapeAndType(*pred_net, shape_map); - const auto& out_map = eng.shape_info(); - - for (const auto& kv : out_map) { - shape_map.emplace( - std::piecewise_construct, - std::forward_as_tuple(kv.first), - std::forward_as_tuple(kv.second.dim_type, kv.second.shape)); - } - } else { - // TODO: deprecate this path - Workspace ws_local(ws); - ws_local.RunNetOnce(*pred_net); - const std::vector<std::string> ws_blobs = ws_local.Blobs(); - for (const auto& s : ws_blobs) { - const Blob* b = ws_local.GetBlob(s); - auto shape = GetTensorShapeOfBlob(b); - if (!shape.unknown_shape()) { - shape_map.emplace( - std::piecewise_construct, - std::forward_as_tuple(s), - std::forward_as_tuple( - ShapeInfo::DimType::CONSTANT, std::move(shape))); - } + // Populate shapes from workplace + const std::vector<std::string> ws_blobs = ws->Blobs(); + for (const auto& s : ws_blobs) { + auto shape_info = getShapeInfoFromBlob(ws->GetBlob(s)); + if (shape_info.dim_type != ShapeInfo::DimType::UNKNOWN) { + shape_map[s] = shape_info; } } + for (const auto& kv : *shape_hints_mapped) { + shape_map.emplace( + std::piecewise_construct, + std::forward_as_tuple(kv.first), + std::forward_as_tuple(ShapeInfo::DimType::CONSTANT, kv.second)); + } + BoundShapeInferencer eng(spec); + eng.InferBoundShapeAndType(*pred_net, shape_map); + const auto& out_map = eng.shape_info(); + for (const auto& kv : out_map) { + shape_map.emplace( + std::piecewise_construct, + std::forward_as_tuple(kv.first), + std::forward_as_tuple(kv.second.dim_type, kv.second.shape)); + } return shape_map; } @@ -724,7 +703,8 @@ NetDef OnnxifiTransformer::SubnetToOnnxifiOpViaOnnx( return net_opt; } -CaffeMap<std::string, TensorShape> OnnxifiTransformer::SsaRewriteAndMapNames( +std::unordered_map<std::string, TensorShape> +OnnxifiTransformer::SsaRewriteAndMapNames( Workspace* ws, NetDef* pred_net, const std::unordered_set<std::string>& weights, @@ -743,31 +723,36 @@ CaffeMap<std::string, TensorShape> OnnxifiTransformer::SsaRewriteAndMapNames( input_mapping_ = onnx::SsaRewrite(nullptr, pred_net, weights); // Annote the ops with net position AnnotateOpIndex(pred_net); - std::vector<std::string> external_inputs; + // Need to add mapping for weights. This will be used to create new workspace // with mapped weights. for (const auto& w : weights) { input_mapping_.emplace(w, w); } + + // Since we are going to create a mapped workspace, we need to make sure that + // the parent workspace has the mapped blob names. If the blobs don't exist + // (usually such blobs are input tensor names), we exclude them from mapping. + std::vector<std::string> exclude_mapping; for (const auto kv : input_mapping_) { reverse_input_mapping_.emplace(kv.second, kv.first); if (!ws->HasBlob(kv.second)) { - external_inputs.emplace_back(kv.first); + exclude_mapping.emplace_back(kv.first); } } - for (const auto& i : external_inputs) { + for (const auto& i : exclude_mapping) { input_mapping_.erase(i); } - CaffeMap<std::string, TensorShape> shape_hints_ordered; + std::unordered_map<std::string, TensorShape> shape_hints_mapped; for (const auto& kv : input_shape_hints) { const auto it = reverse_input_mapping_.find(kv.first); if (it != reverse_input_mapping_.end()) { - shape_hints_ordered.emplace(it->second, kv.second); + shape_hints_mapped.emplace(it->second, kv.second); } else { - shape_hints_ordered.emplace(kv.first, kv.second); + shape_hints_mapped.emplace(kv.first, kv.second); } } - return shape_hints_ordered; + return shape_hints_mapped; } NetDef OnnxifiTransformer::TransformViaC2( @@ -996,7 +981,6 @@ NetDef OnnxifiTransformer::TransformViaOnnx( void OnnxifiTransformer::Transform( Workspace* ws, NetDef* pred_net, - const std::vector<std::string>& external_inputs, const std::vector<std::string>& weight_names, const std::unordered_map<std::string, TensorShape>& input_shape_hints, const std::unordered_set<int>& blacklisted_ops) { @@ -1011,17 +995,13 @@ void OnnxifiTransformer::Transform( weight_names.begin(), weight_names.end()); // SSA Rewrite the net - auto shape_hints_ordered = + auto shape_hints_mapped = SsaRewriteAndMapNames(ws, pred_net, weights, input_shape_hints); // Populate shape info Workspace mapped_ws(ws, input_mapping_); ShapeInfoMap shape_hints = InferShapes( - &mapped_ws, - pred_net, - &shape_hints_ordered, - opts_.infer_shapes, - opts_.bound_shape_spec); + &mapped_ws, pred_net, &shape_hints_mapped, opts_.bound_shape_spec); // Transform the net NetDef net_opt = opts_.use_onnx diff --git a/caffe2/opt/onnxifi_transformer.h b/caffe2/opt/onnxifi_transformer.h index a1a8cd8eea..e037eefe69 100644 --- a/caffe2/opt/onnxifi_transformer.h +++ b/caffe2/opt/onnxifi_transformer.h @@ -22,8 +22,6 @@ class OnnxExporter; struct OnnxifiTransformerOptions { explicit OnnxifiTransformerOptions() : bound_shape_spec(0, 0) {} - // Run bound shape inference - bool infer_shapes{false}; // Dump onnx model for debugging bool debug{false}; // Pass serialized onnx model if true, otherwise pass serialized c2 model @@ -41,7 +39,6 @@ class CAFFE2_API OnnxifiTransformer final { void Transform( Workspace* ws, NetDef* pred_net, - const std::vector<std::string>& external_inputs, const std::vector<std::string>& weight_names, const std::unordered_map<std::string, TensorShape>& shape_hints, const std::unordered_set<int>& blacklisted_ops); @@ -83,7 +80,7 @@ class CAFFE2_API OnnxifiTransformer final { const std::vector<std::string>& external_inputs, const std::vector<std::string>& external_outputs); - CaffeMap<std::string, TensorShape> SsaRewriteAndMapNames( + std::unordered_map<std::string, TensorShape> SsaRewriteAndMapNames( Workspace* ws, NetDef* pred_net, const std::unordered_set<std::string>& weights, diff --git a/caffe2/python/onnx/onnxifi.py b/caffe2/python/onnx/onnxifi.py index e76bf5d84a..9a859cbf60 100644 --- a/caffe2/python/onnx/onnxifi.py +++ b/caffe2/python/onnx/onnxifi.py @@ -19,7 +19,6 @@ import numpy as np def onnxifi_caffe2_net( pred_net, input_shapes, - infer_shapes=False, max_batch_size=1, max_seq_size=1, debug=False, @@ -27,27 +26,11 @@ def onnxifi_caffe2_net( """ Transform the caffe2_net by collapsing ONNXIFI-runnable nodes into Onnxifi c2 ops """ - # Inject an fake input tensor to help popluate the shape if we - # do not do shape inference shape_hints = {} - external_inputs = [] - if not infer_shapes: - for k, v in input_shapes.items(): - need_input_tensor = True - if workspace.HasBlob(k): - itensor = workspace.FetchBlob(k) - if itensor.shape == v: - need_input_tensor = False - if need_input_tensor: - workspace.FeedBlob(k, np.random.randn(*v).astype(np.float32)) - external_inputs.append(k) - for k, v in input_shapes.items(): shape_hints[k] = v pred_net_str = C.onnxifi(pred_net.SerializeToString(), - external_inputs, shape_hints, - infer_shapes, max_batch_size, max_seq_size, debug, diff --git a/caffe2/python/pybind_state.cc b/caffe2/python/pybind_state.cc index d4f54d8a87..609ee01e69 100644 --- a/caffe2/python/pybind_state.cc +++ b/caffe2/python/pybind_state.cc @@ -1604,9 +1604,7 @@ void addGlobalMethods(py::module& m) { m.def( "onnxifi", [](const py::bytes& pred_net_str, - const std::vector<std::string>& external_inputs, const std::unordered_map<std::string, std::vector<int>>& shapes, - bool infer_shapes, int max_batch_size, int max_seq_size, bool debug_builder, @@ -1622,7 +1620,6 @@ void addGlobalMethods(py::module& m) { it.first, CreateTensorShape(it.second, TensorProto::FLOAT)); } OnnxifiTransformerOptions opts; - opts.infer_shapes = infer_shapes; opts.bound_shape_spec.max_batch_size = max_batch_size; opts.bound_shape_spec.max_seq_size = max_seq_size; opts.debug = debug_builder; @@ -1633,7 +1630,6 @@ void addGlobalMethods(py::module& m) { ts.Transform( curr_ws, &pred_net, - external_inputs, weight_names, tensor_shapes, std::unordered_set<int>()); |