diff options
author | Mingzhe Li <mingzhe0908@fb.com> | 2019-04-18 17:03:56 -0700 |
---|---|---|
committer | Facebook Github Bot <facebook-github-bot@users.noreply.github.com> | 2019-04-18 17:07:02 -0700 |
commit | 45d5b6be48caae761970d6d4c99e4ed8bc82263e (patch) | |
tree | bdeb64abe7cf308e0de6d33c153e0130a21fb209 /benchmarks | |
parent | edf77fe64ae2f9becfbc1848721b096a14bcd820 (diff) | |
download | pytorch-45d5b6be48caae761970d6d4c99e4ed8bc82263e.tar.gz pytorch-45d5b6be48caae761970d6d4c99e4ed8bc82263e.tar.bz2 pytorch-45d5b6be48caae761970d6d4c99e4ed8bc82263e.zip |
Enhance front-end to add op (#19433)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/19433
For operator benchmark project, we need to cover a lot of operators, so the interface for adding operators needs to be very clean and simple. This diff is implementing a new interface to add op.
Here is the logic to add new operator to the benchmark:
```
long_config = {}
short_config = {}
map_func
add_test(
[long_config, short_config],
map_func,
[caffe2 op]
[pt op]
)
```
Reviewed By: zheng-xq
Differential Revision: D14791191
fbshipit-source-id: ac6738507cf1b9d6013dc8e546a2022a9b177f05
Diffstat (limited to 'benchmarks')
-rw-r--r-- | benchmarks/operator_benchmark/benchmark_core.py | 2 | ||||
-rw-r--r-- | benchmarks/operator_benchmark/benchmark_runner.py | 1 | ||||
-rw-r--r-- | benchmarks/operator_benchmark/benchmark_test_generator.py | 72 | ||||
-rw-r--r-- | benchmarks/operator_benchmark/benchmark_utils.py | 17 | ||||
-rw-r--r-- | benchmarks/operator_benchmark/ops/add.py | 74 | ||||
-rw-r--r-- | benchmarks/operator_benchmark/ops/matmul.py | 78 |
6 files changed, 157 insertions, 87 deletions
diff --git a/benchmarks/operator_benchmark/benchmark_core.py b/benchmarks/operator_benchmark/benchmark_core.py index f6ff591df5..34df22cbf0 100644 --- a/benchmarks/operator_benchmark/benchmark_core.py +++ b/benchmarks/operator_benchmark/benchmark_core.py @@ -40,7 +40,7 @@ def add_benchmark_tester(framework, op_name, input_shapes, op_args, run_mode, fu BENCHMARK_TESTER[mode][func_name] = func -def benchmark_test_group(func): +def register_test(func): """Decorator to register a benchmark test group. A benchmark test group is a function that returns a list of benchmark test case objects to be run. diff --git a/benchmarks/operator_benchmark/benchmark_runner.py b/benchmarks/operator_benchmark/benchmark_runner.py index 9f86006a99..86ed2dbd6b 100644 --- a/benchmarks/operator_benchmark/benchmark_runner.py +++ b/benchmarks/operator_benchmark/benchmark_runner.py @@ -12,6 +12,7 @@ from caffe2.benchmarks.operator_benchmark import benchmark_core import caffe2.benchmarks.operator_benchmark.benchmark_caffe2 import caffe2.benchmarks.operator_benchmark.benchmark_pytorch +import caffe2.benchmarks.operator_benchmark.benchmark_test_generator import caffe2.benchmarks.operator_benchmark.ops.add import caffe2.benchmarks.operator_benchmark.ops.matmul # noqa diff --git a/benchmarks/operator_benchmark/benchmark_test_generator.py b/benchmarks/operator_benchmark/benchmark_test_generator.py new file mode 100644 index 0000000000..f03e175002 --- /dev/null +++ b/benchmarks/operator_benchmark/benchmark_test_generator.py @@ -0,0 +1,72 @@ +from __future__ import absolute_import +from __future__ import division +from __future__ import print_function +from __future__ import unicode_literals + +from caffe2.benchmarks.operator_benchmark.benchmark_caffe2 import Caffe2OperatorTestCase +from caffe2.benchmarks.operator_benchmark.benchmark_pytorch import PyTorchOperatorTestCase +from caffe2.benchmarks.operator_benchmark.benchmark_utils import * # noqa + + +def generate_test(configs, map_config, ops, OperatorTestCase): + """ + This function is used to create PyTorch/Caffe2 operators based on configs. + configs usually include both long_config and short_config and they will be + mapped to input_shapes and args which are ready to be digested by an operator. + OperatorTestCase is used to create an operator with inputs/outputs and args. + """ + for config in configs: + for case in config: + shapes_args_config = case[:-1] + mode = case[-1] + shapes_args = map_config(*shapes_args_config) + if shapes_args is not None: + for op in ops: + OperatorTestCase( + test_name=op[0], + op_type=op[1], + input_shapes=shapes_args[0], + op_args=shapes_args[1], + run_mode=mode) + + +def generate_pt_test(configs, pt_map_func, pt_ops): + """ + This function creates PyTorch operators which will be benchmarked. + """ + generate_test(configs, pt_map_func, pt_ops, PyTorchOperatorTestCase) + + +def generate_c2_test(configs, c2_map_func, c2_ops): + """ + This function creates Caffe2 operators which will be benchmarked. + """ + generate_test(configs, c2_map_func, c2_ops, Caffe2OperatorTestCase) + + +def map_c2_config_add(M, N, K): + input_one = (M, N, K) + input_two = (M, N, K) + input_shapes = [input_one, input_two] + args = {} + return (input_shapes, args) + +map_pt_config_add = map_c2_config_add + + +def map_c2_config_matmul(M, N, K, trans_a, trans_b): + input_one = (N, M) if trans_a else (M, N) + input_two = (K, N) if trans_b else (N, K) + input_shapes = [input_one, input_two] + args = {'trans_a': trans_a, 'trans_b': trans_b} + return (input_shapes, args) + + +def map_pt_config_matmul(M, N, K, trans_a, trans_b): + input_one = (N, M) if trans_a else (M, N) + input_two = (K, N) if trans_b else (N, K) + input_shapes = [input_one, input_two] + args = {} + if not trans_a and not trans_b: + return (input_shapes, args) + return None diff --git a/benchmarks/operator_benchmark/benchmark_utils.py b/benchmarks/operator_benchmark/benchmark_utils.py index e0d5231312..1dc6479351 100644 --- a/benchmarks/operator_benchmark/benchmark_utils.py +++ b/benchmarks/operator_benchmark/benchmark_utils.py @@ -27,9 +27,26 @@ def numpy_random_fp32(*shape): def cross_product(*inputs): + """ + Return a list of cartesian product of input iterables. + For example, cross_product(A, B) returns ((x,y) for x in A for y in B). + """ return (list(itertools.product(*inputs))) def get_n_rand_nums(min_val, max_val, n): random.seed((1 << 32) - 1) return random.sample(range(min_val, max_val), n) + + +def generate_configs(**configs): + """ + Given configs from users, we want to generate different combinations of + those configs + For example, given M = ((1, 2), N = (4, 5)) and sample_func being cross_product, + we will generate ((1, 4), (1, 5), (2, 4), (2, 5)) + """ + assert 'sample_func' in configs, "Missing sample_func to generat configs" + results = configs['sample_func']( + *[value for key, value in configs.items() if key != 'sample_func']) + return results diff --git a/benchmarks/operator_benchmark/ops/add.py b/benchmarks/operator_benchmark/ops/add.py index 23d208cf47..4025c0c0e5 100644 --- a/benchmarks/operator_benchmark/ops/add.py +++ b/benchmarks/operator_benchmark/ops/add.py @@ -3,10 +3,8 @@ from __future__ import division from __future__ import print_function from __future__ import unicode_literals -from caffe2.benchmarks.operator_benchmark import benchmark_core, benchmark_utils - -from caffe2.benchmarks.operator_benchmark.benchmark_caffe2 import Caffe2OperatorTestCase -from caffe2.benchmarks.operator_benchmark.benchmark_pytorch import PyTorchOperatorTestCase +from caffe2.benchmarks.operator_benchmark import benchmark_core +from caffe2.benchmarks.operator_benchmark.benchmark_test_generator import * import torch @@ -16,28 +14,23 @@ import torch # Input shapes that we test and the run mode for each shape. # Sum up two tensors with the same shape - -def generate_inputs(): - ms = benchmark_utils.get_n_rand_nums(min_val=1, max_val=128, n=1) - ns = benchmark_utils.get_n_rand_nums(min_val=1, max_val=128, n=2) - ks = benchmark_utils.get_n_rand_nums(min_val=1, max_val=128, n=2) - mode = ['long'] - - test_cases = benchmark_utils.cross_product([ms], mode) - - two_dims = benchmark_utils.cross_product(ms, ns) - two_dims = benchmark_utils.cross_product(two_dims, mode) - test_cases.extend(two_dims) - - three_dims = benchmark_utils.cross_product(ms, ns, ks) - three_dims = benchmark_utils.cross_product(three_dims, mode) - test_cases.extend(three_dims) - - # Representative inputs - test_cases.extend([([128], 'short'), - ([64, 128], 'short'), - ([32, 64, 128], 'short')]) - return test_cases +# Long config +long_config = generate_configs( + M=get_n_rand_nums(min_val=1, max_val=128, n=2), + N=get_n_rand_nums(min_val=1, max_val=128, n=2), + K=get_n_rand_nums(min_val=1, max_val=128, n=2), + mode=['long'], + sample_func=cross_product, +) + +# Short config +short_config = generate_configs( + M=[8, 16], + N=[32, 64], + K=[64, 128], + mode=['short'], + sample_func=cross_product +) @torch.jit.script @@ -49,20 +42,15 @@ def torch_add(a, b, iterations): return result -@benchmark_core.benchmark_test_group -def add_test_cases(): - test_cases = generate_inputs() - for test_case in test_cases: - X, run_mode = test_case - Caffe2OperatorTestCase( - test_name='add', - op_type='Add', - input_shapes=[X, X], - op_args={}, - run_mode=run_mode) - PyTorchOperatorTestCase( - test_name='add', - op_type=torch_add, - input_shapes=[X, X], - op_args={}, - run_mode=run_mode) +@benchmark_core.register_test +def test_add(): + generate_pt_test( + [long_config, short_config], + map_pt_config_add, + [('add', torch_add)] + ) + generate_c2_test( + [long_config, short_config], + map_c2_config_add, + [('add', 'Add')], + ) diff --git a/benchmarks/operator_benchmark/ops/matmul.py b/benchmarks/operator_benchmark/ops/matmul.py index 214e2a5eac..62a9b43f7a 100644 --- a/benchmarks/operator_benchmark/ops/matmul.py +++ b/benchmarks/operator_benchmark/ops/matmul.py @@ -3,32 +3,33 @@ from __future__ import division from __future__ import print_function from __future__ import unicode_literals -from caffe2.benchmarks.operator_benchmark import benchmark_core, benchmark_utils - -from caffe2.benchmarks.operator_benchmark.benchmark_caffe2 import Caffe2OperatorTestCase -from caffe2.benchmarks.operator_benchmark.benchmark_pytorch import PyTorchOperatorTestCase - +from caffe2.benchmarks.operator_benchmark import benchmark_core +from caffe2.benchmarks.operator_benchmark.benchmark_test_generator import * import torch """Microbenchmarks for MatMul operator. Supports both Caffe2/PyTorch.""" - - -def generate_inputs(): - # Random inputs - Ms = benchmark_utils.get_n_rand_nums(min_val=1, max_val=128, n=2) - Ns = benchmark_utils.get_n_rand_nums(min_val=1, max_val=128, n=2) - Ks = benchmark_utils.get_n_rand_nums(min_val=1, max_val=128, n=2) - transpose_a = [False, True] - transpose_b = [True, False] - mode = ['long'] - test_cases = benchmark_utils.cross_product(Ms, Ns, Ks, transpose_a, transpose_b, mode) - - # Representative inputs - test_cases.extend([(8, 16, 64, False, False, 'short'), - (64, 64, 256, False, False, 'short'), - (256, 256, 256, False, False, 'short')]) - return test_cases +# Long config +long_config = generate_configs( + M=get_n_rand_nums(min_val=1, max_val=128, n=2), + N=get_n_rand_nums(min_val=1, max_val=128, n=2), + K=get_n_rand_nums(min_val=1, max_val=128, n=2), + transpose_a=[False, True], + transpose_b=[True, False], + mode=['long'], + sample_func=cross_product +) + +# Short config +short_config = generate_configs( + M=[8, 16], + N=[32, 64], + K=[64, 128], + transpose_a=[False, True], + transpose_b=[True, False], + mode=['short'], + sample_func=cross_product +) @torch.jit.script @@ -40,24 +41,15 @@ def torch_matmul(a, b, iterations): return result -@benchmark_core.benchmark_test_group -def matmul_test_cases(): - test_cases = generate_inputs() - for test_case in test_cases: - M, N, K, trans_a, trans_b, run_mode = test_case - input_shapes = [(N, M) if trans_a else (M, N), (K, N) if trans_b else (N, K)] - Caffe2OperatorTestCase( - test_name='matmul', - op_type='MatMul', - input_shapes=input_shapes, - op_args={'trans_a': trans_a, 'trans_b': trans_b}, - run_mode=run_mode) - if not trans_a and not trans_b: - # PyTorch's matmul does not take transpose flags, so we only - # have a test case when there are no transpose flags. - PyTorchOperatorTestCase( - test_name='matmul', - op_type=torch_matmul, - input_shapes=input_shapes, - op_args={}, - run_mode=run_mode) +@benchmark_core.register_test +def test_matmul(): + generate_pt_test( + [long_config, short_config], + map_pt_config_matmul, + [('matmul', torch_matmul)] + ) + generate_c2_test( + [long_config, short_config], + map_c2_config_matmul, + [('matmul', 'MatMul')], + ) |